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Abstract. Let Ham(M,L) denote the group of Hamiltonian diffeomorphisms

on a symplectic manifold M , leaving a Lagrangian submanifold L ⊂ M invari-
ant. In this paper, we show that Ham(M,L) has the fragmentation property,
using relative versions of the techniques developed by Thurston and Banyaga.

1. Introduction

One of the main concerns in the study of automorphism groups of manifolds
is whether the group is simple or perfect. The classical technique of Thurston [7]
for showing that the group of C∞ diffeomorphisms of a smooth manifold is simple
(and hence perfect) requires two main properties of the group: fragmentation and
transitivity. Banyaga[1] adaptes these techniques for the group of symplectomor-
phisms of a symplectic manifold. In this paper we prove that Ham(M,L): the group
of relative Hamiltonian diffeomorphisms on a symplectic manifold M satisfies frag-
mentation property. Roughly the group consists of Hamiltonian diffeomorphisms
onM that leave a fixed Lagrangian submanifold L ⊂M invariant, (see Ozan [5] for
details). An automorphism group G on a manifold M is called 2-transitive if for all
points in M x1, x2, y1, y2 with x1 ̸= x2 and y1 ̸= y2, there exists diffeomorphisms
g1, g2 in G with g1(x1) = y1, g2(x2) = y2 and supp(g1) ∩ supp(g2) = ∅. However
Ham(M,L) is far from being transitive since it leaves a submanifold invariant. In-
deed this is the main reason for the nonsimplicity of Ham(M,L). The main result
of the paper is the Relative Fragmentation Theorem:

Theorem 1.1. Let U = (Uj)j∈I be an open cover of a compact, connected,
symplectic manifold (M,ω) and h be an element of Ham(M,L) for a Lagrangian
submanifold L of M . Then h can be written

h = h1h2...hN ,

where each hi ∈ Hamc(M,L), i = 1, .., N is supported in Uj(i) for some j(i) ∈ I.
Moreover, if M is compact, we may choose each hi such that RUi,Ui∩L(hi) = 0,
where we made the identification Uj(i) := Ui.
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The relative Calabi homomorphism RUi,Ui∩L will be defined in the next section.
Hamc(M,L) is the subgroup consisting of compactly supported elements.
For preliminaries and the techniques on the classical diffeomorphism groups Banyaga’s
book [1] can be consulted. In this work we followed his exposition of the foremen-
tioned techniques of Thurston and Banyaga.

2. Relative Hamiltonian Diffeomorphisms

Let (M2n, ω) be a symplectic manifold, i.e. ω is a closed 2-form such that ωn

is a volume form on M . The group of symplectomorphisms is defined as

Symp(M,ω) = {ϕ ∈ Diff∞(M) | ϕ∗ω = ω}.
Symp(M,ω) is by definition equipped with C∞-topology and as first observed by
Weinstein in [8] it is locally path connected. Let Symp0(M,ω) denote the path
component of idM ∈ Symp(M,ω). For any ψ ∈ Symp0(M,ω), let ψt ∈ Symp(M,ω)
for all t ∈ [0, 1], such that ψ0 = idM and ψ1 = ψ. There exists a unique family of
vector fields (corresponding to ψt)

(1) Xt :M −→ TM such that
d

dt
ψt = Xt ◦ ψt.

The vector fields Xt corresponding to ψt (the notation ψ̇t is also used commonly to
denote Xt) are called symplectic since they satisfy LXtω = 0, where LXtω denotes
the Lie derivative of the form ω along the vector field Xt. By Cartan’s formula

LXtω = iXt(dω) + d(iXtω).

Hence Xt is a symplectic vector field if and only if iXtω is closed for all t. If
moreover iXtω is exact, that is to say iXtω = dHt, Ht : M → R a family of
smooth functions, then Xt are called Hamiltonian vector fields. In this case the
corresponding diffeomorphism ψ is called a Hamiltonian diffeomorphism andH1 is a
Hamiltonian for ψ. The Hamiltonian diffeomorphisms form a group as a subgroup
in the identity component of the group of symplectomorphisms, Ham(M,ω) ⊆
Symp0(M,ω).

Let (M,ω) be a connected, closed symplectic manifold, L a Lagrangian sub-
manifold of M . Denote by Symp0(M,L) the identity component of the group of

symplectomorphisms of M that leave L setwise invariant and by S̃ymp0(M,L) its

universal cover. Then the restriction of the flux homomorphism to S̃ymp0(M,L) is
a well defined homomorphism onto H1(M,L) ( see [5]), given by

Flux({ψt}) =
∫ 1

0

[iXtω]dt

where {ψt} ∈ S̃ymp0(M,L, ω) denotes the homotopy class of smooth paths ψt ∈
Symp0(M,L) with fixed ends ψ0 = id, ψ1 = ψ and Xt is the vector field defined by
d

dt
ψt = Xt ◦ ψt. Note that since ψt leaves L invariant, for any p ∈ L, Xt(p) ∈ TpL.

Notation: Let M be a manifold, L ⊂M a submanifold. If f is meant to be a map
of M that leave L setwise invariant then we write f : (M,L) → (M,L).

Let Ham(M,L) ⊂ Symp0(M,L) be the subgroup consisting of symplectomor-
phisms ψ such that there is a Hamiltonian isotopy ψt : (M,L) → (M,L), t ∈ [0, 1]
with ψ0 = id, ψ1 = ψ; i.e. ψt is a Hamiltonian isotopy of M such that ψt(L) = L
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for any t ∈ [0, 1]. So if Xt is the vector field associated to ψt we have iXtω = dHt

for Ht :M → R. Since L is Lagrangian (w|L = 0), Ht is locally constant on L. We
have the following characterization which is analogous to its absolute version (see
Thm 10.12 in [4]).

Theorem 2.1. ([5]) ψ ∈ Symp0(M,L) is a Hamiltonian symplectomorphism
if and only if there exists a symplectic isotopy ψt : [0, 1] → Symp0(M,L) such
that ψ0 = id, ψ1 = ψ and Flux({ψt}) = 0. Moreover, if Flux({ψt}) = 0 then
{ψt} is isotopic with fixed end points to a Hamiltonian isotopy through points in
Symp0(M,L).

2.1. Relative Calabi Homomorphism. The relative version of the Calabi
homomorphism is defined by the same formula of its absolute version. Let (M2n, ω)
be a noncompact symplectic manifold and Ln ⊂M2n be a Lagrangian submanifold.
If Hamc(M,L) is the group of compactly supported Hamiltonian diffeomorphisms
of M that leave L invariant, then

R : H̃amc(M,L) → R

{ϕt} 7−→
∫ 1

0

∫
M

Htω
ndt ,

where Ht is given by iXtω = dHt and
d
dtϕt = Xt ◦ ϕt, is the relative Calabi homo-

morphism. That this homomorphism is a well-defined surjective homomorphism
can be proved almost the same as the absolute case (see for example [1] p.103).

Similarly, the relative Calabi homomorphism can be defined for compact man-

ifolds. Namely, if H̃amU,U∩L(M,ω) denotes the universal cover of Hamiltonian
diffeomorphisms supported in U that leave the Lagrangian submanifold L invariant
then

RU,U∩L : H̃amU,U∩L(M, ω) → R

{ϕt} 7−→
∫ 1

0

∫
M

Ht(ω)
ndt

is again a surjective homomorphism.

Remark 2.2. Let R : G̃ → R denote any of the above versions of the Calabi
homomorphisms in the universal cover setting. We use the same notation for the
induced homomorphisms for the underlying groups. Namely, if Λ denotes the image
of π1(G) under R, then

R : G → R/Λ
is a well-defined homomorphism.

2.2. Relative Weinstein Charts. Let ψ ∈ Symp0(M,L) be sufficiently C1-
close to the identity. Similar to the absolute case, there corresponds a closed 1-
form σ = C(ψ) ∈ Ω1(M) defined by Ψ(graph(ψ)) = graph(σ). Here Ψ : N (∆) →
N (M0) is a fixed symplectomorphism between the tubular neighborhoods of the
Lagrangian submanifolds diagonal (∆ ⊂ (M ×M, (−ω)⊕ ω)) and the zero section
(M0 ⊂ (T ∗M,ωcan)) of the cotangent bundle with Ψ∗(ωcan) = (−ω)⊕ω. Note that
since ψ ∈ Symp0(M,L) the corresponding 1-form vanish on TL, i.e. σ|TqL = 0
for any q ∈ L. Here ωcan denotes the canonical symplectic form on the cotangent
bundle of a smooth manifold. See [4] for the absolute versions and the details. As
a consequence we have the following due to Ozan:
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Lemma 2.3. ([5]) If ψ ∈ Symp0(M,L, ω) is sufficiently C1-close to the identity
and σ = C(ψt) ∈ Ω′(M) then ψ ∈ Ham(M,L) iff [σ] ∈ Γ(M,L).

Γ(M,L) is the relative flux group defined as the image of the fundamental
group of Symp0(M,L, ω) under the flux homomorphism.

Γ(M,L) = F̃ lux(π1(Symp0(M,L, ω))) ⊆ H1(M,L,R).

Definition 2.4. The correspondence

C : Symp0(M,L, ω) → Z1(M,L)

h 7−→ C(h)

is called a Weinstein chart of a neighborhood of idM ∈ Symp0(M,L, ω) into a
neighborhood of zero in the set of closed 1-forms that vanish on TL. The form
C(h) is called a (relative) Weinstein form.

With these definitions in mind we have the following. Compare the absolute
version in [1].

Lemma 2.5. Let (M,ω) be a symplectic manifold, L a Lagrangian submanifold.
For any h ∈ Ham(M,L) there exists finitely many hamiltonian diffeomorphisms
hi ∈ Ham(M,L), i = 1, .., N , such that each hi is close to idM to be in the domain
of the Weinstein chart. Moreover C(hi) is exact for all i = 1, .., N.

Proof. As the above lemma suggests, every smooth path ψt ∈ Ham(M,L) is
generated by Hamiltonian vector fields. Let ht be any isotopy in Ham(M,L) to
the identity such that d

dtht = Xt(ht) where iXtω = dft, h0 = idM , h1 = h and
ft :M → R are Hamiltonians for all t ∈ [0, 1]. Let N be an integer large enough so
that

Φi
t =

[
h(

N−i
N

)
t

]−1

h(
N−i+1

N

)
t

is in the domain of the Weinstein chart. If we let hi = Φi
1 then we have h =

hNhN−1...h1. As noted by Ozan in [5] the group Γ(M,L) is countable. Therefore
any continuous mapping of [0, 1] into Γ(M,L) must be constant. Hence t 7−→
[C(Φi

t)] is constant and thus [C(Φi
t)] = 0. �

2.3. The Fragmentation Lemma. By B1(M,L) denote the set of exact 1-
forms that evaluates zero on TL for a Lagrangian submanifold L ⊂ M . To any
smooth function f :M → R that is locally constant on L, there is a continuous lin-
ear map σrel : B

1(M,L) → C∞
L (M) satisfying ω = d(σrel(ω)) for all ω ∈ B1(M,L).

Then there is a bounded linear functional f̃ : B1(M,L) → B1(M,L), due to Pala-
madov [6], given by:

(2) f̃(ξ) = d(fσrel(ξ))

We make use of this construction in the proof of the Fragmentation Theorem:
Proof. (of Theorem 1.1) We use the notation of Lemma 2.5. By Lemma 2.5 any
h ∈ Ham(M,L) can be written as h = h1...hN where each hi ∈ Ham(M,L) is close
to idM to be in the domain V of the Weinstein chart

C : V ⊂ Symp0(M,L) → C(V ) ⊂ Z1(M,L)

and such that C(hi) is exact for all i = 1, .., N .
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Start with an open cover U = (Ui)i∈N of M and a partition of unity {λi}
subordinate to it. Let K be a compact subset of M containing the support of h.
Let Uk = {U0, ..., UN} be a finite subcover for K such that Ui ∩ Ui+1 ̸= ∅. Then
consider the functions

µ0 = 0 , µj =
∑
i≤j

λi

for j = 1, 2, ..., N . Note that for any x ∈ K, µN (x) = 1 and µi(x) = µi−1(x) for
x /∈ Ui.

Let µ̃i be defined as in the Equation (2). Since this operator is bounded, there
is an open neighborhood V0 ⊂ V of id ∈ Sympc(M,L) with

µ̃i(C(h)) ∈ C(V ) for all i = 1, ..., N and h ∈ V0

Assume that h ∈ V0 and define

ψi = C−1(µ̃i(C(h))) ∈ Ham(M,L).

Note that ψi−1(x) = ψi(x) for x /∈ Ui since µi−1(x) = µi(x) in that case. Therefore
(ψ−1

i−1ψi)(x) = x if x /∈ Ui. Hence, hi = (ψi−1)
−1(ψi) is supported in Ui. On K we

have µN = 1, µ0 = 0, ψN = h, and ψ0 = id. Therefore

h = ψN = (ψ−1
0 ψ1)(ψ

−1
1 ψ2)...(ψ

−1
N−1ψN ) = h1h2...hN .

For the second statement define the isotopies hit = ψi−1(t)ψi(t), where ψi(t) =

C−1(t ˜µi(C(h))). A classical result due to Calabi states that the Lie algebra of

locally supported Hamiltonian diffeomorphisms is perfect [2]. Since for each t, ḣit
is a Hamiltonian vector field parallel to L, we can write ḣit as a sum of commutators.
In other words we have

ḣit =
∑
j

[Xji
t , Y

ji
t ],

where Xji
t and Y ji

t are again Hamiltonian vector fields (not necessarily parallel to

L). By the cut-off lemma below Xji
t and Y ji

t can be chosen to vanish outside of
an open set whose closure contain Ui. If u

i
t is the unique function supported in Ui

with i
ḣi
t
ω = duit, then duit =

∑
j ω(X

ji
t , Y

ji
t ) since both functions above have the

same differential and both have compact supports. Therefore∫
Ui

uitω
n =

∫
M

uitω
n =

∑
j

∫
ω(Xji

t , Y
ji
t )ωn = 0

implying that ∫ 1

0

∫
Ui

uitω
n = RUi,UK∩L(hi) = 0.

�
The cut-off lemma we used in the proof of the fragmentation lemma is as follows.

Lemma 2.6. Let φt ∈ Ham(M,L) be an isotopy of a smooth symplectic mani-
fold (M,ω) leaving a Lagrangian submanifold L invariant. Let F ⊂M be a closed
subset and U, V ⊂ M open subsets such that U ⊂ U ⊂ V with ∪t∈[0,1]φt(F ) ⊂ U .
Then there is an isotopy φt ∈ Symp(M,L) supported in V and coincides with φt

on U .
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Proof. We choose a smooth function λt(x) = λ(x, t) which equals to 1 on U ×
[0, 1], 0 outside of V ×[0, 1]. Let ft denote the family of Hamiltonians corresponding
to φt, i.e. iφ̇t

ω = dft. Define X(x, t) = X(λt·ft)+∂/∂t on M × [0, 1], where X(λt·ft)
is the Hamiltonian vector field given by iX(λt·ft)

ω = d(λt · ft).The desired isotopy

is obtained by integrating the vector field X(x, t). �

3. Final Remarks

(1) Ham(M,L) is not simple because of the following. Consider the sequence
of groups and homomorphisms:

0 −→ Kerφ −→ Ham(M,L)
φ−→ Diff∞(L) −→ 0,

where φ is just restriction to L. Therefore Kerφ consists of Hamiltonian
diffeomorphisms of M that are identity when restricted to L. Clearly,
Kerφ is a closed subgroup.

(2) The remaining parts of the Thurston and Banyaga’s proofs fail to work in
the relative case. In the absolute case the proof is completed by finding
one smooth manifold for which the perfectness is easily shown. In both
smooth and symplectic categories this is done through the torus due to
a theorem by Herman [3]. Unfortunately the underlying KAM theory
fails to apply in the relative case and thus whether Ham(M,L) is perfect
remains open.
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