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Abstract. Given a 2-bridge link L, we study an algorithm that calculates

the colored signature and multivariable Alexander polynomial of L. We find

all 2-Bridge links up to 11 crossings and locate them in Thistlethwaite’s link
table. The splitting numbers of some links are calculated as a consequence of

this identification.

1. introduction

Let L be a link in S3 and A be a Seifert matrix for L. The Alexander polynomial
∆L(t) of L equals det(A − tAT ) and if ω ∈ S1 \ {1} ⊂ C then H(ω) = (1 −
ω̄)(A− ωAT ) defines a Hermitian matrix. The signature of H (number of positive
eigenvalues minus the number of negative eigenvalues) is the signature function
σL(ω), and the number of zero eigenvalues of H for ω is the nullity ηL(ω) of L. The
case ω = −1 is due to Trotter [15] and Murasugi [13] for links. The generalization to
all ω ∈ S1 \ {1} is done by Levine [11] and Tristram [14]. Such knot/link invariants
that are defined through Seifert matrices can naturally be generalised to colored
links via C-complexes which are generalized Seifert surfaces. Cimasoni and Florens
[4] uses C-complexes to generate Seifert matrices which they use to define colored
signatures and calculate multivariable Alexander polynomials.

The aim of this study is twofold: to compute the colored signature and Alexander
polynomial of a 2-bridge link L, and find all 2-bridge links inside Thistlethwaite’s
link table. There are various properties of links that are computed and listed in
databases, such as KnotAtlas [10], Knotilus [9], or Knotinfo [3] Identifying 2-bridge
links inside the list of links will enable the information about 2-bridge links to be
tied to their representatives in these databases. Thistlethwaite’s [8] table of links is
the most common enumeration used in the databases. The outline of the paper is
as follows: In section2 we review colored links, C-complex and how signature and
Alexander polynomials are calculated, following mainly [4]. Section 3 is devoted to
the summary of 2-bridge links with the exposition of Murasugi’s book [12]. Next
we give the algorithm that calculates the colored signature of any 2-bridge link.
In section 5, we give an algorithm for identifying all 2-bridge links of a certain
crossing number. As an application, we calculate the splitting numbers of some
2-bridge links that have certain type of Conway normal forms in section 6.

In this study MATLAB R© is used to implement the algorithms.
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2. Colored Links and their signatures

Let L = L1 ∪L2 ∪ · · · ∪Lµ be a µ-colored link. This means L is an oriented link
in S3 (or more generally in a homology S3) and there is a surjective map, called
the coloring, that assigns a color {1, . . . , µ} to each component of L. Note that the
number of components of L may be greater than µ, i.e. some components may be
given the same color.

The concept of Seifert surface of a knot (or a link) is generalized as the C-complex
structure for colored links.

Definition 2.1. The union of surfaces S = S1 ∪ S2 ∪ · · · ∪ Sµ is a C-complex for
the colored link L = L1 ∪ L2 ∪ · · · ∪ Lµ such that,

(1) Si is a Seifert surface for Li for all i,
(2) if i 6= j, then Si ∩ Sj is either empty or a union of ”clasps” (Figure 1),
(3) for all i, j, k pairwise distinct Si ∩ Sj ∩ Sk is empty.

Figure 1. A clasp intersection, (figure taken from [4])

The generalization of Levine-Tristram signature to colored links is via the Seifert
form on C-complexes. Let S be a C-complex for the µ-colored link L. Fix a basis
for H1(S) and consider the bilinear form

αε : H1(S)×H1(S)−→ Z
(x,y)7−→ lk(iε(x), y)

where lk denotes the linking number, ε = (ε1, . . . , εµ) is a sequence of ±1’s, iε(c)
is the class that is obtained by pushing c in the εi normal direction off Si for
i = 1, . . . , µ. If we denote the matrix of αε by Aε, then observe that A−ε = (Aε)T .
This means for 2µ possible ε, there are 2µ−1 matrices (up to transposition) to
be calculated for the signature of L. The signature function defined on the µ-
dimensional torus Tµ∗ = (S1 \ {1})µ is the signature of the Hermitian matrix

H(ω) =
∑
ε

µ∏
i=1

(1− ω̄iεi) Aε.

In particular for µ = 2, H(ω) = H(ω1, ω2) becomes

(2.1) H(ω1, ω2) = (1− ω̄1)(1− ω̄2)[A++ − ω1A
−+ − ω2A

+− + ω1ω2A
−−].

Since H is Hermitian its eigenvalues are real. The signature and nullity of H are the
signature σL and nullity ηL of L respectively at ω. If we express the formula 2.1 as
H(ω1, ω2) = (1−ω̄1)(1−ω̄2)A(ω1, ω2), then the multivariable Alexander polynomial
of L is the determinant of the matrix A(u, v) up to a factor of (u− 1)(v − 1). (See
[6].) An interesting application of signature and nullity can be found in [5], where
the authors use them to find an upper bound for the splitting number of links.
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3. Two-Bridge Links

Two-bridge links are links with two components, which can be put into the form
as in Figure 2 below. The integers a1, . . . , an denote the number of overcrossings
(positive ai) or undercrossings (negative ai) with respect to an orientation. The

a1 a3

a2 an−1

an

Figure 2. Figure: A 2-bridge knot or link.

2-bridge links are also called rational links, since they can be classified by rational
numbers. If gcd(p, q) = 1, then the rational number given by the continued fraction

p

q
= a1 +

1

a2 + 1

. . .+ 1
an

corresponds to a 2-bridge knot or link. This link can be denoted by this ratio-
nal number as L(p, q) or with the Conway normal form C(a) = C(a1, . . . , an) =
[a1, . . . , an]. Note that, for p

q to represent a link, p must be even. Continued fraction

expression of a rational number is not unique and in this study we choose a normal
form in which each ai is even for a more systematic calculation of the signature.
In this case its Conway normal form with even coordinates C(a) = C(2b1, . . . , 2bm)
will have odd number of coordinates. See [12] for more details on 2-bridge links.

Figure 3. The link C(2, 4, 6, 2, 2) and its natural C-complex

4. calculating the signature function

Let L = p
q be a 2-bridge link with the Conway normal form L = C(a). We

rewrite this with even coordinates only as L = C(2a1, 2b1, 2a2, . . . , 2bn−1, 2an).
This allows us to unify the clasp intersections into a single type and therefore the
natural C-complex of L takes a form that the linking numbers for a given basis are
systematically calculated.

As Figure 4 suggests, for a basis of the first homology of a link with normal form
L = C(2a1, 2b1, 2a2, . . . , 2bn−1, 2an) there corresponds |ai| − 1 generators of type α
for each coordinate ai and n−1 generators of type β. In total H1(S) is generated by
k = (|a1|+ · · ·+ |an|)−n+(n−1) = (|a1|+ · · ·+ |an|)−1 generators. Indexing these
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Figure 4. A basis for the first homology of the C-complex of the
link C(2, 4, 6, 2, 2)

generators from left to right, we see that the only possible nonzero linking numbers
are those belonging to consecutive generators and self-linkings. Corresponding k-by-
k Seifert matrix A++ is diagonal having the only nonzero entries lk(β++

i , βi) = −bi.
For A+− we calculate lk(β+−

i , βi) as below, depending on the signs of the neigh-
boring coordinates aj and aj+1:

Bi = lk(β+−
i , βi) =


−1− bi for (+, 2bi,+)

−bi for (+, 2bi,−)

−bi for (−, 2bi,+)

1− bi, for (−, 2bi,−)

and lk(α+−
i , αi) = ±1 which is the opposite of the sign of the coordinate aj that

this generator is resulting from. Above the diagonal we have lk(γ+−i , γi+1) = ±1
which is equal to the sign of the coordinate aj that creates the common clasp
intersection of these consecutive generators, regardless of their type being α or β.

Figure 5. The matrix A++ is diagonal with n−1 nonzero entries
corresponding to lk(β++

i , βi) = −bi and A+− is bidiagonal.

Applying the calculations in Figure 5 to the link C(2, 4, 6, 2, 2) with the basis
depicted in Figure 4, we get the Seifert matrices as in Figure 6 for this link.

The matrices are, then, plugged in Equation 2.1 to get the Hermitian matrix
H(ω1, ω2) whose signature gives the colored signature σL(ω1, ω2) of the link L.
The Alexander polynomial is calculated as the determinant of A(u, v) = [A++ −
uA−+ − vA+− + uvA−−]. For the link C(2, 4, 6, 2, 2) we calculate the Alexander
polynomial as 2u4v2−7u4v+6u4+2u3v3−11u3v2+17u3v−7u3+2u2v4−11u2v3+
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A++ =


−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 A+− =


−3 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −2


Figure 6. Seifert matrices of the link C(2, 4, 6, 2, 2)

19u2v2−11u2v+2u2−7uv4 +17uv3−11uv2 +2uv+6v4−7v3 +2v2. The signature
and nullity functions are constant on the complement of the zeros of the Alexander
polynomial. If the domain of the open torus is sketched as a square, then the values
of the signature function for the link C(2, 4, 6, 2, 2) is given in Figure 7.

Figure 7. Colored signature values of the link C(2, 4, 6, 2, 2) on
the open torus.

In particular σL(−1,−1) equals the classical signature σL of the link. As a
consequence of above calculations we get the following result on the signature of a
particular family of 2-bridge links.

Theorem 4.1. Let L be a 2-bridge link with Conway form C(2a1, 2b1, 2a2, . . . , 2bn−1, 2an)
where b1, · · · , bn−1 > 0. Then, the signature σL(−1,−1) = σL = 1−(|a1|+· · ·+|an|)
and nullity ηL(−1,−1) = ηL = 0.

Proof. The statement of the theorem is equivalent to negative definiteness of the
Hermitian matrix H(−1,−1) for this class of links. H is a tridiagonal symmetric
matrix as in the form o Figure 8. The diagonal entry βi is equal to 2(Bi − bi)
where Bi is as calculated above. In any case if bi > 0 we have βi ≤ −2. As
a consequence of Sylvester’s Criterium, H is negative definite, if all its principal
minors are negative definite. Then the result follows, for instance, from Proposition
2.1 of [1]. �

5. Identifying and listing the links

In this section, we outline an algorithm to find all 2-bridge links with n crossings.
The results for links up to 11 crossing are listed in section 7. These links are
matched with their Thistlethwaite’s Id. This will allow other data about these
links to be relatable to their Conway normal forms. For a similar study on the
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H(−1,−1) = 4



−2 ±1
±1 −2 ±1

. . .
. . .

. . .

±1 −2 ±1
±1 β1 ±1

±1 −2 ±1
. . .

. . .
. . .

. . .
. . .

. . .

±1 −2


Figure 8. The Levine-Tristram signature of L is the signature of H

2-bridge knots, see De Wit’s paper[7]. The following theorems, due to Schubert
[16], are used frequently in this study to eliminate equivalent links from the list of
possible combinations.

Theorem 5.1. (Schubert) (Theorem 9.3.3 of [12]) The 2-bridge links L(p, q)
and L(p′, q′) are equivalent as unoriented links if and only if p = p′ and qq′ ≡
1 (mod p).

Theorem 5.2. (Schubert) (Theorem 9.4.1 of [12]) If the orientation of one
component of the 2-bridge link L(p, q), where both p > 0 and q > 0, is reversed the
resulting link is equivalent to L(p, q − p) = L∗(p, p− q).

In Example 5.3 below, we exhibit how these theorems are used to find equivalent
links of 7 crossings (up to orientation). In order to find and identify 2-bridge links
up to a certain number of crossings n:

(1) Find all permutations of positive integers that add up to n,
(2) Calculate the rational number p

q for each such permutation,

(3) Rule out the permutations giving knots instead of links, by checking the
parity of p,

(4) Pick one representative of permutations with equal continued fraction or
equivalent link according to Schubert’s criteria (Theorem 5.1 and 5.2),

(5) Identify the Gauss code of the link by looking at its Conway form,
(6) Locate it in Thistlethwaite’s link table.

The Thistlethwaite’s link table lists links up to orientations and mirror images.
This means in the tables below, a link may represent 2 or 4 nonequivalent links. If
the link has a palindromic Conway form, then there is only one possible orientation.
In this case its mirror image is the second link represented by the same DT Id.
Otherwise, there are two orientations for both of the link and its mirror separately.

Example 5.3. In Table 1, we list all 20 possible 2-bridge links with 7 crossings and
explain why these are represented by only 3 links in the corresponding table of links
with 7 crossings. Consider the links E1 to E8. The links with continued fractions
leading to equal rational number are equivalent, hence we have E1 = E2, E3 = E4,
E5 = E6 and E7 = E8. By Theorem 5.1, E1 = E3 since 3·5 ≡ 1 (mod 14). Similarly
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ID Link
(p, q)

Conway
Form

ID Link
(p, q)

Conway
Form

E1 (14, 3) [4, 1, 1, 1] E11 (16, 9) [1, 1, 3, 1, 1]
E2 (14, 3) [4, 1, 2] E12 (16, 9) [1, 1, 3, 2]
E3 (14, 5) [2, 1, 3, 1] E13 (18, 5) [3, 1, 1, 1, 1]
E4 (14, 5) [2, 1, 4] E14 (18, 5) [3, 1, 1, 2]
E5 (14, 9) [1, 1, 1, 3, 1] E15 (18, 7) [2, 1, 1, 2, 1]
E6 (14, 9) [1, 1, 1, 4] E16 (18, 7) [2, 1, 1, 3]
E7 (14, 11) [1, 3, 1, 1, 1] E17 (18, 11) [1, 1, 1, 1, 2, 1]
E8 (14, 11) [1, 3, 1, 2] E18 (18, 11) [1, 1, 1, 1, 3]
E9 (16, 7) [2, 3, 1, 1] E19 (18, 13) [1, 2, 1, 1, 1, 1]
E10 (16, 7) [2, 3, 2] E20 (18, 13) [1, 2, 1, 1, 2]

Table 1. All possible combinations of 7 crossings

E5 = E7. These equivalences assume that the links are not oriented. Suppose E3

is given the standard orientation. According to Theorem 5.2, if the orientation of
one of the components of E3 is reversed the resulting link is equivalent (as oriented
links) to E5. Since Thistlethwaite’s link table lists links up to orientations all these
8 links are represented by one link, namely L7A6. Similarly the links E9 to E12

and E13 to E20 are represented by L7A4 and L7A5, respectively.

6. Splitting Numbers

Although the classification of 2-bridge links is complete, various characteristics
or local properties of these links are actively studied. In this section we will mention
one of such invariants, namely the splitting number of a link.

The splitting number, sp(L), of the link L is defined to be the minimum number
of crossing changes between different components of L to convert L into a split link.
For more information about splitting numbers see [5] and [2] and references therein.
In [2], authors calculate the splitting numbers of links up to 9 crossings. They use
5 methods based on covering properties or Alexander invariants, case by case, for
determining the splitting numbers. The other study [5], due to Cimasoni et. al.,
calculates the splitting number by looking at the signature and nullity of the links.
As a consequence of their main result, the following theorem is about the splitting
number of certain 2-bridge links:

Theorem 6.1. (Theorem 4.7 of [5]) The splitting number of the 2-bridge link
C(2a1, b1, . . . , 2an−1, bn−1, 2an) is a1 +a2 + · · ·+an, where all ai and bi are positive
integers.

Our calculations below reveal which alternating two component links are 2-bridge
links. Therefore one can also calculate the splitting numbers of the following links,
which turn out to be 2-bridge links with the desired Conway form of Theorem 6.1:

L5A1, L6A1, L7A4, L7A6, L8A6, L8A8, L8A11, L9A18, L9A26, L9A30, L9A36, L9A40

Besides the above links that already appear with splitting numbers in [2], we cal-
culate the splitting numbers of those links in Table 2 with 10 and 11 crossings that
fit into the Conway form of Theorem 6.1:
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Link sp(L) Link sp(L) Link sp(L)
L10A48 2 L11A132 2 L11A299 4
L10A64 3 L11A194 3 L11A312 4
L10A75 3 L11A206 3 L11A319 4
L10A87 3 L11A222 3 L11A360 5
L10A89 4 L11A263 4 L11A372 5
L10A98 4 L11A278 4
L10A102 4 L11A289 4

Table 2. Splitting numbers of some 2-bridge links

We note that the splitting number of L11A372 was also calculated in [5] (Example
4.4). In their work, the authors are not making use of the fact that Theorem 6.1 is
also applicable to this link.
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7. Two-bridge links up to 11 crossings

The Link p
q or (p, q) Conway Form Thistlethwaite’s Id

(4,1) [4] or [3,1] L4A1

(8,3) [2,1,2] L5A1

(6,1) [6] or [5,1] L6A3

(10,3) [3,3] L6A2

(12,5) [2,2,2] L6A1

(14,5) [2,1,4] L7A6

(16,7) [2,3,2] L7A4

(18,5) [3,1,1,2] L7A5

Table 3. 2-Bridge Links of 4,5,6 and 7 Crossings
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The Link p
q or (p, q) Conway Form Thistlethwaite’s Id

(8,1) [8] or [7,1] L8A14

(16,3) [5,2,1] L8A12

(20,9) [2,4,2] L8A6

(22,5) [4,2,2] L8A11

(24,7) [3,2,3] L8A13

(26,7) [3,1,2,2] L8A10

(30,11) [2,1,2,1,2] L8A8

(34,13) [2,1,1,1,1,2] L8A9

Table 4. 2-Bridge Links of 8 Crossings

The Link p
q or (p, q) Conway Form Thistlethwaite’s Id

(20,7) [2,1,6] L9A36

(24,5) [4,1,4] L9A40

(24,11) [2,5,2] L9A18

(28,11) [2,1,1,5] L9A39

(30,7) [4,3,2] L9A30

(32,7) [4,1,1,3] L9A38

(34,9) [3,1,3,2] L9A25

(36,11) [3,3,1,2] L9A34

(40,11) [3,1,1,1,3] L9A35

(44,13) [3,2,1,1,2] L9A37

(46,17) [2,1,2,2,2] L9A26

(50,19) [2,1,1,1,2,2] L9A27

Table 5. 2-Bridge Links of 9 Crossings
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The Link p
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The Link p
q or (p, q) Conway Form Thistlethwaite’s Id

(26, 3) [8, 1, 2] L11A360

(32, 15) [2, 7, 2] L11A132

(34, 5) [6, 1, 4] L11A372

(38, 5) [7, 1, 1, 2, ] L11A367

(44, 7) [6, 3, 2] L11A278

(46, 7) [6, 1, 1, 3, ] L11A364

(46, 11) [4, 5, 2, ] L11A206

(50, 9) [5, 1, 1, 4, ] L11A365

(50, 13) [3, 1, 5, 2, ] L11A192

(52, 9) [5, 1, 3, 2, ] L11A275

(54, 17) [3, 5, 1, 2, ] L11A355

(56, 13) [4, 3, 4] L11A319

(58, 11) [5, 3, 1, 2] L11A371

(62, 11) [5, 1, 1, 1, 3] L11A358

(62, 13) [4, 1, 3, 3] L11A369

(64, 15) [4, 3, 1, 3] L11A302

(70, 13) [5, 2, 1, 1, 2] L11A362

(72, 19) [3, 1, 3, 1, 3] L11A298

(74, 23) [3, 4, 1, 1, 2] L11A368

(76, 23) [3, 3, 3, 2] L11A260

(76, 27) [2, 1, 4, 2, 2] L11A263

(78, 17) [4, 1, 1, 2, 3] L11A366

(78, 29) [2, 1, 2, 4, 2] L11A194

(80, 17) [4, 1, 2, 2, 2] L11A312

(82, 23) [3, 1, 1, 3, 3] L11A356

(82, 31) [2, 1, 1, 1, 4, 2] L11A196

(84, 19) [4, 2, 2, 1, 2] L11A299

(84, 25) [3, 2, 1, 3, 2] L11A271

(86, 25) [3, 2, 3, 1, 2] L11A361

(88, 19) [4, 1, 1, 1, 2, 2] L11A280

(92, 21) [4, 2, 1, 1, 1, 2] L11A305

(92, 33) [2, 1, 3, 1, 2, 2] L11A264

(94, 39) [2, 2, 2, 3, 2] L11A222

(98, 27) [3, 1, 1, 1, 2, 3] L11A359

(98, 41) [2, 2, 1, 1, 3, 2] L11A221

(100, 27) [3, 1, 2, 2, 1, 2] L11A297

(100, 39) [2, 1, 1, 3, 2, 2] L11A284

(104, 29) [3, 1, 1, 2, 2, 2] L11A272

(106, 31) [3, 2, 2, 1, 1, 2] L11A363

(108, 29) [3, 1, 2, 1, 1, 1, 2] L11A300

(112, 31) [3, 1, 1, 1, 1, 2, 2] L11A262

(112, 41) [2, 1, 2, 1, 2, 1, 2] L11A289

(116, 45) [2, 1, 1, 2, 1, 2, 2] L11A266

(128, 47) [2, 1, 2, 1, 1, 1, 1, 2] L11A247

(144, 55) [2, 1, 1, 1, 1, 1, 1, 1, 2] L11A248

Table 7. 2-Bridge Links of 11 Crossings
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