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DEVELOPMENT OF SINGLE-FRAME METHODS AIDED KALMAN-TYPE 
FILTERING ALGORITHMS FOR ATTITUDE ESTIMATION OF          

NANO-SATELLITES 

SUMMARY 

There is a growing demand for the development of highly accurate attitude estimation 
algorithms even for small satellite e.g. nanosatellites with attitude sensors that are 
typically cheap, simple, and light because, in order to control the orientation of a 
satellite or its instrument, it is important to estimate the attitude accurately. Here, the 
estimation is especially important in nanosatellites, whose sensors are usually low-cost 
and have higher noise levels than high-end sensors. The algorithms should also be able 
to run on systems with very restricted computer power. One of the aims of the thesis 
is to develop attitude estimation filters that improve the estimation accuracy while not 
increasing the computational burden too much. For this purpose, Kalman filter 
extensions are examined for attitude estimation with a 3-axis magnetometer and sun 
sensor measurements. 
In the first part of this research, the performance of the developed extensions for the 
state of art attitude estimation filters is evaluated by taking into consideration both 
accuracy and computational complexity. Here, single-frame method-aided attitude 
estimation algorithms are introduced. As the single-frame method, singular value 
decomposition (SVD) is used that aided extended Kalman filter (EKF) and unscented 
Kalman filter (UKF) for nanosatellite’s attitude estimation. The development of the 
system model of the filter, and the measurement models of the sun sensors and the 
magnetometers, which are used to generate vector observations is presented. Vector 
observations are used in SVD for satellite attitude determination purposes. In the 
presented method, filtering stage inputs are coming from SVD as the linear 
measurements of attitude and their error covariance relations. In this step, UD is also 
introduced for EKF that factorizes the attitude angles error covariance with forming 
the measurements in order to obtain the appropriate inputs for the filtering stage. The 
necessity of the sub-step, called UD factorization on the measurement covariance is 
discussed. The accuracy of the estimation results of the SVD-aided EKF with and 
without UD factorization is compared for the estimation performance. Then, a case 
including an eclipse period is considered and possible switching rules are discussed 
especially for the eclipse period, when the sun sensor measurements are not available. 
There are also other attitude estimation algorithms that have strengths in coping well 
with nonlinear problems or working well with heavy-tailed noise. Therefore, different 
types of filters are also tested to see what kind of filter provides the largest 
improvements in the estimation accuracy. Kalman-type filter extensions correspond to 
different ways of approximating the models. In that sense, a filter takes the non-
Gaussianity into account and updates the measurement noise covariance whereas 
another one minimizes the nonlinearity. Various other algorithms can be used for 
adapting the Kalman filter by scaling or updating the covariance of the filter. The 
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filtering extensions are developed so that each of them is designed to mitigate different 
types of error sources for the Kalman filter that is used as the baseline.  
The distribution of the magnetometer noises for a better model is also investigated 
using sensor flight data. The filters are tested for the measurement noise with the best 
fitting distribution. The responses of the filters are performed under different operation 
modes such as nominal mode, recovery from incorrect initial state, short and long-term 
sensor faults. 
Another aspect of the thesis is to investigate two major environmental disturbances on 
the spacecraft close enough to a planet: the external magnetic field and the planet’s 
albedo. As magnetometers and sun sensors are widely used attitude sensors, external 
magnetic field and albedo models have an important role in the accuracy of the attitude 
estimation. The magnetometers implemented on a spacecraft measure the internal 
geomagnetic field sources caused by the planet’s dynamo and crust as well as the 
external sources such as solar wind and interplanetary magnetic field. However, the 
models that include only the internal field are frequently used, which might remain 
incapable when geomagnetic activities occur causing an error in the magnetic field 
model in comparison with the sensor measurements. Here, the external field variations 
caused by the solar wind, magnetic storms, and magnetospheric substorms are 
generally treated as bias on the measurements and removed from the measurements by 
estimating them in the augmented states. The measurement, in this case, diverges from 
the real case after the elimination. Another approach can be proposed to consider the 
external field in the model and not treat it as an error source. In this way, the model 
can represent the magnetic field closer to reality.  
If a magnetic field model used for the spacecraft attitude control does not consider the 
external fields, it can misevaluate that there is more noise on the sensor, while the 
variations are caused by a physical phenomenon (e.g. a magnetospheric substorm 
event), and not the sensor itself. Different geomagnetic field models are compared to 
study the errors resulting from the representation of magnetic fields that affect the 
satellite attitude determination system. For this purpose, we used magnetometer data 
from low Earth-orbiting spacecraft and the geomagnetic models, IGRF and T89 to 
study the differences between the magnetic field components, strength, and the angle 
between the predicted and observed vector magnetic fields. The comparisons are made 
during geomagnetically active and quiet days to see the effects of the geomagnetic 
storms and sub-storms on the predicted and observed magnetic fields and angles. The 
angles, in turn, are used to estimate the spacecraft attitude, and hence, the differences 
between model and observations as well as between two models become important to 
determine and reduce the errors associated with the models under different space 
environment conditions. It is shown that the models differ from the observations even 
during the geomagnetically quiet times but the associated errors during the 
geomagnetically active times increase more. It is found that the T89 model gives closer 
predictions to the observations, especially during active times and the errors are 
smaller compared to the IGRF model. The magnitude of the error in the angle under 
both environmental conditions is found to be less than 1 degree. The effects of 
magnetic disturbances resulting from geospace storms on the satellite attitudes 
estimated by EKF are also examined. The increasing levels of geomagnetic activity 
affect geomagnetic field vectors predicted by IGRF and T89 models. Various sensor 
combinations including magnetometer, gyroscope, and sun sensor are evaluated for 
magnetically quiet and active times. Errors are calculated for estimated attitude angles 
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and differences are discussed. This portion of the study emphasizes the importance of 
environmental factors on the satellite attitude determination systems. 
Since the sun sensors are frequently used in both planet-orbiting satellites and 
interplanetary spacecraft missions in the solar system, a spacecraft close enough to the 
sun and a planet is also considered. The spacecraft receives electromagnetic radiation 
of direct solar flux, reflected radiation namely albedo, and emitted radiation of that 
planet. The albedo is the fraction of sunlight incident and reflected light from the 
planet. Spacecraft can be exposed to albedo when it sees the sunlit part of the planet. 
The albedo values vary depending on the seasonal, geographical, diurnal changes as 
well as the cloud coverage. The sun sensor not only measures the light from the sun 
but also the albedo of the planet. So, a planet’s albedo interference can cause 
anomalous sun sensor readings. This can be eliminated by filtering the sun sensors to 
be insensitive to albedo. However, in most of the nanosatellites, coarse sun sensors are 
used and they are sensitive to albedo. Besides, some critical components and spacecraft 
systems e.g. optical sensors, thermal and power subsystems have to take the light 
reflectance into account. This makes the albedo estimations a significant factor in their 
analysis as well. Therefore, in this research, the purpose is to estimate the planet’s 
albedo using a simple model with less parameter dependency than any albedo models 
and to estimate the attitude by comprising the corrected sun sensor measurements. 
A three-axis attitude estimation scheme is presented using a set of Earth’s albedo 
interfered coarse sun sensors (CSSs), which are inexpensive, small in size, and light in 
power consumption. For modeling the interference, a two-stage albedo estimation 
algorithm based on an autoregressive (AR) model is proposed. The algorithm does not 
require any data such as albedo coefficients, spacecraft position, sky condition, or 
ground coverage, other than albedo measurements.  The results are compared with 
different albedo models based on the reference conditions. The models are obtained 
using either a data-driven or estimated approach. The proposed estimated albedo is fed 
to the CSS measurements for correction. The corrected CSS measurements are 
processed under various estimation techniques with different sensor configurations. 
The relative performance of the attitude estimation schemes when using different 
albedo models is examined. 
In summary, the effects of two main space environment disturbances on the satellite’s 
attitude estimation are studied with a comprehensive analysis with different types of 
spacecraft trajectories under various environmental conditions. The performance 
analyses are expected to be of interest to the aerospace community as they can be 
reproducible for the applications of spacecraft systems or aerial vehicles. 
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NANO-UYDULARDA YÖNELİM KESTİRİMİ İÇİN TEK-ÇERÇEVE 
YÖNTEMLERE DAYALI KALMAN-TİPİ FİLTRELEME 

ALGORİTMALARININ GELİŞTİRİLMESİ 

ÖZET 

Yüksek doğruluklu yönelim kestirim algoritmalarının geliştirilmesi, uzay aracının 
veya aletinin yöneliminin kontrolündeki öneminden dolayı küçük uydularda dahi talep 
edilmektedir. Bu çalışmanın konusu olan nano-uydularda genellikle ucuz, basit ve 
hafif olan yönelim algılayıcıları tercih edilmektedir. Burada, kestirim algoritmaları, 
yüksek kalitede üretilmiş algılayıcılara göre daha yüksek gürültü seviyelerine sahip 
düşük maliyetli nano-uydular için özellikle önem taşımaktadır. Geliştirilen 
algoritmalar, bilgisayar gücü çok kısıtlı olan sistemlerde de çalışabilmelidir. Bu tez 
kapsamında hesaplama yükünü çok fazla artırmadan kestirim doğruluğunu artıran 
yönelim kestirim filtrelerinin geliştirilmesi amaçlanmaktadır. Bu nedenle, Kalman 
filtre uzantıları, 3 eksenli manyetometre ve güneş sensörü ölçümleri kullanılarak 
yönelim kestirimi için incelenmiştir. 
Araştırmanın ilk bölümünde, gelişmiş yönelim kestirim filtreleri için tasarlanan 
uzantıların performansı hem doğruluk hem de hesaplama yükü dikkate alınarak 
değerlendirilmiştir. Burada, öncelikle tek-çerçeve yöntemi destekli yönelim kestirim 
algoritmaları tanıtılmaktadır. Nano-uyduların yönelim kestirimi için genişletilmiş 
Kalman filtresi (GKF) veya sezgisiz Kalman filtresi (SKF)’ne destek veren tek çerçeve 
yöntemi olarak tekil değer ayrışımı (TDA) yöntemi kullanılmıştır. Filtrenin sistem 
modeli ve vektör gözlemlerini oluşturan güneş sensörleri ve manyetometrelerin ölçüm 
modelleri sunulmuştur. Vektör gözlemleri, uydu durum vektörünün belirlenmesi 
amacıyla TDA'da kullanılır. Sunulan yöntemde filtre aşamasına ait girdiler, yönelim 
açılarının doğrusal ölçümleri ve bunların hata kovaryans terimleri olarak TDA'dan 
gelmektedir. Bu adımda UD, filtreleme aşaması için uygun girdileri elde etmek üzere 
ölçümleri yeniden oluştururken, yönelim açıları hata kovaryansını da faktörize 
etmektedir. Ölçme kovaryansı üzerinde UD faktörizasyonu adı verilen alt basamağın 
gerekliliği tartışılmıştır. UD kullanılarak ve kullanılmadan oluşturulan TDA destekli 
GKF algoritmasının yönelim kestirim sonuçlarının doğruluğu karşılaştırılmıştır. 
Ardından, gezegenin güneş almayan tarafındaki eklips periyodu durumu göz önüne 
alınmış ve olası anahtarlama kuralları, güneş sensörü ölçümlerinin mevcut olmadığı 
bu periyot çerçevesinde yorumlanmıştır. 
Doğrusal olmayan problemlerle başa çıkmada veya ağır kuyruklu dağılımlarla 
çalışmada avantajlı yanları olan yönelim kestirim algoritmaları da sıklıkla 
kullanılmaktadır. Bu nedenle, kestirim doğruluğunda ne tür bir filtrenin en büyük 
iyileştirmeyi sağladığını görmek için farklı filtre türleri de test edilmiştir. Farklı 
Kalman tipi filtre uzantıları, modelleri yakınsamada farklı yollar kullanmaya karşılık 
gelmektedir. Bu anlamda, çalışmada bir filtre Gauss olmayan gürültüyü hesaba katıp 
ölçüm gürültü kovaryansını güncellerken bir diğeri ise doğrusal olmayan model 
etkisini en aza indirmektedir. Bunun dışında, filtredeki ölçüm kovaryansını 
ölçeklendirerek veya güncelleyerek Kalman filtresine bir uyarlama kuralı tanımlayan 
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çeşitli algoritmalar da kullanılmıştır. Filtreleme uzantıları, her birinde temel olarak 
kullanılan Kalman filtresi için farklı hata kaynağı türlerini azaltmak üzere tasarlanacak 
şekilde geliştirilmiştir. 
Daha iyi bir model için manyetometre gürültülerinin dağılımı, algılayıcıya ait uçuş 
verileri kullanılarak incelenmiştir. Filtreler, en uygun dağılıma sahip ölçüm gürültüsü 
modeli için test edilmiştir. Filtrelerin tepkileri, nominal mod, yanlış başlangıç 
durumundan kurtarma, kısa ve uzun süreli sensör hataları gibi farklı çalışma modları 
altında incelenmiştir. 
Tezin bir başka amacı da bir gezegene yeterince yakın olan bir uzay aracı üzerindeki 
iki büyük çevresel bozuntunun araştırılmasıdır: dış manyetik alan ve gezegen 
albedosu. Manyetometreler ve güneş sensörleri yaygın olarak kullanılan yönelim 
sensörleri olduğundan, dış manyetik alan ve albedo modelleri, yönelim kestiriminin 
doğruluğunda önemli bir role sahiptir. Bir uzay aracında kullanılan manyetometreler, 
gezegenin dinamosu ve kabuğunun neden olduğu iç jeomanyetik alan kaynaklarını, 
ayrıca güneş rüzgârı ve gezegenler arası manyetik alan gibi dış kaynakları ölçmektedir. 
Bununla birlikte, yalnızca iç manyetik alanı içeren modeller sıklıkla kullanılmaktadır 
ve bu modeller, sensör ölçümlerine kıyasla manyetik alan modelinde hataya neden 
olan jeomanyetik aktiviteler meydana geldiğinde yetersiz kalabilmektedir. Burada, 
güneş rüzgârı ve manyetik fırtınaların neden olduğu dış alan değişiklikleri ve 
manyetosferik alt fırtınalar genellikle ölçümlerde kayma olarak ele alınmakta ve 
artırılmış durumlarda kestirilerek ölçümlerden çıkarılmaktadır. Bu durumda ölçüm, 
eleme yapıldıktan sonra gerçek durumdan uzaklaşmaktadır. Modeldeki dış alanı 
dikkate almak ve onu bir hata kaynağı olarak ele almamak için başka bir yaklaşım 
önerilmektedir. Bu şekilde model, manyetik alanı gerçeğe daha yakın temsil 
edebilmektedir.  
Uzay aracı yönelim kontrolü için kullanılan manyetik alan modeli dış manyetik alanı 
dikkate almazsa, aslında fiziksel bir durumdan (örneğin, manyetosferik alt fırtına) 
kaynaklı değişimleri sensörün kendisinden kaynaklı daha fazla gürültüye sahip olarak 
yanlış değerlendirmektedir. Uydu yönelim belirleme sistemini etkileyen manyetik 
alanların temsilinden kaynaklanan hataları incelemek için farklı jeomanyetik alan 
modelleri karşılaştırılmıştır. Bu amaçla, kestirilen ve gözlemlenen vektör manyetik 
alanlar arasındaki açıları, manyetik alan bileşenleri ve büyüklükleri arasındaki farkları 
incelemek için düşük Dünya yörüngesinde seyreden bir uzay aracı gözlemleri ile IGRF 
ve T89 jeomanyetik modellerinden elde edilen manyetometre verileri kullanılmıştır. 
Jeomanyetik fırtınaların ve alt fırtınaların tahmin edilen ve gözlemlenen manyetik 
alanlar ve açılar üzerindeki etkilerini görmek için jeomanyetik olarak aktif ve sakin 
günlerde karşılaştırmalar yapılmıştır. Manyetik alan vektörleri, uzay aracının 
yönelimini kestirmek için kullanılmakta ve bu nedenle, model ve gözlemler arasındaki 
ve iki model arasındaki farklılıklar, farklı uzay ortamı koşullarında modellerle ilişkili 
hataları belirlemek ve azaltmak için önemli hale gelmektedir. Jeomanyetik olarak 
sakin zamanlarda bile modellerin gözlemlerden farklı olduğu ancak jeomanyetik 
olarak aktif zamanlarda ilgili hataların arttığı gözlemlenmiştir. T89 modelinin 
özellikle aktif zamanlarda gözlemlere daha yakın tahminler verdiği ve hataların IGRF 
modeline göre daha küçük olduğu gözlemlenmiştir. Her iki uzay ortamı koşulunda da 
açıdaki hatanın büyüklüğünün 1 dereceden az olduğu bulunmuştur. Jeomanyetik uzay 
fırtınalarından kaynaklanan manyetik bozulmaların GKF tarafından kestirilen uydu 
yönelimi üzerindeki etkileri de incelenmiştir. Artan jeomanyetik aktivite seviyeleri, 
IGRF ve T89 modelleri tarafından kestirilen jeomanyetik alan vektörlerinin 
doğruluğunu etkilemektedir. Manyetometre, jiroskop ve güneş sensörü gibi çeşitli 



xxxiii 

sensörler farklı kombinasyonlar altında manyetik olarak sakin ve aktif zamanlar için 
değerlendirilmiştir. Yönelim açıları için kestirim hataları hesaplanmış ve sonuçlar 
tartışılmıştır. Çalışmanın bu bölümü, uydu yönelim belirleme sistemleri üzerinde uzay 
ortamı faktörlerinden dış manyetik alanın önemini vurgulamaktadır. 
Güneş sensörleri hem gezegen yörüngesindeki uydularda hem de güneş sistemindeki 
gezegenler arası uzay aracı görevlerinde sıklıkla kullanıldığından, güneşe ve bir 
gezegene yeterince yakın bir uzay aracı ele alınmıştır. Burada güneş akısının 
elektromanyetik radyasyonu, yansıyan ışın yani albedo ve o gezegenin yaydığı 
radyasyon, uzay aracına etki etmektedir. Albedo, gezegene ulaşan güneş ışınının ve 
gezegenden yansıyan ışının oranıdır. Uzay aracı, gezegenin güneşli olan kısmını 
gördüğünde albedoya maruz kalmaktadır. Albedo değerleri, mevsimsel, coğrafi, 
günlük değişimlerin yanı sıra bulutluluk durumuna bağlı olarak da değişmektedir. 
Güneş sensörü yalnızca güneşten gelen ışını değil, aynı zamanda gezegenin 
albedosunu da ölçmektedir. Bu nedenle, bir gezegenin albedo bozuntusu, güneş 
sensöründe hatalı okumalara neden olabilmektedir. Bu hatalı okumalar, güneş 
sensörlerini albedoya duyarsız olacak şekilde filtreleyerek ortadan 
kaldırılabilmektedir. Ancak nanouyduların çoğunda kaba güneş sensörleri 
kullanılmaktadır ve bu sensörler albedoya duyarlıdırlar. Ayrıca, optik sensörler, termal 
ve güç alt sistemleri gibi bazı hassas bileşenler ve uzay aracı sistemleri, analizlerinde 
ve operasyonlarında gezegenden yansıyan ışınları hesaba katmaktadırlar. Bu, albedo 
tahminlerini bu tip sistemler için de önemli bir faktör haline getirmektedir. Bu nedenle 
bu araştırmada amaç, gezegenin albedosunu kompleks albedo modellerinden daha az 
parametre bağımlılığı olan basit bir model kullanarak kestirmek ve düzeltilmiş güneş 
sensörü ölçümlerini içerecek bir yönelim kestirim algoritması tasarlamaktır. Böylece, 
üç eksenli bir yönelim kestirim prosedürü, üzerinde albedo bozuntusu olan ucuz, 
küçük boyutlu ve güç tüketiminde hafif olan kaba güneş sensörleri (KGS) kullanılarak 
sunulmuştur. Bozuntunun modellenmesi için, otoregresif modele dayalı iki aşamalı bir 
albedo kestirim algoritması önerilmiştir. Algoritma, albedo ölçümleri dışında albedo 
katsayıları, uzay aracı konumu, gökyüzü veya coğrafi durum gibi herhangi bir veriye 
ihtiyaç duymamaktadır. Sonuçlar, referans modellere dayalı olarak farklı albedo 
modelleriyle karşılaştırılmıştır. Modeller ya veriye dayalı ya da kestirime dayalıdır. 
Önerilen albedo kestirimi, düzeltme için KGS ölçümlerine beslenmektedir. 
Düzeltilmiş KGS ölçümleri, farklı sensör konfigürasyonları ile çeşitli kestirim 
teknikleri altında işlenmiştir. Yönelim kestirim şemalarının farklı albedo modellerini 
kullandığı durumlar için performansları incelenmiştir. 
Özetle, uzay ortamındaki iki ana bozuntunun uydunun yönelim kestirimi üzerindeki 
etkileri, çeşitli uzay ortamı koşulları altında farklı uzay aracı yörüngeleri kullanılarak 
kapsamlı bir analizle incelenmiştir. Performans analizleri, uzay aracı sistemlerine veya 
hava araçlarına yönelik çalışmalarda tekrar uygulanabilir ve gerçeklenebilir şekilde 
sunulmuştur. 
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 INTRODUCTION 

Spacecraft and their instruments need to be oriented to achieve mission directives in 

space. The object is oriented using the attitude determination and control system 

(ADCS) of the spacecraft [1–3]. Depending on the mission, there may be strict 

performance requirements in terms of attitude estimation or necessity to a safe-mode 

operation or sanity checks. For these purposes, attitude sensors such as magnetometers 

and sun sensors can be utilized with less accuracy but less power need, lower cost, and 

smaller size [4,5]. However, the overall achievable attitude determination accuracy is 

limited with these sensors mainly as a result of their inherent limitations and 

unavailability of one of the sensor’s measurements e.g. malfunctions, eclipse period, 

etc. To mitigate the limitations of the inaccurate sensors, attitude estimation algorithms 

need to be improved, and because of limited computational resources, the algorithms 

should have low computational complexity. 

Magnetometers are one of the attitude sensors that are commonly used on small 

satellites at low Earth orbit (LEO). On-board magnetometers and the model of the 

planet’s magnetic field are used in the attitude estimation stage. The conventional 

methodology while estimating the satellite’s attitude involves the angle between the 

magnetic field vectors from the magnetometer and the model of the geomagnetic field.  

Therefore, the accuracy of the geomagnetic fields from the model is critical for a 

precise attitude determination. As scientific payloads, the magnetometers return data 

in space within their built-in precision and are placed one or two meters away from the 

spacecraft body on a boom in order to avoid the magnetic effects created by the satellite 

itself and its nearby surrounding environment. For simulating the magnetometers, the 

magnetic field direction can be predicted using a geomagnetic field model, most 

widely, international geomagnetic reference field (IGRF) [6]. The magnetometers 

include several error sources that can affect the satellite’s attitude.  Current state-of-

the-art satellite magnetometers are highly improved both in accuracy, and precision 

and resolution as well as in physical size. Among several satellite magnetometers, two 

of the most often used ones are the flux-gate magnetometers and search coil 
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magnetometers that use tri-axial configuration. The magnetometers implemented on a 

LEO satellite measure the internal geomagnetic field sources caused by the Earth’s 

dynamo and crust as well as the external sources such as those created by the 

interplanetary magnetic field and solar wind. In ADCSs, the IGRF model [6] is 

frequently used as the major magnetic field model. Yet, it might remain incapable 

when geomagnetic activities occur, which can produce an error in the magnetic field 

model in comparison with the sensor measurements. 

Sun sensors are frequently used in both planet-orbiting satellites and interplanetary 

spacecraft missions in the solar system. They can be divided into two classes as fine 

or digital sun sensors (DSSs), and coarse sun sensors (CSSs), which are commonly 

used in a form of photodiodes [7]. CSSs function almost proportional to the cosine 

angle between the sensor’s boresight and the sun direction vector from the spacecraft. 

They are often used on platforms including multiple CSSs. A spacecraft close enough 

to the sun and a planet receives electromagnetic radiation of direct solar flux, reflected 

radiation namely albedo, and emitted radiation of that planet. The solar flux is the 

largest source of radiation for the spacecraft while the albedo is the fraction of sunlight 

incident and reflected light from the planet. Spacecraft can be exposed to albedo when 

it sees the sunlit part of the planet. The albedo values vary depending on the seasonal, 

geographical, diurnal changes as well as the cloud coverage. The CSS not only 

measures the light from the sun but also the albedo of the planet [8]. So, a planet’s 

albedo interference can cause anomalous sun sensor readings [9]. On the other hand, 

albedo might be an important factor in selecting the characteristics of optical-sensor 

systems such as cameras or star trackers, and in spacecraft thermal and power design. 

 Literature Review 

Attitude estimation with magnetometer and sun sensor measurements is addressed in 

many research and various algorithms that intend to improve the estimation accuracy. 

1.1.1 Attitude estimation filters 

The conventional approach to attitude estimation of a satellite is to use an extended 

Kalman filter (EKF) [10] or its derivative-free version, the unscented Kalman filter 

(UKF) [11]. Kalman filtering algorithms can be used for integrating the measurements 

under the propagation model of the satellite dynamics and estimate the satellite attitude 
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possibly along with the sensor biases. For example, in [5] two filtering algorithms are 

proposed, both based on the multiplicative extended Kalman filter. The first algorithm 

is used for the estimation of attitude quaternions, gyro biases, and sun sensor 

calibration parameters and the second estimates only the quaternions and gyro biases 

excluding the sun sensor calibration parameters.  The main drawback of both 

algorithms is the degradation in the estimation results when the satellite is in eclipse 

so the sun sensor data is not available. Similar phenomenon can be seen in [4] for the 

unscented Kalman filter estimations. 

Another approach to attitude estimation, the single-frame method, is introduced in 

[4,12–14]. In this method, measurements at each time step are preprocessed to produce 

a set of linear measurements and associated covariances that are fed to the Kalman 

filter. The preprocessing involves the minimization of Wahba's loss function [15]. In 

[16], a comparison of minimization methods concludes that the singular value 

decomposition (SVD) and q methods are the most robust for single-frame attitude 

estimation methods. Deterministic methods such as the algebraic method (TRIAD - 

two-vector algorithm) or optimization methods such as the quaternion estimator 

(QUEST) can also be used [17]. As a drawback, these methods only rely on the 

measurements; they do not use any information about the satellite dynamics. Attitude 

estimation methods, which take the advantage of system’s mathematical model, may 

increase the attitude estimation accuracy significantly. In [18], sun-eclipse phases are 

considered to use both traditional and non-traditional methods depending on the sun 

sensor being operational or not. In the sun sensor operational mode, the Gauss-Newton 

method obtains the quaternion estimates for the usage in EKF. In eclipse mode, only 

traditional EKF is used. Measurement covariance values in EKF are not provided by 

the deterministic method to the filter but selected manually.  

The conventional approaches to design a Kalman filter (KF) for satellite attitude 

estimation use the nonlinear measurements of reference directions (e.g. sun direction) 

[4,11,19,20]. The measurement models in the filter are based on the nonlinear models 

of the reference directions so the measurements and states have nonlinear relations. In 

the linear measurement-based approach, on the other hand, the attitude angles are first 

determined by using the vector measurements under a suitable single-frame attitude 

determination method [17]. Then, these attitude estimates are used as measurements 

within the KF. The filter measurement model is linear in this case since the single-
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frame attitude estimator provides directly the states linear to the measurements. Such 

algorithms may be named single-frame method aided attitude estimation filter. 

An earlier study on single-frame method aided attitude filtering is carried out in [12]. 

In this study, the authors integrate TRIAD and EKF algorithms to estimate the attitude 

angles and angular velocities. Magnetometers, sun sensors, and horizon sensors are 

used as measurement devices and three different two-vector algorithms based on the 

Earth’s magnetic field, sun, and nadir vectors are utilized. An EKF is designed to 

obtain the satellite’s angular motion parameters with the desired accuracy. The 

measurement inputs for the EKF are the attitude estimates of the two-vector 

algorithms. Interest in single-frame method-aided attitude filtering is seen in literature 

[21–23]. The attitude determination concept of Kyushu University mini-satellite 

QSAT is based on a combination of the weighted-least-square (WLS) and KF [21,22]. 

The WLS method produces the optimal attitude-angle observations at a single frame 

by using the Sun sensor and magnetometer measurements. The KF combines the WLS 

angular observations with the attitude rate measured by the gyros to produce the 

optimal attitude solution. In [23], an interlaced filtering method is presented for 

nanosatellite attitude determination. In this integrated system, the optimal-REQUEST 

and UKF algorithms are combined to estimate the attitude quaternion and gyro drifts. 

The optimal-REQUEST, which cannot estimate gyroscope drifts, is run for the attitude 

estimation. Then the UKF is used for the gyro-drift estimation on the basis of linear 

measurements obtained as optimal-REQUEST estimates. There are also similar 

applications for unmanned aerial vehicle (UAV) attitude estimation. De Marina et al. 

introduce an attitude heading reference system based on the UKF using the TRIAD 

algorithm as the observation model in [24]. 

An EKF is proposed by [25] for real-time estimation of solid body orientation using 

developed MARG (Magnetic, Angular Velocity, and Gravity) sensors which include 

a three-axis magnetometer, three-axis angular velocity sensor, and three-axis 

accelerometer. The modeled system converts angular velocities to quaternion rates and 

obtains quaternion ratios and integrates them to obtain quaternions. The Gauss-

Newton iteration algorithm is used to find the optimal quaternion. The quaternion is 

used as part of the measurements of the Kalman filter which is a non-traditional form 

of the Kalman filter. The authors tested the proposed algorithm for different cases 

including high noise levels as well as major initial faults. 
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In [26], the problem of attitude estimation is considered for UAV using inertial 

measurement unit (IMU) in Kalman filter. The kinematic model of aircraft behavior is 

not linear; therefore, a version of the Kalman filter is proposed, which can handle 

nonlinearities. A common solution to satellite attitude determination is to use the 

TRIAD algorithm, which is an observation model in the filter. Using the TRIAD 

algorithm, it is easy to select the most reliable sensors at different stages of a flight. 

There are also studies where a single-frame attitude method is used together with an 

attitude filter but not for providing the linear measurements [13].  Another non-

traditional approach is presented by [13] which integrates the q-method with an EKF 

to generate a qEKF filter. In the filter, the attitude vector measurements are first 

processed using the q method, which is a single-frame method solving Wahba’s 

problem directly, without nonlinear assumptions. The remaining measures are 

processed for updating obscure situations using the conventional EKF algorithm. For 

linear measurements, it is equivalent to the first update the attitude using the single-

frame estimator and subsequently to use this updated portion of the state to update the 

remainder of the state. However in [13,27], the measurement model is nonlinear. A 

nonlinear update for the attitude is obtained solving Wahba’s problem and 

subsequently used to update the non-attitude states using the optimal gain for the linear 

measurement case. Therefore, in these studies, the attitude is updated using the single-

frame estimator and all remaining non-attitude states used the standard nonlinear 

attitude filters.  

Several algorithms are proposed to improve the ability of Kalman-type filters to cope 

with highly nonlinear situations. The filter introduced in [28] can automatically 

process multiple measurements in an optimized order so that the errors caused by 

nonlinearities are minimized. Normal distribution-based statistical estimation is 

vulnerable to outliers. In [29], the authors compare different geomagnetic orbit 

determination filters under different measurement noise distributions: normal, 

Student’s t, and uniform in the simulations. They concluded that an unscented particle 

filter, which can make use of non-Gaussian noise models, is more accurate than EKF 

and UKF, which use Gaussian models. However, the computational complexity for 

particle filters is typically much greater than for Kalman-type filters. 

In [30], a generalization and extension of a linear Student’s t filter are proposed. In the 

paper, simulation results show that the proposed methods provide better accuracy than 



6 

the existing methods in an application with the heavy-tailed process and measurement 

noises. In [31], an outlier-robust Kalman-type filter for nonlinear dynamical models is 

proposed based on Student’s t-distribution in the measurement model. In the paper, the 

filter is compared to alternative filters in a computer simulation and is found to provide 

a good trade-off between accuracy and computational efficiency. 

A nonlinear Kalman-type filter called maximum correntropy unscented Kalman filter 

(MCUKF) is proposed in [32] for spacecraft relative state estimation. Heavy-tailed 

non-Gaussian measurement noises are considered in the paper. The proposed MCUKF 

uses a non-linear regression model combined with maximum correntropy to update the 

measurement information. A practical test of the relative motion of two spacecraft is 

performed and it is found that the proposed filter gives better performance than the 

other filters such as EKF and UKF. 

A noise-covariance adapting EKF algorithm is proposed in [33] to cope with sensor 

faults in the attitude estimation of a small satellite equipped with only a three-axis 

magnetometer. Similarly, a covariance adapting UKF with multiple measurement 

noise scaling factor is presented in [34] for nanosatellite attitude estimation and is 

found to be more accurate than EKF, UKF, and the covariance-adapting UKF with the 

single scaling factor. In [35], it is shown that the covariance-adapting filters are much 

more accurate than UKF and EKF in the faulty period and have faster recovery after 

the end of a fault. Furthermore, according to that study, the covariance-adapting UKF 

outperforms all other considered filters. 

1.1.2 External magnetic field 

The orientation of the geomagnetic field is one of the most critical data in the 

determination and control of the satellite’s attitude especially at LEO [36–39]. More 

accurate measurements of the geomagnetic field lead to more accurate predictions of 

the satellite’s attitude. The simulated magnetometers are constructed on the ground 

before the satellite launch to reproduce the satellite’s magnetometer measurements of 

real space. In other words, a simulated magnetometer is an object simulated by 

software for obtaining the geomagnetic field used to estimate the satellite’s attitude. In 

order to design a simulated magnetometer, a geomagnetic field model, the statistical 

characteristics of the magnetic field measurements in space and characteristics of on-

board satellite magnetometers are needed.  The most commonly used geomagnetic 
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field model to predict the Earth’s magnetic field at the satellite location is the IGRF 

model [6,40].  However, the angle between the magnetic field vector from the IGRF 

model and the magnetic field vector from the simulated magnetometer affects the 

accuracy of the attitude angles, namely roll, pitch, and yaw. When transformed vectors 

in the same coordinates, the smaller this angle is the more precisely the attitude angles 

are determined. Therefore, the choice of geomagnetic field model used in the simulated 

magnetometer is very important in achieving high accuracy in attitude angles.  

The main source of the geomagnetic field is the Earth’s dynamo in its core that 

produces dipolar magnetic fields in the near-Earth space environment [41–43].  

However, solar activities such as solar wind, coronal mass ejections (CMEs), high-

speed streams (HSSs), interplanetary shocks (ISs), and their magnetospheric 

consequences geomagnetic storms and magnetospheric substorms produce 

disturbances superimposed on the dipole field of the Earth at different strengths [44].  

Charged particles from the geomagnetic tail flow into the upper atmosphere and drive 

electrical currents at the LEO altitudes which in turn modify the geomagnetic field at 

those altitudes [45–47].  We will refer to the variations caused by these or external 

sources as magnetic disturbances or magnetic anomalies. While on-board spacecraft 

magnetometer measurements inherently include these deviations from the dipole field, 

they need to be represented in the simulated magnetometer or within the geomagnetic 

field models for accurate predictions of the near-Earth magnetic fields. 

In reality, neither the geomagnetic field models of the Earth nor the magnetometers 

are accurate.  They both have various error sources resulting from several factors. The 

simulated magnetometers include bias and noise errors. Many of the bias and random 

errors from the magnetometers may be reduced or prevented before the launch during 

the ground tests or on-orbit after the launch with having an additional sensor for 

calibration on the satellite. There are several methods proposed in the literature for 

sensor calibration for possible anomalies or faulty measurements. One of the most 

commonly known methods is the TWOSTEP algorithm for the magnetometer 

calibration without attitude information. After the centering approximation, it uses a 

second step employing the centered estimation as an initial value to be used by in an 

iterative Gauss-Newton method that avoids divergence problems while other 

algorithms cannot [48,49]. In parallel to the advancing technologies in the space 

industry, providing that the errors that may be resulted from real magnetometer sensors 
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on board are negligible to affect the attitude, the source of most of the errors then 

would be associated with the environmental conditions in case of the real 

magnetometers and from the bias, noise and scaling factors in case of the simulated 

magnetometers and how they are handled during onboard processing in space. 

The errors in magnetometer measurements are determined in the literature using 

different approaches. An approach that is suggested by [50] is to compare the 

magnetometer measurements with the magnetic fields predicted by the IGRF 

geomagnetic model and aims to remove the bias and scaling errors. In this case, IGRF 

predictions are used to calibrate and optimize the simulated magnetometer magnetic 

fields [50,51].  The other approach involves the conversion of the IGRF model 

magnetic field to the satellite body coordinates.  In these studies, the IGRF model is 

assumed to represent the geomagnetic field correctly. These studies imply that a good 

representation of the geomagnetic field is an essential part of the attitude determination 

process and the closer the geomagnetic model results to the real geomagnetic fields in 

space at the satellite’s altitude, the more accurate the satellite attitude is estimated. 

While in many studies, magnetic disturbances in the space environment are treated as 

bias, in several others, they are accepted as noise [50,51]. However, in these studies, 

it should be reminded that the magnitude of the geomagnetic field deviations due to 

the magnetospheric storms can be obscured by the sensor-related noise used in the 

simulated magnetometers [52]. In order to estimate the magnetic moment of the 

satellite accurately, magnetometer bias resulting from other electrical devices on the 

satellite should be estimated and removed precisely. Therefore, online and offline 

magnetometer calibration methods for time-variable errors arising from both 

magnetometer bias and the magnetic anomaly are introduced in [53] for two 

nanosatellites that need geomagnetic field data as accurate as possible for their mission 

requirements. In [53] and its extended version [54], the authors treated the magnetic 

anomaly as bias in the simulated magnetometer to improve the attitude estimation. In 

addition to the bias associated with the magnetic anomaly, they also added 

magnetometer bias to build their simulated magnetometer. Both the magnetic anomaly 

bias and the magnetometer bias are used as the state vector elements within the 

simulated magnetometer. But, here we should also note that the magnetic anomalies 

in the space environment are not the errors resulting from the magnetometer itself, but 

they are the magnetic deviations overlapped on the geomagnetic field resulting from 
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the magnetic storms and magnetospheric substorms.  In order words, they have a 

physical cause and their properties vary depending on the properties of the source and 

they cannot be predicted using linear models.  With this, it is meant that simply adding 

them as bias or noise error does not correctly take into account their true nature and 

their contribution to the measurements of the simulated magnetometer. The studies in 

[53,54] treated the magnetic anomalies as a Gauss-Markov statistical process. Gauss-

Markov model is a model frequently used to represent the sensor biases or disturbances 

[55–57]. However, it only depends on time and thus, it may be an inadequate 

representation of magnetic anomaly events which are linked to the geomagnetic storm 

and magnetospheric substorms, since these storms and substorms are not only time-

dependent but also their effects vary depending on the location, namely magnetic 

latitude, the height in the atmosphere, and also the strength of the magnetospheric 

activity, i.e. magnetotail dynamics, but ultimately on the solar activity [58–61]. While 

auroral substorms occur more frequently and affect high latitudes, variations in the 

ring current strength, or the motion of the magnetopause boundary affect the magnetic 

structure of the Earth at the equatorial latitudes [26 and references therein]. In addition, 

the magnetic anomalies associated with the magnetic storms increase during the high 

solar activity periods and decrease as the solar activity ceases.  These indicate that it 

would be incorrect to consider them as noise. In [63], the authors stated that the 

magnetic anomalies should be modeled separately to avoid tuning problems but they 

stated that the external disturbances hard to model because of their complex ambient 

nature. 

Early models of the Earth’s magnetic field represent only the dipole geomagnetic fields 

resulting from the Earth’s internal dynamo.  The effects of magnetic disturbances are 

not included in these early models.  As the satellite observations of the geospace 

environment increase, these models, consequently modeling the LEO environment, are 

improved such that the physics of the magnetic environment are incorporated in the 

models.  The IGRF model is one of these early models of the geomagnetic field used 

for attitude determination at LEO altitudes. The accuracy of the IGRF models is 

investigated in several studies and is usually found satisfactory in predicting the 

satellite attitude [50,51,64].  

First studies that take into account the effects of magnetic anomalies from the 

spacecraft attitude perspective are presented in [65–67].  These studies used IGRF and 
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T89 models to evaluate the geomagnetic field at LEO altitudes during geomagnetically 

active days.  T89 model developed by Tsyganenko in 1989 is an empirical 

geomagnetic field model [68,69] that is derived using a large amount of magnetic field 

data from 11 Earth‐orbiting spacecraft measurements at various distances from LEO 

to 30 Earth Radii behind the Earth and thus covering vast magnetospheric regions 

including plasmasphere, the plasma sheet, radiation belts, neutral sheet, near-Earth 

magnetospheric tail, and the magnetospheric boundary [70]. In contrast to the IGRF 

model, the T89 model includes contributions from external magnetospheric sources 

such as ring current, magnetotail current system, magnetopause currents, and large-

scale system of field-aligned currents.  The model employs several physical conditions 

such as dipole tilt angle effects, neutral sheet curvature, and more or less realistic 

magnetopause boundary as well as the effects from the magnetospheric activity. In 

[65–67], the predicted and observed magnetic fields, and angles between magnetic 

field vectors from IGRF and T89 are analyzed for three selected geomagnetic storm 

events and compared the variations with those obtained during the quiet day.  They 

showed that the T89 model gives closer magnetic field predictions to the observations, 

and the errors are smaller compared to those from the IGRF model. 

1.1.3 Planet’s albedo  

A spacecraft close enough to the sun and a planet receives electromagnetic radiation 

of direct solar flux, reflected radiation namely albedo, and emitted radiation of that 

planet. The solar flux is the largest source of radiation for the spacecraft while the 

albedo is the fraction of sunlight incident and reflected light from the planet. Spacecraft 

can be exposed to albedo when it sees the sunlit part of the planet. The albedo values 

vary depending on the seasonal, geographical, diurnal changes as well as the cloud 

coverage. The most reflectance is caused by thickest, highest clouds while the least by 

snowing clouds [71]. The CSS not only measures the light from the sun but also the 

albedo of the planet [8]. So, a planet’s albedo interference can cause anomalous sun 

sensor readings. According to Reference [9], albedo might worsen the sun pointing 

accuracy by more than 20 degrees. On the other hand, albedo might be an important 

factor in selecting the characteristics of optical-sensor systems such as cameras or star 

trackers, and in spacecraft thermal and power design. For example, Reference [72] 

underlines that the thermal control system on the spacecraft must consider the light 

reflectance and emittance of the planets as it causes a highly dynamic variation in 
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thermal load. Another study on a spacecraft thermal analysis is carried out in order to 

evaluate the thermal conditions for temperature stability of sensitive instruments and 

radiators by using the albedo data from NASA's clouds and Earth radiant energy 

system (CERES) instruments [73]. 

The mathematical model of the sun sensors can include diffusive and specular 

reflections from the planet which represents the perturbed sun sensor measurements. 

In Reference [74], perturbed sun sensor measurements are validated by the telemetry 

data of the Ørsted satellite. The currents of the modeled CSSs are improved about three 

times more than the case not including any albedo model on the measurements in 

Reference [74], and four times in Reference [75]. A sun heading estimation algorithm 

is also applied by Reference [76] using EKF. The sun direction is estimated with 

accuracy under 4-degrees based on albedo interfered CSS and rate gyro (RG) 

measurements, and 10 degrees without RGs despite the fact that an underdetermined 

sun sensor coverage is considered in the study [76]. 

References [77] and [78] present extended consider Kalman filter based on modified 

Rodrigues parameters (MRPs) for CSS calibration. The presented filters require 

inertial attitude measurements but it gives scale factor accuracy less than 1% and 

misalignment accuracy about 1-degree even under poor attitude knowledge. Another 

calibration filter is proposed for photodiodes through the estimation of attitude and 

calibration parameters simultaneously [79]. An arbitrary number of photodiodes along 

with an albedo model, are calibrated using both an EKF and an unscented filter. The 

filter estimates improve the sun vector measurements by 10-degrees and attitude by 1-

degree, by combining a three-axis magnetometer (TAM) and RG in the study. In order 

to make the albedo model less burden in computations, two constant albedo 

coefficients are applied rather than various spatial data in Reference [80]. From the 

analyses, the errors are reduced by taking the average albedo coefficient as 0.105 

instead of 0.30. Even though the presented model provides a significantly better CSS 

accuracy for most of the times than uncorrected outputs, its predictions based on the 

0.30 value may occasionally overcorrect the CSS. This overcorrection causes an 

increase in the sensor error. It is stated that the detailed mathematical model including 

the albedo coefficient changes depending on the active surface elements can be used 

for the most accurate case but it is computationally expensive for online usage. 

Reference [80] concludes that because of the albedo model complexity, it is more 
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reasonable to use a filter on the sun sensor that restricts the sensor not sensitive to the 

albedo. This suggestion might be more suitable for DSSs. In Reference [81], a less 

complex albedo model is generated via polynomial functions with 13 parameters for 

each albedo component including functions based on latitude and longitude. The 

polynomial is fitted to the reflectivity dataset from Earth Probe’s total ozone mapping 

spectrometer (TOMS) instead of using excessive data in look-up tables. The work also 

estimates the spacecraft attitude states with 1-degree accuracy in nominal mode and 2-

degrees in worst mode by EKF with 0.5% noisy measurements from TAM and 

corrected CSS. 

 Research Overview 

The motivation in this dissertation lies on the fact that the increasing dependence of 

the human life on the satellite technologies requires even better estimations of satellite 

attitude.  This fact led us to consider and improve the available algorithms of attitude 

estimation and the factors that affect the attitude. In this context, several adaptive 

attitude estimation algorithms are proposed to improve the ability of Kalman type 

filters to cope with faults [34], nonlinearity [28], non-Gaussianity [32], etc. by adapting 

their measurement noise covariance. This research investigates attitude estimation 

filters with inherent adaptation against measurement faults. The single-frame method 

aided attitude estimation algorithm eliminates the possibility of poorly chosen initial 

attitude as it initializes the attitude using a single-frame method. The performance of 

the developed extensions for the state-of-the-art filters for attitude estimation is 

evaluated by taking into consideration both accuracy and computational complexity. 

Another aspect of the research is to investigate two major environmental disturbances 

on the spacecraft close enough to a planet: the external magnetic field and the planet’s 

albedo (see Figure 1.1). As magnetometers and sun sensors are widely used attitude 

sensors, external magnetic field and albedo models have an important role in the 

accuracy of the attitude estimation. The magnetometers implemented on a spacecraft 

measure the internal geomagnetic field sources caused by the planet’s dynamo and 

crust as well as the external sources such as solar wind and interplanetary magnetic 

field. However, the models that include only the internal field are frequently used, 

which might remain incapable when geomagnetic activities occur causing an error in 

the magnetic field model in comparison with the sensor measurements. Sun sensors 
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are frequently used in both planet-orbiting satellites and interplanetary spacecraft 

missions in the solar system. The sun sensor not only measures the light from the sun 

but also the albedo of the planet [8]. So, a planet’s albedo interference can cause 

anomalous sun sensor readings. This can be eliminated by calibrating the sun sensors 

[79]. However, in this research, the purpose is to estimate the planet’s albedo using a 

simple model with less parameter dependency than any albedo models and to estimate 

the attitude by comprising the corrected sun sensor measurements. The effects of the 

space environment on the satellite’s attitude estimation are studied using statistical 

analysis with different types of spacecraft trajectories at different altitudes, within 

different near-planet space environment conditions. 

 

Figure 1.1 : Illustration of external magnetic field and planet’s albedo affecting the 
spacecraft. 

The tests are carried out for a broad performance evaluation to determine how 

dominant the external influence is, how much the filter reduces the disturbance effects 

on the satellite’s attitude, and how much accuracy of attitude estimation can be 

improved. The analyses are also expected to be a basis for applications to other systems 

such as aircraft and unmanned aerial vehicles. 

This study addresses the following research questions: 
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• How much accuracy can a spacecraft ADCS achieve in attitude estimation within 

the computational budget? 

• Which filters are computationally lighter or more accurate under which 

measurement conditions? 

• How do the attitude estimation filters cope with measurement faults? 

• What is the best distribution model in fitting the magnetometer measurement 

noise? 

• How well does the magnetic field vector predicted by the geomagnetic field 

model accurately represent the real geomagnetic field at LEO altitudes? 

• How much does the Earth’s geomagnetic field vary during the magnetic storms 

and substorms at LEO altitudes? 

• What is the error that the angle between the measured magnetic field and the field 

from the geomagnetic model would create in spacecraft attitude? 

• How can the planet’s albedo be modeled using a simple schema with less 

parameter dependency than any albedo models? 

• How much does the planet’s albedo affect the attitude estimation results? 

This dissertation is prepared using the author versions of the published scientific 

articles indexed by Science Citation Index (SCI) or SCI-Expanded of which the Ph.D. 

candidate is the first author. Every chapter is composed of a scientific paper that is 

indicated in the footnote. Each chapter maintains its content integrity within itself, and 

it is coherent to the general flow of the thesis. The thesis is organized as follows. 

Chapter 2: SVD-aided EKF attitude estimation with UD factorized measurement 

noise covariance [82] 

In this chapter, an SVD-aided EKF algorithm using UD factorization is presented. The 

measurement error covariance matrix of the filter is factorized without using the 

assumption of neglecting the non-diagonal elements and the new measurement vector 

with the uncorrelated error components is redefined. The algorithm is divided into two 

phases as the first step, SVD, and the second step, EKF forms the attitude estimation 

algorithm. In this approach of the Kalman filter, inputs from SVD are the attitude 

angles as the linear measurements and their error covariance values in a matrix form 
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computed every step. However, in order to achieve the required inputs for the EKF 

algorithm, decomposition of the attitude angles error covariance matrix from SVD into 

diagonalized covariance matrix should be performed. In order to achieve the 

diagonalization, the UD decomposition method is presented and applied to the first 

step before the filtering stage. The measurement vector introducing the attitude angles 

having uncorrelated error components is redefined for the filter input. 

Chapter 3: Nanosatellite attitude estimation from vector measurements using 

SVD-aided UKF algorithm [83] 

This chapter integrated SVD and UKF methods to estimate the attitude and attitude 

rates of a nanosatellite. Quaternion attitude representation is used for this purpose. A 

possible switching rule is also discussed specifically for eclipse where the sun sensor 

measurements are not available. The SVD method fails in the eclipse period because 

of no sun observations. On the other hand, the SVD-aided UKF estimates the attitude 

in eclipse although it is a coarse estimate. The proposed ideal algorithm is composed 

of both SVD-aided UKF and conventional UKF.  

Chapter 4: Nanosatellite attitude estimation using Kalman-type filters with non-

Gaussian noise [84] 

In this chapter, the performance of state-of-the-art filters for attitude estimation is 

presented by taking into consideration both accuracy and computational complexity. 

The magnetometer errors are modeled with t-distribution and four attitude estimation 

operational modes are considered: (1) attitude recovery after de-tumbling phase: this 

mode is simulated by initializing the filter with an incorrect initial state, (2) steady-

state, after the attitude recovery phase error has settled, (3) short-term noise increment 

in one magnetometer channel, which simulates a sensor fault due to transient 

disturbance, (4) long-term noise increment, simulating the onset of a persistent 

disturbance. 

Chapter 5: Evaluation of geomagnetic field models using magnetometer 

measurements for satellite attitude determination system at low earth orbits: case 

studies [65] 

In this chapter, the effects of the LEO orbit geomagnetic environmental conditions, 

which are superimposed on the Earth’s geomagnetic field as a result of magnetospheric 

substorms, on the satellite attitude system are investigated. As these effects are not 
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taken into account in commonly used reference models, the magnetic field at the 

satellite altitude during activity times might be underestimated by the simulated 

magnetometers or the model.  

Chapter 6: Geomagnetic disturbance effects on satellite attitude estimation [85] 

This chapter investigates how the angle between the magnetic field vectors predicted 

by the models varies with the increasing levels of geomagnetic activity.  It is shown 

that how these geomagnetic activity effects are propagated onto the satellite attitude 

angles. This chapter also investigates the effects of the presence of one or more attitude 

sensors onboard the satellite in addition to the magnetometer. The sun sensors and 

gyroscopes are considered for this purpose.  The mathematical models of these sensors 

can be implemented into the attitude estimation methods using e.g. Kalman-type 

filters. 

Chapter 7: Attitude estimation with albedo interference on sun sensor 

measurements [86] 

The main purpose of this chapter is to estimate another major space environment 

disturbance, the planet’s albedo by using a simple model with less parameter 

dependency than any albedo models and to estimate the attitude by comprising the 

corrected CSS measurements. As a simple model, the AR albedo model is proposed. 

Here, the purpose is to estimate the albedo without using any data related to albedo 

coefficients that depend on position, time, ground, and cloud coverage parameters. 

However, spacecraft’s attitude information is necessary to estimate the albedo based 

on the AR model. So, an attitude estimation procedure is also presented using the 

estimated albedo. The attitude estimation procedure is composed by estimating the 

albedo first and correcting the CSS after. In this way, no albedo model is considered 

in the last output equations in the attitude estimation filter. 

Chapter 8: Conclusions and recommendations 

This chapter is a summary of the thesis with concluding remarks and recommendations 

for future work. 
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 SVD-AIDED EKF ATTITUDE ESTIMATION WITH UD FACTORIZED 

MEASUREMENT NOISE COVARIANCE* 

 Abstract 

This study describes singular value decomposition (SVD) aided extended Kalman 

filter (EKF) for nanosatellite’s attitude estimation. The development of the filter 

kinematic/dynamic model, and the measurement models of the sun sensors, and the 

magnetometers which are used to generate vector measurements is presented. Vector 

measurements are used in SVD for satellite attitude determination purposes. In the 

proposed method, EKF inputs are coming from SVD as the linear measurements of 

attitude angles and their error covariance. In this step, UD is factorizing the attitude 

angles error covariance with forming the measurements in order to obtain the 

appropriate inputs for the filtering stage. Results are presented and analyzed in addition 

that the necessity of the sub-step which is the UD factorization on the measurement 

covariance is discussed. The accuracy of the estimation results of the SVD-aided EKF 

with and without UD factorization is compared for the estimation performance. 

 Introduction 

Satellites need to be oriented in space and depending on the mission requirements they 

can have specific restrictions for attitude accuracy. Especially the nanosatellites are 

required to keep the attitude as desired with micro-sized attitude sensors because they 

are cheap, simple, light, etc. as needed. Mostly, the nanosatellites are having 

magnetometers and sun sensors onboard which are very common with limited 

achievable attitude accuracy due to the unavailability of the data. For attitude 

determination, reference directions should be described and those vectors as sensor 

output and the models related to them can be placed in a single-frame algorithm to 

process the results in order to improve under the EKF after the coarse attitude 

                                                 
 
* This chapter is based on the paper “Cilden-Guler, D., Hajiyev, C. (2019). SVD-aided EKF attitude 
estimation with UD factorized measurement noise covariance, Asian Journal of Control, 21 (4), 1423-
1432, doi: 10.1002/asjc.1979”. 
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determination phase. Single-frame methods’ aim is to minimize the Wahba’s loss 

function defined in 1965 [1,15]. By minimizing the loss between the measurements 

and the models for the sun and magnetic field directions, attitude and their covariance 

can be determined. In this study, SVD is used as the single-frame method in the first 

step because of its robustness performance. In [87,88], studies make a critical 

comparison of those estimators in the sense of robustness in which the SVD and the q 

method are found to be the most robust in principle.   

Basically, attitude estimation of the satellite can be performed using the EKF by 

assigning initial values, integrating the measurements under the propagation model of 

the satellite dynamics, and estimate the attitude of the satellite. The traditional 

approaches to the design of the Kalman filter for satellite attitude and rate estimation 

use the nonlinear measurements of reference directions [10,11,19,89]. However, in this 

study, the non-traditional Kalman estimation technique is executed. In [90], a review 

is carried out on gyroless attitude determination methods for small satellites. In that 

paper, both traditional and non-traditional Kalman filters and their comparisons are 

presented. The non-traditional approach based on linear measurements is used in 

several studies [12,14,91]. In this case, determined coarse attitude angles, and 

covariance from one of the single-frame methods are used directly in the filter which 

shapes the second part of the non-traditional algorithm.  

At Kyushu University, the weighted least square method is integrated to linearized 

Kalman filter for developed microsatellite having the same attitude sensors and it is 

stated that the estimator decreases the random noise effect and determines the attitude 

in accordance with the mission requirements in [22].  

An extended Kalman filter is proposed by [25] for real-time estimation of solid body 

orientation in 2001 using developed MARG (Magnetic, Angular Velocity, and 

Gravity) sensors which include a three-axis magnetometer, three-axis angular velocity 

sensor, and three-axis accelerometer. The modeled system in the paper, converts 

angular velocities to quaternion rates and obtains quaternion ratios, and integrates them 

to obtain quaternions. The Gauss-Newton iteration algorithm is used to find the 

optimal quaternion. The quaternion is used as part of the measurements of the Kalman 

filter which is a non-traditional form of the Kalman filter. The authors tested the 

proposed algorithm for different cases include high noise levels as well as major initial 

faults and resulted that the filter achieves very good estimations. 



19 

In the research presented by [26], the problem of attitude estimation is considered for 

unmanned aerial vehicles (UAV) using inertial measurement units (IMU) in the 

Kalman filter. The kinematic model of aircraft behavior is not very linear; therefore, a 

version of the Kalman filter is proposed, which can handle nonlinearities. A common 

solution to satellite attitude estimation is the TRIAD algorithm, which is an 

observation model in the filter. Using the TRIAD algorithm, it is easy to select the 

most reliable sensors at different stages of a flight. 

Another non-traditional approach is presented by [13] which integrates the q-method 

with an EKF to generate the qEKF filter. In the filter, the attitude vector measurements 

are first processed using the q method, which is a single-frame method that solves 

Wahba’s problem directly, without nonlinear assumptions. The remaining measures 

are processed for updating obscure situations using the conventional EKF algorithm. 

The authors are stated to confirm the validity of the proposed approach by numerical 

simulations and the comparison to the conventional EKF. 

In [14], the authors use a gyro-free attitude estimation system having magnetometer 

and sun sensor in the non-traditional Kalman filter and show the superiority of the non-

traditional approach to the traditional ones for the attitude accuracy of the satellite. The 

authors considered the non-diagonal elements of the covariance matrix of the SVD to 

be small compared to the diagonal elements. Therefore, the non-diagonal elements are 

neglected, and the error covariance matrix is considered diagonally [14,83]. In this 

study, an SVD-aided EKF method using UD factorization is considered as an extended 

version of [92]. As the simulations are performed for nanosatellites, EKF is selected 

because they are light and easy to implement compared to UKF [93,94]. In the case of 

using UD in the algorithm, the error covariance matrix is factorized without using the 

assumption of neglecting the non-diagonal elements, and the new measurement vector 

with the uncorrelated error components is redefined. The algorithm is shaped in two 

phases as the first step, SVD, and the second step, EKF forms the nanosatellite’s non-

traditional attitude estimation algorithm. For the non-traditional approach of the 

Kalman filter, inputs from SVD are the attitude angles as the linear measurements and 

their error covariance values in a matrix form computed every step. However, in order 

to achieve the required inputs for the EKF algorithm, decomposition of the attitude 

angles error covariance matrix from SVD into diagonalized covariance matrix should 

be performed. In order to achieve the diagonalization, the UD decomposition method 
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[95] is presented and applied to the first step before the filtering stage. Moreover, the 

measurement vector introducing the attitude angles which will be having uncorrelated 

error components is redefined for the filter input. 

The structure of this chapter is as follows. Section 2.3 gives mathematical models of 

the satellite’s rotational motion and sensor measurements. The details of the magnetic 

field direction vector, sun direction vector measurement model are presented in this 

section. In Section 2.4, Wahba’s optimization problem and its solution by the SVD 

method are given. In Section 2.5, SVD aided EKF for satellite attitude estimation based 

on linear measurements is presented with the introduction of UD decomposition of the 

measurement noise covariance matrix and details of EKF design. The simulation 

results of the non-traditional approach including the UD factorized measurements are 

presented in Section 2.6. The last section gives a brief summary of the obtained results 

and conclusions. 

 Mathematical Models 

2.3.1 Satellite’s rotational motion 

If the kinematics of the small satellite is derived in the base of Euler angles, then the 

mathematical model can be expressed with a 6-dimensional system vector which is 

made of attitude Euler angles (ϕ  is the roll angle about x  axis; θ  is the pitch angle 

about y axis; ψ  is the yaw angle about z axis) vector and the body angular rate vector 

with respect to the inertial axis frame,  

T

x y zϕ θ ψ ω ω ω =  x .                                         (2.1) 

Also for consistency with the further explanations, the body angular rate vector with 

respect to the inertial axis frame should be stated separately as;   

    ,
T

BI x y zω ω ω =  ω                                                   (2.2)   

where BIω  is the angular velocity vector of the body frame with respect to the inertial 

frame. Besides, dynamic equations of the satellite can be derived by the use of the 

angular momentum conservation law;  

( ) ,x
x x y z y z

dJ N J J
dt
ω ω ω= + −                                     (2.3.a)                                    
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  ( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −                                      (2.3.b)                                    

 ( ) ,z
z z x y x y

dJ N J J
dt
ω ω ω= + −                                       (2.3.c)      

where xJ , yJ  and zJ  are the principal moments of inertia and xN , yN  and zN   are 

the terms of the external moment affecting the satellite. 

Kinematic equations of motion of the nanosatellite with the Euler angles can be given 

as, 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1
0 .
0 / /

s t c t p
c s q

s c c c r

ϕ ϕ θ ϕ θ
θ ϕ ϕ
ψ ϕ θ ϕ θ

    
    = −    
        







                                 (2.4) 

Here ( )t ⋅  stands for tangent function and p , q and r are the components of BRω  the 

vector which indicates the angular velocity of the body frame with respect to the 

reference frame. BIω  and BRω can be related via, 

0

0
BR BI oω

 
 = − − 
  

ω ω A                                                     (2.5)                                                    

where A  is the transformation matrix, oω  denotes the angular velocity of the orbit 

with respect to the inertial frame, found as ( )1/23
0/ .o rω µ=  

2.3.2 Measurement models 

Two attitude sensors are considered in this study to estimate the attitude using SVD-

aided EKF. Magnetometer and sun sensor measurements should be modeled in order 

to obtain the first-step measurements by SVD.  

IGRF model defines the magnetic field direction vector [6] in the orbit frame. Here, 

the magnetometer measurements are needed to be modeled too. Three onboard 

magnetometers of the satellite measure the components of the magnetic field vector in 

the body frame. Therefore, for the measurement model, which characterizes the 

measurements in the body frame, gained magnetic field terms must be transformed by 
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the use of the direction cosine matrix, A . Overall measurement model may be given 

as; 

    ( ) ( ) ( ) ( )m o Bk k k k= +B A B v ,                                                 (2.6)  

where ( )m kB  is the measured Earth magnetic field vector as the direction cosines in 

the body frame, ( )B kv is the magnetometer measurement noise. The sun direction 

vector measurements can be expressed in the following form:  

( ) ( ) ( ) ( )m o Sk k k k= +S A S v ,                                             (2.7)  

where ( )m kS  is the measured sun direction vector as the direction cosines in the body 

frame,  ( )o kS represent the sun direction vector in the orbit frame as a function of time 

and orbit parameters, Sv  is the sun sensor measurement noise. 

 Singular Value Decomposition (SVD) 

In this section, the SVD method, the prefix of the non-traditional approach, is briefly 

described. After defining Wahba's optimization problem, two or more vectors can be 

used in statistical methods to reduce losses the most [15]. In Equation (8), the loss can 

be seen as the difference between the measurements and the models found in the unit 

vectors.  

21( ) | |
2 i i i

i
L a= −∑A b Ar                                               (2.8) 

T
svd i i ia= ∑ b rB                                                        (2.9) 

( ) ( )0
T
svdL trλ= −A AB                                               (2.10) 

where ib  (set of unit vectors in body frame) and ir  (set of unit vectors in reference 

frame) with their ia  (non-negative weight) are the loss function variables obtained for 

instant time intervals and 0λ  is the sum of non-negative weights. Further, the matrix 

svdB  is defined to reduce the loss function into equation (2.10). Here, maximizing the 

trace ( )( )T
svdtr AB  means minimizing the loss function ( L ). In this study, the SVD 

method is chosen to reduce the loss function to the minimum [88,96]. 
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11 22 33  T
svd

Tdiag S S S= =B USV U V                                (2.11) 

[1 1 det( )det( )] T
opt diag=A U U V V                              (2.12) 

The ,U  V  matrices are orthogonal left and right matrices respectively and the primary 

singular values ( )11 22 33,  ,  S S S  can be calculated in the algorithm. To find the angle of 

rotation of the satellite, the transformation matrix must first be found in equation (2.12) 

with an equation. The "diag" operator returns a square diagonal matrix with the 

elements of the vector in the main diagonal. Rotation angle error covariance matrix 

( )SVDP  

1 1 1
2 3 3 1 1 2[(s s ) (s s ) (s s ) ] T

SVD diag − − −= + + +P U U                        (2.13) 

is required to determine the instantaneous times that give higher error results than 

desired. Here ( ) ( )1 11 2 22 3 33  ,    ,     s S s S s det det S= = = U V .  

 SVD-Aided Extended Kalman Filter 

For the non-traditional approach of the Kalman filter, inputs from the single-frame 

methods are the attitude angles as the linear measurements  

( ) ( ) v ( )z k k kϕ ϕϕ= + , 

( ) ( ) v ( )z k k kθ θθ= + ,                                          (2.14) 

( ) ( ) v ( )z k k kψ ψψ= +  

and their error covariance values in a matrix form computed every step. In Eq. (14), 

( )kϕ , ( )kθ  and ( )kψ  are the attitude angles determined by the SVD method, ( )v ( )k⋅

is the measurement noise of the attitude angles. 

In order to achieve the required inputs for the EKF algorithm, decomposition of the 

SVDP  into diagonalized covariance matrix should be performed.  For this purpose, the 

UD decomposition method is presented and applied in the first step before the filtering 

stage. After UD factorization of the SVDP  matrix, the diagonal measurement noise 

covariance matrix R  is obtained and used in the filter as the input from the SVD. 

Furthermore, the measurement vector with the uncorrelated error components should 
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be redefined. Consequently, in this study SVD gives the uncorrelated observation 

inputs to the EKF framework.  

 

2.5.1 UD decomposition of the measurement noise covariance matrix 

 With the decomposition of the attitude angles measurement error covariance matrix 

SVDP , the measurement vector which will be having uncorrelated error components 

should be redefined. Also, because of the new uncorrelated measurement vector 

definition measurement error covariance will be updated as diagonal matrix format 

[95,97]. 

If the measurement vector z coming from the firstly introduced single-frame method 

is defined as, 

= +z Hx v                                                       (2.15) 

with measurement matrix H and measurement noise v .  

     Corresponding covariance matrix which is not diagonal matrix can be represented 

as,  

T
SVDE   = = vv P R                                              (2.16) 

UD can also be called modified Cholesky decomposition seen in elemental matrix 

form as, 

11 12 13 12 13 11

21 22 23 23 22 21

31 32 33 33 31 32

                                                                      
1 0 0 1 0 0

  0 1   0 0   1 0
0 0 1 0 0 1

T
SVD

r r r u u d
r r r u d u
r r r d u u

= × ×

       
       =       
              

P U D U

            (2.17) 

The loop can be composed using i and j variables with the row/column size of n for 

the R  matrix. 

( )
( )

                   

Init:         
                      

/ 1, 2, ,1

nn nn

in
in nn

n length

zeros n
D R

i i n
U

R D i n n

=

= =

=

= 
=  = − − 

R

U D



                               (2.18) 
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∑

∑





                             (2.19) 

Covariance matrix ( R ) can be factored in order to find diagonalized and uncorrelated 

matrix ( D ) consisting of the pivots in addition to the unit upper triangular part ( U ) 

whose diagonal entries are equal to 1 and forms the measurement vector again. 

T=R UDU                                                         (2.20) 

( ) ( ) ( )1 1 1 1− − − −= = + = + = +z U z U Hx v U H x U v Hx v                    (2.21)                                                          

As it is clear from (2.21), the “new” measurement z  has a measurement matrix 
1−=H U H  and measurement noise 1−=v U v . The covariance matrix R  of the 

measurement noise v  is determined as [95], 

TE  = = R vv D                                                   (2.22) 

Newly composed R  and z  can be used in the Kalman filter in order to be updated 

automatically by the single-frame output. 

The algorithm structure for the UD decomposition and the newly composed 

measurement vector can be seen in Figure 2.1. 

 UD decomposition algorithm structure. 
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2.5.2 EKF design for attitude and rate estimation 

If the state vector is arranged as (2.1) and the mathematical model of the LEO 

satellite’s rotational motion about its center of mass, is linearized using the 

quasilinearization method. We will consider a real-time linear Taylor approximation 

of the system function at the previous state estimate. The filtering algorithm, in this 

case, is given below. 

Innovation sequence and the equation of the estimation value, 

( ) { }ˆ1 ( 1) ( 1/ )k k k k+ = + − +Δ z Hx                                    (2.23a) 

( )ˆ ˆ( 1) ( 1/ ) ( 1) 1k k k k k+ = + + + × +x x K Δ                              (2.23b)       

Here   ( 1)k +z   is the measurement vector, H  is the measurement matrix, ( )1k +Δ  is 

the innovation sequence. In the investigated case the measurement matrix is composed 

of a unit matrix. For the gyroless satellites, ( 1) ( 1) ( 1) ( 1)k z k z k z kϕ θ ψ + = + + + z     

measurement vector with [ ]( )diag 1 1 1 0 0 0=H  measurement matrix, for the 

satellites having gyros, 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
x y z

k z k z k z k z k z k z kϕ θ ψ ω ω ω
 + = + + + + + + z        

measurement vector with [ ]( ) 6 6diag 1 1 1 1 1 1 ×= =H I  measurement matrix are 

used. Normalized innovations are obtained as 

{ }0.5ˆ ( 1) ( 1) ( 1/ ) ( )Tk k k k k
−

 + = + × + + Δ Δ HP H R . 

Equation of   the extrapolation value, 

[ ]ˆ ˆ( 1/ ) ( ),k k f k k+ =x x                                          (2.24)                                                          

Filter-gain of EKF, 

1
( 1) ( 1/ ) ( 1/ ) ( )T Tk k k k k k

−
 + = + × + + K P H HP H R               (2.25) 

The covariance matrix of the extrapolation error is, 

  ˆ ˆ[ ( ), ] [ ( ), ]( 1/ ) ( / ) ( )
ˆ ˆ( ) ( )

Tf k k f k kk k k k k
k k

∂ ∂
+ = +

∂ ∂
x xP P Q
x x

             (2.26)                                                                                                                                                                 

The covariance matrix of the filtering error is, 
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 [ ]( 1/ 1) ( 1) ( 1/ )k k k k k+ + = − + +P I K H P                             (2.27)                              

R  is the diagonalized covariance matrix of measurement noise and Q  is the 

covariance matrix of the system noises. 

Equations given as (2.23) - (2.27) represent the EKF, which fulfills recursive 

estimation of the satellite’s rotational motion parameters about its mass center on the 

linear attitude measurements. The whole algorithm scheme for SVD-aided EKF 

attitude and rate estimation can be seen in Figure 2.2 including the sub-step of UD 

decomposition.  

 
 Integrated SVD/EKF attitude and rate estimation block diagram with 

UD factorization. 

 Analysis of Simulation Results 

Low Earth orbiting nanosatellite’s orbit and structural parameters are used in order to 

perform the simulations. The principal moment of inertia 
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( )3 3 32.1 10 2.0 10 1.9 10diag − − −= × × ×J  is used which belongs to a nanosatellite. 

The satellite has attitude sensors as magnetometers and sun sensors. For the 

magnetometer measurements, the sensor noise is characterized by zero-mean Gaussian 

white noise with a standard deviation of  300 m nTσ = . The standard deviation for the 

sun sensor noise is taken as 0.002sσ =  (for unit vector measurements). 

Small satellites especially the nano and pico-satellites have a poor capability on the 

computations. One of the computationally heavy stages in the algorithms is taking the 

inverse of the measurement error covariance at each step which also might lead the 

filter to be unstable at some point. Since the computational sources are not sufficient 

at small satellites, it is better to use the measurement covariance matrix as a diagonal 

to reduce the computational burden. There are two ways in order to use this matrix 

diagonal. The first is to neglect the non-diagonal terms and the second is to use the UD 

factorization. For analyzing the simulation results, both methods are considered and 

compared. 

After the UD factorized R  matrix and newly formed measurement vector step, the 

SVD-aided EKF algorithm works recursively. It can be seen in Figure 2.2 that the 

attitude angles can be estimated by using this sub-step more realistically. 

2.6.1 Simulation results for the satellite without gyros 

In Figures 2.3 - 2.5, actual values and the estimations of the attitude angles by only 

SVD, integrated SVD&EKF can be seen in the first panels of the figures. The error 

changes in time also are plotted as the 2nd panels showing that acceptable attitude 

estimations can be obtained using the algorithm including the UD decomposed 

measurement error covariance matrix and newly formed measurement vector updated 

at each step. 
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 Roll angle estimations, error, and variance of only SVD and SVD-aided 

EKF using UD factorization (gyro-free). 

 
 Pitch angle estimations, error, and variance of only SVD and SVD-

aided EKF using UD factorization (gyro-free). 
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 Yaw angle estimations, error, and variance of only SVD and SVD-aided 

EKF using UD factorization (gyro-free). 

The corresponding variance values to roll, pitch, and yaw attitude angles are presented 

in the third panels of Figures 2.3 – 2.5. As can be seen from the figures, the filter gains 

an adaptive form with the help of SVD using its variance values and develops it 

accordingly. Furthermore, in Table 2.1, the root mean square error (RMSE) of attitude 

angles is presented. The simulation results of the filter that uses UD factorization for 

the measurement noise covariance diagonalization and measurement update is called 

“With UD”. On the other hand, the simulation results of the filter that assumes the 

measurements are uncorrelated and eliminate the non-diagonal elements of the 

measurement noise covariance directly are called “With Assumption”. 

 RMSE results of attitude angles (gyro-free). 

RMSE (deg) Roll Pitch Yaw 

With UD  0.2940 0.0881 0.0635 

With Assumption 0.2354 0.0603 0.0426 

As seen from Table 2.1, the SVD-aided EKF with assumption gives an unrealistic 

accuracy of the attitude angles due to neglecting of non-diagonal elements of SVD's 

angle error covariance matrix in which the measurements are not uncorrelated in 
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reality. In other words, the accuracy is exaggerated or overrated under the assumption 

of neglecting the non-diagonal elements as it assumes that the errors are not correlated 

at all but it is not the case in real applications. Therefore, it is expected to have less 

accurate results in the simulations for “With UD” but to have more realistic outputs 

instead. 

2.6.2 Simulation results for the satellite having gyros 

In order to simulate the three-axis rate gyros, the following equation is used, 

( ) ( ) ( )
mBI BI gk k k= +ω ω v                                               (2.28) 

For the calibration of the gyroscopes, the biases on gyros’ each axis can be estimated 

in the filter first as it is done in the studies of [98,99]. In this study, the gyros are 

assumed to be calibrated in-orbit before the simulations.  The estimations of the roll, 

pitch, and yaw angles can be seen in Figures 2.6 – 2.8 in the first panels, errors in the 

second, and the related variance in the third. As can be seen from the figures that the 

SVD-aided EKF improves the attitude estimations as expected. 

 
 Roll angle estimations, error, and variance of only SVD and SVD-aided 

EKF using UD factorization (with gyro). 
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 Pitch angle estimations, error, and variance of only SVD and SVD-

aided EKF using UD factorization (with gyro). 

 
 Yaw angle estimations, error, and variance of only SVD and SVD-aided 

EKF using UD factorization (with gyro). 

 RMSE results of attitude angles (with gyro). 

RMSE (deg) Roll Pitch Yaw 

With UD 0.0495 0.0782 0.0669 

With Assumption 0.0350 0.0538 0.0614 
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Table 2.2 gives the RMSE of each attitude angle estimation with UD and with 

assumption. The simulations having UD factorization for the measurement noise 

covariance diagonalization and measurement update is called “With UD” while the 

simulations assuming the measurements are uncorrelated and eliminating the non-

diagonal elements of the measurement noise covariance, is called “With Assumption”. 

SVD-aided EKF with assumption gives an accuracy of the attitude angles which are 

unrealistic. It can be stated that the gyroscopes improve the attitude estimations for 

both cases (with UD and with assumption cases) if it is compared with Table 2.1. 

UD decomposition which is more realistic than neglecting the non-diagonal elements 

is also considered. It should be noted that for satellites that require high accuracy 

performance and error characteristics for their mission objectives, the UD factorization 

step is a significant stage.  However, the difference between the RMSE results of 

algorithms using and not using the UD step is very small. From this, it can be 

concluded that the non-diagonal elements of the SVD's angle error covariance matrix 

can be removed and only the diagonal elements can be considered in the input of the 

EKF for most of the nanosatellite missions.  

 Conclusion 

In this study singular value decomposition aided extended Kalman filter for 

nanosatellite’s attitude estimation is presented. The sun sensors and the magnetometers 

are used as the attitude sensors in SVD.  In the proposed method EKF inputs are 

coming from SVD as the linear measurements of attitude angles and their error 

covariance. UD is factorizing the attitude angles error covariance with forming the 

measurements in order to obtain the appropriate inputs for the EKF. Moreover, gyro 

and gyro-free cases are considered in the demonstrations. For the integrated SVD/EKF 

using the newly formed measurements and measurement noise covariance with UD 

factorization, the whole algorithm is run. Simulation results show that the SVD-aided 

EKF with the assumption which acts that the measurements are uncorrelated and 

removes the non-diagonal elements of the measurement noise covariance gives an 

overrated accuracy of the attitude angles. However, the proposed attitude estimation 

method with UD factorization provides the exact value of attitude accuracy.   

The demonstrations show that the difference in the estimation results of the SVD-aided 

EKF with and without UD factorization is small. Therefore, it can be said that the non-



34 

diagonal elements of SVD's angle error covariance matrix can be omitted from the 

input of the EKF if high accuracy of error characteristics are not required and, in this 

case, it is seen that the error caused by this assumption is small at a negligible level. 

Besides, if the computational load is a problem, then non-diagonal elements of the 

SVD error covariance matrix can be neglected without UD factorization. If high 

accuracy performance and error characteristics are required for the satellite mission, 

UD decomposition is recommended to be used which is an important step. The absence 

of this step for those missions might cause major problems eventually in attitude 

control of the satellite. 
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 NANOSATELLITE ATTITUDE ESTIMATION FROM VECTOR 

MEASUREMENTS USING SVD-AIDED UKF ALGORITHM* 

 Abstract 

Integrated singular value decomposition (SVD) and unscented Kalman filter (UKF) 

method can estimate the attitude and attitude rates of a nanosatellite recursively. At 

first, Wahba’s loss function is minimized using the SVD and the optimal attitude 

angles are determined on the basis of the magnetometer and sun sensor measurements 

thereafter UKF makes use the SVD’s attitude estimates as measurements and provides 

more accurate attitude information as well as the attitude rate estimates. “Rotation 

angle error covariance matrix” calculated for the SVD estimations are used in the UKF 

as the measurement noise covariance. The algorithm is compared with SVD and UKF 

only methods for estimating the attitude from vector measurements. Possible algorithm 

switching ideas are discussed specifically for eclipse where sun sensor measurements 

are not available. 

  Introduction 

Sun sensors and magnetometers are common attitude sensors for nanosatellite 

missions; they are cheap, simple, light and available as commercial of-the-shelf 

equipment [4,5]. However, the overall achievable attitude determination accuracy is 

limited with these sensors mainly as a result of their inherent limitations and 

unavailability of the sun sensor measurements when the satellite is in eclipse.  

Attitude estimation with magnetometer and sun sensor measurements has been 

addressed in many researches and various algorithms that intend improving the 

estimation accuracy have been proposed. A basic solution is to use a Kalman filtering 

algorithm for integrating the measurements under the propagation model of the 

                                                 
 
* This chapter is based on the paper “Cilden, D., Soken, H.E., and Hajiyev, C. (2017). Nanosatellite 
Attitude Estimation from Vector Measurements using SVD-aided UKF Algorithm, Metrology and 
Measurement Systems, 24, 113-128, doi: 10.1515/mms-2017-0011”. 
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satellite dynamics and estimate the satellite attitude possibly along with the sensor 

biases. For example in [5] two filtering algorithms are proposed, both based on the 

Multiplicative Extended Kalman Filter (EKF). The first algorithm is used for 

estimation of attitude quaternions, gyro biases and sun sensor calibration parameters 

and the second estimates only the quaternions and gyro biases excluding the sun sensor 

calibration parameters.  The main drawback of both algorithms is the degradation in 

the estimation results when the satellite is in eclipse so the sun sensor data is not 

available. Similar phenomenon can be seen in [4] for the unscented Kalman filter 

(UKF) estimations. Another approach for nanosatellite attitude estimation is to solve 

for attitude using a single-frame attitude estimator. This method is based on computing 

sun and magnetic field vectors in the reference frame and measuring the same vectors 

in the body coordinate system. Then a deterministic method such as the TRIAD (two-

vector algorithm) or an optimization method such as the QUEST can be used for the 

attitude estimation [17]. As a drawback these methods only rely on the measurements; 

they do not use any knowledge about the satellite dynamics. Attitude estimation 

methods, which take the advantage of system’s mathematical model, may increase the 

attitude estimation accuracy significantly. In [18], sun-eclipse phases are considered 

to use both traditional and non-traditional methods depending on the sun sensor 

operational or not. In the sun sensor operational mode, Gauss-Newton method obtains 

the quaternion estimates for the usage in EKF. In eclipse mode, only traditional EKF 

is used. Measurement covariance values in EKF are not provided by the deterministic 

method to the filter and they are selected. This leads some jumps in the filter even 

outside of the eclipse. If the variance values of the first method are used as 

measurement noise covariance in EKF, filter would have compensated these errors. 

The traditional approaches to design a Kalman filter (KF) for satellite attitude 

estimation use the nonlinear measurements of reference directions (e.g. sun direction) 

[4,11,19,20]. The measurement models in the filter are based on the nonlinear models 

of the reference directions so the measurements and states are related via nonlinear 

equations. In the linear measurements based approach the attitude angles are first 

found by using the vector measurements and a suitable single-frame attitude estimation 

method [17]. Then these attitude estimates are used as measurements within the KF. 

The filter measurement model is linear in this case, since the single-frame attitude 
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estimator provides directly the states themselves as measurements. We may name such 

algorithms as “single-frame estimator aided attitude filtering”. 

An earlier study on single-frame estimator aided attitude filtering was carried out in 

[12]. In this study the authors integrate the algebraic method (TRIAD) and the EKF 

algorithms to estimate the attitude angles and angular velocities. The magnetometers, 

sun sensors, and horizon scanners/sensors are used as measurement devices and three 

different two-vector algorithms based on the Earth’s magnetic field, sun, and nadir 

vectors are proposed. An EKF is designed to obtain the satellite’s angular motion 

parameters with the desired accuracy. The measurement inputs for the EKF are the 

attitude estimates of the two-vector algorithms. Interest in “single-frame estimator 

aided attitude filtering” is higher in the more recent literature [21–23]. The attitude 

determination concept of the Kyushu University mini-satellite QSAT is based on a 

combination of the Weighted-Least-Square (WLS) and KF [21,22]. The WLS method 

produces the optimal attitude-angle observations at a single-frame by using the sun 

sensor and magnetometer measurements. The KF combines the WLS angular 

observations with the attitude rate measured by the gyros to produce the optimal 

attitude solution. In [23] an interlaced filtering method is presented for nanosatellite 

attitude determination. In this integrated system, the optimal-REQUEST and UKF 

algorithms are combined to estimate the attitude quaternion and gyro drifts. The 

optimal-REQUEST, which cannot estimate gyroscope drifts, is run for the attitude 

estimation. Then the UKF is used for the gyro-drift estimation on the basis of linear 

measurements obtained as optimal-REQUEST estimates. There are also similar 

applications for the UAV attitude estimation. De Marina et al. introduce an attitude 

heading reference system based on the UKF using the TRIAD algorithm as the 

observation model in [24]. 

Here, we may also refer to the studies where a single-frame attitude estimator used 

together with an attitude filter but not for providing the linear measurements [13,27].  

For linear measurements, it is equivalent to first update the attitude using the single-

frame estimator and subsequently use this updated portion of the state to update the 

remainder of the state as it is to update the entire state at once. However in [13,27], the 

measurement model is nonlinear. A nonlinear update for the attitude is obtained 

solving the Wahba’s problem and subsequently used to update the non-attitude states 

using the optimal gain for the linear measurement case. Therefore, in these studies, the 
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attitude is updated using the single-frame estimator and all remaining non-attitude 

states using the standard nonlinear attitude filters. 

In this study we investigate a SVD-aided UKF (SaUKF) algorithm for nanosatellite 

attitude estimation. The nanosatellite has magnetometers and sun sensors as the 

attitude sensors on-board. In the first phase, Wahba’s problem is solved by the Singular 

Value Decomposition (SVD) method and quaternion estimations are obtained for the 

satellite’s attitude.  These quaternion estimations are then used as measurements for 

an UKF, which forms the second phase of the algorithm. The SaUKF provides 

improved attitude knowledge and attitude rate estimates. The whole algorithm runs 

recursively. Main aim is to propose an easy to apply and accurate nanosatellite attitude 

estimation algorithm, which is also robust against estimation deteriorations when the 

satellite is in eclipse. Initial results are presented in [100]. In this study we compare 

the results with an UKF that uses nonlinear measurements. Besides we propose an 

algorithm that switches between the UKF with nonlinear measurements and the 

SaUKF to ensure both the accuracy and robustness.    

 Satellite Equations of Motion and Measurement Models 

In this section we briefly review the satellite equations of motion and the measurement 

models for magnetometers and sun sensors.   

3.3.1 Satellite Equations of Motion 

The satellite’s kinematics equation of motion derived using the quaternion attitude 

representation can be demonstrated as [1], 

                                  1( ) ( ( )) ( )
2 BRt t t= Ωq ω q                                              (3.1)  

In equation (3.1), the quaternion, q  is formed of four attitude parameters, 

[ ]1 2 3 4 .Tq q q q=q  Three terms of the quaternion, q  show a vector and the last 

term is the scalar one, then quaternion can be take a form of 4

TT q =  q g  and 

[ ]1 2 3
T= q q qg . Moreover in (1), ( )BRΩ ω is the skew symmetric matrix as; 
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3 2 1

3 1 2

2 1 3

1 2 3

0
0

( )
0

0

BR

ω ω ω
ω ω ω

ω ω ω
ω ω ω

− 
 − Ω =
 −
 − − − 

ω ,                          (3.2) 

BRω  vector is composed of 1ω , 2ω and 3ω  which indicates the angular velocity of the 

body frame with respect to the orbit frame. Angular rate vector should be identified 

because of the sensor usage. Hence, the rate vector in the body frame with respect to 

the inertial coordinate system can be shown as; .
T

BI x y zω ω ω =  ω   BIω and BRω  

can be related in the following formulation, 

[ ]0 0 .T
BR BI oA ω= − −ω ω                            (3.3) 

Angular velocity of the satellite in orbit specifies oω  with respect to inertial reference, 

found as ( )1/23/o rω µ= for a circular orbit using µ , is the product of the two constants 

( )EGM . Here, G : gravitational constant, EM is the mass of the Earth and r , the 

distance between satellite and Earth center of masses. In equation (3.3) A is the 

transformation matrix which can be related to the quaternions via; 

[ ]2 2
4 3 3 4( ) 2 2TA q I q×= − + − ×g gg g ,                          (3.4) 

Unit matrix 3 3xI has the dimension of  3 3× and [ ]×g is the skew-symmetric matrix as 

the following, 

[ ]
3 2

3 1

2 1

0
0

0

g g
g g
g g

− 
 × = − 
 − 

g .                                  (3.5) 

Satellite’s dynamic equations are necessary in order to estimate full state attitude 

including both the attitude and attitude rates. Based on the Euler’s equations dynamic 

knowledge can be maintained found by;  

( ) ,BI
d BI BIJ J

dt
= − ×Nω ω ω                                  (3.6) 
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Here, J  is inertia matrix composed of ( ), ,x y zJ diag J J J=  which are the principal 

moments of inertia  and the external torques affecting the satellite can be added in 

order to find resulting disturbance torque, dN  

                              d gg ad sp md= + + +N N N N N .                              (3.7) 

ggN  is the gravity gradient torque, adN is the aerodynamic disturbance torque, spN  is 

the solar pressure disturbance torque and  mdN  is the residual magnetic torque caused 

by the interaction of the satellite’s residual dipole and the Earth’s magnetic field [1]. 

3.3.2 Sensor Models 

Magnetometer sensor for attitude determination is a very common sensor for small 

satellite missions. Earth’s magnetic field measurements model can be given in 

equation (3.8) (magnetometers are assumed to be calibrated) [101,102], 

                                     
( )
( )
( )

( )
( )
( )

1

2 1

3

,
,
,

x

y

z

B t B t
B t B t
B t B t

   
   = +   
      

A η
q
q
q

 .                                (3.8) 

Components of the Earth’s magnetic field, ( )1B t , ( )2B t and ( )3B t  in orbital 

coordinate frame can be calculated by the common and accurate magnetic field model, 

International Geomagnetic Reference Field (IGRF) [102]. ( ),xB tq , ( ),yB tq  and 

( ),zB tq  are the vector components of measured magnetic field by the magnetometers 

therefore they are in the body reference system. Moreover, 1η  is the zero mean 

Gaussian white noise  

                                   2
1 1 3 3

T
k j x m kjE Iη η σ δ  =   ,                                  (3.9) 

mσ  is standard deviation and kjδ  is Kronecker symbol. 

Sun direction with respect to the inertial coordinates with centered Earth only depends 

on the time in terms of the Julian Day ( TDBT ). TDBT  can be derived using the satellite’s 

reference epoch and the exact time. The variables  are the mean anomaly ( SunM ) and 
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the mean longitude of ( λ
SunM ) of sun. Using equation (3.10), the ecliptic longitude of 

sun ( eclipticλ ) and its linear model (ε ) can be found [103]. 

0357.5277233 35999.05034Sun TDBM T= +                           (3.10a) 

01.914666471 ( ) 0.019994643 (2 )
Sunecliptic M Sun Sunsin M sin Mλ λ= + +          (3.10b) 

280.4606184 36000.77005361
Sun TDBM Tλ = +                        (3.10c) 

023.439291 0.0130042 TDBTε = −                                (3.10d) 

From those relations in equation (3.10), sun direction vector ( ECIS ) in inertial 

coordinates can be found. 

cos
sin
s

cos
s ni in

ecliptic

ECI ecliptic

ecliptic

λ
λ ε
λ ε

 
 =  
  

S                                            (3.11) 

However, satellite rotating through its trajectory therefore the transformation of the 

unit sun direction vector into the orbital frame is necessary with using orbit 

propagation algorithm. Finally, the equation (3.12) showing the relation between the 

sun sensor measurement vector and the IGRF model vector results.  

2b o= +A ηS S                                                (3.12) 

oS  is the sun direction vector in orbit reference system and bS  is the sun sensor 

measurements in body reference system having, 2η  the zero mean Gaussian white 

noise with the characteristic of  

2
2 2 3 3

T
k j x s kjE Iη η σ δ  =  .                                      (3.13) 

sσ is the standard deviation of sun sensor error. 

The satellite’s orbital elements and position on the orbit must be known to model the 

Earth’s magnetic field and sun vectors in the orbit frame. 

 SVD-Aided UKF Algorithm  

The content of this part includes the estimation of the satellite’s attitude and the angular 

velocities during the operational mode of the mission. The estimation process is 
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divided into two sections as SVD and UKF. Firstly, a single frame method, SVD 

minimizes the Wahba’s loss function with using two vectors and finds the coarse 

attitude angles and variance values for each axis. Then, UKF use the SVD results as 

input values at each time step and provide filtered attitude and attitude rates with higher 

accuracy.  

3.4.1 Singular Value Decomposition Method 

As a single-frame method, SVD aims to solve Grace Wahba’s proposed problem [15]. 

In every single time frames, SVD can estimate the coarse attitude only using the 

measurements and the model vectors. In the loss function (see equation (3.14)), ib  and 

ir  are set of unit vectors obtained in two different coordinates and obtained at every 

single time interval. From the optimal solution for the orthogonal A matrix, attitude 

angles can be found [88].  

                                  21( )
2 i i i

i
L a= −∑A b Ar ,                                (3.14) 

The unit vectors in the loss function represent sun direction and Earth’s magnetic field 

vectors for orbit frame ( ir ), body frame ( ib ) and ia is the non-negative weight. Loss 

can be reduced into equation (3.15) as, 

                                    ( ) ( )0 tr TL λ= −A AB ,                                (3.15) 

where,  

                                                0 iaλ = ∑  ,                                           (3.16a) 

                                              T
i i ia= ∑B b r .                                        (3.16b) 

SVD method can be used here to maximize the trace function expressed in equation 

(3.15) with the most robust algorithm among the other single-frame methods [88]. B  

matrix has the singular value decomposition: 

                  [ ]11 22 33diagT T T= ∑ = ∑ ∑ ∑B U V U V  ,                        (3.17) 

matrices U  and V  are orthogonal and the singular values obey 11 22 33 0∑ ≥ ∑ ≥ ∑ ≥  . 

Then, optimal attitude matrix can be found. 

                   diag[1 1 det( )det( )]T
opt =U A V U V ,                             (3.18) 
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                         diag[1 1 det( )det( )] T
opt =A U U V V .                             (3.19) 

Covariance analysis is an important process in the integrated filtering technique and 

the matrix, svdP  can be obtained with defining secondary singular values 1 11s = ∑ , 

2 22s = ∑ , ( ) ( )3 33s det det= ∑U V  as follows, 

              1 1 1
2 3 3 1 1 2diag[(s s ) (s s ) (s s ) ] T

svd
− − −= + + +P U U .                       (3.20) 

The method is expecting measurements at every single time to provide attitude angles 

accurately hence, method fails when the satellite is during the eclipse or two vectors 

are parallel. 

3.4.2 Unscented Kalman Filter 

The UKF uses an accurate approximation called the Unscented Transform for solving 

the multidimensional integrals instead of the linear approximation to the nonlinear 

equations as Extended Kalman Filter (EKF) does [104]. The essence is the fact that; 

the approximation of a nonlinear distribution is easier than the approximation of a 

nonlinear function or transformation. The conventional algorithm for the UKF is not 

presented here for brevity and the reader may refer to [105], specifically for attitude 

estimation using the UKF.  

In case of using quaternion for the kinematic modeling of the satellite’s motion, the 

UKF in standard format cannot be implemented straightforwardly. The reason of such 

drawback is the constraint of quaternion unity given by 1T =q q . If the kinematics 

equation (3.1) is used in the filter directly, than there is no guarantee that the predicted 

quaternion mean of the UKF will satisfy this constraint. 

In [105], the authors overcome this problem by using an unconstrained three 

component vector to represent an attitude-error quaternion instead of using all four 

components of the quaternion vector.  They represent the local error-quaternion with 

the vector of Generalized Rodrigues Parameters (GRP). In this paper we use the same 

method. 

Recall that we represent a quaternion with its vector and scalar parts as 4 .
TT q =  q g  

After that when the local error-quaternion is denoted by 4

TT qδ δ δ =  q g  , the 

vector of GRP may be given as, 
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                                 [ ]4/ ( )f a qδ δ δ= +p g .                                   (3.21) 

Here a is a parameter from 0 to1 and f is the scale factor. When 0a =  and 1f =  then 

equation (3.21) gives the Gibbs vector and when 1a =  and 1f =  then Eq. (21) gives 

the standard vector of modified Rodrigues parameters. In the paper [105] - as well as 

in this paper -   f  is chosen as 2( 1)f a= + . The inverse transformation from δ p to δ q

is given by 

                  
2 22 2

4 22

(1 )a f f a
q

f

δ δ
δ

δ

− + + −
=

+

p p

p
,                        (3.22a) 

                                      1
4( )f a qδ δ δ−= +g p  .                                  (3.22b) 

3.4.3 Attitude and Attitude Rate Estimation Using SaUKF 

Two methods are integrated and SaUKF algorithm is proposed for nanosatellite 

attitude estimation. Main purposes are: 

As a standalone technique the SVD works well as long as minimum 2 vector 

measurements are available and not parallel. However, if there is only one vector 

measurement as satellite is in eclipse, the SVD fails to provide any attitude estimate.  

The SVD method gives attitude estimates as frequent as the sampling rate of the sensor 

with lower measurement frequency (if there is no propagation). The SaUKF can 

provide attitude estimate with a higher frequency since it makes use of the attitude 

dynamics.   

The SVD method does not estimate the attitude rates. For most of the cases satellite 

attitude rates must be estimated especially for control purposes. There are deterministic 

methods to estimate satellite’s attitude rate from vector measurements [106], but 

usually a filtering based method gives more accurate estimates.  

When the SVD method cannot give any estimation results, the covariance for the SVD 

estimations and so the elements of the R matrix increase. Therefore, the UKF is robust 

against the failures in the SVD estimations, as we see during the eclipse.  

As attitude representation, quaternions are used in SVD algorithm. However, for 

SaUKF, attitude errors in terms of GRP is acquired seen in Eq. (3.23), 
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1

0ˆ ( 1 )obs mes k kδ
−

= ⊗  +  q q q  ,                                (3.23) 

Here, mesq , coming from the SVD method are quaternion-multiplied with the predicted 

mean quaternion. Then regarding 4,obs

TT
obs obsqδ δ δ =  q g , measurement of the 

attitude error is calculated as, 

                          4,/ ( )obs obs obsf a qδ δ δ = + p g                                  (3.24) 

The schema for the attitude and rate estimation algorithm of the integrated method is 

given in Figure 3.1. 

 
Figure 3.1 : Scheme for the attitude and attitude rate estimation using the SaUKF. 

 Simulations for a Nanosatellite 

Several simulations were performed for evaluation of the attitude estimation 

algorithm. Three unit cube sized satellite is considered for the estimation scheme as 

about 3 kg mass and 2(0.055 0.055 0.017) .J diag kg m=  inertia matrix. Satellite 

has an almost circular orbit with an eccentricity of 56.4 10e −= ×  and 74i =   inclination 

at 612 km altitude. 

All sensors are assumed to be calibrated against biases, scale factors and so on. 

Therefore, only the sensor noise (zero mean Gaussian white noise) is considered in the 

algorithm with 300m nTσ =  standard deviation for magnetometer and 0.002sσ =  unit 
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for sun sensor. Total orbital time is close to 6000 sec. and the time step is taken as 1 

second. 

Both SaUKF and UKF use the process noise covariance for attitude and rates as 41 10−×  

and 91 10−×  and have an eclipse period between 2000 – 4000 sec. In Figure 3.2, SaUKF, 

SVD and UKF only estimation error results can be seen and compared. As clearly seen 

the SaUKF estimates the attitude more accurately than both the SVD and UKF only 

methods except the eclipse period. In the eclipse duration, the SVD method fails by 

reason of no sun sensor data. The quaternion measurements for the SaUKF deteriorate 

and the terms for the R, which is coming from the covariance matrix of the SVD angle 

estimation errors ( svdP ), increase. If the SaUKF gain gets very low values since R 

values are very high, the correction term of the UKF will become insignificant and the 

contribution of the propagation model to estimation becomes dominant. That enables 

attitude estimation during eclipse even though there is no measurement input to the 

filter.  

 
Figure 3.2 : Estimation error for quaternion q1; comparison of the UKF and SVD 

only estimations with the SaUKF. Subfigure a zooms to the indicated part in the 
main figure. 
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Figure 3.3 : Quaternion estimation error for the SaUKF with different process noise 

covariance, Q, values. 

Process noise covariance, Q is a parameter that can enable filter to rely mostly on the 

measurements or the dynamics in the filter. In the filter, 41 10−×  and 91 10−×  pair is used 

as medium noise. Here, at the end of the eclipse period, before the sun sensor data are 

coming attitude angle has 10 degrees error. If the Q pair is 31 10−×  and 71 10−× which is 

higher than the selected, results are close to the measurements and attitude angles are 

diverging more during the eclipse. On the other hand, with lower pair values such as 
91 10−×  and 131 10−× SaUKF becomes non-agile meaning that it has smaller 

convergence rate at the end of the eclipse or beginning of the orbit (Figure 3.3). 

In eclipse, the UKF only method gives the most accurate attitude estimations. During 

that period it works only with the magnetometer measurements. Since the 

magnetometers are coarser sensors compared to the sun sensors, there is a clear 

increase in the UKF estimation error in the eclipse but still the estimations are accurate 

enough for a nanosatellite mission with this sensor configuration (less than 0.1 degrees 

– see Figure 3.4 for attitude estimation error norms).  
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Figure 3.4 : Norm of attitude estimation errors. 

 
Figure 3.5 : Estimation of the angular rate around x axis. 

Angular velocities of the satellite for each axis can be estimated by using SaUKF 

accurately (see Figure 3.5). During the eclipse the attitude rate estimations are not 

deteriorated as much as the attitude estimates as a result of accurate dynamic 

knowledge and low process noise for dynamics propagation. Rate estimates by the 

UKF are similar. 

The main disadvantage of the proposed SaUKF method is requiring accurate 

measurements free of any bias, sensor misalignment and other sorts of errors. The 

sensors must be calibrated before using their measurements as input to the SaUKF. As 
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discussed in several papers [4,5,102] specifically for the magnetometers, such 

calibration should be performed on-orbit for the nanosatellite missions. In addition, as 

the simulation results clearly demonstrate, the estimation performance of the SaUKF 

degrades in eclipse and the UKF based on nonlinear measurements provides more 

accurate estimations. Regarding these facts, our suggestion is to use an algorithm 

which switches between several different filters in accordance with the flight mode. 

An example is given in Figure 3.6. 

 
Figure 3.6 : A block diagram of attitude and attitude rate estimation for the proposed 

algorithm. 
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Figure 3.7 : Estimation of the quaternions by SaUKF (outside of the eclipse) and 
UKF (in eclipse). 

In Figure 3.7, two methods are switched in/out of the eclipse for more accurate attitude 

estimation. As mentioned earlier, the SaUKF estimates the attitude more accurately 

than both the SVD and UKF only methods except the eclipse period that’s why the 

SaUKF algorithm is used only outside of the eclipse. When the satellite is in the dark 

side of the Earth, the SVD method fails since there are no sun sensor measurements. 

The results of the UKF only method can be seen (see Figure 3.7). 

Certainly for nanosatellite application we also need to investigate the computational 

load of each algorithm. Table 3.1 gives the running times for the algorithms for 6000 

sec. simulation, details of which are discussed above. Simulations are performed on a 

computer with Intel® Core™ i7 @2.93 GHz CPU and 3.49 GB RAM.  It shall be 

noted that all the presented data includes the computation time required for simulating 

the real attitude and measurements. We see that for the SaUKF algorithm, the SVD is 

the computationally heavier part and the SaUKF requires higher load compared to the 

UKF based on nonlinear measurements. Yet, the load is not heavy as much as to 

prevent nanosatellite application, especially if we consider the recent improvement in 

microprocessors capacity. 
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Table 3.1 : Computation times for each algorithm. 

Computation time (sec) 

for 10 Monte Carlo runs 

SVD SaUKF UKF 

14.30 17.96 10.49 

 Conclusion 

In this paper, singular value decomposition (SVD) method and unscented Kalman 

filter (UKF) are integrated to determine attitude and attitude rate for 3 unit cubesat 

sized satellite. Quaternion representation is used to avoid any singularities based on 

the trigonometric equations. The SVD method fails in eclipse period because of no sun 

observations. On the other hand, the SVD-aided UKF (SaUKF) can estimate attitude 

in eclipse although it is a coarse estimate. Simulation results show that also the UKF 

with nonlinear vector measurements satisfies reasonable attitude estimation accuracy 

and in eclipse accuracy of the UKF is higher than the SaUKF’s; for the rest of the 

estimation procedure the SaUKF is the most accurate estimation method. Ideal 

algorithm that we suggest for the examined case is composed of the SaUKF and UKF. 

The SaUKF is used whenever the sun sensor measurements are available and the 

algorithm switches to the UKF in eclipse. 
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 NANOSATELLITE ATTITUDE ESTIMATION USING KALMAN-TYPE 

FILTERS WITH NON-GAUSSIAN NOISE* 

 Abstract 

In order to control the orientation of a satellite, it is important to estimate the attitude 

accurately. Time-series estimation is especially important in micro and nanosatellites, 

whose sensors are usually low-cost and have higher noise levels than high-end sensors. 

Also, the algorithms should be able to run on systems with very restricted computer 

power. In this work, we evaluate five Kalman-type filtering algorithms for attitude 

estimation with 3-axis magnetometer and sun sensor measurements. The Kalman-type 

filters are selected so that each of them is designed to mitigate one error source for the 

unscented Kalman filter that is used as the baseline. We investigate the distribution of 

the magnetometer noises and show that the Student's t-distribution is a better model 

for them than the Gaussian distribution. We consider filter responses in four operation 

modes: steady-state, recovery from the incorrect initial state, short-term sensor noise 

increment, and long-term increment. We find that a Kalman-type filter designed for 

Student’s t sensor noises has the best combination of accuracy and computational 

speed for these problems, which leads to a conclusion that one can achieve more 

improvements in estimation accuracy by using a filter that can work with heavy-tailed 

noise than by using a nonlinearity minimizing filter that assumes Gaussian noise. 

 Introduction 

Satellites need to be oriented in space and there may be very strict requirements for 

the attitude estimation accuracy depending on the mission. Nanosatellites are required 

to maintain the attitude with attitude sensors that are typically cheap, simple, and light, 

and having poor accuracy. To mitigate the limitations of cheap and inaccurate sensors, 

                                                 
 
* This chapter is based on the paper “Cilden-Guler, D., Raitoharju, M., Piche, R., and Hajiyev, C. 
(2019). Nanosatellite attitude estimation using Kalman-type filters with non-Gaussian noise, Aerospace 
Science and Technology, 92, 66-76, doi: 10.1016/j.ast.2019.05.055”. 
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better attitude estimation algorithms need to be used, and because of limited 

computational resources, the algorithms should have low computational complexity. 

The conventional approach to attitude estimation of a satellite is to use the extended 

Kalman filter (EKF) [10] or its derivative-free version, the unscented Kalman filter 

(UKF) [11]. These algorithms are approximate solutions of the Bayesian filtering 

problem based on the nonlinear models of satellite motion and measurements, with 

Gaussian noises. 

Another approach to attitude estimation, the single-frame method, is introduced in 

[4,12–14]. In this method, measurements at each time step are preprocessed to produce 

a set of linear measurements and associated covariances that are fed to the Kalman 

filter.  The preprocessing involves the minimization of Wahba's loss function [15]. In 

[16], a comparison of minimization methods concludes that the singular value 

decomposition (SVD) and q methods are the most robust for single-frame attitude 

estimation methods.  

Several algorithms are proposed to improve the ability of Kalman-type filters to cope 

with highly nonlinear situations. The filter introduced in [28] can automatically 

process multiple measurements in an optimized order so that the errors caused by 

nonlinearities are minimized.  

Normal distribution-based statistical estimation is vulnerable to outliers. In [29], the 

authors compare different geomagnetic orbit determination filters under different 

measurement noise distributions: normal, Student’s t, and uniform in the simulations. 

They concluded that an unscented particle filter, which can make use of non-Gaussian 

noise models, is more accurate than EKF and UKF, which use Gaussian models. 

However, the computational complexity for particle filters is typically much greater 

than for Kalman-type filters. 

In [30], a generalization and extension of a linear Student’s t filter are proposed. In the 

paper, simulation results show that the proposed methods provide better accuracy than 

the existing methods in an application with the heavy-tailed process and measurement 

noises. In [31], an outlier-robust Kalman-type filter for nonlinear dynamical models is 

proposed based on Student’s t-distribution in the measurement model. In the paper, the 

filter is compared to alternative filters in a computer simulation and is found to provide 

a good trade-off between accuracy and computational efficiency. 
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A nonlinear Kalman-type filter called maximum correntropy unscented Kalman filter 

(MCUKF) is proposed in [32] for spacecraft relative state estimation. Heavy-tailed 

non-Gaussian measurement noises are considered in the paper. The proposed MCUKF 

uses a non-linear regression model combined with maximum correntropy to update the 

measurement information. A practical test of the relative motion of two spacecraft is 

performed and it is found that the proposed filter gives better performance than the 

other filters such as EKF and UKF. 

A noise-covariance adapting EKF algorithm is proposed in [33] to cope with sensor 

faults in the attitude estimation of a small satellite equipped with only a three-axis 

magnetometer. Similarly, a covariance adapting UKF with multiple measurement 

noise scaling factor is presented in [34] for nanosatellite attitude estimation and is 

found to be more accurate than EKF, UKF, and the covariance-adapting UKF with the 

single scaling factor. In [35], it is shown that the covariance-adapting filters are much 

more accurate than UKF and EKF in the faulty period and have faster recovery after 

the end of a fault. Furthermore, according to that study, the covariance-adapting UKF 

outperforms all other considered filters. 

In this work, we present a computer simulation study of the performance of state-of-

the-art filters for attitude estimation, taking into consideration both accuracy and 

computational complexity. We show in section 4.4 that the magnetometer errors can 

be modeled with Student's t-distribution better than with a normal distribution. We 

consider four attitude estimation operational modes:  

o attitude recovery after de-tumbling phase: this mode is simulated by initializing 

the filter with an incorrect initial state 

o steady-state, after the attitude recovery phase error, has settled 

o short-term noise increment in one magnetometer channel, which simulates a sensor 

fault due to transient disturbance 

o long-term noise increment, simulating the onset of a persistent disturbance 

The main purpose of this study is to give attention to the fact that the measurement 

noise of the magnetometers is not normal distributed as it is assumed in most of the 

studies and the filtering methods should be designed considering this fact. To the best 

of our knowledge, only a few studies are taking the magnetometer distributions as non-
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Gaussian for attitude estimation purposes and they did not use onboard magnetometer 

measurements to examine the data but only simulated the distributions. 

The rest of the chapter is organized as follows. In section 4.3, the filters used in this 

study are presented. The mathematical models of the satellite’s rotational motion and 

of the measurements are given in section 4.4. In section 4.5, the results of the 

simulations performed are presented and discussed. Finally, in section 4.6, we 

summarize our conclusions and discuss possible further work. 

 Filtering Algorithms 

In this section, five filtering algorithms considered for nanosatellite attitude estimation 

are presented. For all filters, the attitude estimation problem is formulated using the 

standard discrete-time nonlinear state-space model 

( )1 ,k k kf −= +x x w                                                    (4.1a) 

( ) ,k k k kh= +y x ε                                                    (4.1b) 

where ( )f ⋅  and ( )h ⋅ are nonlinear dynamic and measurement functions respectively, 

which will be explained in detail in section 4.4, kx  is a n -vector of states at the time 

kt , kw  is a zero-mean noise with covariance Q , ky  is a d -vector of measurements, 

and kε  is a zero-mean noise with covariance kR . The initial state 0x  is assumed to be 

multivariate normal with mean 0μ  and covariance 0P ; its probability density function 

(PDF) is denoted ( ) ( )0 0 0 0p N , .=x x μ P  The random vectors ( )0 ,  ,    1, 2,k k k = …x w ε  

are assumed to be independent. The estimation problem is to determine, at each time 

kt , the conditional distribution of the state kx  given the values of the measurements 

obtained so far, 1 2, , , .ky y y  Because this problem does not have a closed-form 

solution, approximations are used. 

We choose 5 different Kalman type filtering algorithms to be tested in the nanosatellite 

attitude estimation problem: 

o UKF is the baseline solution. 

o Outlier-Robust Kalman Filter (ORKF) takes the non-Gaussianity into account and 

updates the measurement noise covariance. 
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o Kullback-Leibler Partitioned Update Kalman Filter (KLPUKF) minimizes the 

nonlinearity. 

o Single-Frame Methods-based Kalman Filter (SFMKF) updates measurement noise 

covariance using the SFM. 

o R-Adaptive Kalman Filter (RUKF) updates measurement noise covariance using 

the innovation sequence. 

There are also other algorithms that have the same strengths e.g. Posterior 

Linearization Filter [107,108] also copes well with the nonlinear problems and 

MCUKF [32] works well with the heavy-tailed noise. We choose different types of 

filters for our tests to see what kind of filter provides the largest improvements in the 

estimation accuracy. 

4.3.1 Gaussian filter (GF) and unscented Kalman filter (UKF) 

Many Kalman type approximations can be represented using the Gaussian filter (GF) 

formulation [109]. In this formulation, the filtering distribution is approximated by 

( ) ( )1:p | N ,k k k k k=x y x μ P , where the parameters , k kμ P  are computed recursively in 

two stages (see Figure 4.1a): 

Prediction Stage: 

Predicted mean: 

( ) ( )1 1 1 1 1N ,k k k k k kf d−
− − − − −= ∫μ x x μ P x                                     (4.2) 

Predicted covariance: 

( )( ) ( )( ) ( )1 1 1 1 1 1 1 1N ,
T

k k k k k k k k kf f d−
− − − − − − − −= − − +∫P x μ x μ x μ P x Q              (4.3) 

Update Stage: 

( ) ( )ˆ N ,k k k k k k kh d− −= ∫y x x μ P x                                      (4.4) 

( ) ( )( ) ( )ˆ N ,
T

k k k k k k k k k kh d− − −= − −∫Ψ x μ x y x μ P x                          (4.5) 

( )( ) ( )( ) ( )ˆ ˆ N ,
T

k k k k k k k k k k kh h d− −= − −∫Φ x y x y x μ P x                        (4.6) 
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Figure 4.1 : Algorithm schemes of GF (a), KLPUKF (b), ORKF (c). 
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Innovation: ˆk k k= −e y y  (4.7) 

Innovation covariance: k k k= +S Φ R  (4.8) 

Kalman gain: 1
k k k

−=K Ψ S  (4.9) 

Posterior mean: k k k k
−= +μ μ K e  (4.10) 

Posterior covariance: T
k k k k k

−= −P P K S K  (4.11) 

Different Kalman-type filters correspond to different ways of approximating the 

integrals in equations (4.2-4.6). EKF uses derivatives of the system and measurement 

functions, ( )f ⋅  and ( )h ⋅ . UKF uses values of ( )f ⋅  and ( )h ⋅  evaluated on a set of 

points in state space ([110,111]). In this work, we use UKF. 

4.3.2 R-adaptive Kalman filter (RUKF)  

Various algorithms are proposed for adapting the Kalman filter starting with the earlier 

publications by Mehra [112]. One of these ideas is to scale the covariance of the filter. 

The parameters that are used for scaling can be calculated using different means 

[113,114]. This idea is also applicable to the UKF adaptation. In [115], the state 

estimation performance of the UKF is improved by proper tuning of both the unscented 

transform parameters and the process and measurement noise covariance matrices of 

the dynamic system model. The R-adaptive Kalman filter is introduced with the goal 

of making the estimate insensitive to measurement faults [35]. The filter makes use of 

the empirical covariance of the windowed innovation sequence 

1

1 ,
k

T
k j j

j k MM = − +

= ∑S e e                                                      (4.12) 

where M  is the width of the moving window. RUKF uses the UKF recursion of 

equations (4.2-4.11) except that the measurement covariance matrix kR  in (8) is 

replaced by a scaling matrix *
k kV R  where the scaling matrix is 

( )* * * *
1 2diag , , , ,k dv v v=V   ( ){ }* max 1,  ,   1, ,iv V i i i d= =  , and ( ) 1

k k k
−= −V S Φ R . 

When a fault occurs in the ith measurement the corresponding term of ( ),k i iS  will 
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become larger and the faulty measurement influence will decrease because of having 

a lower gain. 

4.3.3 Kullback-Leibler partitioned update Kalman filter (KLPUKF) 

In general, the partitioned update Kalman filter performs the update stage of a 

multivariate measurement in several steps [28]: 

1. Evaluate the nonlinearity of the measurements. 

2. Minimize the nonlinearity of part of the measurement by applying a linear 

transformation. 

3. Update the state using part of the measurement whose nonlinearity is small. 

4. If the whole measurement has not yet been applied, use the partially updated state 

as the prior and the unused part of the measurements as a new measurement, and 

return to step 1. 

In KLPUKF, the Kullback-Leibler divergence (KLD) of the error of approximation is 

used as the measure of nonlinearity. Denoting the approximated joint density of the 

state kx  and the measurement ky  in GF as ( ),k kq x y  and the exact joint density as 

( ),k kp x y , the KLD of the error of the approximation is [116]  

( ) ( )( ) ( ) ( )
( )

,
KLD , , , log ,

,
k k

k k k k k k k k k
k k

p
p q p d d

q
 

= =   
 

∫∫
x y

η x y x y x y x y
x y

   (4.13) 

which can be shown [117] to be 

11 log
2k k k

−= + ϒη I R ,                                      (4.14) 

where 

( ) 1T
k k k k k

−−ϒ = −Φ Ψ P Ψ .                                       (4.15) 

Here, it should be noted that some of the KF extensions such as EKF make 

linearization such that kϒ  always becomes zero; therefore, KLD cannot be found by 

using those extensions. 

In [28] it is shown that the linear transformation in step 2 is the matrix 
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1T
k k k

−
=D U R ,                                                  (4.16) 

where kR  is the lower-triangular Cholesky factor of kR , ( )T

k k k=R R R , and 

kU  is the orthogonal matrix in the eigenvalue decomposition 

1
,

TT
k k k k k k

− −
= ϒU Λ U R R                                        (4.17) 

where the diagonal matrix kΛ  has the eigenvalues in the diagonal in ascending order. 

The transformed measurement noise covariance is 

1
.

TT
k k k k k k

− −
= =R U R R R U I                                    (4.18) 

Here, the nonlinearity of the first measurement element is minimized by this 

transformation. In our implementation, we update one measurement at a time, i.e. steps 

1-4 are carried out d  times at each update. The algorithm scheme for KLPUKF can 

be seen in Figure 4.1b. 

4.3.4 Outlier-robust Kalman filter (ORKF) 

The variational Bayes based Student's t Kalman filter, ORKF [31] assumes that the 

measurement noises are distributed according to Student’s t-distribution, which has 

"longer tails" than a Gaussian distribution. The Student’s t distribution can be 

expressed using the auxiliary random variable kλ  as 

( ) ( ) ( ), ,k k k k k k kp p p d= ∫y x y x λ λ λ                               (4.19) 

where ( ) 1, ~ N ,k k k k k
k

h
 
 
 

y x λ x R
λ

 and ~ Gamma ,
2 2k
v v 

 
 

λ . Here, 1v ≥  is the 

degrees of freedom parameter which determines the distribution’s kurtosis. If v → ∞

the distribution converges to the normal distribution ( )( )N ,k kh x R . 

In the prediction step, ( )1: 1k kp −x y  is approximated as having a Gaussian density 

( ),k k kN − −x μ P  as in equations (4.2-4.3). The update step with non-Gaussian noise is 

computationally intractable so the ORKF uses a Variational-Bayes approximation as 

follows. The KLD between the true posterior and the product approximation 

( ) ( ) ( )1:,k k k k kp q q≈x λ y x λ  is 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( )1: 1

1:

KLD , log .
,

k k
k k k k k k k k k

k k k

q q
q q p q q d d

p−

 
=   

 
∫

x λ
x λ x λ y x λ x λ

x λ y

(4.20) 

The KLD is minimized with respect to ( )kq λ  while keeping ( )kq x  fixed by setting 

( ) ( )( )1:log E log , ,   constant

1 1 log   constant,
2 2 2

k x k k k

k
k k k

q p

vv d

= +

+ = − + − − + 
 

λ x λ y

λλ γ λ
                  (4.21) 

where 

( )( ) ( )( )( )
( )( ) ( )( )( ){ }

1

1

=E

tr E ,

T
k x k k k k k

T
x k k k k k

h h

h h

γ −

−

− −

= − −

y x R y x

y x y x R
                         (4.22) 

where ( )E ⋅  is the expectation operator. Similarly, the KLD is minimized with respect 

to ( )kq x  while keeping ( )kq λ  fixed by setting  

( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( )
1:

11

log =E log , ,   constant

1   constant,
2

k k k k

TT
k k k k k k k k k k k

q p

h h

λ

−− − − −

+

= − − − − − − +

x x λ y

λ y x R y x x μ P x μ

(4.23) 

where 

( ) ( )E .k k k k k
k

v dq d
vλ γ

+
= = =

+∫λ λ λ λ λ                                 (4.24) 

Then, equation (4.22) and equation (4.24) should be iterated to convergence or a fixed 

number of times. The update step of the GF in equations (4.4-4.11) is carried out with 

1
k

k

R
λ

 measurement noise covariance which is updated in every iteration and every 

time step (see Figure 4.1c). 

4.3.5 Single-frame methods based Kalman filter (SFMKF) 

As a pre-processing step before the update stage, the linear attitude measurements are 

obtained from the single-frame method (SFM) by minimizing Wahba’s loss function 

[15],  
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( )
21 ,

2 k k kk j j k j
j

L a= −∑A b A r                                     (4.25) 

where A  is the orthogonal transformation matrix from reference coordinates to body 

coordinates fixed on the sensor body   (Section 4.4.1), ja  is the inverse variance of the 

sensor j , jb  is the unit vector of the 3-axis sensor measurements in the body 

coordinates, and jr  is the unit vector of the measurement model in the reference 

coordinates (Section 4.4.2). Those linear attitude angle measurements can be used in 

the Gaussian filter instead of the nonlinear measurements. The loss function can be 

minimized using the SVD method, which has the best robustness compared to other 

minimization methods such as QUEST, q, FOAM [4,96,118,119]. Therefore, the SVD 

method is used as an SFM in this study.  

The attitude measurement vector from SFM is, 

,k k k= +y Hx ε                                            (4.26) 

where the measurement matrix is taken as [ ]3 3 3 30x xI=H  in this study. However, it 

should be noted that if another SFM is used with attitude representation other than 

Euler angles, the determined attitude should be represented as Euler angles after 

necessary transformations. The GF with an update based on this linear measurement 

model is called SFMKF (see Figure 4.2 for the algorithm scheme). In the update stage, 

measurements ky  are coming from SFM with measurement covariance kR , which is 

updated in each step based on the single-frame method. In the GF, the innovation (4.9) 

is replaced by  

ˆk k k= −e y y                                              (4.27) 

and equation (4.7) can be replaced by 

.T
k k k

−= +S HP H R                                       (4.28) 

It should also be noted that the attitude measurements from SFM can be used as the 

initial attitude in the SFMKF. Therefore, this method might overcome the problem of 

having grossly incorrect initial values which affect the transient behavior of the filter.  
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Figure 4.2 : SFMKF algorithm scheme. 

 Mathematical Models for Nanosatellite’s Rotational Motion 

4.4.1 Equations of rotational motion 

The state vector for the continuous-time dynamic model is composed of attitude angles 

and angular velocities as  

,
T

x y zϕ θ ψ ω ω ω =  x                                   (4.29)                                                                                               

where ϕ  is roll (angle of rotation about x  axis), θ  is pitch ( y axis), ψ  is yaw ( z

axis) with respect to the orbital frame, ,  ,  x y zω ω ω  are the angular velocities in the 

body axis set with respect to the inertial coordinate system. The transformation matrix 

from reference (orbital) coordinates to body coordinates is [1]  
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( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c c s s
c s s s c c c s s s s c ,

s s c s c s c c s s c c

θ ϕ θ ϕ θ
ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ ψ θ

ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ ψ θ

− 
 = − + + =
 + − + 

A x A      

(4.30) 

where ( )c ⋅  and ( )s ⋅  are cosine and sine functions. The dynamic equations, obtained 

by the principle of conservation of angular momentum, are [1] 

( ) ,x
x x y z y z

dJ N J J
dt
ω ω ω= + −                                   (4.31.a)                                   

( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −                                   (4.31.b) 

                                  ( ) ,z
z z x y x y

dJ N J J
dt
ω ω ω= + −                                   (4.31.c)      

where ( ), ,x y zJ J J  are the principal moments of inertia, and ( ),  ,  x y zN N N  are the 

external disturbances. If only the ideal spherical body gravity of Earth is taken into 

consideration, the external disturbances are [120] 

( )
( )
( )

23 33
*

13 333
0

13 23

3 ,
y zx

y z x

z x y

J J A AN
N J J A A

r
N J J A A

µ
 −     = − −      −    

                             (4.32) 

where *µ  is the product of the universal gravitational constant and the mass of Earth, 

and 0r  is the distance between the satellite and Earth’s center of mass. The angular 

velocity vector in the body axes, with respect to the reference (orbital) coordinate axes, 

is 

0
,

0

x

y o

z

p
q
r

ω
ω ω
ω

     
     = − −     
          

A                                            (4.33) 

where oω  is the orbital angular velocity with respect to the inertial reference, 

1/2*

3
0

o r
µω

 
=  

 
 for a circular orbit. The satellite’s kinematics equation of motion derived 

using the Euler angle attitude representation is [1], 



66 

    
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 s / c c / c
0 c s .
1 s s c c s c

p
q
r

ϕ ψ θ ψ θ
θ ψ ψ
ψ ψ θ θ ψ θ θ

    
    = −    
        







                (4.34)  

The system dynamics function f  in (4.1a) is obtained by time-discretization of the 

differential equations (4.34) and (4.31) using Euler’s method with constant time step, 

t∆ : 

               ( )
( )

( )
( )1

s c
,

c c
k k

k k k k
k k

t q r
ψ ψ

ϕ ϕ
θ θ+

 
= + ∆ +  

 
                                      (4.35a) 

( ) ( )( )1 c - s ,k k k k k kt q rθ θ ψ ψ+ = + ∆                                        (4.35b) 

( ) ( )
( ) ( ) ( )

( )1

s s
s c ,

c c
k k

k k k k k k k
k k

t p q r
θ θ

ψ ψ ψ ψ
θ θ+

 
= + ∆ + +  

 
                        (4.35c) 

( )( )
1

,
k k k k kx x x y z y z xt N J J Jω ω ω ω

+
= + ∆ + −                               (4.35d) 

( )( )
1

,
k k k k ky y y z x z x yt N J J Jω ω ω ω

+
= + ∆ + −                                (4.35e) 

( )( )
1

.
k k k k kz z z x y x y zt N J J Jω ω ω ω

+
= + ∆ + −                                 (4.35f) 

4.4.2 Measurement models 

In this study, a nanosatellite system is considered to have as measurement sensors a 

sun sensor and a magnetometer. These sensors are commonly used for satellite 

missions in low Earth orbit.  

International Geomagnetic Reference Field (IGRF) is used as the geomagnetic field 

model; its inputs are the date and position of the satellite [1,6]: 

( ) ( ) ( )( )
1

1 0
( , , colat,lon)    ( ) c  lon( ) ( )s  lon( ) c colat( ) ,

nN n
m m m

o n n n
n m

at r a g t m t h t m t P t
r

+

= =

     = −∇ × +       
∑∑B      

        (4.36) 

where oB  is the predicted magnetic field in nanoTesla ( nT ), r  is the distance 

between the mass centers of the satellite and Earth, colat( )t  is the co-latitude, lon( )t  

is the longitude, ( )( )c colat( )m
nP t  are the Schmidt quasi-normalized associated 

Legendre polynomials of degree n  and order m , 6371.2 kma =  is the geomagnetic 

conventional Earth’s mean reference spherical radius, m
ng  and m

nh  are the Gaussian 
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coefficients given in units of nT [6]. The noiseless magnetometer measurements are 

obtained by transforming the geomagnetic field to the body frame: 

( ) ( ) ( ) ( ) ( )( ), , , colat , lon .m ot x t r t t tx=B A B                            (4.37) 

As the distance between the satellite and Earth’s centers is negligible considering the 

distance between the sun and Earth’s centers, sun direction with respect to the Earth-

centered inertial (ECI) coordinates only depends on the Julian Day ( TDBT ) and not on 

the satellite’s position. The Julian Day can be derived from the satellite’s reference 

epoch and the onboard clock time, t . The ecliptic longitude of sun ( )eclipticλ  and its 

linear model ( )ε  can be computed as [103]. 

o
Sun 3 ,357.527723 35999.05034 TDBM T= +                             (4.38.a) 

Sun S
o

ecliptic un Sun1.914666471 sind( ) 0.019994643sind(2 ),M M Mλ λ= + +     (4.38.b) 

Sun

o280.4606184 36000.77005361 ,DBM TTλ = +                           (4.38.c) 

o23.439291 0 ,.0130042 TDBTε = −                                     (4.38.d) 

where the mean anomaly and the mean longitude of sun are given by equations (4.38a), 

(4.38c), and sind  is a degree-argument sine function. From these relations, sun 

direction vector ( ECIS ) in ECI coordinates can be found from 

( )
( )

( ) ( )
( ) ( )

ecliptic

ecliptic

ecliptic

.cos

cosd

sind

si sn id

d

nd

ECI t

λ

λ ε

λ ε

 
 
 =
 
  

S                                     (4.39) 

The noiseless sun sensor measurements mS  are obtained by transforming the sun 

direction to the body frame: 

( ) ( ) ( ) ( ), ,m ECIt x x t t= A L SS                                    (4.40) 

where L  is the transformation matrix from ECI to orbit coordinates. We compute the 

satellite’s orbital elements ( L ) and position on the orbit ( ), colat, lonr  using the SGP4 

orbital propagation model [121]*. For consistency, sun direction and magnetic field 

                                                 
 
* The code is available at http://www.centerforspace.com/downloads/. 
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measurements are used as unit vectors, and the state-space model’s equation (4.1) 

measurement function is then 

( )
( )
( )
( )

,
, .
,

m k

m kk

m k

B t x
B t xh x
S t x

 
 

=  
 
 

                                              (4.41) 

4.4.3 Magnetometer noise distribution analysis 

It is investigated which distribution is the best fitting for the magnetometer noises. As 

representative magnetometer measurements, we use 11 nonconsecutive days’ 

SWARM-A data from the ESA website (ftp://swarm-diss.eo.esa.int/) and we use the 

magnetic field model IGRF as a reference. The differences between the unit vectors of 

real magnetometer measurements of SWARM-A and the reference magnetic field 

model IGRF in 13th order having the date and position inputs from the satellite are 

used in order to construct the noise density. Three symmetric distributions are fitted to 

these errors using standard maximum likelihood methods: normal, t, and extreme value 

distribution. The PDF of the t-distribution shows the best agreement with the density 

histogram (Figure 4.3). This is also the distribution that gives the smallest Akaike 

information criterion (Table 4.1), which is defined as [122] 

   ( ) 2AIC ln MSE ,i
i i

mag

k
N

= +                                             (4.42) 

where MSEi  is the mean square error of the ith candidate distribution, ik  is the number 

of fitting parameters, magN  is the number of the observations. Therefore, t-distributed 

noise on magnetometer measurements is used for the simulations (Section 4.5). In the 

analysis, the non-normalized magnetic field noises are in the order of 100-200 nT.  
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Figure 4.3 : Distribution fitting for magnetometer measurement noises on x, y, and z 

axes. 

Table 4.1 : Akaike’s information criterion (AIC) analysis of distributions for 
magnetometer noise. 

Model 
AIC  

x y z 

Normal 3.999 2.694 6.693 

t  3.998 2.690 6.531 

Extreme value 4.001 2.700 6.721 

 Analysis and Results 

In this section, we describe the numerical simulation tests and the results obtained. We 

begin by presenting the parameters common to all tests. We consider a nanosatellite 

with principal moments of inertia  3 3 3 2diag 2.1 10 2.0 10 1.9 10  kg m− − − = × × × J . 
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The orbit is almost circular with inclination o87.4i = , eccentricity 0.0009,e =  and 

average altitude 500 km . Sun sensors and magnetometers have 3-axis measurements 

and both sensors have 1-Hz frequency; estimation time step is also 1 sec . The sensor 

noises are characterized using standard deviations 0.008Bσ =  for each measurement 

of the magnetometers and 0.002Sσ =  for sun sensors which is based on the angular 

deviation of the sun vector with respect to the actual direction of sun. The noises for 

magnetometer measurements are sampled from Student’s t distribution and sun 

sensors are sampled from normal. The dynamic system’s noise covariance is selected 

as 
( )

( )

24
3 3

26
3 3

10 rad 0
.

0 10 rad/s

I

I

−
×

−
×

 
 =
  

Q  The non-zero Q  matrix is introduced to 

avoid numerical issues with the approximate nonlinear covariance propagation. We 

consider attitude estimation over a single orbit ( )6000 s  starting at position

o o
0 0 0colat 24 ,  lon 173 ,  6878 kmr= = =  and time 00:00:00 UT at January 1, 2014. 

The true initial state is [ ]0 0.015 0.01 0.005 0.0005 0.00075 0.0005 Ttrue =x  with 

the units of the first three elements in radians and the last in radians per seconds, and 

the initial state of filters is  

0 02 true=x x                                                  (4.43) 

(except SFMKF, which uses SFM). If process noise is applied to the true states in the 

simulation environment, the outputs will be different in different simulations. We 

wanted to concentrate only on the effect of the measurement noise and, thus, the true 

track is generated using (4.35) without added noise.  

Filter algorithm parameters: 

UKF: unscented transformation parameters from [110], 310 ,  2,  0α β κ−= = = , 

RUKF: sliding window width, 20M = , 

ORKF: number of iterations, iterN , and degrees of freedom parameter, 4v = . 
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4.5.1 Nominal operation mode 

Error formulation used for the evaluation of the filters’ attitude angle estimation 

accuracies in Figure 4.4 is the normalized root mean square of the norm of estimation 

errors 22

1 1

n n true
k kk k= =∑ ∑e X  where true est

k k k= −e X X  is the absolute error vector 

between the true and the estimated data during the whole simulation time. Simulations 

are performed on a computer with Intel® Core™ i7 @2.93 GHz CPU and 8 GB RAM. 

Figure 4.4 shows the work-accuracy diagram for the 5 filter algorithms with one of 

them having 3 variants. The x-axis shows the average NRMSE from 100 simulations 

with different random number generator (RNG) seeds for the sensor noises. There is 

not much change in the results when the parameters are changed in the filters other 

than ORKF. Therefore, only ORKF is applied using { }2,  5,  10iterN =  and the iteration 

number is shown at the filter label’s subscript. KLPUKF, 5ORKF  and 10ORKF  are the 

most accurate algorithms, with KLPUKF and ORKF variations computationally the 

heaviest. The other three have smaller, roughly equal, computational load, but SFMKF 

and RUKF’s accuracy, which is roughly equal, is much better than UKF’s. For ORKF, 

5ORKF  is selected and named without the subscript for the rest of the paper in order 

to have accurate but computationally light estimations. It should be noted that the non-

Gaussianity seems to be the dominating factor compared to non-linearity that causes 

error to the UKF. 

A time series of estimation errors from a single simulation (Figure 4.5) shows that all 

5 filters behave similarly. Most of the error arises in the initial transient during which 

the filters recover from the incorrect initial state. Even SFMKF, which uses an initial 

state from SFM instead of (4.42), has a significant transient error. In order to evaluate 

the steady-state where errors arise mainly from sensor errors, we consider also the 

errors after 1500 s. Box plots (Figure 4.6) and RMSE (Table 4.2) indicate that all filters 

perform reasonably well in the steady-state regime, with ORKF having the smallest 

attitude RMSE. 
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Figure 4.4 : Work vs accuracy for 5 filters. 

 
Figure 4.5 : Attitude (left) and angular velocity (right) estimation errors for normal 

operation mode, single simulation. 

 
Figure 4.6 : Box plots of estimation errors during  averaged over 100 simulations. 
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Table 4.2 : RMSE of estimations during 1500 s,t ≥ averaged over 100 simulations. 

RMSE 

Roll Pitch Yaw xω  yω  zω  

( )310  rad−×  ( )610  rad/s−×  

UKF 0.659 0.664 0.065 0.2201 0.3562 0.9871 

KLPUKF 0.171 0.183 0.078 0.0863 0.0591 0.0879 

ORKF 0.075 0.133 0.041 0.0523 0.0163 0.0141 

SFMKF 0.054 0.190 0.064 0.0883 0.2100 0.0419 

RUKF 0.052 0.187 0.042 0.0801 0.2107 0.0378 

4.5.2 Operation with noise-increment magnetometer fault 

Magnetometers on satellite can easily be disturbed by other subsystems which are very 

close because of the small size of the nanosatellite. There can also be external 

disturbances. Those effects result in faults in the measurements. Generally, two types 

of error models are widely adopted to describe frequently encountered faults: the 

continuous bias model and the noise increment error model. For disturbances having 

continuous bias on the measurements, sensors should be calibrated first. Here, the 

noise increment type of magnetometer measurement fault is considered. Here, it is 

considered that a sensor-related fault occurred on the magnetometer’s y channel, 

making the measurements noisy on that channel. The y magnetometer component 
k

y
Bε  

of the measurement noise term kε  in (1b) is replaced by ,
k

y
k Bδ ε  where kδ  is a scaling 

sequence. Two fault cases are considered: long-term fault 

10    if 4000
  ,

1    otherwisek

t
δ

>
= 


                                              (4.44) 

and transient (short-term) fault 

10    if 3000 3400
  .

1    otherwise           k

t
δ

< <
= 


                                  (4.45) 
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Figure 4.7 shows the time series of the y-magnetometer component of the RUKF 

scaling matrix derived from the windowed innovation sequence in equation (4.12). 

These show that the RUKF scale factor is adapting correctly: it changes from ~1 to 

~100 during the fault. 

 
Figure 4.7 : RUKF scaling factor for long-term (a) and short-term (b) magnetometer 

fault. 

The scale factors for normal and Student’s t distribution cases without considering any 

faults are presented in Figure 4.8 in order to see how RUKF copes with the heavy tails. 

We see that RUKF compensates the heavy tails by increasing the scale factor. It should 

be noted that the x and z axes are similar to the y axis outputs. Figure 4.9 and Table 

4.3 summarize the estimation errors for different filters. From these we see 

o UKF and KLPUKF are generally the least accurate methods, especially for long-

term fault. That’s because these filters assume Gaussian noise and are not adaptive. 

Also, UKF is generally very slow in recovering after the end of the short-term fault. 

o The remaining filters cope fairly well with both kinds of faults. ORKF is the most 

accurate, RUKF is almost as accurate, and SFMKF is the least accurate of the three. 

These three filters are adaptive in measurement noise covariance. So, the filter 

copes with faulty measurement by adapting the scaling factors and having a lower 

gain. 
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Figure 4.8 : RUKF scaling factor for normal and t-distributions without any 

magnetometer faults. 

 

 
Figure 4.9 : Attitude errors for long-term (a) and short-term (b) magnetometer faults, 

single simulation. 
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Table 4.3 : Filter RMSE during faulty period, averaged over 100 simulations. 

RMSE 

Long-term Short-term 

Roll 

( )310  rad−×  

Pitch 

( )310  rad−×  

Yaw 

( )310  rad−×  

Roll 

( )310  rad−×  

Pitch 

( )310  rad−×  

Yaw 

( )310  rad−×  

UKF 0.991 1.843 2.001 0.705 0.771 0.816 

KLPU

KF 
0.213 1.102 0.201 0.198 0.683 0.155 

ORKF 0.146 0.264 0.091 0.076 0.120 0.047 

SFMK

F 
0.170 0.375 0.102 0.091 0.168 0.071 

RUKF 0.159 0.275 0.114 0.084 0.141 0.059 

 Conclusions 

From this study, we find: 

1. Real magnetometer noises are better modeled by Student’s t distribution than the 

normal distribution. 

2. SFMKF, UKF, RUKF are the computationally lightest filters, KLPUKF and 

ORKF are 2-4 times slower. 

3. In nominal operation mode, ORKF and KLPUKF are the most accurate; SFMKF 

and RUKF errors are about twice as large. UKF has much larger errors because it 

does not cope well with t-distributed noises. 

4. ORKF and RUKF cope best with transient and long-term noise-increment faults in 

magnetometer. SFMKF copes reasonably well. 

In summary, ORKF is the most accurate filter both for the nominal operation mode 

and for the operation with noise-increment magnetometer fault. We identified that the 

outliers caused the difference in the estimation accuracy. We suggest that it is 

important to check the noise distribution of the magnetometers. If they are non-
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Gaussian as with the tested magnetometers the non-Gaussianity is a more significant 

source for estimation errors than nonlinearity and it is more important to use the limited 

computational resources in nanosatellites to compensate for non-Gaussianity than 

using more complex nonlinear filters. 

For further work, algorithms can be tested for sensor faults of continuous bias type. 

This would require a calibration in which the state vector has more elements to be 

estimated. Other disturbances such as extraterrestrial magnetic field can be included 

in the models and results using different reduced-order IGRF models can be compared.  

In addition to these, different Student’s t filters and the filter proposed in [123], which 

is a Kalman-type filter for measurements having non-Gaussian noises, could be 

implemented and compared with other considered filters for further comparative 

studies. Another interesting possibility would be to investigate whether the KLPUKF 

and ORKF algorithms could be fused into an algorithm that minimizes the nonlinearity 

and can cope with the heavy-tailed noises.  
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 EVALUATION OF GEOMAGNETIC FIELD MODELS USING 

MAGNETOMETER MEASUREMENTS FOR SATELLITE ATTITUDE 

DETERMINATION SYSTEM AT LOW EARTH ORBITS: CASE STUDIES* 

 Abstract 

In this study, different geomagnetic field models are compared in order to study the 

errors resulting from the representation of magnetic fields that affect the satellite 

attitude system. For this purpose, we used magnetometer data from two Low Earth 

Orbit (LEO) spacecraft and the geomagnetic models International Geomagnetic 

Reference Field (IGRF) [6] and Tsyganenko’s magnetospheric model 89 (T89) [68] 

models to study the differences between the magnetic field components, strength and 

the angle between the predicted and observed vector magnetic fields. The comparisons 

are made during geomagnetically active and quiet days to see the effects of the 

geomagnetic storms and sub-storms on the predicted and observed magnetic fields and 

angles. The angles, in turn, are used to estimate the spacecraft attitude, and hence, the 

differences between model and observations as well as between two models become 

important to determine and reduce the errors associated with the models under 

different space environment conditions. We show that the models differ from the 

observations even during the geomagnetically quiet times but the associated errors 

during the geomagnetically active times increase. We find that the T89 model gives 

closer predictions to the observations, especially during active times and the errors are 

smaller compared to the IGRF-12 model. The magnitude of the error in the angle under 

both environmental conditions is found to be less than 1o. For the first time, the 

geomagnetic models are used to address the effects of the near-Earth space 

environment on the satellite attitude. 

                                                 
 
* This chapter is based on the paper “Cilden-Guler, D., Kaymaz, Z., and Hajiyev, C. (2018). 
Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude 
determination system at low earth orbits: Case studies, Advances in Space Research, 61(1), 513-529, 
doi: 10.1016/j.asr.2017.10.041”. 
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 Introduction 

Magnetometers are one of the attitude determination sensors for small satellites at 

LEO. On-board magnetometers and a model of the Earth’s magnetic field are needed 

for the prediction of the geomagnetic field at the satellite’s altitude.  The conventional 

methodology while estimating the satellite’s attitude involves the angle between the 

magnetic field vectors from the simulated magnetometer and the model of the Earth’s 

geomagnetic field.  Therefore, the accuracy of the geomagnetic fields from the model 

is critical for a precise attitude determination. As scientific payloads, the 

magnetometers on-board the satellites return data in space within their built-in 

precision and are placed one or two meters away from the spacecraft body on a boom 

in order to avoid the magnetic effects created by the satellite itself and its nearby 

surrounding environment. Simulated magnetometers, on the other hand, use the 

magnetic field direction from a geomagnetic field model, most widely IGRF [6], to 

determine the parameters of the satellite attitude. Both magnetometers include several 

errors and bias sources that will affect the satellite’s attitude.  Current state-of-the-art 

satellite magnetometers are highly improved both in accuracy, and precision and 

resolution as well as in physical size. Among several satellite magnetometers, two of 

the most often used ones are the flux gate magnetometers and search coil 

magnetometers that use tri-axial configuration.  Many of the bias and random errors 

may be reduced or prevented prior to the launch during the ground tests or on-orbit 

after the launch with having an additional sensor for calibration on the satellite.   There 

are several methods proposed in the literature for magnetometer calibration without 

attitude information. The most commonly known method is the TWOSTEP algorithm 

that, after the centering approximation, uses a second step employing the centered 

estimation, found by an approximation, as an initial value to an iterative Gauss-Newton 

method that avoids divergence problems as other algorithms cannot [48,49]. In parallel 

to the advancing technologies in the space industry, providing that the errors that may 

be resulted from real magnetometer sensors on board are negligible to affect the 

attitude, the source of most of the errors then would be associated with the 

environmental conditions in case of the real magnetometers and from the bias, noise 

and scaling factors in case of the simulated magnetometers and how they are handled 

during onboard processing in space. 
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The errors in attitude determination are determined in the literature using different 

approaches. An approach that is suggested by [50] is to compare the magnetometer 

measurements with the magnetic fields predicted by the IGRF geomagnetic model and 

aims to remove the bias and scaling errors. In this case, IGRF predictions are used to 

calibrate and optimize the simulated magnetometer magnetic fields [50,51].  The other 

approach involves the conversion of the IGRF model magnetic field to the satellite 

body coordinates.  In these studies, the IGRF model is assumed to represent the 

geomagnetic field correctly. These studies imply that a good representation of the 

geomagnetic field is an essential part of the attitude determination process and the 

closer the geomagnetic model results to the real geomagnetic fields in space at the 

satellite’s altitude, the more accurate the satellite attitude.   

For the determination of the satellite’s attitude angles, extended Kalman filter (EKF), 

unscented Kalman filter (UKF), and similar filters or single-frame methods such as q, 

QUEST, SVD, etc. are widely used [4,12,13,90]. The source of the error in the 

determination of the attitude angles may come from the model magnetometer 

calibrated using IGRF predictions at the satellite altitude. Some of the inaccuracies 

related to the geomagnetic model, IGRF, used by the model magnetometer result from 

the model assumptions, the insufficient experimental data, or both. For epoch 2000, 

the coefficients are provided to degree and order 13 and 0.1 nT precision for the IGRF-

12 model [6]. In this study, we investigate the effects of the LEO orbit environmental 

conditions on the satellite attitude system, which are superimposed on the Earth’s 

geomagnetic field as a result of magnetospheric substorms. As these effects are not 

taken into account in IGRF, the magnetic field at the satellite altitude during these 

times is underestimated by the simulated magnetometer.  Some of the specific 

questions that we address are: 

1. How well does the magnetic field (magnitude and direction) estimated by the 

geomagnetic field model accurately represent the real geomagnetic field at LEO 

altitudes,  

2. How much the Earth’s geomagnetic field varies during the magnetic storms and 

substorms at LEO altitudes? Consequently, how much these variations affect the 

predictions of geomagnetic models, e.g. IGRF? 
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3. What is the error that these will create on the spacecraft attitude as referred from 

the angle between the measured magnetic field and the field from the geomagnetic 

model? 

4. Which geomagnetic field model gives closer estimates to the measured magnetic 

field at the satellite altitude at LEO? i.e. determine and compare the performance 

of different models. 

In the following sections, we first describe the data sets and the methodology used in 

this study and then present the results and discussion. In the last section, we give a 

summary and conclusions. 

 Data and Methodology 

The first and the second questions given above are investigated by looking at the 

differences between the magnetic field vector measurements obtained from a real 

magnetometer placed on a LEO orbiting satellite and a chosen geomagnetic model 

during the geomagnetically active and quiet times. As for LEO orbiting satellites, we 

selected C/NOFS, and SWARM satellite magnetic field measurements.  The data from 

these spacecraft are obtained from [124], and [125].  Both satellites use a fluxgate 

magnetometer placed on a boom away from the satellite. Regarding the geomagnetic 

field model of the Earth, in recent years, there have been several new geomagnetic 

models developed to represent the geomagnetic field under different external 

conditions such as Tsyganenko models [68,69,126–128], CHAOS [129,130], 

POMMES-6 [131], etc. in addition to the IGRF model.    In this study, we used the 

1989 version of T89 and the last version of the IGRF model to study the geomagnetic 

field of the Earth at LEO altitudes.  The satellite attitude has been studied based on the 

angle between the magnetic field vectors measured on the satellite and from the model 

on orbit. The difference in the components of the magnetic field vectors is mostly used 

as a unit vector. Therefore, the angle between the magnetic field of the modeled and 

measured field affects the degree of accuracy in the satellite’s attitude.  In this study, 

it is our interest to evaluate these models by comparing their predictions with the 

magnetometer measurements from the selected satellites given above. For the attitude 

determination system, the IGRF model is the most commonly used model.  However, 

the difference between the magnetic fields of the sensor and model increases when the 

geomagnetic activity occurs. Hence, several models that take into account the external 
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variations resulting from the solar wind and interplanetary magnetic field 

superimposed on the Earth’s geomagnetic field are of great importance in the 

determination of the satellite’s attitude correctly. 

5.3.1 Geomagnetic models 

The simplest model of Earth’s geomagnetic field is the dipole field approximation.  

However, the dipole approximation fails to represent the geomagnetic field at distances 

far away from the Earth owing to the modifications of the geomagnetic field lines by 

the solar wind.  As a result, the magnetometers are not reliable to be used as attitude 

sensors at farther distances from the Earth.  In IGRF models, Earth’s main magnetic 

field is described by the series of spherical harmonic coefficients that describe the 

secular variation of the Earth’s magnetic field. Earth’s magnetic field in the IGRF-12 

model with the order of 13th is expressed as the gradient of a scalar potential function. 

In most of the nanosatellite missions, truncated versions as 7th to 10th order of IGRF 

are preferred and this might cause a reduced accuracy on the model outputs [132]. 

IGRF-12 is a model using several candidate models which are based on different 

groups of datasets and time intervals from the Swarm, CHAMP, Ørsted, SAC-C 

missions [6]. The accuracy of the IGRF-10 and IGRF-11 models is found to be 

accurate within 1o for 92% times in the upper atmosphere [64]. Based on long-term 

satellite observations, these models represent the average geomagnetic conditions and 

neglect the variations resulting from the geomagnetic disturbances superimposed on 

the main geomagnetic field at the satellites’ altitudes. During the geomagnetic storms 

and sub-storms, Earth’s main magnetic field undergoes several variations. These 

variations are treated as noise or error and cannot be fully represented in the attitude 

determination most of the time. The magnetic field strength and the direction change 

in time scale from seconds to hours and from a few nanoTeslas (nT) to orders of 1000s 

of nT depending on the altitude of the satellite. For example, in the geostationary orbit, 

the magnitude of the perturbations can be as large as on the orders of 200nT. 

Additionally, these phenomena occur several times in a week during the high solar 

activity periods while one or two occur during the low solar activity period. Therefore, 

the geomagnetic storms and substorms can have an appreciable effect on the satellite’s 

attitude estimated by the IGRF model and subsequently the simulated magnetometer.  

T89 model is an empirical model of the magnetosphere based on large satellite data 

from the low altitudes of the Earth to large distances in the magnetotail and in the solar 
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wind. Therefore, it covers a large spectrum of magnetospheric and solar wind 

conditions in addition to upper atmospheric conditions at LEO altitudes. The model 

uses IGRF as a base model of the geomagnetic field close to Earth but includes the 

external effects inherited in the data from several magnetospheric and solar wind 

satellites such as IMP, HEOS, ISEE spacecraft, etc. [68,128]. So that in addition to the 

main field (internal) given by IGRF (BINT), it includes extraterrestrial effects (BEXT). 

The magnetic field in space can be represented by adding these components [68]: 

BTOT = BINT + BEXT                                           (5.1) 

where,  

BEXT= BRC + BMP + BRegion1-2 + BT                             (5.2) 

As seen in equation (5.2), more explicitly, BEXT includes effects from Ring current 

(BRC), tail current (BT), magnetopause currents (BMP), and Region 1 and 2 currents 

(BRegion1-2).  Data sets are categorized with respect to the geomagnetic activity index 

Kp which represents the geomagnetically active or quiet times for external sources.  

Hence, the inputs for the T89 model are Kp, the position of the satellite, and time of 

the year to generate external magnetic field effects at the satellite’s altitude. Improved 

versions are available that include several other external sources that affect the total 

magnetic field.  For example, the T05 source code is described for the dynamical 

empirical model of the inner storm-time magnetosphere, while T89 is a magnetic field 

model with the warped tail current sheet.    We use the T89 version to determine the 

extraterrestrial effects on the magnetic field which can affect the attitude accuracy of 

small satellites. Since the T89 model uses the IGRF model for internal sources near 

the Earth, at LEO orbits altitudes, both models are expected to give similar results if 

there are no extraterrestrial effects.  Earth’s dipole field should dominate as we close 

to the Earth over the extraterrestrial sources.  However, during the geomagnetically 

active times, differences from the dipole model arise due to the currents flowing from 

the magnetosphere into the Earth’s atmosphere. The following sections present our 

preliminary results from the model-to-observation comparisons as well as the model-

to-model comparisons and discuss their implications from the satellite attitude 

perspective.  The sketch in Figure 5.1 outlines the procedures we apply for the model-

model and model-observation comparisons. 
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Figure 5.1 : Flow chart for the comparisons. 

5.3.2 Coordinate systems 

When dealing with the Earth’s geomagnetic field, it is unavoidable to work with 

different coordinate systems depending on the type of the problem. Figure 5.2 

illustrates the coordinate systems involved in this study at the location of the satellite 

in space.  The satellite magnetometer data are available mostly in Earth-Centered, 

Earth-Fixed (ECEF). In the ECEF system, the z-axis is along the spin axis of the Earth 

and pointing to the north pole. The x-axis points towards the intersection of the 0o 

latitude (i.e. the equator) and 0o longitude and the y-axis completes the right-handed 

coordinate system, passing through 0o latitude (i.e. the equator) and 90o longitude. 

Cartesian coordinates that the ECEF is represented as in the Geographic Coordinates 

(GEO) frame are also shown in Figure 5.2. In the figure, ENU indicates the East, 

North, and Up respectively.  

As indicated in the sketch in Figure 5.1, throughout this study, we used Geomagnetic 

coordinates (MAG) for comparisons between the magnetic field vectors from the 

satellite magnetometer and the geomagnetic models. Both the model magnetic field 

and the satellite magnetic field data are obtained in this coordinate system. In the MAG 

system, the z-axis aligns with the dipole axis and the y-axis is perpendicular to the 

plane containing the dipole axis and the rotation axis of the Earth.  The x-axis 

completes the right-handed system [133]. For near-Earth space regions, such as LEO, 

where the Earth’s magnetic field dominates, the magnetic fields are best represented 

in the MAG system [133,134]. 

Body and orbit reference frames are the main coordinate systems for the attitude 

determination system. The body frame of reference describes the vectors in a 
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coordinate system centered at the center of mass of the satellite.  Orbital coordinate 

system, on the other hand, refers to the coordinate system when the satellite is in its 

orbit. Attitude angles are found using a transformation matrix from the orbital 

reference system to the body coordinate system.  Satellite motion in each direction on 

orbit is described by the Euler angles (roll, pitch, yaw about x, y, z axes respectively) 

which can be determined in the filter by using the geomagnetic field direction at the 

location of the satellite.  

 
Figure 5.2 : A sketch showing the coordinate systems along with a circular 

trajectory of a satellite. 

5.3.3 Satellite observations 

Verification of the magnetic field models can be achieved by using observations from 

a reliable magnetometer such as fluxgate. In this study, C/NOFS, and SWARM 

satellites, which carry on-board fluxgate magnetometers, at LEO orbits are used for 

comparisons with the results from the geomagnetic field models and for the 
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determination of the attitude angles. The orbital and instrumental characteristics of 

these satellites are presented in Table 5.1 [135,136]. 

Table 5.1 : Orbital properties of the spacecraft used in this study. 

Satellite C/NOFS SWARM A 

Operation Time 
April 16, 2008 

Nov 28, 2015 

Nov 22, 2013- 

Present 

Orbit Elliptical Near-polar, circular 

Eccentricity 0.032 0.0003099 

Inclination (deg) 13 87.4 

Apogee 853 466 

Perigee 405 485 

Altitude Range (km) 390-736 466-485 

Period (min) 97.3 91 

Magnetometer Type Fluxgate Fluxgate 

C/NOFS (Communication/Navigation Outage Forecast System) is a US mini-satellite 

launched on April 16, 2008, and ended on November 22, 2015 [137]. It is designed to 

forecast the ionospheric irregularities in Earth’s equatorial region. The spacecraft has 

an elliptical orbit with low inclination at altitudes varying from 405 to 853 km and an 

attitude better than 0.1° using the star sensors [138].  The accuracy of the magnetic 

field instrument on C/NOFS has an accuracy of 0.1 nT [139].  Additionally, the 

spacecraft is listed as having one of the most precise GPS receivers flown in space 

with between 1-45 cm accuracy [140]. SWARM (Geomagnetic LEO Constellation) is 

a mini-satellite constellation mission with 3 satellites, SWARM A (Alpha), SWARM 

B (Bravo), and SWARM C (Charlie), built by ESA. The constellation was launched 

on Nov. 22, 2013, and is still in operation. SWARM A and C satellites both have an 

altitude around 400 km (<450 km) with an inclination of 87.4o. SWARM B (Bravo) 
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has a higher altitude around 500 km (<530 km) with 88o inclination. The scientific 

mission of the SWARM constellation pair is to measure and study the magnetic 

variations of the Earth’s geomagnetic field resulting from the Earth’s core, mantle, 

crust, and oceans, as well as from the ionosphere and magnetosphere; to study sun’s 

influence on Earth system; to understand the impact of solar wind on dynamics of the 

upper atmosphere.  In this study, the magnetic field data from SWARM A satellite are 

used in our comparisons.  The spacecraft carries a magnetic field instrument with 

accuracy under 0.5 nT, and has a precise orbit determination under 10 cm (RMS) in 

addition to 3-dimensional position measurements better than 20 m (3σ) and absolute 

accuracy under 1 arcsec for attitude knowledge [136]. In addition, both the magnetic 

field and position data from both spacecraft are obtained from the institutes’ public 

web sites, which in the case of C/NOFS, it is NASA’s CDAWeb and in the case of 

SWARM, it is ESA’s website.  Both data sets from both spacecraft are provided in 1-

sec resolution.   As C/NOFS’s apogee is larger than that of SWARM A, it is expected 

that the extraterrestrial effects will be more dominant especially when the satellite is 

moving towards its apogee at higher altitudes. Higher altitudes are more susceptible to 

the effects originated from the Earth’s magnetosphere and outside.  Therefore, the 

altitude of the satellite is important in determining the degree of the geomagnetic storm 

effects.  

 Analysis and Results 

As our purpose of the study is threefold, namely, one is to compare the geomagnetic 

field models with satellite observations at LEO orbits; two is to determine which model 

approximates the observations better, and three is to determine the effects of 

differences between the models and observations on the attitude angles by evaluating 

the angle between magnetic field orientations of the model and observations.  These 

comparisons are made during the magnetically disturbed days to reveal the effects of 

the magnetic storms and magnetospheric sub-storms on the geomagnetic field at LEO 

and on the attitude angles. For the comparisons between the models and the 

observations, first, we looked for the time intervals when there are geomagnetic storms 

that occurred in the magnetosphere and both the magnetic field and the position data 

from the satellites exist during that time interval. Taking the operation times of these 

satellites given in Table 5.1 into account, we select 3 different magnetically quiet days 
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when there are no geomagnetic storms or magnetospheric substorms in the 

magnetosphere and 3 different magnetically disturbed days, i.e. when there are 

magnetic storms and substorms in the magnetosphere at various levels from weak to 

strong. Table 5.2 presents these cases to be studied in detail in the following sections. 

Table 5.2 : Magnetically quiet and active days selected for the study. 

Case No Satellite Quiet days Active Days 

Case 1 C/NOFS 7 March 2009 17 March 2013 

Case 2 C/NOFS 5 January 2013 04 August 2010 

Case 3 SWARM A 18 January 2014 20 February 2014 

Quiet or disturbed days are chosen by looking at the geomagnetic indices, Kp, Dst, and 

AE [141].  These are the magnetic indices that show the level of extraterrestrial 

disturbances resulting from the interaction between the solar wind and Earth’s 

magnetosphere.  They are calculated based on the geomagnetic field measured on the 

ground magnetic observatories.  Dst index refers to the Disturbance Storm Time index 

and conveniently shows the presence of the geomagnetic storms initiated when the 

solar wind first hits the Earth’s magnetosphere on the dayside at the subsolar point.  

This compression depending on the strength of the solar wind dynamic pressure is 

detected in the Dst index as a positive discursion from the quiet time level of Dst which 

is known as the sudden commencement. During a typical geomagnetic storm, the 

sudden commencement starts at 20 nT.  This is followed by a large drop in the 

geomagnetic field, which defines the geomagnetic storm main phase.  Dst index is 

obtained from geomagnetic observatories located at the low latitudes around 20o of the 

equator. It is a good indicator of the ring current in the geomagnetic tail that increases 

as a result of increased tail currents during the geomagnetic storms following the initial 

compression on the dayside.  Geomagnetic activity that causes Dst to drop below -40 

nT is considered as a geomagnetic storm [142].  The more negative the Dst index, the 

stronger the geomagnetic activity is. Auroral Electrojet index (AE) index, on the other 

hand, gives the geomagnetic disturbances measured at the high latitudes resulting from 

the particles coming from the geomagnetic tail as a consequence of the magnetospheric 

substorms that create the auroral lights over the northern and southern high latitudes.  
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These particles give rise to strong electrical currents at high altitudes in the atmosphere 

which are known as Auroral Electrojet currents and measured by AE index.  The 

magnetospheric substorms that result in AE index to be larger than 100 nT are 

considered as magnetospheric substorm.  Kp (planetarische Kennziffer) index is the 

planetary index that shows the global geomagnetic activity level and measured using 

the magnetic field data from the mid latitude geomagnetic stations.   A geomagnetic 

disturbance with Kp larger than 4 is considered as a storm. Table 5.3 indicates the level 

of the geomagnetic storm or substorm depending on the scale of these indices. 

Table 5.3 : Classification of geomagnetic storm and substorms based on Dst, Kp, 
and AE magnetic indices. [143,144] 

Magnetic Index 
No-to-Weak 

Storm/Substorm 

Moderate 

Storm/Substorm 

Strong 

Storm/Substorm 

Kp <4 4-6 >6 

Dst >(-40) (-40)-(-100) <(-100) 

AE <100 100-1000 >1000 

Figure 5.3 presents an example of the magnetic field data measured on-board C/NOFS 

satellite during the magnetically quiet day, March 7, 2009.  It presents the magnetic 

field components in MAG coordinates, i.e. Bx in the north-south direction, By in the 

east-west direction, and Bz as the component in the z-direction which is parallel to 

Earth’s dipole moment, for a stretch of one day from 00:00 UT to 24:00 UT.  The 

periodic variations seen in this figure are due to the orbital motion of the satellite.  In 

order to make comparisons, the differences resulting from the orbital motion are 

removed by taking the period-averaged magnetic field data.  The C/NOFS has an 

orbital period of 97.3 min (see Table 5.1).  Therefore, a running mean procedure with 

a window length of 97.3 min (~1.5 hr) is applied to the magnetic field data in this case. 

This process eliminates the temporal variations of less than 1.5 hr as well as the 

latitudinal variations resulting from the orbit.  For the purposes of our study, we think 

that this procedure is appropriate.  In this figure, the black and blue lines give the 

magnetic field data and the period-averaged magnetic field data.  As seen clearly, the 

running mean process removes the orbital periodicity. Still, a slight periodicity that the 
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running mean did not completely remove appears, however, this will not affect our 

comparisons. 

 
Figure 5.3 : An example of orbit averaged data. C/NOFS magnetic field components 

on March 7, 2009. The black line is the original data while the blue line is the 
orbit averaged data. 

Figure 5.4 represents the first case from the C/NOFS satellite.  The panels on the left 

in Figure 5.4 give the model-data comparisons for a quiet day recorded on March 7, 

2009.  The panels from top to bottom are Kp index (a), the differences between the 

magnetic field components measured by on-board magnetometer on C/NOFS satellite 

and the magnetic field predictions of the models, IGRF (b) and T89 (c), and the 

differences between two models (d). The blue, red, and black colors indicate 

differences in Bx, By, and Bz components. Kp index in panel (a) indicates that the level 

of geomagnetic activity is low.  In fact, to this day, there isn’t any geomagnetic activity, 

thus Kp =0.  The line at Kp =4 indicates the threshold after which the day is considered 

as disturbed. For direct comparisons with the observed magnetic field, the same orbit-

averaged running mean procedure is applied to the model magnetic field components 

as well.  
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Figure 5.4 : Differences between the observations and the model result for magnetic 

field components from C/NOFS satellite on March 7, 2009, when there is no 
geomagnetic activity (left); and on March 17, 2013, when there is a geomagnetic 

storm (right). 

The figure is constructed by simply subtracting the magnetic field components of the 

magnetic field measured on the satellite from those predicted by the models.  

Therefore, the panels compare the differences between the observed and geomagnetic 

model predicted magnetic field components.  As a result, positive differences in these 

panels indicate that the model magnetic field is larger than the observed magnetic field 

while negative differences imply that the observed fields are larger than those of 

models.  Even during this magnetically quiet day, namely in the absence of 

geomagnetic storms, the model magnetic fields are seen to be quite different than those 

observed. The largest differences in panels b and c are seen in the Bx component, the 

north-south component of the magnetic field, and the least difference is found in the 

Bz component. Both models overestimate the observed Bx component while on average 

they underestimate the By component.  Both models, on average, give a slightly larger 

Bz component than the observed one. Although the differences are small for the Bz 

component, the T89 model gives positive differences meaning that the model slightly 

overestimates the Bz component while IGRF shows negative differences indicating the 

underestimation of the observed Bz. The differences are calculated as the maximum 

deviations of the models from the observations and any distribution is not assumed for 

the data. The differences between the models and the observations vary up to +60 nT 

for the Bx component and between 0 and -30 nT for By. The difference for the Bz 

component ranges from 0 to 20 nT in T89 and 0 to -20 nT in IGRF.  Panel (d) displays 

the differences between IGRF and T89 models. In this case, T89 model results are 
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subtracted from those of the IGRF model.  Both Bx and By are very close to each other 

within less than 5 nT but the two models differ the most in the Bz component and the 

difference is seen to be about -20 nT on average. This implies larger estimates from 

T89 compared to IGRF for the Bz component. While the model-to-observed magnetic 

field comparison shows that the models differ the most in the Bx component, model-

to-model comparisons indicate the models differ from each other the most in 

estimating the Bz component.  As for the total magnetic field, there are no differences 

between the model predictions so that the difference is close to zero but both models 

show a difference from the observations on the order of 50 nT (not shown, Table 5.4).  

The panels on the right in Figure 5.4 give a similar comparison during a magnetically 

active day on March 17, 2013. The panels from top to bottom are the same as in panels 

on the left in Figure 5.4.  In the first panel, we see that the Kp index is larger than 4 

from 06:00 UT until the end of the day, with a maximum of 7+ from 06:00 UT to 10:00 

UT and from 18:00 UT to 21:00 UT. The average Kp for the day is about 5+.  Both 

panels b and c show that the models give the largest differences from the observations 

when the geomagnetic activity started at 06:00 UT.  The geomagnetic activity stays 

high from 06:00 UT to 21:00 UT and we see that both IGRF and T89 models differ 

the most from the observations during this time interval.  We can see that the 

differences in the Bx component before the geomagnetic activity is around 80 nT and 

increases slowly up to 130 nT after the geomagnetic storm starts and continues to 

increase to 205 nT till the end of the time scale given in this figure. Differences in both 

By and Bz are very close to zero before the geomagnetic storm, but increases after.  

Differences with the observations in By component in both models vary around -80 nT. 

However, the Bz component shows differences in the order of 30 to 40 nT in the T89 

model, while it is around -40 nT in the IGRF12 model.  Both panels show that the Bx 

component is overestimated and by component is underestimated in both models. Bz 

component, on the other hand, is overestimated in T89 while it is underestimated in 

IGRF.  These comparisons are qualitatively the same as obtained in the quiet time case. 

However, quantitatively, compared to the same panels of the quiet day given in Figure 

5.4, the differences between both models and the observations are larger during the 

geomagnetically active day by about a factor of 3.  Panel d, similar to the quiet day 

case, indicates that the models differ mostly in Bz component up to 100 nT during the 

geomagnetic storm interval while the differences between predicted Bx and By 
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components are small, being on the order of 10 nT before the geomagnetic storm. We 

see that the T89 model gives a larger prediction of the Bz component than the IGRF.  

Although not given in these plots, both models exhibit differences with the 

observations around 200 nT for the total magnetic field during the geomagnetic storm 

interval while smaller, around 50 nT on average before the storm. Despite this 

difference with the observations, there are no discernable differences between the 

predictions of the total magnetic field from both models during the quiet and active 

day. 

Figure 5.5 compares the angle (α) between the observed and model (T89 and IGRF) 

magnetic field vectors measured during the quiet (left) and active (right) day using 

C/NOFS data. The angle is calculated by taking the scalar product of two unit vectors.  

While the first two panels give the level of geomagnetic activity as seen in the Dst 

index for geomagnetic storm and the AE index for the auroral substorm, the third panel 

presents the angle calculated.  Although Dst index variation is small during the active 

day, the AE index is larger than 100 nT indicating the presence of a magnetospheric 

substorm in the geomagnetic tail that results in aurora in the ionospheric altitudes.  The 

differences between the quiet and active day angles as well as between the model 

predictions are clearly demonstrated in these panels.  During the quiet day, both 

models indicate that the angle between predicted and observed vary around 0.15o in 

panel d on the left.  In panel d on the right, T89 predicts smaller angles compared to 

the IGRF model.  T89 prediction of the angles stays around 0.12o during the storm day 

while the angles predicted by IGRF increase after the storm starting at 06:00 UT.  This 

indicates that the magnetic field vector predictions from the T89 model are closer to 

the observations.  It is clear that larger differences with the observations during the 

active days are caused by the geomagnetic storms. 

For small satellites, both magnetometer data and a magnetic field model are necessary 

for the attitude estimations. For most of the cases, the model predicted and measured 

magnetic field components are used as unit vectors.  Therefore, the angle between the 

model and the observed magnetic field is a key parameter in determining the attitude 

angles, namely yaw, pitch, and roll. The closer the model predictions to the observed 

fields, the more accurate the attitude estimates will be. In Figure 5.5, we see that the 

angles calculated for both magnetically quiet and active days are small to cause a 

serious effect on the satellite’s attitude.  For most small satellite applications, accuracy 
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up to 1o for all attitude angles in x, y, and z directions is accepted to be sufficient to 

provide reliable attitudes [145].  The angles determined here appear to be very small 

to give rise to attitude angles greater than 1o. Even though the difference in angles is 

small, for more accurate and reliable attitude predictions, the model that gives smaller 

angles with the observations should be preferred, under especially geomagnetically 

active conditions when the deviations from observations are expected to be larger.  

 
Figure 5.5 : Angles, between the vector magnetic fields from the models and the 

observations, for the C/NOFS satellite on March 7, 2009, when there is no 
geomagnetic activity (left); and on March 17, 2013, when there is a geomagnetic 

storm (right). 

Table 5.4 compares the root mean square (RMS) error between the models and the 

observations during the quiet day (left) and active day (right).  The second and third 

columns in both tables are the RMS errors for the differences between the magnetic 

field components of the models and the observations. Namely, the differences between 

the IGRF and the observations and (second column) and the differences between T89 

and the observations (third column). Table 5.4 for the active conditions on the right is 

performed by using the differences for the data corresponding to the part of the 

differences corresponding to Kp> 4, defined as the active times.  Comparison of right 

and left panels shows that the RMS errors in predicting the observed magnetic field 

components are smaller during the magnetically quiet day as opposed to the 

magnetically active day.  Here we see that the RMS error for the total magnetic field 

is the largest compared to the RMS error in the components.  For the components, 

RMS errors are smallest for Bz and largest for By.  T89 model gives a much smaller 

RMS error than those of the IGRF model in both quiet and active conditions, implying 

its predictions are closer to the observations. The errors during the active times 

increase in both models. Overall, the T89 model, compared to IGRF, shows better 

performance in predicting both the magnetic field components and also the magnetic 
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field strength and agrees better with the observations based on RMS errors. One point 

that needs emphasis from the point of satellite attitude purposes is that even during the 

quiet days, noticeable differences with the observations occur in predictions of both 

IGRF and T89 models.  Differences become larger during the active days, especially 

in the IGRF model. 

Table 5.4 : RMS errors for C/NOFS (Case-1) comparisons for the geomagnetically 
quiet day (left) and active day (right). 

C/NOFS 
07 March 2009 

(Quiet Day) 

 17 March 2013 

(Active Day) 

RMS Error IGRF T89 IGRF T89 

Bx (nT) 64.9 69.5 74.43 69.70 

By (nT) 36.9 34.6 104.42 105.92 

Bz (nT) 20.8 2.1 25.12 4.80 

Btot (nT) 79.3 79.4 120.78 117.82 

Angle (deg) 0.1559 0.1499 0.1972 0.1335 

The last row in Table 5.4 displays and quantifies differences in the angles averaged 

over the time intervals studied, i.e. 24 hours.  We can see that the average angles from 

both models differ mostly during the geomagnetically active days. IGRF’s angles are 

found to be larger than that of T89 by about 32% during the geomagnetically active 

times while they differ by about 4% for quiet times.  

Figure 5.6 presents the second case and from the C/NOFS angle. The quiet and active 

day panels are shown on the left and right respectively. Similar to the previous case, 

Kp is 0 throughout the day in this event as well. In this case, too, models give the largest 

difference for the Bx component and the smallest for the By component.  The magnitude 

of the differences varies from 80 nT for Bx to -30 nT for Bz from both models. For By 

component, differences are around 10-20 nT in the case of T89 and close to 0 nT for 

IGRF.  The right panels for an active day in Figure 5.6 display that Kp levels are around 

4 and exceed 4 during the day, indicating that the geomagnetic activity increased.  In 
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these panels, we can see the differences become large as the geomagnetic activity 

becomes stronger.  IGRF shows slightly larger differences when compared to T89.  

Differences with the observations during the active day vary around 100 nT for the Bx 

component in both models while differences for By are seen to be around 30-40 nT.  

Differences in the Bz component are negative in the case of IGRF and positive in T89 

models indicating IGRF predictions for Bz are smaller up to 40 nT and T89 models are 

larger up to 20 nT.  Differences between the models indicate that both models Bx and 

By predictions are closer being IGRF slightly larger for Bx and slightly smaller for By.  

For Bz, however, IGRF is considerably smaller than T89 varying from 20 nT up to a 

maximum of 80 nT. 

 

Figure 5.6 : Differences between the observations and the model result for magnetic 
field components from C/NOFS satellite on January 5, 2013, when there is no 

geomagnetic activity (left); and on August 4, 2010, when there is a geomagnetic 
storm (right). 

Figure 5.7 illustrates the average angles for Case 2, January 5, 2013, and August 4, 

2010.  Both models give an angle on the order of 0.15o during the quiet day and differ 

during the active day between 0.1o and 0.2o.  Differences are larger during the high 

geomagnetic activity periods seen from 0 to 06:00 UT, and 08:00 UT to 24:00 UT.  

When Kp reaches 6, the differences are seen to reach a maximum of 0.2o.  During this 

event, AE is high at the beginning but becomes lower after 12:00 UT.  However, Dst is 

seen to vary from -30 nT to -80 nT indicating geomagnetic storm presence, even when 

AE is low.  The variations in average angle are due to the geomagnetic storm as 

associated with a coronal mass ejection (CME) in the solar wind (not given). 
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Figure 5.7 : Angles, between the vector magnetic fields from the models and the 

observations, for the C/NOFS satellite on January 5, 2013, when there is no 
geomagnetic activity (left); and on August 4, 2010, when there is a geomagnetic 

storm (right). 

Table 5.5 gives the RMS errors for this case.  As in the previous case, the largest RMS 

error is seen in Btot, followed by By, Bx, and Bz respectively during both quiet and active 

days.  The errors are larger, almost twice, during the active days and in IGRF 

predictions during both quiet and active times.  The difference in average angles is 

slightly larger or equal during quiet days than active and in the IGRF model than in 

the T89 model.  The range of angles is smaller than 1o in this example too. 

Table 5.5 : RMS errors for C/NOFS (Case-2) comparisons for the geomagnetically 
quiet day (left) and active day (right). 

C/NOFS 
5 January 2013 

(Quiet Day) 

4 August 2010 

(Active Day) 

RMS Error IGRF T89 IGRF T89 

Bx (nT) 37.2 33.2 113.5 102.5 

By (nT) 41.2 38.8 18.3 18.9 

Bz (nT) 34.1 11.0 41.3 15.1 

Btot (nT) 80.6 74.8 153.3 141.1 

Angle (deg) 0.1645 0.1545 0.1680 0.1406 
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Figure 5.8 illustrates the differences between the models and observations as well as 

between the models for SWARM A satellite during the magnetically quiet day 

(January 18, 2014) and active day (February 20, 2014) respectively. The panels from 

top to bottom are the same as in the previous figures.  The magnetic field components 

from the satellite magnetometer and from the T89 and IGRF models are again orbit 

averaged using the running mean procedure.  The top, right panel on the left ensures 

that the day is quiet with Kp varying between 0 and 1. The differences between the 

models and the observations are seen to be less than ±10 nT in panels b and c.  The 

close examination of the panels shows that the T89 model predicts By component as 

the best in this case; this is followed by the prediction of the Bz component.  On 

average, both of them are close to zero which means that they are equal to observed By 

and Bz.  T89 predicts the Bx component as the largest which means Bx deviates the most 

from the observed Bx component.  IGRF model, on the other hand, predicts the Bz 

component the least by giving the largest deviation from the observed Bz component. 

It is about -25nT which means that the observed Bz component is larger than the IGRF 

predicted Bz. The best-predicted component by IGRF is also By component being close 

to zero on the average. The difference for Bx is about 13nT on average as well. These 

differences are small.  Panel d in Figure 5.8 compares the model outputs for this case 

by taking the difference between IGRF and T89 models respectively. It is seen that the 

Bz component differs the most between the two models.  Model differences between 

Bx and By components vary between ±20 nT and close to zero on the average.  

 
Figure 5.8 : Differences between the observations and the model result for magnetic 

field components from SWARM A satellite on January 18, 2014, when there is no 
geomagnetic activity (left); and on February 20, 2014, when there is a 

geomagnetic storm (right). 
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The second and third panels on the right of Figure 5.8 demonstrate the differences 

between the model and the SWARM data during the geomagnetically active day. 

Contrary to the panels on the left, magnetic field vectors from IGRF and T89 in these 

panels are seen to vary up to 100 nT during the geomagnetically active day.  The first 

panel indicates the presence of moderate geomagnetic activity with a Kp maximum at 

6 almost throughout the day.   We can see that the differences with the observations in 

both models are large corresponding to the increased Kp.  Examining the T89 panel 

shows that Bx has a maximum difference of about 100 nT while By and Bz differences 

are closer to zero.  T89 model predicts By and Bz components the best. IGRF model, 

on the other hand, has larger differences compared to the T89 model in all components. 

Bx varies up to 100 nT at the maximum, and By and Bz vary up to 25 nT and 50 nT 

respectively.  We can see this also in panel d where the differences between the two 

models are shown component to component. Both models differ the most in Bz, Bx, and 

then By starting at the time of the magnetic activity at about 02:00 UT. 

Figure 5.9 gives the angle between the model and observed magnetic fields during the 

quiet (left) and magnetically active (right) day respectively.  The first two panels on 

the left indicate the absence of a geomagnetic storm (Dst >-40nT) and magnetospheric 

substorms (AE>100) while the panels on the right indicate a very strong 

magnetospheric substorm (AE>100 nT) and a strong geomagnetic storm with Dst <-

40.  Comparing the angles between the magnetic field vectors between the 

observations and the models shows that the differences are small. The differences are 

about 0.05o during the quiet day while it is maximum at 0.24o and 0.2o in the case of 

geomagnetically active day for IGRF and T89 models respectively.  The magnetic field 

vector predicted by the T89 model is closer to the observed magnetic field vector while 

IGRF predicts slightly larger angles. The difference in angles is larger corresponding 

to the increased activity period from 02:00UT to 11:00 UT when Kp is equal to 6 for 9 

hours. 

In Table 5.6, RMS errors are presented for both quiet day and active day for SWARM 

events. As in the previous comparisons, when we examine the magnetic field 

components, it is seen that the smaller RMS errors are obtained during the quiet days 

as compared to the active days from both models. IGRF RMS errors increase almost 

twice during the active times. When the models are compared to each other during 

quiet and active days, the T89 model gives smaller errors during active times in general 
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for all components while during the quiet times, its RMS error is larger for Bx and Btot 

but smaller for By and Bz compared to that of IGRF.  When we look at the average 

angle, we see that the angles during the active times are much larger than those of quiet 

times for both model predictions.  Between the models, the IGRF model gives larger 

angles for both quiet (35%) and active (3%) days than the T89 model. Also, both 

models predict larger angles during the active times by about 60-70% than those of 

quiet times. 

 
Figure 5.9 : Angles, between the vector magnetic fields from the models and the 

observations, for SWARM A satellite on January 18, 2014, when there is no 
geomagnetic activity (left); and on February 20, 2014, when there is a 

geomagnetic storm (right). 

Table 5.6 : RMS errors for SWARM A (Case-3) comparisons for the 
geomagnetically quiet day (left) and active day (right). 

SWARM A 
18 January 2014  

(Quiet Day) 

20 February 2014  

(Active Day) 

RMS Error IGRF T89 IGRF T89 

Bx (nT) 25.8 27.3 44.2 45.2 

By (nT) 7.1 5.7 15.0 1.4 

Bz (nT) 18.6 4.7 12.1 8.1 

Btot (nT) 9.1 11.4 22.5 15.0 

Angle (deg) 0.058 0.038 0.1376 0.1342 
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Figure 5.10 is produced to present a statistical result on the angles predicted by the 

models based on these three geomagnetically active (blue) and quiet days (orange). 

The upper panel in the figure illustrates the bar plot of the angles between the magnetic 

field vector observed by both spacecraft and their corresponding IGRF magnetic field 

vectors while the lower panel gives the same for the T89 model. We notice from the 

figure, for both quiet and active days, the angles are less than 0.3o which seems to be 

the threshold for these spacecraft for the events studied. Comparing both panels shows 

that angles predicted by T89 are smaller than 0.175o during both quiet and active days 

and there are fewer cases for angles larger than 0.15o during the active times when 

compared to the IGRF model.  The distribution of the active time average angles for 

the T89 model is skewed towards the lower angles than 0.15o while that for the IGRF 

model has a skew towards larger angles than 0.15o.  On the lower end side, the angles 

from the IGRF model have more cases larger than 0.05o during the quiet days 

compared to T89 which presents more cases with angles less than 0.05o at these times.  

Overall the average angle for all cases for the IGRF model is 0.126o during the quiet 

days while it is 0.170o during active days.   The average angles for the T89 model are 

seen to be 0.114o for the quiet days and 0.136o for the active days.  

 

 
Figure 5.10 : Angle distributions for all cases for quiet (orange) and active (blue) 

cases. The upper panel is for the differences between the IGRF model and 
observations while the bottom panels are for the differences between the T89 

model and observations. 
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Figure 5.11 compares the differences in angles from two models during the active 

(blue) and quiet (orange) times by subtracting T89 angles from IGRF angles. The 

vertical axis is normalized to the total number of data in each case. Several points that 

the figure shows are: First, the zero-degree angles indicate that the magnetic field 

vectors from both models are the same.  Secondly, most of the differences are positive 

indicating that IGRF angles are larger than those of T89.  Third, the negative angles, 

which are not the majority, show that T89 model angles are larger than those of IGRF. 

Considering these facts, this figure’s highlights are below: 

o During both the active and quiet days, most of the angles are positive indicating 

that IGRF gives larger angles than the T89 model does.  In these cases, T89’s 

magnetic field vectors are closer to the observed magnetic field. 

o The differences between angles from the two models are larger during the active 

times than during the quiet times. Larger positive angles during active times show 

that IGRF differs the most from T89 during the active days than quiet days.  

o Most of the time the angle between the magnetic field vectors of the models during 

both quiet and active times is smaller than 0.12o. The maximum is 0.033 for the 

quiet day and 0.011o for the active day.   Most of the time, the angles can be 

different by about 0.01o and 0.018o for the quiet days and can often vary as 0.01o, 

0.02o, 0.041o, 0.081 o, and 0.15o during the active days. 

o The average angle difference for the cases when IGRF angles are larger than T89 

angles is 0.0128o for the quiet days and it is 0.0370o for the active days. 

o The average angle difference for the cases when T89 angles are larger than IGRF 

angles is 0.0026o for the quiet days and it is 0.023o for the active days. 

o Table 5.7 gives a summary of the average angles from the models compared.  
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Figure 5.11 : Comparison of the difference in angles from the models: Blue is for 
active day and orange for quiet days. 

Table 5.7 : Overall evaluation of average angles. 

Case No Satellite 
Quiet Day average 

(degree) 

Active Day average 

(degree) 

  IGRF T89 IGRF T89 

Case-1 C/NOFS 0.156 0.150 0.197 0.134 

Case-2 C/NOFS 0.165 0.155 0.168 0.141 

Case-3 SWARM A 0.058 0.038 0.138 0.134 

 Discussion and Summary 

One of the main motivations in our paper is to determine the effects of the geomagnetic 

disturbances on the satellite’s attitude at LEO orbits.  This is related to the accuracy of 

the geomagnetic field predictions by the geomagnetic field models at the satellite’s 

position. The most commonly used geomagnetic model in determining the satellite’s 

attitude at LEO orbit is the IGRF model [50,146]. The accuracy of the IGRF-10 and 
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IGRF-11 models are tested against data from UARS, Oersted, and CHAMP spacecraft 

and found that the models are accurate within 1o for 92% times in the upper atmosphere 

[64]. However, the authors of this study cautioned that the variations in the magnetic 

field occur as a result of the geomagnetic storms and IGRF may not always be 

appropriate to model the magnetic field at LEO. Similarly, [51] used IGRF to calibrate 

the magnetometers on CINEMA CubeSat and found root mean squared deviations in 

field magnitudes from IGRF of 1.95% for the attitude mode.  Such accuracy in the 

overall magnetic fields is found to be sufficient for attitude estimation [147].  Even 

though the IGRF model is found to be sufficient to represent the magnetic field 

required for the satellite attitude, concerns are raised in relation to the solar activity 

and geomagnetic activity [51,64].  

In our study, we compare two geomagnetic field models, IGRF-12 and T89, to 

compare both with the magnetic field predictions at LEO orbit using two spacecraft 

magnetometer data.  We found that both models differ from the observations during 

the geomagnetically active times as well as during the quiet times.  The differences are 

larger in the case of the IGRF-12 model compared to the T89 models.  Differences 

vary according to the magnetic field components.  The comparisons with the data from 

two satellites, C/NOFS and SWARM, indicate that the largest differences are seen in 

Bx and By while the smallest differences are found in the Bz component.  The 

differences between the observed magnetic field vector and that predicted by the model 

are obtained larger during the high geomagnetic periods.  The angle between the vector 

magnetic field from the satellite measurements and models is shown to be smaller in 

the case of the T89 model, indicating that T89 model estimates are closer to the data.  

The differences in magnetic field components and the vector magnetic fields are found 

to be larger in the case of the IGRF model during both geomagnetically quiet and 

active times.  T89 model is expected to agree better with the observations, especially 

during the geomagnetically active times, because it is constructed such that the model 

includes variations resulting from both internal sources from the Earth’s dynamo and 

crust and also external sources such as solar wind, interplanetary magnetic field, 

consequently geomagnetic storms and substorms.  The fact that IGRF shows larger 

discrepancies indicates that for better attitude predictions during especially 

geomagnetically active times, external sources are needed to be taken into account. 
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To summarize, in this study, we compared magnetic field measurements from 

magnetometers onboard two different satellites at LEO orbit with those from IGRF-12 

and T89 models to address the noise referred to as the angle in our study that will 

eventually be used to determine the satellite attitude.  A follow-up study is underway 

on how much these differences affect the attitude angles described as Euler angles.  

We highlight our results represented here as below: 

o In general, both models show differences with the observed magnetic fields during 

the geomagnetically active times as well as quiet times.   

o IGRF model gives larger differences compared to T89 during both quiet times as 

well as active times. Differences during active times are the largest. 

o During the geomagnetically active time, the T89 model gives closer estimations to 

the observations. 

o The largest differences are seen in Bx in general and the smallest in Bz.   

o The differences in the strength of the magnetic field are much smaller than those 

of magnetic field components. 

o Differences between the models are seen as the largest in Bz and smaller in Bx and 

By. 

o Large differences in the angle and in the magnetic field components correspond to 

a large geomagnetic activity index, Kp. 

o The angle between the vector magnetic field from the models and the data is 

obtained less than 1o for C/NOFS and SWARM data.  The differences between the 

satellites stem from the properties of the instruments used onboard these satellites. 

These differences imply that the model estimates the magnetic field orientations at the 

satellite location satisfactorily so that the angle between the vector magnetic fields is 

small. From the satellite attitude view, this agreement is very important.  Also, the 

RMS errors for the field components are found to be small. Although both models are 

seen to be appropriate for calculating the magnetic fields at the satellite position at 

LEO, it is clear that the IGRF model gives larger differences compared to the T89 

model during both quiet and active times.  The difference in the angle between the 

model and the observed magnetic field directions which is calculated less than 1o is 

within the acceptable range and both models can be used for attitude predictions within 
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their error ranges.  Both models have their advantages and disadvantages to be used in 

the attitude estimations. Since the differences are small, the attitude system controllers 

may continue to use IGRF instead of T89 to avoid its continuous need to acquire the 

magnetic index data such as Kp, AE, and Dst on board the satellite. This will depend 

on their preference. Here we demonstrated that an alternative model, physically 

improved, can be used during especially geomagnetically active times, for more 

accurate attitude estimations. Results of this study are especially important where high 

accuracy is needed for attitude control at LEO and where we need to decide which 

geomagnetic model to use to achieve a better attitude. To our knowledge, this is the 

first paper that studied the effects of the environment on the satellite attitude and it 

should be pursued with more statistical analysis with different types of satellite orbits 

at different altitudes, within different near-Earth space environment conditions, not 

just LEO but also where the magnetometers are used for detection of the satellite 

attitudes. 
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 GEOMAGNETIC DISTURBANCE EFFECTS ON SATELLITE 

ATTITUDE ESTIMATION* 

 Abstract 

This chapter investigates the effects of magnetic disturbances resulting from geospace 

storms on the satellite attitudes estimated by EKF. It is shown that the increasing levels 

of geomagnetic activity affect geomagnetic field vectors predicted by IGRF and T89 

models. Various sensor combinations including magnetometer, gyroscope, and sun 

sensor are evaluated for magnetically quiet and active conditions. Errors are calculated 

for estimated attitude angles and differences are discussed. This study emphasizes the 

importance of environmental factors on the satellite attitude determination systems. 

 Introduction 

The orientation of the geomagnetic field is one of the most critical data in the 

determination and control of the satellite’s attitude especially at the low Earth orbits 

(LEOs) [36–39]. More accurate measurements of the geomagnetic field lead to more 

accurate predictions of the satellite attitude.  The geomagnetic field may be obtained 

from: 1. In-situ measurements of an on-board spacecraft magnetometer, 2. empirical 

models of the geomagnetic field that utilize a large amount of spacecraft data, and 3. 

the simulated magnetometer.  Simulated magnetometers are constructed on the ground 

before the satellite launch to reproduce the satellite magnetometer measurements of 

real space. In other words, a simulated magnetometer is an object simulated by 

software for obtaining the geomagnetic field used to estimate the satellite’s attitude. In 

order to design a simulated magnetometer, a geomagnetic field model, the statistical 

characteristics of the magnetic field measurements in space and characteristics of on-

                                                 
 
* This chapter is based on the paper “Cilden-Guler, D., Kaymaz, Z., and Hajiyev, C. (2021). 
Geomagnetic Disturbance Effects on Satellite Attitude Estimation, Acta Astronautica, 180, 701712, doi: 
10.1016/j.actaastro.2020.12.044”. 
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board satellite magnetometers are needed.  The most commonly used geomagnetic 

field model to predict the Earth’s magnetic field at the satellite location is the 

International Geomagnetic Reference Field (IGRF) model [6,40].  However, the angle 

between the magnetic field vector from the IGRF model and the magnetic field vector 

from the simulated magnetometer affects the accuracy of the attitude angles, namely 

roll, yaw, and pitch. When transformed the vectors into the same coordinates, the 

smaller this angle is the more precisely the attitude angles are determined. Therefore, 

the choice of geomagnetic field model used in the simulated magnetometer is very 

important in achieving high accuracy in attitude angles.  

The main source of the geomagnetic field is the Earth’s dynamo in its core that 

produces dipolar magnetic fields in the near-Earth space environment [41–43].  

However, solar activities such as solar wind, coronal mass ejections (CMEs), high-

speed streams (HSS), ınterplanetary shocks (IS), and their magnetospheric 

consequences geomagnetic storms and magnetospheric substorms produce 

disturbances superimposed on the dipole field of the Earth different strengths [44].  

Charged particles from the geomagnetic tail flow into the upper atmosphere and drive 

electrical currents at the LEO altitudes which in turn modify the geomagnetic field at 

those altitudes [45–47].  We will refer to the variations caused by these or external 

sources as magnetic disturbances or magnetic anomalies.  While on-board spacecraft 

magnetometer measurements inherently include these deviations from the dipole field, 

they need to be represented in the simulated magnetometer or within the geomagnetic 

field models for accurate predictions of the near-Earth magnetic fields. 

In reality, neither the geomagnetic field models of the Earth nor the magnetometers 

are accurate.  They both have various error sources resulting from several factors.  The 

simulated magnetometers include bias and noise errors. While in many studies, 

magnetic disturbances in the space environment are treated as bias, in several others, 

they are accepted as noise [50,51]. However, in these studies, it should be remembered 

that the magnitude of the geomagnetic field deviations due to the magnetospheric 

storms can be obscured by the sensor-related noise used in the simulated 

magnetometers [52]. In order to estimate the magnetic moment of the satellite 

accurately, magnetometer bias resulting from other electrical devices on the satellite 

should be estimated and removed precisely. Therefore, online and offline 

magnetometer calibration methods for time-variable errors arising from both 
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magnetometer bias and the magnetic anomaly are introduced in [53] for two 

nanosatellites that need geomagnetic field data as accurate as possible for their mission 

requirements. In [53] and its extended version [54], the authors treated the magnetic 

anomaly as bias in the simulated magnetometer to improve the attitude estimation. In 

addition to the bias associated with the magnetic anomaly, they also added an 

additional magnetometer bias to build their simulated magnetometer. Both the 

magnetic anomaly bias and the magnetometer bias are used as the state vector elements 

within the simulated magnetometer. But, here we should also note that the magnetic 

anomalies in the space environment are not the errors resulting from the magnetometer 

itself, but they are the magnetic deviations overlapped on the geomagnetic field 

resulting from the magnetic storms and magnetospheric substorms.  In order words, 

they have a physical cause and their properties vary depending on the properties of the 

source and they cannot be predicted using linear models.  Therefore, treating them as 

bias or noise error does not correctly take into account their true nature and their 

contribution to the measurements of the simulated magnetometer. The studies in 

[53,54] treated the magnetic anomalies as a Gauss-Markov statistical process. Gauss-

Markov model is a model frequently used to represent the sensor biases or disturbances 

[55–57]. However, it only depends on time and thus, it may be an inadequate 

representation of magnetic anomaly events which are linked to the geomagnetic storm 

and magnetospheric substorms, since these storms and substorms are not only time-

dependent but also their effects vary depending on the magnetic latitude, the height in 

the atmosphere, and the strength of the magnetospheric activity, i.e. magnetotail 

dynamics, but eventually on the solar activity [58–61]. While auroral substorms occur 

more frequently and affect high latitudes, variations in the ring current strength, or the 

motion of the magnetopause boundary affect the magnetic structure of the Earth at the 

equatorial latitudes [26 and references therein]. In addition, the magnetic anomalies 

associated with the magnetic storms increase during the high solar activity periods and 

decrease as the solar activity ceases.  These indicate that it would be incorrect to 

consider them as noise. In [63], the authors stated that the magnetic anomalies should 

be modeled separately to avoid tuning problems but they stated that the external 

disturbances hard to model because of their complex ambient nature. 

Early models of the Earth’s magnetic field represent only the dipole geomagnetic fields 

resulting from the Earth’s internal dynamo.  The effects of magnetic disturbances are 
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not included in these early models.  As the satellite observations of the geospace 

environment increase, these models, consequently modeling the LEO environment, are 

improved such that the physics of the magnetic environment are incorporated in the 

models.  The IGRF model is one of these early models of the geomagnetic field used 

for attitude determination at LEO altitudes. The accuracy of the IGRF models is 

investigated in several studies and is usually found satisfactory in predicting the 

satellite attitude [50,51,64].  

First studies that take into account the effects of magnetic anomalies from the 

spacecraft attitude perspective are presented in [65–67].  These studies used IGRF and 

T89 models to evaluate the geomagnetic field at LEO altitudes during geomagnetically 

active days.  T89 model developed by Tsyganenko in 1989 is an empirical 

geomagnetic field model [68,69] that is derived using a large amount of magnetic field 

data from 11 Earth‐orbiting spacecraft measurements at various distances from LEO 

to 30 Earth Radii behind the Earth and thus covering vast magnetospheric regions 

including plasmasphere, the plasma sheet, radiation belts, neutral sheet, near-Earth 

magnetospheric tail, and the magnetospheric boundary [70]. In contrast to the IGRF 

model, the T89 model includes contributions from external magnetospheric sources 

such as ring current, magnetotail current system, magnetopause currents, and large-

scale system of field-aligned currents.  The model employs several physical conditions 

such as dipole tilt angle effects, neutral sheet curvature, and more or less realistic 

magnetopause boundary as well as the effects from the magnetospheric activity. In 

[65–67], the predicted and observed magnetic fields, and angles between magnetic 

field vectors from IGRF and T89 are analyzed for three selected geomagnetic storm 

events and compared the variations with those obtained during the quiet day.  They 

showed that the T89 model gives closer magnetic field predictions to the observations, 

and the errors are smaller compared to those from the IGRF model.  This further 

implies that the attitude angles will be estimated in a higher sensitivity if the T89 model 

is used.  It is of primary interest here to investigate the effects of geomagnetic 

disturbances on the satellite attitude angles (roll, pitch, and yaw) using these models 

and quantify the effects. For this purpose, first, we demonstrate how the angle between 

the magnetic field vectors predicted by the models varies with the increasing levels of 

geomagnetic activity.  Then, we show that how these geomagnetic activity effects are 

propagated onto the satellite attitude angles.   
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Our second purpose in this study is to explore the effect of the presence of one or more 

attitude sensors onboard the satellite in addition to the magnetometer.  The sun sensors 

and gyroscopes are considered for this purpose.  The mathematical models of these 

sensors can be implemented into the attitude estimation methods using e.g. Kalman-

type filters. As the satellite’s dynamical model and the simulated magnetometers are 

nonlinear, the extended Kalman filter (EKF) or its extensions can be used for obtaining 

the attitude angles [90]. Among the several types of Kalman filters are Linear Kalman 

Filter, EKF, Unscented Kalman Filter (UKF).  In Kalman filters, generally, all three 

of the attitude sensors, namely sun sensor, magnetometer, and gyroscope, are 

employed together to increase the accuracy in the attitude estimation 

[21,25,90,146,148].  However, the magnetometers can be used alone to estimate a 

satellite’s attitude in the absence of one or both of the other sensors.  In this part, we 

utilize the various combinations of these sensors with EKF to compare the efficiency 

of the different sensor configurations under the low/high geomagnetic activity 

conditions. The configurations performed are magnetometer alone, magnetometer and 

gyroscope, magnetometer and sun sensor, and all sensor-configuration, i.e. 

magnetometer, sun sensor, and gyroscope. While model predictions of the 

geomagnetic field are needed for all configurations, it is clear that it will be more 

important for the success of the EKF procedure that uses magnetometer sensor 

configuration only. 

The organization of the paper is as follows: Section 6.3 presents the satellite kinematic 

and dynamic equations while Section 6.4 describes the models, magnetic field, and the 

sun direction vectors used for satellite attitude estimation, respectively.  This is 

followed by the attitude estimation method based on the traditional approach in Section 

6.5. Section 6.6 shows how geomagnetic field models differ with the increasing level 

of geomagnetic activity.  The analysis of the effects of the geomagnetic disturbances 

on the accuracy of the spacecraft attitude angles is presented in Section 6.7. Section 

6.7 provides the results for four different sensor configurations. Finally, Section 6.8 

concludes our chapter. 

 Satellite Equations of Motion 

The orbit of the satellite is propagated in time using the SGP4 model [121]. The 

satellite position data are used in Earth-Centered, Earth-Fixed (ECEF) using 
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Geographic Coordinates (GEO). The angular motion of the satellite is defined in the 

Earth-Centered Inertial (ECI) system. 

For the satellite rotational motion, the equation of kinematics is represented in terms 

of Euler angles of yaw, pitch roll as, 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

0 sin / cos cos / cos
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q
r
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                        (6.1) 

where p , q , r  are the components of the  BRω  vector in the body frame with respect 

to the reference (orbit) frame. The angular velocities  ( )BIω  in the body axis can be 

expressed with respect to the inertial coordinate system as 

,
T

BI x y zω ω ω =  ω                                           (6.2) 

and the angular velocities ( BIω , BRω ) have the relationship as, 

[ ]0 0 ,T
BR BI oω= − −ω ω A                                   (6.3) 

where oω  orbital angular velocity, computed as 

( )1/23/ ,o orω µ=                                               (6.4) 

using µ -gravitational constant, or - the distance between the satellite and Earth’s 

centers. oω  is constant for circular/near-circular orbits. A  represents the 

transformation matrix from orbit to body frame in terms of (3-2-1) Euler angles 

sequence [1] as, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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A

     
   (6.5) 

Dynamic equations are also obtained by the principle of conservation of angular 

momentum. 

( ) ,x
x x y z y z

dJ N J J
dt
ω ω ω= + −                                     (6.6a) 



115 

( ) ,y
y y z x z x

d
J N J J

dt
ω

ω ω= + −                                  (6.6b)

( ) ,z
z z x y x y

dJ N J J
dt
ω ω ω= + −                                  (6.6c) 

where xJ , yJ  and zJ  inertial moment elements, xN , yN  and zN   are the external 

disturbances affecting the satellite. 

 Components of Satellite Attitude Determination System 

6.4.1  Geomagnetic field models   

Among the several geomagnetic field models currently available in the literature, T89 

and IGRF models are used to evaluate the attitude angles in this study.  A brief 

introduction to the properties of these models is given below. 

6.4.1.1 International geomagnetic reference field model 

The history of the IGRF model goes back to the 1900s.  The model is revised every 

five years and released by the international association of geomagnetism and 

aeronomy (IAGA). The 13th version of IGRF was released in 2020. IGRF only 

considers the internal dynamo currents that produce the Earth’s magnetic field [6].  It 

is based on the dipole approximation of the Earth’s magnetic field with the coefficients 

determined from the spacecraft magnetic field data using spherical expansion analysis 

with the coefficients determined from the spacecraft magnetic field measurements. 

The model includes series of spherical harmonics at N=13th degree that are updated 

every 5 years. Equation (6.7) gives the expansion with the coefficients.  The inputs (

, , ,r tθ φ ) are the radial distance (km) from the center of the Earth, co-latitude (deg), 

longitude (deg) of the satellite position at the specific time (t).  In the equation, the 

global variables (g and h) are Gauss coefficients while P denotes the Legendre 

function.   

( ) ( )1

1 0
( , , , ) { ( ) [g (t) cos h (t)sin ] (cos )}.

N n
n m m m

INT n n n
n m

ar t a m m P
r

θ φ φ φ θ+

= =

= −∇ + ×∑∑B   (6.7) 

Here, INTB  is the magnetic field in the units of nanoTesla (nT). The major axis of the 

Earth is accepted as 6378.137 km in the model. In this study, the output magnetic field 

vector from the geomagnetic field model is shown as modelB  and it is given in magnetic 
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(MAG) coordinates. In MAG coordinate system, the z-axis aligns with the dipole axis 

and the y-axis is perpendicular to the plane containing the dipole axis and the rotation 

axis of the Earth. The x-axis completes the right-handed system. More information 

about the coordinate systems may be found in [133]. 

6.4.1.2 Tsyganenko’s model 

The variations in the space environment result from solar and magnetospheric activity. 

The magnetosphere is highly dynamic especially during strong solar disturbances. The 

currents from the geomagnetic tail during the geomagnetic storms and magnetospheric 

substorms produce variations in the geomagnetic fields at the LEO altitudes which are 

superimposed on the main geomagnetic field generated by the dynamo within the 

Earth’s core. Consequently, it is expected that these external effects will affect the 

spacecrafts’ attitude angles since they are determined by using the predictions of the 

geomagnetic field at the satellite altitudes.  Therefore, it is anticipated that the 

inclusion of external effects in the predictions of geomagnetic fields will improve the 

accuracy of the attitude predictions. For this purpose, in this study, a second model, 

Tsyganenko 1989 model (T89) is used to predict the geomagnetic fields at the LEO 

orbit. Developed by Tsyganenko [68], the T89 model is an empirical model based on 

large satellite data ranging from LEO altitudes to a distance of approximately 30 Earth 

radii. An analysis in the Van Allen belts is also possible when considering the 

satellites’ altitudes used in the data sets [70]. The number of spacecraft data decreases 

with distance in the magnetosphere, but the available spacecraft data cover the most 

significant dynamic part of the magnetospheric regions on the dayside and night side, 

i.e. magnetotail.  In the model, the total magnetic field is obtained by the sum of both 

internal ( )INTB  and external ( )EXTB  magnetic fields.  Equation (6.8) gives the total 

magnetic field disturbance ( )EXTB  produced by the external sources only.  While the 

main (internal) field ( )INTB  is obtained from IGRF as given in Equation (6.7), the 

magnetic field disturbance ( )EXTB  is obtained from T89.  In this equation, EXTB  

includes effects from magnetospheric ring current ( )ringB , tail current ( )tailB , 

magnetopause currents ( )mpB , and field-aligned currents ( )FCB  (please see 

[68,127,149–152] for more details).  
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.EXT ring tail mp FC= + + +B B B B B                                     (6.8) 

Since the external magnetic field ( )EXTB  is superimposed on the main geomagnetic 

field, T89 returns the total geomagnetic field as model INT EXT= +B B B  at the specified 

location.  Therefore, the T89 model is considered as an improved model over IGRF 

for predicting geomagnetic fields at LEO.  

In the T89 model, satellite data sets are categorized according to the geomagnetic 

activity index called pK . pK  (planetary K-index) is an indicator of disturbances in the 

Earth's magnetic field and is used to characterize geomagnetic storms’ magnitudes 

[153,154]. Thus, from the modeling point of view, it gives a measure of the strength 

of the external source. It is calculated globally using mid-latitude magnetic stations at 

every 3-hours and has a scale from 0 to 9 expressed in thirds of a unit with 28 values, 

e.g. 4- is 3 2/3, 4o is 4 and 4+ is 4 1/3 [155,156]. pK  greater than 4 indicates strong 

geomagnetic activity in the magnetosphere. IOPT indicates the number used in the T89 

algorithm related to activity level. Even though the level of activity can rise up to 

9pK = , the highest pK  accepted within the T89 code is 6- because of the smaller 

number of satellite data for higher pK  levels larger than 6-.   

Table 6.1 : pK  index and model parameter IOPT range in T89 model. 

IOPT 1 2 3 4 5 6 7 

pK   0o, 0+ 1-, 1o, 1+ 2-, 2o, 2+ 3-, 3o, 3+ 4-, 4o, 4+ 5-, 5o, 5+ > =6- 

6.4.2  Simulated magnetometer measurements 

Because the magnetometers are cheap, reliable, and lightweight, they are the most 

widely used sensors for the determination of the attitude angles on LEO satellites. The 

satellite’s angular motion is determined by defining the dynamics and kinematics of 

the satellite. Then, the Euler angles are found for each magnetic field model 

representation. The magnetometer measurements of the real space environment can be 

simulated as: 

( ) ( ) ( ) ( ) ,m o Bk k k k= +B A B v                                   (6.9) 
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where ( )o kΒ  is the geomagnetic field vector components in the orbital frame that are 

found using a geomagnetic field model, ( )m kB  represents the simulated 

magnetometer measurements in the body frame, ( )B kv  is the zero-mean Gaussian 

magnetometer measurement noise, and 𝐀𝐀(𝑘𝑘), is the transformation matrix from orbit 

to body frame.  In this equation, ( )o kΒ  is obtained using:  

( ) ( ) ( )model ,o k k k=B L B                                  (6.10) 

where modelB  is the geomagnetic field vector obtained from a geomagnetic model, such 

as IGRF or T89 in our case, and ( )kL  indicates the transformation matrix from MAG 

coordinates (see Section 6.4.1.1) to the orbital coordinate system. The success of the 

simulated magnetometer depends on how accurately these terms are predicted. 

6.4.3  Simulated sun sensor measurements 

Another attitude sensor used to predict the satellite’s attitude is the sun sensor which 

determines the sun direction vector whenever the sun is visible. The sun direction 

model can be found in [103]. The sun direction vector measurements can be expressed 

in the following form:  

( ) ( ) ( ) ( )m o Sk k k k= +S A S v ,                              (6.11) 

where ( )m kS  is the measured sun direction vector as the direction cosines in body 

frame,  ( )0 kS represent the sun direction vector in the orbit frame as a function of time 

and orbit parameters, and ( )S kv  is the zero-mean Gaussian sun sensor measurement 

noise. 

6.4.4  Simulated rate gyro measurements 

Rate gyros are used in order to measure the angular velocity of the satellite. The 

measurements can be modeled as, 

( ) ( ) ( ) ,m BI gk k k= +ω ω v                             (6.12) 
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where ( )m kω  is the measured angular rates of the satellite body frame with respect to 

the inertial frame, and ( )g kv  is the zero-mean Gaussian gyroscope measurement 

noise. 

 Attitude Estimation Algorithm  

For the satellite attitude and rate estimation, the 6-dimensional state vector ( )1k +x  is 

composed of attitude angles (ψ  yaw; θ  pitch; φ  roll) and angular rates ( xω  angular 

velocity in x-axis, yω  angular velocity in y-axis, zω  angular velocity in z-axis). All 

three attitude angles describe the deviation between the orbit and the body reference 

frame. 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) .
T

x y zk k k k k k kψ θ φ ω ω ω + = + + + + + + x
    (6.13) 

The satellite’s rotational motion can be represented using a nonlinear mathematical 

model about its mass center driven by Gaussian white noise with white noise-corrupted 

measurements defined by, 

[ ]( 1) ( ), ( ),k k k k+ = +x f x w                                     (6.14) 

[ ]( ) ( ), ( ),k k k k= +z h x v                                         (6.15) 

where  ( )kz  is the measurement vector at time k, ( )kw   is the system noise, ( )kv  is 

the measurement noise, [ ]( ),k kf x  is the nonlinear state transition function mapping 

the previous state to the current state, [ ]( ),k kh x  is a nonlinear measurement model 

mapping the current state to measurements. It is assumed that both noise vectors ( )kv    

and  ( )kw are linearly additive  Gaussian, temporally uncorrelated with zero mean with 

the corresponding covariance matrices Q  and R  respectively. It is assumed that 

process and measurement noises are uncorrelated. 

We consider a real-time linear Taylor approximation of the system function at the 

previous state estimate and that of the observation function at the corresponding 

predicted position. The EKF algorithm is used for this purpose [14,35].  The EKF is 

applied using different sensor configurations on the LEO satellite in order to evaluate 
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the magnetic anomaly effects on the attitude estimation system. The scheme of the 

traditional EKF used in this study is presented in Figure 6.1. The magnetometer is the 

base sensor as it is used in all of the sensor configurations considered in this study. 

Four different sensor configuration scenarios are implemented within the algorithm: 

1. magnetometer only, 2. magnetometer and gyroscope, 3. magnetometer and sun 

sensor, 4. all sensors (magnetometer, sun sensor, and gyroscope). In the traditional 

approach (see Figure 6.1), measurement models are based on nonlinear models of 

reference directions. Therefore, there is a nonlinear relation between the measurements 

and the states.  

 
Figure 6.1 :   Attitude estimation scheme using different magnetic field models 

and different sensors.  

89TB and IGRFB  represent magnetic field models, T89 and IGRF, respectively. oB and 

oS  are the outputs from the geomagnetic field model and sun direction model, both in 

the orbital frame.  Also mB , mS , and mω  are the magnetometer, sun sensor, and 

gyroscope measurements in the body frame. IGRF uses the position of the satellite, 

and orbital parameters to find the magnetic field vector in the orbital frame. Inputs for 

the T89 model are the pK  index, position of the satellite, and outputs from the IGRF 

model for the background geomagnetic field. In this algorithm, after the orbit 

propagation from TLE data, the position of the satellite for selected time interval and 
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sampling time are obtained in spherical coordinates and transformed into Cartesian 

(ECEF).  

The four scenarios that use magnetic field predictions from both T89 and IGRF are 

adopted in the traditional EKF in the order given above. As magnetometers, the sun 

sensors are the other instruments used very commonly in satellite missions, therefore, 

it would be interesting to see how its presence affects the accuracy of satellite attitude. 

 Dependence on Geomagnetic Activity  

Magnetic field measurements from magnetometers on board two different satellites at 

LEO orbit are analyzed and compared with those from IGRF and T89 models in [65] 

for three cases of selected geomagnetic activity events. The study in [65] demonstrated 

that both models indicate differences with the onboard magnetic fields regardless of 

the activity level, but more so when the activity level is high. Further, it is also shown 

that the IGRF model gives larger differences compared to the T89 model during both 

quiet and active times, with larger differences with increasing activity. During the 

geomagnetically active day, the T89 model gave closer estimations to the onboard 

observations. While the main purpose of the current paper is to investigate the effects 

of magnetospheric activity on the satellite attitude angles estimated by EKF, we first 

demonstrate the dependence of the angle between the predicted magnetic fields of the 

models on the increasing levels of geomagnetic activity.  This is accomplished by 

using the increasing levels of activity pK  in the T89 model and calculating the angle 

between the predicted magnetic field from both T89 and IGRF models.  IGRF is a 

function of time and position but independent of activity; however, it is used here as 

background geomagnetic levels to detect the deviations resulting from the 

geomagnetic activity.  The calculated angle is, then, used as input in EKF analysis to 

calculate the attitude angles (yaw, pitch and roll) and for four different sensor 

configurations. 

Before demonstrating the effects of the geomagnetic activity, we present Figure 6.2 in 

order to give an idea on the order of the disturbance fields, i.e. EXTB , seen in panel e.  

From top to bottom, Figure 6.2 shows pK  (panel a), noise (panel b), constant bias 

(panel c), accumulated bias (panel d), and disturbance field (panel e) along the satellite 
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trajectory.  In order to create this figure, we run the T89 model for the selected pK  

variation seen in panel a.  Since the simulated magnetometer uses the components seen 

in panels b, c, d, and e to simulate the geomagnetic field anomaly, it is of purpose here 

to illustrate how independent these components from geomagnetic activity level and 

how the disturbance field vary for the selected geomagnetic activity level given in 

panel a.  Figure 6.2 indicates that naturally, the noise, constant bias, and accumulated 

bias are seen to vary independent of the geomagnetic activity level by their description, 

while disturbance field in panel e indicates variations from 0 to -8 nT for 5pK =  and 

from 0 to ±15 nT for 6pK =  in panel a and increasing with the increased levels of .pK   

 
Figure 6.2 :   Noise, constant bias, accumulated bias, and a sample of external 

magnetic field disturbance for different pK  levels. 

Next, we demonstrate how the angle between the magnetic fields estimated from IGRF 

and T89 models.  For this purpose, we consider a hypothetical nanosatellite with 

principal moments of inertia  3 3 3 2diag 2.1 10 2.0 10 1.9 10  kg m− − − = × × × J .  The 

orbit is almost circular with inclination o87.4i = , eccentricity 0.0009,e =  average 

altitude 600 km , and orbital period of approximately 6000 seconds. The satellite is 

tumbling with the initial state of 
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[ ]0 0.03 rad 0.02 rad 0.01 rad 0.001 rad s 0.0015 rad s 0.002 rad s T=x  as 

described in Equation (13). For this designed orbit, the T89 model runs for each pK  

level varying from 0 to 6.  Since IGRF does not have a dependence on pK , it is run 

only once.  In Figure 6.3, the angle between the predicted magnetic fields of T89 and 

IGRF is plotted in a box-plot as a function of the activity level ( )IOPT  given in the 

horizontal axis. In the figure, the box gives the quartile range from 25% to 75% with 

a dent indicating the median.  The dotted lines above and below each box identify the 

range of potential outliers where the maximum and minimum for each box lie.  While 

the red solid line gives a line fit to the average in each box, the box colors only identify 

the different pK  levels. The figure clearly shows that with the increasing levels of 

geomagnetic activity, the angle between the model predictions increases.  Moreover, 

the increased range of the outliers from the upper edge of the box indicates the 

increased scatter in the angle with the increased activity level. The differences in the 

angle can come from the activity level but also from the latitudinal variation of the 

moving spacecraft.  Since both the IGRF model and T89 model include the same 

latitudinal variations in their background geomagnetic field predictions, we attribute 

the variations seen in this figure to the geomagnetic variations resulting from the 

storms and substorms in the magnetosphere at the satellite location, which otherwise 

expect the angle to be zero.   

 
Figure 6.3 :   The angle between IGRF and T89 magnetic field vectors for 

different pK  levels in the T89 model. 
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While both average and median angles show an increase with the increasing activity 

level, the maximum difference is found to be 18o corresponding to the highest level of 

activity in the T89 model.  These results confirm the case studies presented in [65] in 

a statistical sense based on model simulations. 

Next, to isolate the effects of the geomagnetic activity on the angle with respect to the 

satellite position, i.e. the latitude of the satellite, we split Figure 6.3 into three 

categories according to the latitude (λ) of the spacecraft as low latitudes 

( )o o0 30 ,λ≤ <  mid-latitudes ( )o o30 50λ≤ <  , and high latitudes ( )o50λ ≥ .  The 

result is given in Figure 6.4 where panels a, b, c are for low, mid-, and high latitudes. 

As in Figure 6.3, the horizontal axis represents the activity level ( pK ).  Figure 6.4 

illustrates that as the activity increases, the angle increases gently at all latitudes which 

means geomagnetic activity affects the angle at all latitudes at some degree being 

maximum for 6pK >  at 6o for low latitudes, 5.5o for mid-latitudes, and 12o for high 

latitudes.  It is interesting to note that when  { }0o,  0pK = + , namely, when there is 

almost no geomagnetic activity, the results indicate a difference between the IGRF and 

T89 model field predictions at about 2o at all latitudes.  This may be due to the fact 

that there are 30 coefficients defined for each IOPT  level in the T89 model. IOPT 1=  

in T89 model, corresponds to { }0o,  0pK = +  (see Table 6.1) and thus to non-zero 

coefficients which in turn give non-zero angles. The highest difference, on the other 

hand, is seen at high latitudes at 12o.  Moreover, panel c shows that the highest scatter, 

indicated by the level of the outliers, is seen at high latitudes as the level of activity 

increases.  It is the smallest at low latitudes. This suggests that the high latitudes are 

more prone to errors in the geomagnetic field orientations and thus in the angles. 

 
Figure 6.4 :  Variations in angle with geomagnetic activity for low- (a), mid- (b) 

and high- (c) latitudes.  
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Another way of showing the differences between the two models involves the height 

variations of the geomagnetic field anomaly effects predicted by the models.  This is 

demonstrated in Figure 6.5.  Figure 6.5 illustrates the ratio between predicted external 

component ( )EXTB  to the total magnetic field ( )model INT EXT= +B B B obtained from the 

T89 model for IOPT=1and IOPT=7  that correspond to quiet and active times with 

respect to various altitudes starting from 500 km to 20000 km. For this purpose, the 

T89 model runs for each IOPT  level at each altitude along the orbit.  In the end, the 

orbital average at each altitude is plotted. The figure shows that the magnetic field 

anomalies affect the satellite more at higher altitudes as expected. In the beginning, for 

the altitude of 500 km, the mean rate is around 3% and 11% for { }IOPT= 1,  7  

respectively. For the altitude of 20,000 km, the mean rate is around 10% and 42% for 

{ }IOPT= 1,  7  respectively. The average effect of the external field over different 

altitudes presented in Figure 6.5 is found as 6% with 24.6 nTEXT =B  for IOPT 1=  

and 23% 109.3 nTEXT =B  for IOPT 7= .  

 

Figure 6.5 :  Dependence of external field ( )modelEXTB B  on satellite’s altitude 
obtained from T89 model for IOPT 1=  and IOPT 7=  in T89 model. 

 Influence of the Geomagnetic Activity on the Accuracy of Attitude 

The previous section showed that geomagnetic activity increases the angles between 

the predicted magnetic fields by the models and the differences in angles at different 

pK  levels are largest at high latitudes. It is thus expected that these differences in the 

angles will propagate to the attitude angles which is the main subject in this section.  
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The actual attitude angles of roll, pitch, and yaw are calculated using the satellite’s 

orbital motion, and the estimated ones using EKF procedures are compared for the 

quiet ( IOPT 1=  for T89) and active ( IOPT 7=  for T89) geomagnetic days. The 

magnetic field vectors needed to estimate the attitude angles are obtained from the T89 

and IGRF models and simulated satellite measurements. The satellite specifications 

used in this section are provided in the previous part. Additionally, the sun sensors and 

magnetometers have 3-axis measurements and both sensors have 1-Hz frequency; 

estimation time step is also 1 sec . The sensor noises are characterized using 

normalized standard deviations 0.008Bσ =  for magnetometers, 0.002Sσ =  for sun 

sensors, and the standard deviation of 0.005 rad/sgσ =  for rate gyros. We consider 

attitude estimation over a single orbit ( )6000 s . The satellite’s angular motion is 

determined by defining the dynamics and kinematics of the satellite which is described 

in Section 6.3. In the following sections, the extended Kalman filter is used in its 

traditional form, and the simulation results are presented for four different sensor 

configurations mentioned in Section 6.5 as scenarios. Figure 6.6 presents the attitude 

angles estimated by the EKF approach using the geomagnetic fields obtained from the 

T89 model for the selected LEO satellite for active geomagnetic conditions and for 

magnetometer-only scenario (i.e. scenario 1). In the figure, the solid line gives the 

estimated attitude angles while the dotted line presents the actual attitude angles 

obtained from Eq. (1). The panels from top to bottom are roll, pitch, and yaw.  The 

horizontal axis on the panels is the time in seconds. 

 
Figure 6.6 :  Estimated and actual attitude angles using the T89 model in 

traditional EKF for the active geomagnetic conditions and for magnetometer 
configuration only (scenario 1).  
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Figure 6.6 shows that the differences between the estimated and actual attitude angles 

are noticeable but very small to be distinguished by eye. Actual attitude angles are 

computed using Eq. (1). We carried out the same analysis for all sensor configurations. 

The results are found to be very similar. We find that the differences between estimated 

and actual attitude angles are not large. Though small, it is of interest to quantify the 

difference. We carry out an error analysis for this purpose. For error analysis, we use 

two methods: One is the mean of the differences between the estimated and actual 

attitude angles, namely 
1

1 N

kN =∑ ke  in degrees, where ( ) ( )ˆ 1 1k k= + +ke x - x  and the 

other is the normalized root mean square error (NRMSE) calculated as 

( )2

1

100 1 N

kN =

 
  
 

∑ ke
x

 in percentages.  Here ( )ˆ 1k +x  represents the estimated attitude 

angles using EKF, ( )1k +x  is the actual attitude angles, x  is the average of the actual 

attitude angles, and N is the number of data during the simulation we studied. The error 

(RMSE) is evaluated in Figures 6.7a and 6.7b, NRMSE results are discussed in Table 

6.2.  

We use IGRF results to represent the undisturbed conditions since the IGRF model is 

independent of the geomagnetic activity. Figure 6.7a shows how each attitude angle 

component estimated by EKF using IGRF varies corresponding to each scenario.  

Different colors in this panel correspond to different scenarios. The panel shows how 

the errors corresponding to different scenarios are distributed for each attitude angle.  

Figure 6.7b, on the other hand, presents how the errors corresponding to attitude angles 

are distributed for each scenario. Different colors in this panel correspond to different 

attitude angles such as black for roll, blue for pitch, and pink for yaw angles.  

Representing quiet conditions, both figures give the following results: 

1. The errors corresponding to all directional angles (roll, pitch, and yaw) are 

larger in the order of scenario 1, scenario 2, scenario 3, and scenario 4, 

respectively.  The magnetometer-only scenario gives the largest error while the 

smallest error is obtained when all sensors (scenario 4) are used in attitude 

estimation.  This result indicates that some of the errors caused by the IGRF 

estimation of geomagnetic fields are compensated by the addition of the other 

two sensors. In other words, adding sun sensor and gyroscope reduces attitude 

estimation error.  However, comparing the errors for scenario 2 and scenario 
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3, it can be clearly noticed that the presence of sun sensor reduces the error 

more compared to the error reduction by the gyroscope. 

2. It is clearly seen that the errors corresponding to pitch and yaw angles are the 

largest for scenario 1 and scenario 2 compared to those for roll angle since the 

roll angle takes smaller values than the other two in the tumbling for our case 

(see Figure 6.6). Here, the error levels may differ if the initial conditions are 

changed. All sensor scenario or magnetometer and sun sensor scenarios give 

better estimates for pitch and yaw angles compared to those of magnetometer 

only or magnetometer and gyroscope scenarios.    

3. The errors corresponding to roll angle are in the same order for all scenarios 

and differences between the scenarios are negligible.  The roll angle seems to 

be insensitive to which sensor is used on the satellite. Even though scenario 4 

is slightly better, only the magnetometer scenario gives an as good estimate as 

all sensor scenario.  Adding sun sensor and gyroscope does not make an 

appreciable difference in reducing the errors in the yaw angle. 

  
Figure 6.7 :  Estimated errors using IGRF model during a quiet time for each 

attitude component (a) and for each scenario (b). 

Similar evaluations for the IGRF model during active conditions can also be derived. 

Figure 6.8 is performed for this purpose and illustrates the errors obtained during quiet 

(solid lines) and active (dashed lines) times. The figure also compares the quiet and 

active day performance of the IGRF model between different scenarios. It is clear that 

the scenario 1 and 2 give higher errors for the active times for all attitude angles. The 

highest difference between active and quiet time errors is seen in scenario 1 while other 
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scenarios do not seem to be affected by the geomagnetic disturbance much and present 

a smaller difference. 

 
Figure 6.8 :  Estimated errors for IGRF model predictions of the attitude angles 

during the quiet (solid) and active (dashed) geomagnetic conditions. 

Figs. 6.9a and 6.9b are generated to demonstrate the differences calculated by 

subtracting T89 errors from those of IGRF for quiet (panel a) and active days (panel 

b) respectively.  Positive differences indicate that IGRF errors are larger than those of 

T89.  In both panels, it is clear that the errors associated with the IGRF model are 

larger than those of T89 for all attitude angles. Also, both panels show that the largest 

differences between the models for both activity levels occur in pitch and yaw angles 

in the case of scenario 1 and scenario 2.  It can also be seen that the error differences 

are larger for active days especially for scenario 1 indicating the effect of the 

geomagnetic disturbances on the magnetometer measurements.   

  
Figure 6.9 :  Differences between the errors associated with both models for 

quiet (a) and active (b) days. 

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Er
ro

r (
de

g)

IGRF Model, Quiet (Q) and Active (A)Time

Q

Q

Q

A

A

A



130 

Lastly, we present Table 6.2 that displays the results of NRMSE to illustrate how the 

errors depend on the sensor configurations for both quiet (blue highlight) and active 

(yellow highlight) geomagnetic conditions. In the table, φ, θ, and ψ represent the roll, 

pitch, and yaw angles respectively.  Since the geomagnetic disturbance effects are 

found to be larger in the case of scenario 1 for especially pitch angle, the results in 

Table 6.2 are evaluated by comparing IGRF and T89 model performances for scenario 

1 only, and the addition of other sensors are evaluated qualitatively as same as given 

above. For scenario 1, we see that using the T89 model reduces the error and improves 

the attitude angles (roll, pitch, and yaw) by 0.03%, 0.06%, and 0.01% respectively 

during the quiet times and 0.02%, 0.02%, and 0.02% during the active geomagnetic 

conditions.   

Table 6.2 : NRMSE between estimated and actual attitude angles.  

Geo-
magnetic 

State 

NRMSE 
(%) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Mag. only Mag. and 
Gyroscope 

Mag. and Sun 
sensor All sensors 

IGRF T89 IGRF T89 IGRF T89 IGRF T89 

Quiet 
φ  0.72 0.69 0.67 0.66 0.03 0.03 0.02 0.02 

θ  0.50 0.44 0.36 0.34 0.03 0.02 0.01 0.01 
ψ  3.18 3.17 3.17 3.16 0.25 0.23 0.22 0.21 

Active 

φ  0.77 0.75 0.68 0.66 0.04 0.03 0.02 0.02 

θ  0.52 0.50 0.37 0.34 0.06 0.04 0.03 0.02 
ψ  3.20 3.18 3.17 3.17 0.27 0.25 0.24 0.23 

As a summary, Table 6.2 indicate that the magnitude of errors in all angles is small for 

both quiet and active conditions which indicates that the attitude estimations are not 

severely affected by the geomagnetic disturbances. We can say that using T89 as the 

geomagnetic model improves the attitude predictions at least 0.01 % over using IGRF 

depending on the sensor configurations and reduces the errors in all attitude angles. 

Especially during the active days, this improvement is noticeably clear.  As a result of 

these comparisons, whether the IGRF model or T89 model should be used when 

calculating the attitude angles at LEO altitudes depends on the intended accuracy of 

the attitude angles determined by the mission requirements. If the computational load 

on on-board computers of the satellite is considered, then one may use the conventional 

model IGRF as the geomagnetic field model of the satellite attitude since its model 

inputs are simpler.  We showed that although small, the errors and the performance of 
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attitude estimation methods depend on which geomagnetic field model is used, i.e. 

whether it is IGRF or T89 in this case.  We suggest that the most recent modeling 

techniques, such as T89, will be still an advantage when determining the attitude 

angles even during the undisturbed conditions, but more so under disturbed conditions. 

Overall evaluation for IGRF indicates that the model produces larger errors in attitude 

angles during active days with respect to the quiet days for all four sensor 

configurations.  On the second hand, adding other sensors seem to improve the errors 

resulting from the disturbances superimposed on the quiet time background 

geomagnetic field. 

In this study, we also calculate the performance of the models with different sensor 

configurations as scenario 1, scenario 2, scenario 3, and scenario 4.  Adding gyroscope 

to the magnetometer to improve the attitude angles does not make a considerable 

reduction in the errors during quiet times in all attitude angles.  However, adding sun 

sensor improves the errors at these times. Table 6.2 indicates that the gyroscope 

reduces the errors by about 0.07% on average for all attitude angles with respect to 

scenario 1.  Also, it reduces the errors by 0.02% in scenario 4 with respect to scenario 

3. The sun sensor in scenario 3, on the other hand, reduces the errors by about 1.4% 

on average with respect to scenario 1; and by 1.3% in scenario 4 with respect to 

scenario 2.  All sensors scenario has the smallest errors for the quiet days.  However, 

the decrease in error is not due to the presence of gyroscope but the presence of sun 

sensor in this scenario.  The use of gyroscope sensor in spacecraft attitude becomes 

more important in the absence or failure of the sun sensors.  Earth’s shadow or the 

eclipse period creates such unfavorable space conditions. To prevent the satellite from 

the effects of the eclipse, it is very common to use both magnetometers and gyroscope 

together for attitude purposes.  Here, we showed that the gyroscopes do not provide a 

better estimate of attitude angles during the quiet times against using magnetometers 

only. However, using gyroscope during the active times together with magnetometers 

reduces the errors in the prediction of attitude angles. On the contrary to gyroscopes, 

the use of sun sensors makes a large improvement in reducing the errors in the 

estimated attitude angles during both quiet and active times. Between IGRF and T89 

models, our comparisons show that using the T89 model in all scenarios, slightly but 

still, improves the estimated attitude angles.  The only disadvantage that this will bring 

may be the increase in the computational load on the onboard computers. 
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 Conclusions 

In this study, the geomagnetic field models that are used to estimate the geomagnetic 

fields and satellite attitude angles are studied during the geomagnetically active and 

quiet days.  It is the first time that the attitude angles (yaw, pitch, and roll) are studied 

using a global empirical model, the T89 model, of the magnetosphere which takes into 

account the magnetic disturbances resulting from the magnetospheric substorms 

and/or geomagnetic storms and compared with the results from the more conventional 

model, IGRF.  Our analysis showed that the angles between the geomagnetic field 

vectors estimated by the models increases as the geomagnetic activity increase from 

quiet levels ( )0pK =  to strongly active days ( )6pK ≥  and it increases more over the 

high latitudes than over the equatorial regions especially during the strong activity 

days for 6pK ≥ .  Similarly, it is shown that the magnetic field disturbances estimated 

from T89 at LEO are higher during the high geomagnetic activity as the satellite 

altitude becomes higher. Since this angle is one of the inputs in the estimation of the 

satellite attitude angle by EKF, the satellite attitude angles will be sensitive to its 

variations.  Thus, it is expected that the attitude angles will increase as the geomagnetic 

activity enhances, especially at the high latitudes and at high altitudes. 

Secondly, we show that although small, differences occur between the estimated 

attitude angles using T89 and IGRF models during the active days.  When we analyze 

the magnetometer only case, we found that the errors in the predicted attitude angles 

using the IGRF model are larger than the errors obtained by using the T89 model.  We 

also showed that the T89 model estimates smaller errors in the EKF estimated attitude 

angles during the active days.  The largest errors are obtained for pitch and yaw angles 

during both quiet and active days. 

Additionally, we used traditional EKF to estimate the attitude angles for different 

sensor configurations including magnetometer, sun sensor, and gyroscope for quiet 

and active times.   We studied if the addition of other attitude sensors on board will 

change the accuracy of the estimated attitude angles during both quiet days and active 

days.  We showed that the highest errors in the estimated attitude angles are obtained 

for magnetometer only and magnetometer plus gyroscope scenarios during the quiet 

days.  Also, we found that during the quiet days, while the presence of sun sensor 

reduces the errors in the estimated attitude angles, the gyroscope has less effect in the 
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reduction of the errors. During the active days, while all scenarios give small errors, 

the magnetometer only and magnetometer and gyroscope scenarios show markedly the 

highest errors.  The errors resulting from the geomagnetic disturbances are reduced 

drastically after we added the sun sensor measurements into the system. The most 

accurate results with the smallest errors are obtained for all sensor scenario. In this 

case, the predicted attitude angles are significantly improved and obtained close to the 

actual attitude angles. This study emphasizes the importance of the effects that the 

magnetic disturbances will have on the attitude angles and helps to choose the right 

sensor combination during both quiet and disturbed times for better attitude estimation. 
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 ATTITUDE ESTIMATION WITH ALBEDO INTERFERENCE ON SUN 

SENSOR MEASUREMENTS* 

 Abstract 

A three-axis attitude estimation scheme is presented using a set of Earth’s albedo 

interfered coarse sun sensors (CSSs), which are inexpensive, small in size, and light in 

power consumption. For modeling the interference, a two-stage albedo estimation 

algorithm based on the autoregressive (AR) model is proposed. The algorithm does 

not require any data such as albedo coefficients, spacecraft position, sky condition, or 

ground coverage, other than albedo measurements.  The results are compared with five 

albedo models on the basis of two reference conditions. The estimated albedo is fed to 

the CSS measurements for correction. The corrected CSS measurements are processed 

under three estimation techniques with two different sensor configurations. The 

relative performance of the attitude estimation schemes when using different albedo 

models is examined. 

 Introduction 

Spacecraft instruments need to be oriented to achieve mission directives in space. 

Depending on the mission, there may be strict performance requirements in terms of 

attitude estimation or necessity to a safe-mode operation or sanity checks. For these 

purposes, additional attitude sensors such as magnetometers and sun sensors can be 

utilized with less accuracy but less power need, lower cost, and smaller size. Sun 

sensors are frequently used in both planet-orbiting satellites and interplanetary 

spacecraft missions in the solar system. They can be divided into two classes as fine 

or digital sun sensors (DSSs), and CSSs, which are commonly used in a form of 

photodiodes [7]. CSSs function almost proportional to the cosine angle between the 

                                                 
 
* This chapter is based on the paper “Cilden-Guler, D., Schaub, H., Hajiyev, C., and Kaymaz, Z. 
(2021). Attitude Estimation with Albedo Interference on Sun Sensor Measurements, Journal of 
Spacecraft and Rockets, 58(1), 148-163, doi: 10.2514/1.A34814”. 
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sensor’s boresight and the sun direction vector from the spacecraft. They are often 

used on platforms including multiple CSSs. 

A spacecraft close enough to the sun and a planet receives electromagnetic radiation 

of direct solar flux, reflected radiation namely albedo, and emitted radiation of that 

planet. The solar flux is the largest source of radiation for the spacecraft while the 

albedo is the fraction of sunlight incident and reflected light from the planet. Spacecraft 

can be exposed to albedo when it sees the sunlit part of the planet (Figure 7.1). 

 

Figure 7.1 : Illustration of considered radiation sources on a spacecraft. 

The albedo values vary depending on the seasonal, geographical, diurnal changes as 

well as the cloud coverage. The most reflectance is caused by thickest, highest clouds 

while the least by snowing clouds [71]. The CSS not only measures the light from the 

sun but also the albedo of the planet [8]. So, a planet’s albedo interference can cause 

anomalous sun sensor readings. According to Reference [9], albedo might worsen the 

sun pointing accuracy by more than 20 degrees. On the other hand, albedo might be 

an important factor in selecting the characteristics of optical-sensor systems such as 

cameras or star trackers, and in spacecraft thermal and power design. For example, 

Reference [72] underlines that the thermal control system on the spacecraft must 

consider the light reflectance and emittance of the planets as it causes a highly dynamic 

variation in thermal load. Another study on a spacecraft thermal analysis is carried out 

in order to evaluate the thermal conditions for temperature stability of sensitive 
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instruments and radiators by using the albedo data from NASA's Clouds and Earth 

Radiant Energy System (CERES) instruments [73]. 

The mathematical model of the sun sensors can include diffusive and specular 

reflections from the planet which represents the perturbed sun sensor measurements. 

In Reference [74], perturbed sun sensor measurements are validated by the telemetry 

data of the Ørsted satellite. The currents of the modeled CSSs are improved about three 

times more than the case not including any albedo model on the measurements in 

Reference [74], and four times in Reference [75]. A sun heading estimation algorithm 

is also applied by Reference [76] using the extended Kalman filter (EKF). The sun 

direction is estimated with accuracy under 4-degrees based on albedo interfered CSS 

and rate gyro (RG) measurements, and 10 degrees without RGs despite the fact that an 

underdetermined sun sensor coverage is considered in the study [76]. 

References [77] and [78] present extended consider Kalman filter based on modified 

Rodrigues parameters (MRPs) for CSS calibration. The presented filters require 

inertial attitude measurements but it gives scale factor accuracy less than 1% and 

misalignment accuracy about 1-degree even under poor attitude knowledge. Another 

calibration filter is proposed for photodiodes through the estimation of attitude and 

calibration parameters simultaneously [79]. An arbitrary number of photodiodes along 

with an albedo model, are calibrated using both an EKF and an unscented filter. The 

filter estimates improve the sun vector measurements by 10-degrees and attitude by 1-

degree, by combining a three-axis magnetometer (TAM) and RG in the study. In order 

to make the albedo model lighter in computations, two constant albedo coefficients are 

applied rather than various spatial data in Reference [80]. From the analyses, the errors 

are reduced by taking the average albedo coefficient as 0.105 instead of 0.30. Even 

though the presented model provides a significantly better CSS accuracy for most of 

the times than uncorrected outputs, its predictions based on the 0.30 value may 

occasionally overcorrect the CSS. This overcorrection causes an increase in the sensor 

error. It is stated that the detailed mathematical model including the albedo coefficient 

changes depending on the active surface elements can be used for the most accurate 

case but it is computationally expensive for online usage. Reference [80] concludes 

that because of the albedo model complexity, it is more reasonable to use a filter on 

the sun sensor that restricts the sensor not sensitive to the albedo. This suggestion 

might be more suitable for DSSs. In Reference [81], a less complex albedo model is 
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generated via polynomial functions with 13 parameters for each albedo component 

including functions based on latitude and longitude. The polynomial is fitted to the 

reflectivity dataset from Earth Probe's total ozone mapping spectrometer (TOMS) 

instead of using excessive data in look-up tables. The work also estimates the 

spacecraft attitude states with 1-degree accuracy in nominal mode and 2-degrees in 

worst mode by EKF with 0.5% noisy measurements from TAM and corrected CSS.  

The main purpose of our study is to estimate the albedo by using a simple model with 

less parameter dependency than any albedo models and to estimate the attitude by 

comprising the corrected CSS measurements. The estimation process using only the 

CSS platform and using it along with TAM is presented to be considered during the 

sanity checks and/or in the safe-mode operations of spacecraft missions or in the 

validation algorithm of other sensors’ outputs. This aids the mission by making the 

albedo estimates available for the other subsystems. 

As a simple model, the AR albedo model is proposed. Here, the purpose is to estimate 

the albedo without using any data related to albedo coefficients that depend on 

position, time, ground, and cloud coverage parameters. AR model or enhanced 

versions of the AR model are widely used in forecasting geomagnetic storm indices 

and estimating gyro drifts as well as wind speed [157–160] but to the best of our 

knowledge, it is used in albedo estimation for the first time in this study. The CSS 

measurement equations contain disturbances, most notably due to Earth’s albedo, 

which is dependent on too many parameters. Therefore, modeling albedo is complex 

and computationally heavy for online usage. In the meanwhile, the AR is a simple 

model based on only a couple of parameters in accordance with how many 

measurements are used. However, spacecraft’s attitude information is necessary to 

estimate the albedo based on the AR model. So, an attitude estimation procedure is 

also presented using the estimated albedo. Reference [74] indicates that it is possible 

to perform a three-axis attitude estimation by using only CSSs with albedo interference 

but the output equations’ non-differentiability makes the estimation harder. This is 

why the attitude estimation procedure proposed in this study is composed by 

estimating the albedo first and correcting the CSS after. In this way, any albedo model 

is not considered in the last output equations in the attitude estimation filter.  

The remainder of the paper is organized as follows. Section 7.3 presents the albedo 

and CSS mathematical models. The attitude estimation filter and AR model-based two-
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stage albedo estimation filter used in this study are given in Sections 7.4 and 7.5 

respectively. In Section 7.6, the analysis and results of several scenarios for Earth’s 

albedo data, albedo effects on CSSs, possible albedo models, and attitude estimation 

filters are presented and discussed. The last section summarizes and concludes the 

paper. 

 Albedo and Coarse Sun Sensor Modeling 

7.3.1 Mathematical model for a planet’s albedo 

The mathematical model for the total albedo from a planet affecting an instrument (e.g. 

CSS) on a spacecraft is given in this section. The parameters affecting the albedo 

model can be itemized as the attitude and position of the spacecraft, instrument’s field 

of view (FOV), placement of other instruments (that might block/shadow), and albedo 

coefficients related to the several parameters such as ground coverage, seasonal 

changes, and cloudiness. 

The generic vectors can be described as a unit normal vector ( )n̂ , sun heading vector 

( )ŝ , and direction vector from A to B ( )ABr̂ . In Figure 7.2, An̂  and In̂  are the unit 

normal vectors of the differential area ( )dA  on the planet and the instrument cell 

respectively, Pŝ  and Iŝ  are the sun heading vectors of the planet and of the instrument 

cell respectively. Here, the instrument’s position vector from the incremental area is 

AIr  and the unit direction vector is AI
AI

AI

ˆ =
rr
r

. The spacecraft’s direction vector from 

dA  can be expressed as scr̂ . 
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Figure 7.2 : Illustration of the unit normal, sun, and spacecraft heading vectors. 

The differential areas, 

o on the sunlit portion of the planet where ( )P Aˆ ˆ 0⋅ >s n  forming sA  (sunlit 

region), 

o in the instrument’s field of view with a half angle of ∆  where 

( )( )AI Iˆ ˆ cos− ⋅ ≥ ∆r n  forming IA  (instrument FOV region), 

o in the instrument cell’s maximum field of view where ( )AI Aˆ ˆ 0⋅ >r n  forming 

maxIA  (the maximum area that can be seen from the instrument cell), 

o in the spacecraft’s field of view where ( )sc Aˆ ˆ 0⋅ >r n  forming scA  (spacecraft 

FOV region), 

can be used for the total albedo calculations contributing to the instrument or the 

spacecraft. The total area that is sunlit and visible to the instrument results in 

s IA A A≡ ∩  (see Figure 7.3). 
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Figure 7.3 : Illustration of the observed illuminated area. 

The solar flux reaching a point is found as ( )sun ˆ ˆF ⋅s n  in 2W m  when using the generic 

vectors. So, the solar flux reaching the incremental area ( )inF  is [8], 

 ( )in sun P Aˆ ˆ ,F F= ⋅s n  (7.1) 

where sunF  is the solar constant at the top of the atmosphere. The mean value of the 

solar flux at the mean distance of the sun-planet is called solar constant which slightly 

changes depending on the solar cycle and the planet’s distance from the sun. The solar 

constant value for Earth is 21366.1 W m . The incoming solar flux is both absorbed 

and reflected partially. The reflected portion is proportional to the albedo coefficient 

( )α  as, 

 

( )
out in

sun P Aˆ ˆ .
F F

F
α
α

=

= ⋅s n
 (7.2) 

Using the conservation of energy [8], the irradiance due to the planet’s albedo at the 

spacecraft’s position is,  
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 ( ) ( ) ( )P A AI A AI Isun
2

AI

ˆ ˆ ˆ ˆ ˆ ˆ   
d ,

A

FF Aα

α
π

⋅ ⋅ − ⋅
= ∫∫

s n r n r n
r

 (7.3) 

where sunF  is the solar constant at the top of the atmosphere, Pŝ  is the sun heading 

vector of the planet, An̂  and In̂  are the unit normal vectors of dA  and the instrument 

cell respectively, AIr̂  is the unit direction vector to the instrument from dA . equation 

(7.3) is rewritten in a summation form in order to obtain a discrete version as [161], 

 

 ( ) ( ) ( )P A AI A AI Isun
2

1 AI

ˆ ˆ ˆ ˆ ˆ ˆ   
,

NA

i i i i

i
i

FF Aα

α

π =

⋅ ⋅ − ⋅
= ∆∑

s n r n r n

r
 (7.4) 

where AN  is the number of differential areas ( )A∆  inside the intersectional area, A . 

7.3.2 Albedo coefficients 

Albedo coefficient ( )α  is the ratio of the reflected and incoming solar radiation over 

a unit area that ranges from zero to one. As it is described in the previous section, the 

data is required to comprise albedo based on latitude and longitude of a planet and it 

might optionally include information of date/time, cloudiness, etc. The most reflective 

planet in the solar system is Venus by its global Bond albedo around 0.76 [162]. The 

Earth’s average albedo evolved over time but converged to 0.29 in the mean in the last 

40 years, and had only 0.2% interannual variability on global mean albedo [163]. In 

order not to model a complex albedo close to the real case which depends on many 

parameters as discussed, a constant global albedo coefficient can be used. However, 

the use of this kind of straightforward planet interference might be insufficiently 

accurate [80]. 

In order to determine the total albedo affecting the instrument, the planet should be 

divided into grids based on the albedo data size. Figure 7.4 shows an illustration of the 

albedo contributions from each grid element within the field of view to the instrument. 

The albedo data might include irregularities in the latitude and longitude (see Figure 

7.5). The grid elements to be considered can be determined using their central points. 

The grid element with the central point within the field of view can be considered as 
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an active element. In Figure 7.5, regular and irregular grid examples are given. Even 

the area seen is the same (red elliptical area), the active grid elements to be used (blue 

rectangular areas) for the calculations differentiate. Another method to apply here is 

to utilize an interpolation technique [164] such as inverse distance weighting, kriging, 

bi-cubic, nearest-neighbor, etc. so as to use the exact area of interest in the calculations. 

It is also possible to convert the irregular grids into the regular version. 

 

Figure 7.4 : Illustration of the albedo influence on an instrument from observed 
incremental areas of a planet. 

 

Figure 7.5 : Illuminated field of view area with regular (a) and irregular (b) grid 
examples. 
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The albedo data of Mars can be obtained from the instrument Thermal Emission 

Spectrometer (TES) on the Mars Global Surveyor (MGS) spacecraft launched in 1996. 

The data has irregularities in the sense of latitude and longitude intervals. 

The Earth’s albedo data can be obtained from the instruments such as TOMS and 

CERES. The TOMS measures the albedo of the Earth's atmosphere in the near-

ultraviolet region. The data are mapped with a grid size of 180 x 288 and a latitude and 

longitude resolution of 1  1.25 .×   The most recent data are obtained from the Earth 

Probe mission between 1996 and 2006. The CERES shares the albedo data up to with 

1  1×   resolution with surface albedo or top of the atmosphere (TOA) albedo options 

under clear-sky and all-sky conditions. The clear-sky monthly mean TOA fluxes from 

CERES are provided completely cloud-free according to moderate resolution ımaging 

spectroradiometer (MODIS) data with 1-km resolution [165,166]. There are several 

satellites having CERES instrument on board such as the tropical rainfall measuring 

mission (TRMM), Terra, Aqua, Suomi NPP, and NOAA-20. Terra and Aqua satellites 

have two CERES instrument pair to provide an enhanced product quality. The hourly, 

daily, and monthly satellite pair (Terra-Aqua) data are available starting from 2002. A 

sample of Earth’s albedo coefficient data from CERES averaged over 2018 is 

presented in Figure 7.6. 

 

Figure 7.6 : Albedo coefficients averaged over CERES 2018 monthly data under 
clear-sky (a) and all-sky (b) conditions. 

 

 

 



145 

7.3.3 Modeling of coarse sun sensor measurements in the presence of albedo 

As the CSS senses any light received, the light reflected from a celestial body will also 

affect the sensor. Here, one celestial body is considered close enough to a spacecraft 

for modeling the CSS measurements without having any blockage to the sensor’s FOV 

from the structural components of the spacecraft. Adding more than one celestial body 

to the simulations is possible by adding another albedo summing term. The structural 

blockage can be avoided at the design stage or modeled in the FOV of the CSS. The 

process of simulating the CSS readings excited by the planet’s albedo is given in 

Figure 7.7. 

 

Figure 7.7 : The process for simulating the CSS albedo readings. 

The output current of CSS is proportional to the angle between the sensor’s boresight 

and the direction of the light source in general [8]. By using the solar irradiance 

formula on an instrument as ( )sun I Iˆ ˆF ⋅s n , the output current generated from CSS can 

be expressed as, 

 
 

( ) ( ) ( )( )sun
max I I P A I I

cal

ˆ ˆ ˆ ˆ ˆ ˆif  0   cos

0 otherwise
d

FI
FI

 ⋅ ⋅ > ∩ ⋅ ≥ ∆= 


s n s n s n
 (7.5) 

where calF  is the calibration flux determined during ground testing, maxI  is the possible 

maximum output current of CSS. The current of CSS contributed from albedo is 

written as [74], 
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The resulting CSS current gives, 

 
 ,d CSSI I Iα ε= + +  (7.7) 

where CSSε  is zero-mean Gaussian noise on the measurements. One might need to use 

voltage outputs depending on the given instrumental datasheet. The voltage output can 

be calculated in a similar manner by including the maximum voltage of CSS, maxV  

instead of maxI  in calculating dV  and Vα . The resulting voltage of CSS is, 

 
 .d CSSV V Vα ε= + +  (7.8) 
 

The presented CSS readings in a current or a voltage format belong to only one 

photodiode and the calculations need to be repeated for as many photodiodes as are 

available. 

  Gaussian Estimation Filters 

The general estimation state-space problem is expressed as, 

 ( )1 ,k k kf −= +x x w  (7.9) 

 ( ) ,k k k kh= +y x ε  (7.10) 

where ( )f ⋅  is the system and ( )h ⋅  is the measurement function, kx  is the state vector 

at a time kt , kw  is the zero-mean Gaussian noise vector with the covariance of Q , ky  

is the measurement vector, and kε  is the zero-mean Gaussian noise vector with the 

covariance of kR . The initial state is 0x  with mean 0μ  and covariance 0P ; its 

probability density function (PDF) can be denoted as ( ) ( )0 0 0 0p N , .=x x μ P  

Approximations based on Kalman filtering can be represented using the Gaussian filter 
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(GF) technique [109]. This technique uses the parameters , k kμ P  in 

( ) ( )1:p | N ,k k k k k=x y x μ P  for the distribution of state estimation by two stages. The 

first stage is composed of predictions using the system function to determine the 

predicted mean, 

 ( ) ( )1 1 1 1 1N , ,k k k k k kf d−
− − − − −= ∫μ x x μ P x  (7.11) 

and the predicted covariance, 

 ( )( ) ( )( ) ( )1 1 1 1 1 1 1 1N , .
T

k k k k k k k k kf f d−
− − − − − − − −= − − +∫P x μ x μ x μ P x Q  (7.12) 

The second stage updates the predictions using the measurements as,  

 ( ) ( )ˆ N , ,k k k k k k kd− −= ∫y h x x μ P x  (7.13) 

 ( ) ( )( ) ( )ˆ N , ,
T

k k k k k k k k k kd− − −= − −∫Ψ x μ h x y x μ P x  (7.14) 

 ( )( ) ( )( ) ( )ˆ ˆ N , .
T

k k k k k k k k k k kd− −= − −∫Φ h x y h x y x μ P x  (7.15) 

The innovation can be found as, 

 ˆ ,k k k= −e y y  (7.16) 

with the innovation covariance, 

 ,k k k= +S Φ R  (7.17) 

which is used in constituting the Kalman gain as, 

 1.k k k
−=K Ψ S  (7.18) 

Finally, the posterior mean and the associated covariance can be found as: 

 ,k k k k
−= +μ μ K e  (7.19) 

 ,T
k k k k k

−= −P P K S K  (7.20) 
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The integrals given in equation (7.11) to (7.15) can be approximated using different 

Kalman-type filters [110,111]. The attitude of a spacecraft can be estimated using 

conventional approaches, namely, the EKF [10] or unscented Kalman filter (UKF), 

which is derivative-free [11], based on nonlinear system and measurement functions 

defined in equation (7.9) – (7.10). An EKF is used in this study and the attitude is 

represented using modified Rodrigues parameters (MRPs) indicated with /B Rσ  symbol, 

which is in body coordinates with respect to the reference (inertial) coordinates 

[2,167]. 

Another approach is using deterministic attitude determination techniques called 

single-frame methods (SFMs) as a sub-step in order to make the attitude part of the 

measurements linear with respect to the states [4,12,13,84,168]. The SFM based 

preprocessing step is also implemented before the update stage of the filter by 

minimizing Wahba’s loss function [15], 

 ( ) [ ] 21 ,
2 k k kk j j jk

j
L BR= −∑Α a b r  (7.21) 

where [ ]BR  is the direction cosine matrix from reference coordinates to body 

coordinates, ja  is the inverse variance of the sensor j , jb  is the sensor observation 

vector in the body coordinates, and jr  is the measurement model vector in the 

reference coordinates. The attitude can be determined by SFM and used in the 

Gaussian filters as linear attitude measurements. The loss function can be minimized 

using one of the SFM methods namely SVD, QUEST, q, FOAM, etc. [4,96]. 

The attitude measurements from SFM is, 

 ,k k k= +y Hx ε  (7.22) 

where the part of the measurement matrix corresponding to the attitude states is an 

identity matrix, ky  is the attitude measurements with covariance kR  which is updated 

inherently by SFM. The innovation in equation (7.16) is replaced by, 

 ˆk k k= −e y y  (7.23) 

and equation (7.17) by, 
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 .T
k k k

−= +S HP H R  (7.24) 

SFM-aided Kalman filters are expected to benefit from having the initial attitude 

determined by SFM, especially for the transient region of the estimations. According 

to Reference [4], the singular value decomposition (SVD) method is faster than the q 

method and more robust than the computationally fast methods e.g. FOAM and ESOQ 

[88]. In this regard, SVD, SVD-aided EKF, and conventional EKF estimation methods 

are implemented in the computer simulations in this work. 

7.4.1 Measurement models of the attitude sensors 

In this study, a spacecraft is considered to have two or three measurement sensors out 

of CSS, TAM, and RG, since these sensors are commonly used for spacecraft missions.  

Each CSS can be modeled using equation (7.7), which gives the current generated by 

one CSS in the body frame. For the platform, the sun direction measurement vector 

can be obtained as, 

 css

css css
1

ˆ ,
N

ii
i

I
=

= ⋅∑y n  (7.25) 

where cssˆ
i

n  is the unit normal vector of the thi  CSS cell and cssN  is the number of 

CSSs. 

TAM measurements can simply be modeled as, 

 [ ]tam model tam ,BN= +B B ε  (7.26) 

where [ ]BN  is the direction cosine matrix from inertial to the body frame, tamε  is the 

zero-mean Gaussian magnetometer measurement noise vector, and modelB  is the 

magnetic field model outputs, such as those of the ınternational geomagnetic reference 

field (IGRF), world magnetic model (WMM), dipole model, etc. [6,169]. IGRF is used 

for this work. 

Rate gyros are used in order to model the angular velocity of the spacecraft. The 

measurements can be modeled as, 

 ,RG BN RG= +ω ω ε  (7.27) 
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where RGω  are the body measured angular rates based on the spacecraft dynamics 

model angular velocity BNω  of the body frame with respect to the inertial frame, and 

RGε  is the zero-mean Gaussian gyroscope measurement noise vector. 

  Two-Stage Albedo Estimation Filter using Auto Regressive Model 

This section presents a two-stage estimation using AR time-series approximation for 

the planet’s albedo estimation. The AR model is based on a simple summing term, 

which uses a number of previous measurements, and a noise term as, 

 ( )
1

,
p

k i k i k
i

z zϕ ε−
=

= +∑  (7.28) 

where kz  represents one component of the albedo measurements (the difference 

between the sun sensor measurements in the body frame, and the sun direction model 

transformed into body frame using the spacecraft’s attitude information), ϕ  is the 

model parameters, p  is the number of previous measurements to be used, and kε  is 

the zero-mean Gaussian noise. Akaike criterion (AIC) can be used to determine the 

order of the AR model [170]. The first stage estimates the AR model parameters using 

the recursive least squares (RLS) method. By substituting the collected measurements 

of kz , the matrix form of the measurement equation can be expressed as, 

 ,k k k kY ε= +Z Φ


 (7.29) 

where k kY z= , [ ]1 2 1k k kz z z− −=Z  , [ ]1 2 1
T

k kϕ ϕ ϕ −=Φ 


. The formula for 

the estimation of the model parameters can be written as [159], 

 ( )1 .k k k k k kY+ = + −Φ Φ Ξ Z Φ
  

 (7.30) 

Here, the scaling ( )kΞ  in the correction term is determined by, 

 1 ,
1

T
k k kT

k k k

=
+

Ξ Γ Z
Z Γ Z


 

 (7.31) 

where 

 ( ) 1
.T

k k k

−
=Γ Z Z   (7.32) 

The model parameters ( )1k +Φ


 estimated from equation (7.30) can be used in the 

second stage. The linear system is defined as [159], 
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1 ,k k k k k−= +X F X B U  (7.33) 

and the measurement is, 

 .k k k= +Z HX V  (7.34) 

where 1 1 1

T

k k k k p p
z z z− − + ×

 =  X   is the state vector, [ ]1
0 0 T

k k p
ε

×
=U   is the 

zero-mean Gaussian noise vector with the process noise covariance matrix ( )Q


, kV  

is the zero-mean Gaussian noise vector with the measurement covariance matrix ( )R


, [ ]1
1 0 0

p×
=H   is the measurement matrix, and kF  and B  are given as: 

 1 2

1 0 0
,

0 0 0 0

p

k

p p

ϕ ϕ ϕ

×

 
 
 =
 
 
 

F





   
 (7.35) 

 
 1 0 0

0 0 0
.

0 0 0 p p×

 
 
 =
 
 
 

B





   



 (7.36) 

 

The Kalman type filtering algorithm based on the defined system and the measurement 

functions estimate the albedo state vector using the same procedure described in the 

previous section defined the equation (7.16) – (7.20). The innovation in equation (7.16) 

is replaced by, 

 .k k k
−= −e Z Hμ  (7.37) 

The innovation covariance in equation (7.17) is replaced by, 

 .T
k k

−= +S HP H R


 (7.38) 

Finally, the Kalman gain in equation (7.18) is replaced by, 

 1,T
k k k

− −=K P H S  (7.39) 

for representing the Kalman filtering of the second stage estimation. By using the two-

stage estimation form, the albedo of a planet can be estimated at each time step. 
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  Analysis and Results 

7.6.1 Earth’s albedo data and sun sensor measurements 

Eleven years of synoptic TOA and surface fluxes and clouds (SYN) 4.1 edition of 

Terra-Aqua satellite pair CERES data product is used with 1  1×   global grid of Earth. 

The global albedo for 11 years from 2008 to 2018 is presented using box plots for each 

month in Figure 7.8 under clear-sky and all-sky conditions. The small range of the box 

plots of each month demonstrates that the interannual albedo does not significantly 

change over the years for any month. While the averages slightly change or do not 

differ in years, values depending on the month grossly vary under both sky conditions 

with a similar trend. Especially the months between May and August, and the rest of 

the months are highly different than each other. The trend of the plots is similar for the 

clear-sky and all-sky cases. The lines on the figures are Fourier series model-based 

fitted curves to the mean values from the box plots of each month identified as the red 

color for the all-sky condition and blue for the clear-sky. All-sky condition is almost 

as twice as the clear-sky albedo averages. From the data, the global average of the 

albedo over the years and months is found to be about 0.23 under clear-sky and 0.37 

under the all-sky condition. 

The albedo coefficients given in Figure 7.9 are 11-year (2008-2018) averaged over 4 

consecutive seasons as Season 1 (December-January-February), Season 2 (March-

April-May), Season 3 (June-July-August), and Season 4 (September-October-

November). The values are distributed based on the data under clear-sky and all-sky 

conditions globally. The albedo differentiates globally with the seasonal changes and 

with the sky conditions. The coefficients for each season and sky condition are 

presented by the maps prepared using the Hammer–Aitoff projection [171]. The null 

grids are shown with the white color, which is not excessive for the monthly mean 

data, and the continents with the black lines. In this way, the albedo dependency on 

the land coverage can be realized, which is more noticeable in the clear-sky condition 

than the all-sky. Because the cloud cover in the all-sky case causes the neighboring 

regions having similar albedo and reduces the ground cover effects. In addition to the 

cloud formations, the highest reflectivity are observed in the polar regions and 

Greenland [81]. 
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Figure 7.8 : Monthly albedo box plots for 11 years under clear-sky (bottom) and all-
sky (top) conditions. 

The albedo coefficients in Table 7.1 and Table 7.2 are also 11-year averaged values 

using spatial and seasonal scales. The spatial scales include global, tropics, polar, and 

midlatitude regions at the north (N) and south (S) hemispheres, while the seasonal 

scales have four-time intervals as described. The values are averaged based on clear-

sky (Table 7.1) and all-sky (Table 7.2) conditions. The cells with no data are ignored 

in the averaging process. Several remarks can be itemized by looking at the albedo 

variations as, 

o The maximum averaged albedo is at the polar regions under all cases. 

o Albedo is the most effective in boreal winter (December-January-February) in the 

northern hemisphere and in austral winter (June-July-August) in the southern 

hemisphere under all cases. 

o The peak values are found in the same spatial regions under the all-sky condition 

(minimum at the tropics and maximum at the polar south region). 

o The peak values are found in slightly different spatial regions under clear-sky 

conditions. 

o All values are greater in the all-sky case comparing to the clear-sky. 
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o The look-up table can be implemented for attitude estimation purposes by dividing 

the planet into spatial regions and seasonal periods for less computation instead of 

using every grid on the planet over several years. 

Table 7.1 : 11-year averaged albedo coefficients over regions and seasons indicated 
(Clear-sky). 

Averaging Scale 
Season 1 Season 2 Season 3 Season 4 

Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov 

     
Global 0.3017 0.2999 0.2704 0.2852 
Polar North  

( )60 90  N−   

0.5310 0.5068 0.3093 0.4224 

Midlatitude North 

( )30 60  N−   
0.2602 0.1798 0.1370 0.1792 

Tropics  

( )30  N 30  S−   

0.1210 0.1178 0.1195 0.1177 

Midlatitude South 

( )30 60  S−   
0.1017 0.1476 0.1779 0.1165 

Polar South  

( )60 90  S−   

0.4947 0.5475 0.6082 0.5905 



155 

 

 

 

 

 

Figure 7.9 : 11-year averaged global albedo coefficients over 4-seasons under clear-
sky (left) and all-sky (right) conditions. 
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Table 7.2 : 11-year averaged albedo coefficients over regions and seasons indicated 
(All-sky). 

Averaging Scale 
Season 1 Season 2 Season 3 Season 4 

Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov 

     
Global  0.4346 0.4270 0.4110 0.4252 
Polar North 

( )60 90  N−   
0.5910 0.5692 0.4636 0.5461 

Midlatitude North 

( )30 60  N−   
0.4309 0.3465 0.3016 0.3536 

Tropics 

( )30  N 30  S−   
0.2350 0.2242 0.2361 0.2315 

Midlatitude South 

( )30 60  S−   
0.3205 0.3687 0.3986 0.3414 

Polar South 

( )60 90  S−   
0.5955 0.6261 0.6550 0.6535 

For analyzing the effects of Earth’s albedo on CSS measurements, it is possible to use 

an arbitrary year rather than the exact year of spacecraft flight since the average values 

do not differ significantly in years by referring to Figure 7.8. The data sample averaged 

over an arbitrarily chosen year, 2018 is employed (Figure 7.6). A scenario is performed 

for observing the albedo effects on the CSS measurements particularly. 

Here, CSS platforms are put on every face for convenience in Earth's albedo 

observation. Photo-diode placements on each CSS platform are illustrated in Figure 

7.10 in platform coordinates { }1 2 3ˆ ˆ ˆ, ,p p p . Each CSS has o60∆ =  half field of view 

angle and is assumed to read a maximum of 1 A under direct sunlight. 

 

Figure 7.10 : Illustration of CSS placement on each platform. 
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For the first spacecraft setup, a fixed craft with no rotational dynamics is placed on the 

Sun-Earth line at 800 km altitude for simplicity in observing the CSS outputs. In Figure 

7.11, the positions of the sun, spacecraft, and Earth are illustrated without scaling. In 

this scenario, a symmetrical behavior might be expected in CSS platform outputs on 

spacecraft-face-counterparts in terms of only sun exposure except for +x  and -x  

directions. Here, +x  is pointing to the sun, and -x  to Earth. However, albedo also 

excites the CSS. The satellite faces are numbered respectively for +x, +y, +z, -x, -y, -z  

directions in Figure 7.11. 

 

Figure 7.11 : Illustration of sun, spacecraft, and Earth positions for Scenario 1. 

For the analysis, Face 4 ( -x  direction) of the satellite, which is exposed only to Earth's 

albedo and not to the sun, is used. In order to inspect the parameter dependence of 

albedo, two parameters, 

o Altitude 

o Longitude 

are tested by differentiating one parameter and fixing the others. The field of view of 

each CSS on Face-4, in which the outer frame is marked with a black line, can be seen 

in Figure 7.12. The base albedo map behind each region is the left panel (a) of Figure 

7.6. 
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Figure 7.12 : CSS field of views on Face 4 of the satellite at 800 km altitude. 

For better illustrative analysis, CSS-1 on Face-4 is presented. The CSS field of view 

region in the sunlit area of the planet in Figure 7.13 is marked with the colored base 

albedo map. The observed area is getting larger with rising altitude. However, even 

the observed area is getting larger, the current readings of each CSS caused by the 

albedo -without any noise on the sensor- decreases and converges to zero when going 

up from 500 km to 20,000 km altitude (see Figure 7.14) because of the inverse square 

law of the light intensity. 

It is known that there is a large dependency on the latitude, but it is sometimes assumed 

that only a small dependency on longitude [9,81,172]. In order to inspect this 

assumption, the longitude dependency of the albedo on a CSS is examined for both 

cases (clear-sky and all-sky). CSS readings depending on the longitude changes are 

seen in Figure 7.15 for { }60 N, 30 N, 0 , 30 S, 60 S      latitudinal lines. Even it is 

expected to have similar current readings caused by albedo when differentiating the 

longitude at high latitudes, outputs on the Panels 1 and 5 of the figures still highly 

depend on the longitude change of the spacecraft. In fact, 0  latitude differs the least 
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in the clear-sky case. The standard deviations are calculated respectively as 

[ ]clear 0.018    0.006    0.004    0.012    0.018σ =  for clear-sky condition, and 

[ ]all 0.017    0.005    0.014    0.011    0.018σ =  for all-sky. However, there is no regular 

trend seen for differentiating longitudes on the same latitude line; therefore, their 

effects need to be taken into account. The results from this examination are special to 

our case but point out that the albedo value at the instrument depends on the longitude. 

There might be some cases where the albedo is having almost a constant value on a 

latitude line or a region if several conditions meet simultaneously which is a rare case. 

 

Figure 7.13 : CSS-1 field of view on Face 4 of the satellite at three different altitudes 
(left to right: 500 km, 5000 km, and 10000 km). 

 

Figure 7.14 : Altitude dependent CSS current outputs on Face 4 of the satellite.  
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Figure 7.15 : Longitude dependent CSS-1 current outputs on Face 4 of the satellite 
at 800 km under clear-sky (left) and all-sky (right) conditions. 

7.6.2 Spacecraft’s attitude estimation using earth’s albedo interfered sun 

sensors 

In the second setup, the simulations are performed for a spacecraft with the principal 

moment of inertia [ ] 2diag 0.055 0.055 0.017  kg mI =  on an almost circular near-

Earth orbit with 730 km average altitude and with inclination o96.5i = starting on 

2018 March 1 or 2018 June 1 at 00:00 UTC. The spacecraft is tumbling during the 

simulations on an orbit propagated by employing the simplified general perturbation 

version 4 (SGP4) model introduced by Reference [121]. The sun direction is 

formulated using the model presented by Vallado [103]. The CSSs are processed at 1 

Hz and corrupted by Gaussian zero-mean noise with a standard deviation of 2% 

(unitless).  

The first part of this section is devoted to analyzing the albedo estimation using 

different albedo models. For this purpose, the models are divided into roughly two 

different categories of albedo data-based models (empirical albedo models), and the 

AR albedo model. The estimation procedures for each model category can be seen in 

Figure 7.16 (a) and (b) respectively. The attitude information for the sun direction 

vector transformation from inertial to body frame is assumed to be estimated by using 

star trackers with 1 arc second accuracy without considering any misalignments on the 

sensors. In Figure 7. 16 (a), the albedo estimation procedure is based on the model 

requiring to find the sunlit area within the field of view of the sensor and to obtain the 

albedo coefficient data. Albedo estimation based on the AR model on the other hand 

does not require any of this information but a two-stage estimation. AR albedo model 
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is also tested for a one-stage estimation filter but the results were not promising so that 

only the two-stage estimation filter based on the AR model is proposed to be used for 

albedo estimation. The estimation procedures utilize the albedo measurements 

generated by the difference between the CSS’s sun direction measurement vector and 

the modeled sun direction vector transformed into the body frame. However, as the 

albedo measurements are dependent on the CSS measurements directly, possible 

sensor-related continuous or time-varying biases will be treated as part of the albedo 

as well. 

 

Figure 7.16 : Albedo estimation procedure based on albedo data based models (a) 
and AR albedo model (b). 

The considered albedo models are presented in Table 7.3. The first two rows list the 

reference models used in creating the CSS measurements and the rest are selected to 

see the differences of the model outputs with respect to the references. More than 11 

years of CERES albedo coefficient data of Earth is available for the public. So, the 

first reference model is based on one month-averaged data over March 2018 for the 

clear-sky condition while the second reference averaged over the 11 years of data from 

2008 to 2018 for July under clear-sky. The first five albedo models are named by 
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sequential numbers and produced using CERES data or a constant value, and the last 

row shows the AR albedo model. Model 1 uses the albedo data averaged over March 

2018 under all-sky. Model 2 uses the albedo data averaged over the whole year of 2018 

under clear-sky. Model 3 uses the lookup table presented in Table 7.1. Model 4 and 5 

are based upon the given constant values. Model 3 differs according to which spatial 

region of the instrument is looking at and in which season the spacecraft is flying. The 

references are based on two different months in our case, so Model 3 uses two seasons 

from the lookup table as Season 2 and 3 corresponding to Reference Models 1 and 2 

respectively. 

The albedo model outputs of Reference Model 1 and 2 are given for three orbits in 

Figure 7.17. There is no albedo contribution during the eclipse, as seen from the figure. 

Therefore, a portion of the simulation is analyzed. The first 1000 seconds are selected 

to be analyzed as the differences between the two reference models are more distinct. 

The albedo model outputs from several albedo models are presented in Figure 7.18 for 

comparing each one of them with Reference Model 1 on the left panel and Reference 

Model 2 on the right. As the same condition and configuration for the spacecraft and 

instrument are used, Models 1 to 5 do not differentiate from one case to another, except 

Model 3 with different seasonal values. From the results, it can be said that only the 

AR albedo model follows the reference models for both cases. Among the other albedo 

models, Model 4, which uses a constant albedo value 0.29α =  over all spatial points 

on Earth, is superior under Reference Model 1 case, and Model 2 under Reference 

Model 2 case. 

A complementary table is composed of albedo root mean square (RMS) error and the 

computational time for each model in Table 7.4. The RMS errors are calculated based 

on the albedo model outputs and the estimations with respect to the Reference Models. 

The RMS errors confirm the results of Figure 7.18. Albedo data-driven models are also 

processed under a conventional estimation filter in order to make a fair comparison 

with the AR albedo model, which is based on a two-stage estimation. The albedo 

estimations based on Models 1 to 5 give more than three times better accuracy than 

the AR model-based estimations. However, Models 1 to 5 depend on many parameters, 

unlike the AR model. In the meantime, the computational burden is lighter when it 

comes to the AR model as seen in Table 7.4. AR model does not require any data 
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processing at the beginning, and the total processing and estimation speed is around 

six times faster than the others. 

Table 7.3 : Details of the models used for albedo estimation. 

Model Name Albedo 
Data Average Type Sky 

Condition 
Additional 
Information 

Reference Model 1 

(Ref 1) 
CERES 

Monthly Average 

March 2018 
Clear Sky - 

Reference Model 2 

(Ref 2) 
CERES 

Monthly Average 

July 2008 - 2018 
Clear Sky - 

Model 1 CERES 
Monthly Average 

March 2018 
All Sky - 

Model 2 CERES 
Yearly Average 

2018 
Clear Sky - 

Model 3 CERES 
Yearly Average 

2008-2018 
Clear Sky 

Lookup table based 
on spatial and 
seasonal regions 
(see Table 7.1). 

Model 4 Constant - - 0.29α =  

Model 5 Constant - - 0.15α =  

AR Model - - - 

No need to find the 
sunlit FOV area 

Model parameters 
to be estimated first 

 

Figure 7.17 : Albedo model outputs of Reference Model 1 and 2 for three orbits. 
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Figure 7.18 : Albedo model outputs of several models comparing to Reference 
Model 1 (left) and Reference Model 2 (right). 

The limitation of the AR albedo model might be caused by inadequate or faulty albedo 

measurements as it highly depends on the measurements. For example, if there is a 

sensor-related bias on CSS in addition to the albedo, this will be compensated by the 

AR albedo model estimation procedure yet the albedo estimation will not represent the 

actual albedo this time. This might cause an issue for the other subsystems in need of 

estimated albedo information such as solar panels. On-ground calibration is suggested 

for preventing such a problem.  

Attitude information is assumed to be known with high accuracy in the first part. As 

the AR albedo model is greatly dependent on the albedo measurements with a 

necessity of attitude information, albedo estimations are most likely to be disrupted in 

the case of no proper attitude information like a malfunction of the star trackers. If 

there are no star tracker outputs available, magnetometers and/or sun sensors could 

conceivably be used for attitude determination purposes. It is possible to use them 

separately as a single sensor in recursive estimation methods or together for an 

improved estimation. In the analysis, the estimations are first presented using TAM 

and CSS pair, then CSS without TAM. Using TAM measurements in the estimations 

is performed by closing the switches for TAM and Magnetic Field Model boxes seen 

in Figure 7.19 (a) and (b), and open switches are for not using them. 

The albedo is assumed to be in the form of Reference Model 2 based on 11-year 

averaged July CERES albedo data under the clear-sky condition in all cases. A wrong 

albedo model in the form of Model 4 and AR model that does not require any 

information other than CSS measurements and attitude of the spacecraft is considered 

in the attitude and albedo estimation algorithms for comparison. The RG-driven 
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kinematic motion model is used for the attitude estimation filters in this study but the 

use of a dynamic model with no RGs is also an option [14,173]. 

The “Albedo Data based Model” box in Figure 7.19 (a) represents the wrong albedo 

model (Model 4) in the analysis. The CSS outputs are corrected by using the albedo 

models before using them in the attitude estimation methods. Attitude is represented 

by MRPs ( )/B Rσ  where B  stands for the body and R  for the reference (Earth-centered 

inertial) coordinates in the simulations but transformed into Euler 3-2-1 angles in 

degrees for presentation. The estimation error levels of the components vary between 

different simulations possibly due to the randomized values used in the models and the 

filters. Therefore, the attitude error norms are presented instead of giving the results in 

component-by-component.  

The attitude error norms of the listed estimation methods are given in Figure 7.20 (a) 

using Model 4. The same procedure is applied by replacing Model 4 with the AR 

model as presented in Figure 7.19 (b). But this time the attitude error is a little more 

especially in the transient region until compensation at around 600th seconds seen in 

Figure 7.20 (b). 
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Figure 7.19 : Attitude estimation framework based on albedo data based models (a) 
and AR albedo model (b). 
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Figure 7.20 : Attitude error norms of the SVD, SVD-aided EKF and EKF methods 
using TAM and CSS with albedo interference based on Model 4 (a) and AR 

Model (b). 

Table 7.4 : Performance comparison of the albedo models considered. 

Model 

Name 

RMS Error ( - ) Computational Time (s) 

Model Only Estimation 
Data 

Processing 

Model 

Processing and 

Estimation Ref 1 Ref 2 Ref 1 Ref 2 

Model 1 0.1201 0.0902 0.0028 0.0027 1.3082 0.0188 

Model 2 0.0395 0.0216 0.0028 0.0027 1.4038 0.0188 

Model 3 0.0991 0.0612 0.0028 0.0027 0.0014 0.0188 

Model 4 0.0277 0.0647 0.0028 0.0027 0.0004 0.0188 

Model 5 0.0897 0.1274 0.0028 0.0027 0.0004 0.0188 

AR 

Model 
- - 0.0094 0.0111 - 0.0030 

It is possible to estimate the spacecraft’s attitude using only one vector observation in 

the recursive estimation methods, CSS measurements are used in this case. The 

structures of Model 4 and AR Model-based estimation filters are shown in Figure 7.19 

(a) and (b) respectively with open switches for magnetic field-related blocks. Having 
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the only CSS with albedo interference makes the results deteriorated more as seen in 

Figure 7.21 (a) and (b). The mean attitude estimation errors are given in Table 7.5. 

 

Figure 7.21 : Attitude error norms of EKF using CSS with albedo interference based 
on Model 4 (a) and AR Model (b). 

Table 7.5 : Attitude angle estimation performance. 

Sensor Albedo Model 

Mean Attitude Error (deg) 

SVD SVD-aided EKF EKF 

TAM and CSS 
Model 4 1.87 0.58 0.54 

AR Model 2.35 1.45 1.09 

CSS 
Model 4 - - 2.45 

AR Model - - 1.92 

Table 7.6 is composed using normalized root mean square (NRMS) errors of attitude 

estimation averaged over 100 Monte Carlo simulations, which confirms the results 

except that EKF gives slightly improved results than presented in Figure 7.20 (b). 

From the analyses, it is identified that albedo data-based models (Models 1-5) differ 

from the reference models case to case, but on the other hand, the AR albedo model 

follows the reference. So, it cannot be directly stated which model is the best among 

the five data-driven albedo models and they can only be evaluated case-by-case. For a 

fair comparison in the estimation sense, a conventional estimation filter is applied to 

the albedo models that also follow the reference trend like the AR albedo model. This 

comparison is made under the assumption of having highly accurate attitude 
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information from star trackers. In terms of computations, AR albedo model processing, 

and estimation speed are around six times faster than the others. Among the albedo 

data-based models, Model 4 ( )0.29α =  is found to be the best of confirming the first 

reference, and Model 2 (2018-yearly average) of confirming the second reference. 

Model 3 using the lookup table formed of seasonal and spatial regions underperformed 

from the expectations. Based on these, it is recommended to use the AR albedo model 

because of its consistency between cases. However, the AR albedo model is limited 

with the used albedo measurements which might include CSS-related bias. On-ground 

calibration is suggested for preventing such a problem. 

Table 7.6 : Performance comparison of the attitude estimation algorithms considered 
(Averaged over 100 simulations). 

Sensor Method 

Attitude NRMS Error (%) 

Model 4 AR Model 

TAM and CSS 

SVD 1.20 1.82 

SVD-aided EKF 0.53 1.01 

EKF 0.38 0.38 

CSS EKF 2.34 1.70 

Two sensor configurations and two albedo models (Model 4 and AR Model) are 

considered in the attitude estimation sense. Overall, EKF is an accurate attitude 

estimation method with less computational burden than the pre-processed filter (SVD-

aided EKF) for TAM – CSS pair. It can be used in CSS-only case as well. The other 

attitude estimation methods can also be implemented using the proposed framework 

in Figure 7.19. TAM – CSS pair case provides the most accurate attitude estimation 

when using Model 4 corrections. CSS-only case, on the other hand, provides the most 

accurate attitude estimation when using AR Model corrections. Therefore, the albedo 

model to be used can be determined based on the configuration as well. 
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  Conclusion 

This study considers a spacecraft setup close enough to the sun and Earth receiving 

electromagnetic radiation of direct solar flux and reflected radiation namely albedo in 

which both are sensed by the sun sensors. Earth’s albedo data are obtained from the 

CERES instrument. By evaluating the data, the maximum albedo of Earth is found in 

the polar regions and under all-sky conditions. Continental areas have higher albedo 

values, especially under clear-sky conditions. Albedo contributes to sun sensors from 

each incremental area of Earth in the sunlit area within the sensor field of view. The 

albedo intensity has a higher impact on sun sensors when getting closer to Earth. 

The main purpose of this study is to find a simple model with less parameter 

dependency than the empirical albedo models. The second purpose is to estimate the 

attitude by comprising the corrected CSS measurements free from albedo so as to 

obtain better accuracy. AR albedo model is proposed, which does not use albedo 

coefficients depending on the position, time, ground, and cloud coverage parameters. 

To the best of our knowledge, the AR model is used in albedo estimation for the first 

time in this study. For comparison, five different models are evaluated under the 

albedo data-driven model in addition to the AR albedo model. The two-stage albedo 

estimation filter is applied based on the AR model so as to mitigate the albedo error 

source from the CSS measurements and to feed into the necessary subsystems. It is 

proposed to use the AR albedo model because of its simplicity and consistency 

between cases. However, spacecraft’s attitude information is necessary to estimate the 

albedo based on the AR model. So, an attitude estimation procedure is also presented 

using the estimated albedo. The procedure is composed by estimating the albedo first 

and correcting the CSS after. In this way, it has the advantage that any albedo model 

is not considered in the last output equations of the attitude estimation filter. The 

attitude is estimated in accordance with two different sensor configurations by the 

Kalman-type estimation filters. Three-axis attitude is estimated with around o4  

accuracy using only CSS measurements without any correction and around o2  

accuracy when CSS is corrected by the AR model.
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 CONCLUSIONS AND RECOMMENDATIONS  

The use of sun sensors and magnetometers in attitude estimation filters is examined 

for nanosatellites. In the presented SVD-aided EKF algorithm, the inputs are coming 

from SVD as the linear measurements of attitude angles and their error covariances. 

UD is factorizing the attitude angles error covariance with forming the measurements 

in order to obtain the appropriate inputs for the EKF. For malfunction scenarios in 

gyros, gyro and gyro-free cases are considered in the analysis. For the integration of 

SVD and EKF using the newly formed measurements and measurement noise 

covariance with UD factorization, the whole algorithm is run. SVD-aided EKF with 

assumption, which acts that the measurements are uncorrelated and removes the non-

diagonal elements of the measurement noise covariance gives an overrated accuracy 

of the attitude angles. The attitude estimation method with UD factorization, on the 

other hand, provides a better attitude estimation accuracy.  As the difference in the 

estimation results of the SVD-aided EKF with and without UD factorization is small 

enough, it can be said that the non-diagonal elements of SVD's angle error covariance 

matrix can be omitted from the input of the EKF, if high accuracy of error 

characteristics are not required or the computational load is limited. In case of an 

eclipse period, a switching based algorithm is suggested. The SVD-aided UKF is used 

when the sun sensor measurements are available; in the eclipse period the algorithm 

switches to the UKF. 

Several other methods for estimating the spacecraft’s orientation using magnetometer 

and coarse sun sensor measurements are reviewed and compared. The filters that cope 

well with different types of measurement faults have an adaptive rule for their 

measurement noise covariance. So, the filters cope with faulty measurement by 

adapting the scaling factors and having a lower gain. Single-frame method aided filter 

is found one of the computationally lightest filters and it deals with transient and long-

term noise-increment faults reasonably well. It is identified that the outliers cause a 

difference in the estimation accuracy. If the measurement noises are non-Gaussian, the 

non-Gaussianity is a more significant source for estimation errors than nonlinearity 
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and it is more important to use the limited computational resources in nanosatellites to 

compensate for non-Gaussianity than using more complex nonlinear filters. 

Two major environmental disturbances are examined under the spacecraft attitude 

estimation context, in this study. First, the effects of the geomagnetic disturbances on 

the satellite’s attitude at LEO orbits are investigated. Two geomagnetic field models, 

IGRF and T89 are used.  We found that both models differ from the observations 

during the geomagnetically active times as well as the quiet times. The differences are 

larger in the case of the IGRF model compared to the T89 model. The comparisons 

between the observed magnetic field vectors from two satellites, and that predicted by 

the models are obtained larger during the high geomagnetic periods. The angle 

between the magnetic field vector from the satellite measurements and models is 

shown to be smaller in the case of the T89 model, indicating that T89 model estimates 

are closer to the data. T89 model is expected to agree better with the observations, 

particularly during the geomagnetically active times. This is because it is constructed 

such that the model includes variations resulting from both internal sources from the 

Earth’s dynamo and crust and also external sources such as solar wind, interplanetary 

magnetic field, consequently geomagnetic storms and substorms. The fact that IGRF 

shows larger discrepancies indicates that for better attitude predictions during 

especially geomagnetically active times, external sources are needed to be taken into 

account. The angle between the vector magnetic field from the models and the data is 

obtained less than 1o for C/NOFS and SWARM data. The differences between the 

satellites stem from the properties of the instruments used onboard these satellites. 

These differences imply that the model estimates the magnetic field orientations at the 

satellite location satisfactorily so that the angle between the vector magnetic fields is 

small. From the satellite attitude determination point of view, this agreement is very 

important.  Although both models are seen to be appropriate for calculating the 

magnetic fields at the satellite position at LEO, it is clear that the IGRF model gives 

larger differences compared to the T89 model during both quiet and active times.  The 

difference in the angle between the model and the observed magnetic field directions 

which is calculated less than 1o is within the acceptable range for small satellites, and 

both models can be used for attitude estimations within their error ranges.  Both models 

have their advantages and disadvantages to be used in the attitude estimations. Since 

the differences are small, the ADCS developers may continue to use IGRF instead of 
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T89 to avoid its continuous need to acquire magnetic index data such as Kp, AE, and 

Dst on board the satellite. However, with the developing technology, the standard 

deviation of magnetometer measurement noise in small satellites is decreasing. This 

might expose the spacecraft to the external magnetic field more than the sensor noises. 

The selection of the model is especially important where high accuracy is needed for 

attitude estimation at LEO. The geomagnetic field models that are used to estimate the 

geomagnetic fields and satellite attitude angles are studied during the geomagnetically 

active and quiet days. The angles between the geomagnetic field vectors predicted by 

the models increase as the geomagnetic activity increase from quiet levels ( )0pK =  

to strongly active days ( )6pK ≥  and it increases more over the high latitudes than 

over the equatorial regions especially during the strong activity days for 6pK ≥ .  

Similarly, it is shown that the magnetic field disturbances estimated from T89 at LEO 

are higher during the high geomagnetic activity as the satellite altitude becomes higher. 

Since this angle is one of the inputs in the attitude estimation filter, the satellite attitude 

angles will be sensitive to these variations.  It is thus expected that the attitude angles 

will increase as the geomagnetic activity enhances, particularly at the high latitudes 

and at high altitudes. When only a magnetometer is used as an attitude sensor, the 

errors in the estimated attitude angles using the IGRF model are larger than the errors 

obtained by using the T89 model.  EKF is used to estimate the attitude angles for 

different sensor configurations including magnetometer, sun sensor, and gyroscope for 

quiet and active times. The highest errors in the estimated attitude angles are obtained 

for magnetometer only and magnetometer plus gyroscope scenarios. During the quiet 

days, the presence of sun sensor reduces the errors in the estimated attitude angles, the 

gyroscope has less effect in the reduction of the errors. During the active days, while 

all scenarios give small errors, the magnetometer only and magnetometer and 

gyroscope scenarios show markedly the highest errors. The errors resulting from the 

geomagnetic disturbances are reduced drastically after we added the sun sensor 

measurements into the system. The most accurate results with the smallest errors are 

obtained for all sensor scenario. In this case, the estimated attitude angles are 

significantly improved and obtained close to the actual attitude angles. This study 

emphasizes the importance of the effects that the magnetic disturbances have on the 

attitude angles and helps to choose the right sensor combination during both quiet and 

disturbed times for better attitude estimation. 
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Another space environment disturbance is considered in the study for a spacecraft 

setup close enough to the sun and Earth receiving electromagnetic radiation of direct 

solar flux and reflected radiation, namely albedo, in which both are sensed by the sun 

sensors. Earth’s albedo data are obtained from the CERES instrument. By evaluating 

the data, the maximum albedo of Earth is found in the polar regions and under all-sky 

conditions. Albedo contributes to sun sensors from each incremental area of Earth in 

the sunlit area within the sensor field of view. The albedo intensity has a higher impact 

on sun sensors when getting closer to Earth. 

A simple model is designed with less parameter dependency than the empirical albedo 

models. And an attitude estimation procedure is designed by comprising the corrected 

CSS measurements free from albedo so as to obtain better accuracy. AR albedo model 

is proposed, which does not use albedo coefficients depending on the position, time, 

ground, and cloud coverage parameters. For comparison, different models are 

evaluated under the albedo data-driven model in addition to the AR albedo model. The 

two-stage albedo estimation filter is applied based on the AR model so as to mitigate 

the albedo error source from the CSS measurements and to feed into the necessary 

subsystems. It is proposed to use the AR albedo model because of its simplicity and 

consistency between cases. However, spacecraft’s attitude information is necessary to 

estimate the albedo based on the AR model. So, an attitude estimation procedure is 

also presented using the estimated albedo. The procedure is composed by estimating 

the albedo first and correcting the CSS after. In this way, it has the advantage that any 

albedo model is not considered in the last output equations of the attitude estimation 

filter. Three-axis attitude is estimated in accordance with two different sensor 

configurations by the Kalman-type estimation filters.  

Overall, attitude estimation filters are designed when two different environmental 

disturbances are applied to the spacecraft system. The consideration of the external 

magnetic field and planet’s albedo models helps to get the simulated measurement 

model closer to the real case and to improve the reference models used in the filter. 

This, in the end, helps to improve the attitude estimation accuracy. 

This research emphasizes improving the attitude estimation accuracy while not 

increasing the computational load much. To that end, Kalman filter extensions with 

less computational burden are examined. For further studies, different filters for 

measurements having non-Gaussian noises, could be implemented and compared with 
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the considered filters. Another interesting possibility would be to investigate whether 

the algorithms coping nonlinearities and non-Gaussianity could be fused into an 

algorithm that minimizes the nonlinearity and can cope with the heavy-tailed noises at 

the same time. For future work, algorithms can be tested for sensor faults of continuous 

bias type. This would require a calibration in which the state vector has more elements 

to be estimated. 

For space environment disturbances, the analysis could be pursued with more detailed 

and enhanced analysis with different types of satellite orbits at different altitudes, 

within different near-Earth space environment conditions, not just LEO but also where 

the magnetometers are used for determination of the attitude angles of the satellite. For 

the external magnetic field model, there is a need for an activity index throughout the 

mission. This can be provided with telecommand by the ground stations but it would 

not be preferred in most of the spacecraft missions especially the nanosatellite 

missions. For this purpose, a lookup table can be composed for the onboard ADCS 

computer with date, position, known solar activity parameter inputs. Another option is 

to use machine learning techniques in estimating the activity index or directly the 

external magnetic field. This approach can also be used for estimating the planet’s 

albedo for future studies. 
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