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Problem # 1:
Consider the system of two degrees-of-freedom shown where the first story is rigid plate
having a mass of 2M, and the second story consists of a cantilever column. a. Evaluate the

flexibility d matrix, the mass matrix m and the rigidity matrix k =d! and the load vector p.
b. Determine the circular frequencies and the periods of the free vibration @; and T; in terms
of EI, m and h.c. Obtain the corresponding two mode shapes ¢; and give their graphical
representation (i=1,2).d. Check the orthogonality of the modes with respect to the mass
matrix and the stiffness matrix ¢I md¢, , and ¢I k¢, . e. Evaluate the generalized masses and

stiffness M; = ¢iT mé;
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cross section. The left end
of the beam is fixed and has a rotational spring k; . The right end of the beam is free and has a

lateral spring k, . Write down the boundary conditions for the free vibration of the beam.
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Consider the distributed parameter system shown where m is the mass per unit length and El
is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational
spring k;. The right end of the beam is free and has a lateral spring k,. Write down the

boundary conditions for the free vibration of the beam. Obtain the frequency determinant in
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