Problem \# 1:

Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $2 M_{o}$ and the second story consists of a cantilever column. a. Evaluate the flexibility \mathbf{d} matrix, the mass matrix \mathbf{m} and the rigidity matrix $\mathbf{k}=\mathbf{d}^{-1}$ and the load vector \mathbf{p}. b. Determine the circular frequencies and the periods of the free vibration ω_{i} and T_{i} in terms of $E I, m$ and h.c. Obtain the corresponding two mode shapes ϕ_{i} and give their graphical representation ($i=1,2$).d. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\phi_{1}^{T} \mathbf{m} \phi_{2}$, and $\phi_{1}^{T} \mathbf{k} \phi_{2}$.e. Evaluate the generalized masses and stiffness $\quad M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i}$ and $\quad K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad$ and assess the relationship $\omega_{i}^{2}=K_{i} / M_{i}(i=1,2)$.

Problem \# 2:

Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the
 cross section. The left end of the beam is fixed and has a rotational spring k_{t}. The right end of the beam is free and has a lateral spring k_{u}. Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^{4}=m \ell^{4} \omega^{2} /(E I) \beta=m \ell^{4} \omega^{2} /(E I)$ by assuming $M_{o}=m \ell, k_{u}=E I / \ell^{3}$ and $k_{t}=E I / \ell$.
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad \omega_{i}=2 \pi / T_{i}$ $\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ $K_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\boldsymbol{\phi}_{i}^{T} \mathbf{p}(t) \quad Y_{i}(t)=\sum_{i=1}^{2} \boldsymbol{\phi}_{i}^{T} \mathbf{m} \mathbf{v} / M_{i} \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}}$ $Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\boldsymbol{\phi}_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad L_{i}=\phi_{i}^{T} \mathrm{~m} 1 \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i}$ $1^{\mathrm{T}}=\left[\begin{array}{ll}1 & 1\end{array}\right] \quad u(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}}$ $\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad a^{4}=\frac{m \omega^{2}}{E I} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}}$

Problem \# 1:

Consider the system of two degrees-of-freedom shown where the first story is rigid plate having a mass of $2 M_{o}$ and the second story consists of a cantilever column. a. Evaluate the flexibility
\mathbf{d} matrix, the mass matrix \mathbf{m} and the rigidity matrix $\mathbf{k}=\mathbf{d}^{-1}$ and the load vector \mathbf{p}. b. Determine the circular frequencies and the periods of the free vibration ω_{i} and T_{i} in terms of $E I, m$ and h.c. Obtain the corresponding two mode shapes ϕ_{i} and give their graphical representation $(i=1,2)$. d. Check the orthogonality of the modes with respect to the mass matrix and the stiffness matrix $\quad \phi_{1}^{T} \mathbf{m} \phi_{2}$, and
$\boldsymbol{\phi}_{1}^{T} \mathbf{k} \boldsymbol{\phi}_{2}$. e. Evaluate the generalized masses and stiffness $M_{i}=\phi_{i}^{T} \mathbf{m} \phi_{i}$ and $K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i}$ and assess the relationship $\quad \omega_{i}^{2}=K_{i} / M_{i}$
($i=1,2$).

Problem \# 2:
Consider the distributed parameter system shown where m is the mass per unit length and $E I$ is the bending rigidity of the cross section. The left end of the beam is fixed and has a rotational spring k_{t}. The right end of the beam is free and has a lateral spring k_{u}. Write down the boundary conditions for the free vibration of the beam. Obtain the frequency determinant in terms of $\beta^{4}=m \ell^{4} \omega^{2} /(E I) \beta=m \ell^{4} \omega^{2} /(E I)$ by assuming $M_{o}=m \ell, k_{u}=E I / \ell^{3}$ and $k_{t}=E I / \ell$.
$\mathbf{m} \ddot{\mathbf{u}}(t)+\mathbf{k} \mathbf{u}(t)=\mathbf{p}(t) \mathbf{u}(t)=\left[\begin{array}{ll}u_{1}(t) & u_{2}(t)\end{array}\right]^{T} \mathbf{p}(t)^{T}=\left[\begin{array}{ll}P_{1}(t) & P_{2}(t)\end{array}\right] \quad \omega_{i}=2 \pi / T_{i}$
$\left(\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left(\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right) \boldsymbol{\phi}_{i}=0 \quad\left|\mathbf{k}-\omega_{i}^{2} \mathbf{m}\right|=0 \quad\left|\mathbf{I}-\omega_{i}^{2} \mathbf{d} \mathbf{m}\right|=0 \quad M_{i}=\boldsymbol{\phi}_{i}^{T} \mathbf{m} \boldsymbol{\phi}_{i}$ $K_{i}=\phi_{i}^{T} \mathbf{k} \phi_{i} \quad M_{i} \ddot{Y}_{i}(t)+K_{i} Y_{i}(t)=\phi_{i}^{T} \mathbf{p}(t) \quad Y_{i}(t)=\sum_{i=1}^{2} \phi_{i}^{T} \mathbf{m} \mathbf{v} / M_{i} \quad k=\frac{3 E I}{h^{3}} \quad k=\frac{12 E I}{h^{3}}$ $Y_{i}(t)=\frac{\sin \omega_{i} t}{M_{i} \omega_{i}}\left[\phi_{i}^{T} \int_{o}^{t_{o}} \mathbf{p}(\tau) d \tau\right] \quad L_{i}=\phi_{i}^{T} \mathrm{~m} 1 \quad \Gamma_{i}=L_{i} / M_{\mathrm{i}} \quad M_{i}^{*}=\Gamma_{i} L_{i}$
$1^{\mathrm{T}}=\left[\begin{array}{ll}1 & 1\end{array}\right] \quad u(x, t)=\sum \phi_{i}(x) Y_{i}(t) \quad \ddot{Y}_{i}(t)+\omega_{i}^{2} Y_{i}(t)=0 \quad M(x, t)=-E I \frac{\partial^{2} u}{\partial x^{2}}$
$\phi(x)=A_{1} \sin a x+A_{2} \cos a x+A_{3} \sinh a x+A_{4} \cosh a x \quad a^{4}=\frac{m \omega^{2}}{E I} \quad V(x, t)=-E I \frac{\partial^{3} u}{\partial x^{3}}$

