DEPREM MÜHENDİSLİĞİNE GİRİŞ ve DEPREME DAYANIKLI YAPI TASARIMI Zekai Celep

- Deprem hareketi
- Yapıların yer hareketi etkisindeki titreşimi
- Deprem etkisindeki betonarme yapı elemanlarının davranışı
- Depreme dayanıklı yapı tasarımı
- Yurdumuzdaki önemli depremler
- Yapılarda deprem sonrası hasar belirlenmesi, onarım ve güçlendirme yöntemleri
- Mevcut binaların deprem etkisindeki davranışının değerlendirilmesi

Ders kitabı

 Z. Celep, N. Kumbasar; Deprem mühendisliğine giriş ve depreme dayanıklı yapı tasarımı, Beta Dağıtım, 2004.

DEPREM HAREKETİ

- Sismoloji : Yer hareketini inceler
- Yapı dinamiği: Dinamik yükler altındaki taşıyıcı sistem davranışını inceler
- Sismoloji bilgilerden elde edilen bilgilere göre yer küresinin yapısı

Yer küresinin yapısı	
 Kabuk tabakası: Karalarda 25~60km kalınlığında Okyahuslarda 4~6km kalınlığında 2700~3000kg/m3 Sıcaklık 30 C/km Kıta altında 150~250 C Okyanus altında 300~800 C 	
 Manto tabakası ~2900km kalınlığında 3300~5600kg/m3 Depremlerin oluştuğu en büyük derinlik ~700km de 1000~1500 C İç yüzünde 4000~5000 C Basınç dış yüzde 900MPa 	
 Çekirdek tabakası ~3500km kalınlığında Dış çekirdek: sıvı İç çekirdek: katı, ~1200km kalınlığında 9700~172000kg/m3 Basınç dış yüzde 140GPa ve iç kısımlarda 3700GPa 	

Depremin oluşumu ve özellikleri

- Yer kabuğunun soğuması
- Plakaların oluşumu
- Plaka tektoniği
- Plakaların bir birine göre rölatif hareketi
- Elastik Geri Sekme Teorisi

Depremin oluşması Elastik geri sekme teorisi

- Şekil değiştirme enejisinin yığılması
- Enerjinin kritik seviyeye ulaşması
- Kayma ve yırtılma
- Enerjinin sönümlenerek yayılması
- Gevşeme
- Şekil değiştirme enejisinin yığılmaya başlaması

Depremin oluşması

- Karmaşık titreşim hareketi
- Periyodu kısa ve uzun titreşimler
- Zeminde yansıma ve kırılmalarla yayılma
- Kısa periyotlu titreşimler uzunlara göre daha çabuk sönümlenir

Deprem türleri H odak derinliğine göre: Sığ deprem, H < 70km, dar bölgede hissedilir, hasarı ağır ve yıkıcı Orta derinlikte deprem, 300km > H > 70km Derin deprem, 700km > H > 300km, geniş bölgede hissedilir, hasarı az ve daha az yıkıcı

- Oluşum sıklığı derinlikle azalır
- Yurdumuzda H=10km~30km, sığ depremler

Depre • İvme	m ivme, hız ve yerdeğişirmesi $\ddot{v}_g(t)$
• Hız	$\dot{v}_g(t) = \int_0^t \ddot{v}_g(\tau) d\tau$
 Verdeğiş 	stirme $v_g(t) = \int_0^t \dot{v}_g(\tau) d\tau$

Mercalli Şiddeti	Tanım	Zemin ivmesi (m/s²)
I	Yalnız duyarlı aletler algılar	~ 0.01
II	Özellikle üst katlarda, dinlenmekte olan kimseler tarafından hissedilir. Hassas bir biçimde asılı olan cisimler sallanabilir.	0.02 ~ 0.03
III	Bina içinde hissedilir, fakat deprem olup olmadığı her zaman anlaşılmaz. Duran otomobiller yanından kamyon geçmiş gibi sallanır.	0.03 ~ 0.07
IV	Bina içinde çoğunluk ve dışarıda az kimse tarafından hissedilir. Gece bazı kimseler uyanır, kap-kacak, kapı-pencere sallanır.	0.07 ~ 0.15
V	Hemen herkes hisseder. Bazı tabaklar, sıvalar, pencereler kırılır, uzun cisimler oynar.	0.15 ~ 0.30
VI	Herkes hisseder, birçoğu korkup dışarı fırlar. Bacalar, sıvalar düşer. Hafif hasarlar olur.	0.30 ~ 0.70
VII	Herkes dışarı kaçar. Yapıda sağlamlığına bağlı olarak değişen hasarlar oluşur. Otomobil sürücüleri de algılar.	0.70 ~ 1.50
VIII	Duvarlar çerçevelerden ayrılıp dışarı fırlar. Anıtlar, bacalar, duvarlar devrilir. Kum ve çamur fışkırır.	1.50 ~ 3.00
IX	Yapılar temelinden ayrılır, çatlar, eğilir. Zemin ve yeraltı boruları çatlar	3.00 ~ 7.00
X	Kargir ve çerçeve yapıların çoğu tahrip olur. Zemin çatlar, raylar eğilir. Toprak kaymaları olur.	
XI	Yeni tip yapılar ayakta kalabilir, köprüler tahrip olur. Yeraltı boruları kırılır. Toprak kayar. Raylar bükülür.	15.00 ~ 30.00
XII	Hemen her şey harap olur. Toprak yüzeyinde dalgalanma görülür. Cisimler havaya fırlar.	30.00 ~ 70.00

Sembolü	Adı	Ölçüm periyodu (s)
ML	Richter yerel büyüklüğü	0.1 ~ 1.0
M _b	Cisim dalgası büyüklüğü	1.0 ~ 5.0
M _s	Yüzey dalgası büyüklüğü	20
M _w	Moment büyüklüğü	<i>> 200</i>

• Depremin Değiştirilmiş Mercali Şiddeti

$$I \le I_o \le XII$$

 Depremin Richter yerel büyüklüğü Ao=0.001mm

$$M_L = \log \frac{A}{A_o}$$
$$M_L = 0.593 I_o + 1.63$$

••	
Unemii	denremier

Yer	Tarih	Büyüklüğü (M₅)	Şiddeti (I _o)	Derinliği (km)	Ağır hasar sayısı	Can kaybi
Erzincan	26.12.1939	7.9	X-XI	20	116720	32962
Adana-Ceyhan	27.06.1998	5.9	VIII	23	10401	145
Gölcük	17.08.1999	7.4	IX	20	20000	15225
Düzce	12.11.1999	7.2	IX	20	200	3000

Ö	nen	nli d	dep	remler	in büyi	iklükle	ri
Deprem	M _s	m _b	M _w	M (Nm)	E _s (Nm)	birim (m/s²)	5Ι(ξ=0.02 (m)
Erzincan	6.8	6.8	6.3	2.94×10 ¹⁸	1.00×1015	KG 3.90	KG 2.014
13.03.1992 Dinar 01.10.1995	6.0	6.3	5.7	3.80×1017	6.31×1013	DB 4.92 KG 2.82 DB 3.30	DB 1.614 KG 0.813
Adana- Ceyhan 27.06.1998	<i>5.9</i>	6.2	5.6	2.94×1017	4.67×1013	KG 2.16 DB 2.72	KG 0.730 DB 0.699

Yeryüzünde yıllık deprem sayısı	Büyüklük
50,000 6,000 800 120 18	3.0-3.9
	4.0-4.9
	5.0-5.9
	6.0-6.9
	7.0-7.9
•	8.0 ve daha büyük

Bir ser	betlik dere	eceli sistem
m v	$\dot{v} + c \dot{v} + k v$	$=-m\ddot{v}_g$
	$v_g = v_{go} \sin$	$\frac{1}{\omega}t$
$\xi = \frac{c}{2m\omega}$	$\omega^2 = k / m$	$\beta = \overline{\omega} / \omega = T / \overline{T}$

Bir	serbestlik dereceli si	stem
$v(t) = \frac{v_{go}}{\omega^2}$	$\frac{\overline{\omega}^2}{(1-\beta^2)^2 + (2\xi\beta)^2} [(1-\beta^2)\sin\overline{\omega}t - $	$2 \xi \beta \cos \omega t$]
$\beta >> 1$	$v(t) \approx -v_{go} \sin \overline{\omega} t = -v_g(t)$	Yer deg istirme
β << 1	$v(t) \approx + v_{go} \beta^2 \sin \overline{\omega} t = -\frac{\ddot{v}_g(t)}{\omega^2}$	İvme
$\beta \approx 1$	$v(t) \approx -v_{go} \overline{\omega} \frac{\cos \overline{\omega} t}{2\xi \omega} = -\frac{\dot{v}_g(t)}{2\xi \omega}$	Hiz

- Deprem kayıtlarının kullanılması
- Rüzğar ve taşıt yüklerinin etkisi
- Patlamalar
- Dışmerkez kütle titreşimi
- Yüksek devirli motor
- Serbest titreșime zorlama

Bir serbestlik dereceli sistem $m \ddot{v} + c \dot{v} + k v = -m \ddot{v}_g$ $\omega_D = \omega \sqrt{(1 - \xi^2)}$ $\xi = \frac{c}{2m\omega}$ $\omega^2 = k/m$ $\ddot{v} + 2\xi\omega \dot{v} + \omega^2 v = -\ddot{v}_g(t)$

Bir serbestlik dereceli sistem

$$v(t, \xi, \omega) = -\frac{1}{\omega_D} \int_0^t \ddot{v}_g(\tau) \exp\left[-\xi\omega(t-\tau)\right] \sin\left[\omega_D(t-\tau)\right] d\tau$$

$$\dot{v}(t, \xi, \omega) = -\int_0^t \ddot{v}_g(\tau) \exp\left[-\xi\omega(t-\tau)\right] \cos\left[\omega_D(t-\tau)\right] d\tau - \xi\omega v(t, \xi, \omega)$$

$$\ddot{v}(t, \xi, \omega) + \ddot{v}_g(t) = -\omega^2 v(t, \xi, \omega) - 2\xi\omega \dot{v}(t, \xi, \omega)$$

2.11. DOĞRUSAL OLMAYAN DAVRANIŞ

Tek serbestlik dereceli sistemin davranışı, dinamik kuvvet dengesinden

$$m\ddot{u}(t) + c(t)\dot{u}(t) + k(t)u(t) = p(t)$$

denklemi ile belirlenir. Bu denklemde sönüm ve yay katsayısının zamana bağlı olduğu durumda kapalı harmonik çözüm elde edilmesi genellikle mümkün olmaz. Bu durumda hareket denkleminin sayısal olarak çözümü gerekli olur. Yukarıda t zamanında geçerli olan denkleme, $t+\varDelta t$ zamanında meydana gelen artımların yansıtılması sonucu yerdeğiştirme artımının

(2.128)

 $m \Delta i i(t) + c(t) \Delta i i(t) + k(t) \Delta u(t) = \Delta p(t)$ (2.129)

denklemini sağlaması gerektiği görülür. Burada yerdeğiştirmede $\Delta u(t) = u(t + \Delta t) - u(t)$ ve dış kuvvette $\Delta p(t) = p(t + \Delta t) - p(t)$ meydana gelen artımlar göz önüne alınmıştır. Bu artım denkleminin çözülmesi için değişik hesap yöntemleri geliştirilmiştir:

c. Doğrusal ivme yöntemi:

Bu yöntemde $\dot{u}(t + \Delta t)$ hızı kuvvet serisine açılarak ilk üç terim göz önüne alınırsa,

$$\dot{u}(t+\Delta t) = \dot{u}(t) + \ddot{u}(t)\Delta t + \ddot{u}(t)\frac{(\Lambda t)^2}{2}$$
(2.147)

bulunur. Buna karşı gelen yerdeğiştirme integrasyonla

$$u(t + \Delta t) = u(t) + \dot{u}(t) \Delta t + \ddot{u}(t) \frac{(\Delta t)^2}{2} + \ddot{u}'(t) \frac{(\Delta t)^3}{6}$$
(2.148)

elde edilir. İvmenin göz önüne alman adım içinde doğrusal değiştiği kabul edilirse, $ii(t) - \Delta ii(t) / \Delta t - sabit$ yukarıdaki ifadeler,

$$\Delta \dot{u}(t) = \ddot{u}(t)\,\Delta t + \Delta \ddot{u}(t)\frac{\Delta t}{2} \qquad \qquad \Delta u(t) = \dot{u}(t)\,\Delta t + \ddot{u}(t)\frac{(\Delta t)^2}{2} + \Delta \ddot{u}(t)\frac{(\Delta t)^2}{6} \qquad (2.149)$$

biçimine getirilebilir. Bu bağıntılardan ivme ve hız artımları çözülürse

$$\Delta \ddot{u}(t) = \frac{6}{(\Delta t)^2} \Delta u(t) - \frac{6}{\Delta t} \dot{u}(t) - 3\ddot{u}(t) \qquad \Delta \ddot{u}(t) = \frac{3}{\Delta t} \Delta u(t) - 3\ddot{u}(t) - \frac{\Delta t}{2} \ddot{u}(t) \qquad (2.150)$$

elde edilir. Bu sonuçların (2.129) daki artımlara ait hareket denklemine yerleştirilmesi ile,
yerdeğiştirmedeki artım $\Delta u(t)$ için
 $k^* \Delta u(t) = \Delta p^*(t) \qquad (2.151)$
denklemi elde edilir. Burada $k^*(t)$ Etkili Yay Katsayısı ve $\Delta p^*(t)$ Etkili Yük Artım:
 $k^*(t) = k(t) + \frac{3}{\Delta t} c(t) + \frac{6}{(\Delta t)^2} m$

$$\Delta p^{*}(t) - \Delta p(t) + m \left[\frac{6}{\Lambda} \dot{u}(t) + 3 \ddot{u}(t)\right] + 2c(t) \left[3 \dot{u}(t) + \frac{\Delta t}{2} \ddot{u}(t)\right]$$
(2.152)

olarak tanımlıdır. Sayısal çözümün geri kalan kısmı sabit ortalama ivme yönteminde olduğu gibidir. Bulunan (2.151) ifadesi, $u(t + \Delta t) = u(t) + \Delta u(t)$ ve hareket denklemi kullanılarak $p^*(t + \Delta t) = p(t + \Delta t) + c[\frac{3}{\Delta t}u(t) + 2\dot{u}(t) + \frac{\Delta t}{2}\ddot{u}(t)] + m[\frac{6}{(\Delta t)^2}u(t) + \frac{6}{\Delta t}\dot{u}(t) + 2\ddot{u}(t)]$ (2.153) olmak üzere $k^*u(t + \Delta t) = p^*(t + \Delta t)$ (2.154) olarak da yazılabilir. Beklendiği gibi doğrusal ivme yöntemi, sabit ivme yöntemine göre sayısal yaklaşımı daha iyidir. Ancak doğrusal ivme yöntemi şartlı kararlıdır. Kararlı sayısal sonuçların elde edilmesi için zaman adımının $\Delta t \leq \sqrt{3} T / \pi = 0.551T$ olması gerekir. Bu yöntemide de adım aralığının

seçiminde dış etkinin uygun şekilde temsil edilmesine de dikkat etmek gerekir.

Deprem spektrumları

 $S_a(\xi, T) = \left[\ddot{v}(t, \xi, \omega) + \ddot{v}_g(t) \right]_{\text{max}}$

- Yerdeğiştirme spektrumu (rölatif) $S_d(\xi, T) = [v(t, \xi, \omega)]_{max}$
- Hiz spektrumu $S_v(\xi, T) = [\dot{v}(t, \xi, \omega)]_{max}$ (rölatif)
- İvme spektrumu (mutlak)

Deprem spektrumları
$f_{I \max} = m S_a$
$f_{S \max} = k S_d = m \omega^2 S_d = m S_a = S_a \frac{w}{g}$
$\left[E(t,\omega)\right]_{\max} = \frac{1}{2}k v_{\max}^2 = \frac{1}{2}k S_d^2 = \frac{1}{2}m \omega^2 S_d^2 = \frac{1}{2}m S_a^2$

Deprem spektrumları

- Sönüm oranları küçüldükce periyoda hassas bir değişim
- Sönüm oranları büyüdükce daha yumuşak değişim
- Gerçek ve yaklaşık pektrumlar arasındaki fark büyük periyotlarda ve sönümlerde belirgin
- Sönümsüz sistemde gerçek ve yaklaşık ivme spektrumları aynı

Bazı depremlerin büyüklük ve şiddetleri					
Yer	Tarih	Richter Büyüklüğü (M)	Spektrum Şiddeti (m) SI (ζ = 0)	Spektrum Şiddeti (m) SI (ξ = 0.02)	Maksimum deprem ivmesi $\ddot{v}_{g \max} / g$
El Centro El Centro Olympia Taft	18.05.1940 30.12.1934 13.04.1949 21.07.1952	6.7 6.5 7.1 7.7	8.35 5.88 5.82 4.69	0.826 0.637 0.674 0.582 0.518	0.33 0.26 0.31 0.18 0.19

Zekai Celep

