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CONSTITUTIVE FAILURE MODELLING AND ANALYSIS OF
STEEL WIRE ROPE STRUCTURES SUBJECTED TO IMPACT LOADING

SUMMARY

Dynamic fracture is an important research topic in the science of fracture mechanics.
The crack initiation and propagation is a problem that has received considerable
attention because of its technical consequences. In case of impact loading and related
failure mechanism both in macro- and micro-level should be carefully investigated.
An impact load may adversely affect the system’s operation, especially in cases
where brittle structural elements are subjected to this load. Besides, brittle materials
have advantages such as hardness and wear resistance, their deficiencies in terms of
toughness and brittleness significantly restrain their usage in practice. This is the main
reason that the problem of crack propagation at both macro- and micro levels is a
problem of frequent discussion in the recent literature.

The dynamic fracture behaviour of brittle materials that contain micro-level cracks
were examined when material subjected to impact loading. The investigation on
the effect of micro-cracks on the crack propagation was carried out in the first step.
The macro-crack initiates from notch tips in the Kalthoff– Winkler experiment, a
classical impact problem. A micro-crack cluster was designed to decelerate this
crack propagation. To define pre-defined micro-cracks in three-dimensional space,
a two-dimensional micro-crack plane definition was proposed in the bond-based
Peridynamics (PD).

PD is a non-local form of classical continuum theory. Randomly distributed
micro-cracks with different number densities in a constant area and number in
expending area models were examined to monitor the toughening of the material. The
velocities of macro-crack propagation and the time required for completing fractures
were considered in several pre-defined micro-cracks cases. It has been observed that
toughening mechanism only initiates by exceeding a certain number of micro-cracks;
therefore, it can be said that there is a positive correlation between the density of
pre-defined micro-cracks and macro-crack propagation rate and, also, toughening
mechanism.

The classical impact problem was explained in details and then, wire rope structures
that one of the most important elements in material handling were examined. The
complexity of material handling area needs to manage many different machine and
equipment. Therefore, accidents can inevitably occur in these areas. However, in
general, there are further factors that affect the failure of ropes in an accident. Wire
ropes are designed for static axial loading owing to its nature of structure. In that
manner, an impact load can result in an undetermined mechanical response of the rope.
Moreover, corrosion, insufficient lubrication, porosities in the working area, and wear
can decrease the strength of wire ropes. The lifetime prediction of a rope system
is a very complicated task because of the complex structure of ropes and different

xxiii



loading conditions. However, to determine the reliability of material handling require
more specific information about each element. With the help of proposed methods and
findings in Kalthoff-Winkler problem, a theoretical scheme of analysing cable systems
and wire ropes subjected to impact load with peridynamics was handled. Numerical
studies were carried out, and the simulation parameters were discussed. It can be
estimated that the failure of a wire in a strand does not affect its neighbours, because
crack propagation in a wire cross-section ends at the outer surface of that wire. The
resulting stress concentration that will cause crack propagation in adjacent wires is
not observed. However, of course, there is some local transition of the load should
be taken into account because of inter-contact states between wires. With regard to
this, the work presented in this study can be extended to examine the inter-contact
interaction between wires.

As a consequence, the effect of micro-cracks on a macro-crack propagation was
investigated in Kalthoff-Winkler problem. The one most obvious finding to emerge
from this study is that the less than a certain number of randomly located micro-cracks
around the crack tip has no positive effect on fracture toughening mechanism.
Nevertheless, adding more amounts of pre-defined micro-cracks in the same region
can decrease crack propagation velocity and significantly increase the toughness. The
second major finding was that there needs a certain number of micro-cracks for
occurring of toughening effect. This study has found that an insufficient number
of micro-cracks cannot decelerate the propagation of cracks. A certain number of
micro-cracks should be placed in the body in order to obtain the toughening effect.
In general, therefore, it seems that the density of micro-cracks in a constant area
and the number of micro-cracks in expending areas are significant parameters on
toughening mechanism in a brittle material subjected to impact load. The findings
of this investigation complement those of earlier studies. These findings support the
PD’s competence as an alternative to classical continuum mechanics for modelling
of fracture and thus, designing of strengthen geometries. Although the study has
successfully demonstrated that crack propagation and fracture characteristics, it has
certain limitations in terms of properties of micro-cracks.

Dynamic crack propagation and failure in a wire cross section were studied.
The programs used in the study were evaluated. Developed scripts that can be
useful for further researchers were provided. Compared with average velocities in
m-convergence tests, velocities in δ -convergence tests differentiate much more. It can
be inferred that the minimum value of m (as an indicator of material points within
a horizon) should be 3 for the models with given parameters and dimensions. The
average velocities of m = 3,4, and 5 models are very close to each other. The data for
δ = 0.00450 test should be considered an outlier because the crack did not propagate
in contrast to other models. This result indicated that the horizon value, δ = 0.00450
is not applicable for the model with given parameters. With the understanding of wave
progression and mode transition relation, the model δ = 0.0015 can be considered as
a better parameter choice for the given model. The Mode I crack opening transition
in the reference model indicates a routing of the crack in horizontal direction. These
findings are thought of as a basis for the simulation of fracture mechanisms in wire
ropes with PD.
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ÇELİK TEL HALAT YAPILARININ DARBE YÜKÜ ALTINDA
HASAR MODELLENMESİ VE İNCELENMESİ

ÖZET

Dinamik kırılma, kırılma mekaniği biliminde önemli bir araştırma konusudur. Çatlak
başlangıcı ve ilerlemesi, sonucunda meydana gelecek hasarlar ve neden olacağı kazalar
nedeniyle incelenmesi gereken bir sorundur. Darbe yükü ve sonucunda meydana gelen
hasarın mekaniği hem makro hem de mikro düzeyde araştırılmaya ihtiyaç duymaktadır.
Özellikle kırılgan yapı elemanları darbe yüküne maruz kaldıklarında meydana gelen
ani hasarlar nedeniyle sistemin çalışması beklenmedik bir anda olumsuz etkilenebilir.
Gevrek malzemeler sertlik ve aşınma direnci gibi avantajlara sahip olmalarına
rağmen, tokluk ve kırılganlık açısından eksiklikleri, pratikte kullanımlarını önemli
ölçüde kısıtlamaktadır. Bu nedenle hem makro hem de mikro düzeyde kırık
oluşması ve ilerlemesi sorunu geçmiş ve güncel literatürde sıkça tartışılan bir konu
olmuştur. Bu kapsamda, bu çalışmanın amacı, genel olarak kırılgan malzemelerde,
özel olarak ise çeşitli çevresel koşullar ve etkiler nedeniyle gevrekleşen ve darbe
yüküne maruz kalan halatların hem mikro hem de makro düzeyde malzeme içinde
bulunan çatlakların da etkisiyle dinamik kırılma davranışlarının incelenmesi ve hasar
modellemesi için parametrelerin belirlenmesidir. İlk olarak klasik bir darbe deneyi
olan Kalthoff-Winkler deneyi ile başlanmıştır. Ardından bu modelde kullanılan
yöntemler ve elde edilen sonuçlar ile halat hasarı modelleri geliştirilmiştir.

Çalışmayı bölüm bazında incelemek gerekirse, 1. Bölümde kırılma mekaniği
hakkında literatürde mevcut bilgiler taranmış ve bir özet sunulmuştur. Kırılma
mekaniğinin incelenmesi ve problemlerinin çözülmesinde sunulan teorik yaklaşımlar
ve malzeme modelleri anlatılmıştır. Ayrıca, kırılma modları, dalga yayılımı, çatlak
başlangıcı ve ilerlemesi ve mikro-kırık toklaşma mekanizması incelenmiştir. Kırılma
mekaniğinde ortaya konan modellerin analitik çözümlerinin oldukça zor olması
nedeniyle kullanılması zaruri olan sayısal modeller özetlenmiştir. Bölüm sonunda
çalışmanın amacını ve ana hatlarını içeren başlıkların kısa bir özeti sunulmuştur.

Metodolojinin açıklandığı 2. Bölümde, Peridinamik (Peridynamic) teorisi an-
latılmıştır. Peridinamik kavramı bir noktanın civarındaki diğer noktalarla aralarında
kuvvet bağı olduğu duruma ithafen, Yunanca peri (yakında, çevresinde) ve dinamik
(kuvvet) kavramlarının birleştirilmesiyle oluşturulmuştur. Klasik sürekli ortamlar
mekaniğinde malzemedeki herhangi bir noktaya etkiyen kuvvetler, ayrıklaştırmaya
bağlı olarak, en yakınındaki diğer noktalardan kaynaklanmaktadır. Örneğin bir
boyutlu uzayda bir noktanın iki adet komşusu bulunmaktayken, üç boyutlu uzayda
etki kaynağı altı nokta bulunmaktadır. Bu anlamda klasik teori yerel (local) olarak
tanımlanır. Peridinamik teori ise yalnızca en yakındaki noktaların değil, belirli bir
hacim içindeki diğer noktaların da etkisini denkleme dahil eder. Bu, teorinin yerel
olmayan (non-local) olmasını sağlar. Hareket denkleminin yapısının hacimsel integral
üzerine kurulmuş olması özellikle süreksizlik ortamlarında teoriyi klasik yönteme
göre avantajlı konuma getirir. Bununla birlikte Peridinamik model, integrale dayanan
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yerel olmayan yapısı sayesinde özellikle kırılma mekaniği problemlerinin çözümünde
sonlu elemanlar ağının her adımda tekrar oluşturulma (remeshing) gerekliliğini
ortadan kaldırmış olur. Çatlak ve kırık tanımlamak, oluşturmak ve ilerlemesini
gözlemek malzeme noktaları arasındaki bağların ortadan kaldırılmasıyla kolayca
mümkündür. Teori, günümüzde hem mikro hem de makro ölçekte yaygın bir kullanım
alanı bulmuştur. Henüz beta sürümleri yayınlanmasına rağmen bazı ticari analiz
programlarında kullanılmaya başlanmıştır. Bazı özel teknikler ile sonlu elemanlar
için geliştirilmiş programların Peridinamik teori çerçevesinde çalıştırıldığı örnekler
de bulunmaktadır. Özetle bu bölümde, teorinin temel hareket denklemi, hasar
modeli, kırık tanımlama, incelenecek malzemenin malzeme noktalarına bölünmesi
(ayrıklaştırma) ve yakınsama problemleri açıklanmıştır. Bu kapsamda Peridinamik
teorisinin dinamik kırılma mekaniği problemlerinde uygulanabilirliği incelenmiştir.
Teori kapsamında çatlak oluşturma için genel bir algoritma ve program sunulmuştur.

Yapılan literatür araştırmalarında, mikro-çatlakların, darbe yüküne maruz kalan bir
malzemedeki çatlak ilerlemesi üzerindeki etkisinin araştırılmasının sınırlı kaldığı
görülmüştür. Bu kapsamda 3. Bölümde, klasik bir darbe deneyi olan Kalthoff-Winkler
problemi ele alınmıştır. Metodoloji bölümde tanıtılan Peridinamik teori, mikro
çatlakların dinamik çatlak ilerlemesi üzerindeki etkisini anlamak için bu problemde
kullanılmıştır. Bu bölüm özetle, rastlantısal olarak malzeme içinde bulunan kusurların
(mikro-çatlaklar) Kalthoff-Winkler deneyi özelinde, toklaşma mekanizmasına etkisi
incelemiştir. Bu amaçla, PD için geliştirilen iki boyutlu bir çatlak tanımı ile malzeme
içinde çok sayıda mikro-çatlak oluşturulmuştur. Ardından, dinamik çatlak ilerlemesi
ve basınç dalgalarının darbe yükü ile malzemede ilerlemesi birlikte değerlendirilmiş ve
çatlak ilerleme hızı gösteren grafikler sunulmuştur. Bu bölümde elde edilen en önemli
bulgulardan biri, çatlak ucunun çevresinde rastgele yerleştirilmiş mikro-çatlakların,
belirli bir sayıdan az olması durumunda kırılma toklaşma mekanizması üzerinde
olumlu bir etkisinin olmamasıdır. Bununla birlikte, aynı bölgeye daha fazla miktarda
mikro-çatlak eklemenin, çatlak yayılma hızını azaltabildiği ve dolayısıyla tokluğu
artırdığı görülmüştür. İkinci önemli bulgu, sertleştirme etkisinin meydana gelmesi
için belirli sayıda mikro çatlaklara ihtiyaç olduğudur. Yetersiz sayıda mikro-çatlağın
ana çatlakların yayılmasını yavaşlatamayacağı gözlenmiştir. Toklaşmayı sağlamak için
malzeme içinde belirli sayıda mikro-çatlak yerleştirilmelidir. Genel olarak, bu nedenle,
sabit bir alandaki mikro çatlak sayısının yoğunluğunun ve büyüyen alanlardaki
mikro-çatlak sayısının, darbe yüküne maruz kalan kırılgan bir malzemedeki sertleşme
mekanizması üzerinde önemli parametreler olduğu görülmektedir. Bu bölümdeki
bulguların önceki çalışmalarda yer alan bulgularla uyumlu olduğunu gösteren
karşılaştırmalar bölüm sonunda verilmiştir.

4. Bölümde tel halat yapıları incelenmiştir. Çelik tel halatlar, kaldırma ve
taşıma makinalarında kullanılan önemli elemanlardan biridir. Yük taşımaları
nedeniyle düzenli bir bakım programıyla gözetim altında tutulmalarına ihtiyaç
vardır. Genel olarak kaldırma ve taşıma yapılan alanlarında bulunan her makina
ve ekipmanın düzenli ve organize bir yönetim altında bulunması gereklidir. Bu
organizasyonun sağlıklı bir şekilde sağlanmadığı durumlarda kazaların meydana
gelmesi kaçınılmazdır. Yine de genel olarak, bir kazada halatların hasar görmesini
etkileyebilecek temel yapısal faktörlerden bahsetmek gerekir. Çelik halatlar, yapıları
gereği statik eksenel yükleri taşımak için tasarlanmıştır. Bu nedenle darbe yükünün
etkimesi halatın mekanik tepkisinde belirsizliğe yol açabilir. Ayrıca literatürdeki
yayınlar ve saha koşullarında yapılan incelemelerde gözlendiği üzere, korozyon,
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yetersiz yağlama, çalışma alanındaki kirlilik ve aşınma halatların mukavemetini
düşüren ve dolasıyla ömrünü önemli ölçüde azaltan faktörler olarak öne çıkmaktadır.
Bir halat sisteminin ömür tayini, halatların karmaşık yapısı ve farklı yükleme
koşullarına verdikleri farklı tepkiler nedeniyle çok karmaşık bir hal alabilir. Bununla
birlikte, bir kaldırma/taşıma makinasının hem güvenliğini hem de güvenilirliğini
sağlamak için sistemdeki her bir elemanın bakım ve olası hasar durumlarına ilişkin
bilgilerin tam olması gerekir. Bu kapsamda, bu bölümde yapılan araştırmalar
özetlenmiş ve problemin tanımı yapılmıştır.

Ardından gelen 5. Bölümün başında, kullanılan modellerin kodlanması ve analizi
hakkında bilgi verilmiştir. Genel olarak çalışmada yer alan simülasyonların bilimsel
olarak tekrarlanabilir olmasını sağlamak amacıyla kullanılan kodlar paylaşılmıştır. İlk
olarak, Kalthoff-Winkler problemi için Madenci ve Oterkus’un Peridynamic Theory
and Its Applications kitabında sundukları Fortran kodu ele alınmıştır. Peridinamik ve
benzer diğer sayısal yöntemlerin çözümünde birçok programlama dili kullanılabilir.
Fortran diline aşina olmayan kullanıcılar için Matlab kullanımı önerilebilir. Ancak
aynı işi yapan bir Matlab kodunun, en azından bu örnekte, Fortran kodu kadar hızlı
çalışmayacağı unutulmamalıdır. Matlab’ın kolay bir kullanım sunan paralel hesaplama
yeteneği bu hızı arttırabilir ancak yine de Fortran, hızlı bir hesap makinası olarak
öne çıkmaktadır. Matlab ise oldukça kullanıcı dostu bir ortam sunmaktadır. Bir
yorumlayıcı (interpreter) olması nedeniyle, yazılan kodun derlenmesine (compaling)
ihtiyaç duyulmamaktadır. Bu nedenle, hata ayıklama süreci yeni bir programcı için
daha kolay olabilir. Dahası, Matlab’da bulunan görselleştirme araçları, kullanıcıların
geometrileri ve model sonuçlarını kolay ve hızlı bir şekilde kontrol etmesini
sağlar. Sayısal modelleme çalışmaları için farklı programlar ve programlama dilleri
önerilebilir. Ancak ilk adımda, özellikle hızlı görüntüleme olanakları nedeniyle
Matlab ile başlamak faydalı olabilir. Fortran ve Matlab kodlarının benzerliği ve kendi
aralarında kolay dönüştürülebilir olmaları da büyük bir avantajdır. Bununla birlikte,
Matlab’da kodun son haline getirilmesinin ardından, tüm komut dosyasının Fortran
dilinde derlenmesi, hız amacıyla tavsiye edilir. Peridinamik model sonuçlarının
görüntülenmesi için Matlab kullanılabileceği gibi Ovito adlı başka bir alternatif de
bulunmaktadır. Bu bölümde Ovito ve Matlab ortamında sonuçların grafiğe dökülmesi
ayrıntılı olarak açıklanmıştır. Yine bu gölümde açıklandığı üzere, eklerde tezde
kullanılan ve sonuçları görüntüleme amaçlı bir Matlab kodu, koddan elde edilen
Matlab kodlarını Ovito programına aktarmak için bir Matlab dönüştürücü kodu, model
sonuçlarını zamana bağlı şekilde kaydetmek için bir Fortran kod parçacığı ve son
olarak halat kesiti modellemesinde kullanılan bir Matlab kod parçacığı sunulmuştur.
Paylaşılan kod parçacıklarının Peridinamik ve benzeri sayısal modeller kullanan
araştırmacılar için faydalı olması amaçlanmıştır.

Bölümün ikinci kısmında 4. Bölümde yapılan araştırmalar neticesinde ortaya çıkan
simülasyon modelleri ortaya konmuştur. 5. Bölümdeki çalışmalar, 3. Bölümde
kullanılan yöntemin ve geliştirilen modellerin doğrulunun test edilmesi ve yapılan
çıkarımlar ile ilerlemiştir. Kalthoff-Winkler probleminde kullanılan yöntemler ve
bulgular yardımıyla, darbe yüküne maruz kalan halat sistemleri ve tel halatların
Peridinamik ile analiz edilmesine yönelik teorik bir altyapı çalışması yapılmıştır.
Sayısal çalışmalar yapılmış ve simülasyon parametreleri tartışılmıştır. Burada, halat
kırılma modelinde farklı durumlar için verilen ortalama çatlak ilerleme hız tablosu
değerlendirilmiştir. Buna göre m-yakınsama çalışmalarından elde edilen sonuçlara
göre, verilen ölçülerde bir halat kesiti için gelecek çalışmalarda m = 2 değerinin
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kullanılamaz olduğu, ancak modelin m = 3, 4 ve 5 değerlerinde daha iyi sonuçlar
verdiği, horizon yakınsama testlerinde 0,0045 değerinde çatlak ilerlemesi olmadığı,
ancak küçülen horizon değerinin çatlak ilerlemesini farklı hızlarla da olsa sağladığı
görülmüştür.

Tezin son bölümü olan 6. Bölüm, yapılan çalışmaların bir özetini ve elde edilen
sonuçların yorumlanmasını içermektedir. Çatlak ilerleme hızlarının malzeme içindeki
dalga yayılımı ve kırılma modlarıyla olan ilişkileri tartışılmıştır. Son olarak,
yapılan çalışmaların değerlendirilmesi ile birlikte gelecek çalışmalar için tavsiyelerde
bulunulmuştur.
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1. INTRODUCTION

The study of strength of materials is used to determine the behaviour of a solid during

material selection, analysis, and design processes. A design is assumed to be suitable

if applied stress is under the yield or ultimate strength depending on failure criteria.

Considering very small displacements and deformations in a body, the theory of

elasticity is a convenient method for most of materials [1]. However, a crack or flaw in

a solid increases stresses in the tip of crack and that may result in the classical approach

unusable. Therefore, the relationship between applied stress, flaw size, and fracture

toughness are used to determine the strength of a material in the fracture mechanics

approach. Crack is a line or surface in a body which has split without breaking into

separate parts. Fracture (or damage) is the local separation of a body into two or more

pieces. If the stress intensity factor calculating with the applied stress, crack, and

part dimensions, exceeds the material fracture toughness, the fracture grows suddenly,

which causes damage in the material [2].

Material properties affect which fracture mechanics approach is applicable for a

certain material. Linear Elastic Fracture Mechanics (LFEM) consider only elastic

deformation for either quasistatic or time-dependent (dynamic fracture) conditions.

On the other hand, plastic deformation under quasistatic conditions is analysed with

Elastic-Plastic Fracture Mechanics (EPFM). Dynamic, visco-elastic, and visco-plastic

fracture mechanics include time as a variable and they are expressed as a general

heading of non-linear fracture mechanics [2].

1.1 Dynamic Fracture Mechanics

Dynamic fracture is an essential topic in the science of fracture mechanics. However,

it is recognizable only by understanding of the relation between requiring energy

for fracture and the material strength in the macroscopic world [3]. Rapid crack

propagation with low energy release characterizes the dynamic brittle fracture. It also

shows very little plastic and/or viscoelastic deformation before failure occurs [4].

1



An engineering material shows different damage and failure characteristics under

various loading rates, such as crack curving, crack branching, fragmentation,

spallation, and delamination [4]. In that manner, it has been widely studied with

computer simulations and experiments for years. Inertial effects are principal when the

speed of crack tip is lower than stress wave velocity during the propagation process [3].

Although the crack advances quasistatically at the macroscopic scale, separation of

each atom from another must be determined in the atomic scale. This condition is

a fundamental of crack propagation. There are various mechanisms of non-linear

damage in dynamic fracture. In the microscopic scale, granulation, void growth and

coalescence in the failure were spotted in the failure of ductile materials [3]. The

dynamic fracture may be appropriately defined at the macroscopic scale if non-linear

constitutive laws can be formed for these phenomena.

1.1.1 Fracture modes

Three different load modes can be defined in fracture mechanics, as shown in Figure

1.1 [2]. In the first mode (Mode I), the governing force is applied in the normal

direction to the crack surface. The tensile stress causes an opening in the body. The

second mode (Mode II) is the sliding mode and termed as in-plane shear. In this case,

shear stress governs crack propagation. It is acting parallel to the crack plane and it is

also perpendicular to the crack front. The last mode (Mode III) is the tearing mode and

termed as the out-of-plane shear state. The stress is acting parallel to the crack plane

and crack front.

Figure 1.1 : Three crack modes with regard to the loading conditions in fracture
mechanics: Mode I (Opening), Mode II (In-Plane Shear), and Mode III

(Out-of-Plane Shear).
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1.1.2 Wave propagation

One of the essential factors in the dynamic brittle fracture is wave propagation and

interaction with cracks as they form the evolution of damage and fracture modes in

brittle solids [4]. Various dynamic experiments were performed to understand the

effect of stress wave during crack initiation and arrest, crack branching and curving [5].

Stress waves are reflected from the back surface, so this effect on cracks causes more

spalling and fragmentation in brittle material under impact loading [6]. Advancing of

crack front and transferring dynamic stress during crack propagation were modelled by

a basic mathematical tool in [7,8]. Crack front waves were studied to develop a generic

dynamic crack by these models in [9, 10]. It was shown that a localized disturbance

of advancing of a crack front could propagate without delay along the crack front.

Thus, the crack front wave was defined differently, except from classical longitudinal,

shear, and Rayleigh wave modes [3]. Self-affine fracture surface roughness in both

dynamic and static loading may be affected by crack front waves [11]. However,

the observed exponent of scale dependence was not predicted in crack front wave

theory [11]. In [12], it was stated that solitary waves could be evaluated as crack

front waves. However, solitary waves may result from an interaction between shear

waves and the crack front [13]. Guo and Gao [14] explained the crack propagation and

dynamic failure according to the wave propagation.

1.1.3 Crack initiation and propagation

The crack propagation has been a question for fracture mechanics. In a single crack

application, critical stress intensity factors and energy release rate are essential in

practice. However, an energy condition may predict the wrong crack path in quasistatic

loading and a controlling stress singularity is not a realistic view of crack tip state in

these cases. A quasistatic fracture criterion was not agreeable with calculations of

static behaviour but dynamic state, because of crack front waves and its possible effect

on fracture surface roughness [3]. Kalthoff identified the failure mode transition state

related to cracks in an experimental work [15]. A shear loaded crack may advance

under local opening (Mode I) conditions by deviating through a kink angle or by

forming a shear band along its initial direction (Mode II) depending on the impact
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velocity. This transition means that velocity was effective in the failure criterion,

which was observed for various metallic alloy [16] and polycarbonate [17,18]. Critical

Mode II fracture toughness was proposed as a criterion [19]. Therefore, fracture

surface roughness affects the Mode II toughness and there is a connection between

crack front stability and crack front waves. It was stated in an early work that there

was a strong relationship between the crack-tip stress intensity factor and the onset of

crack propagation [5]. Thus, to determine the critical toughness as a material constant

and measure it like fracture toughness, a standard experiment was suggested [20].

However, determining the time of initiation was a crucial difficulty. Because of placing

a probe only on the surfaces, determining the moment of the submerged crack tip and

stress state at a crack tip instantly were complicated. Initiation toughness is related to

loading rate, but the effect of the material type is still unpredicted [3]. It was stated

that initiation toughness increased with the loading rate for polymethylmethacrylate

(plexiglass) material in [18].

1.1.4 Micro-cracks and toughening mechanism

Due to high stress concentrations, pre-existing micro-cracks appear in any type

of materials [21]. Micro-cracks are significant dissipation mechanisms and they

lead to the roughness of fracture surface [22–24], since they may act as nuclei

for macro-cracks [3]. Therefore, the presence of micro-cracks around the tip of

a macro-crack may lead to crack shielding or crack amplification and affect crack

propagation significantly [25]. The amplification increases the stress intensity factors

around the crack tip, whereas the shielding reduces them. Recent studies have

stated that the micro-cracks and as a consequence, the shielding increases material

toughness [26, 27]. This phenomenon is mentioned as "micro-crack toughening" [28].

Location, orientation, and density of micro-cracks significantly alter the toughening

mechanism and crack propagation due to changes in stress intensity around the main

crack [29–31]. The formation of the damage zone was modelled [32, 33] and spatial

averaging was used to develop a cohesive law that reduced the non-linear material to

a line of displacement discontinuity. Crack branching and the macro and micro-cracks

interaction during crack growth was investigated in [34–37] and effects of crack closure

were taken into account. In these studies, the relation between toughness and crack
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velocity was explained with micro-cracking. An upper limit for the crack velocity

was predicted as lies below the speed of Rayleigh wave. The earlier experimental

and theoretical findings [38–40] were agreed with them. Examining the effect of

non-uniformly arranged micro-cracks with analytical approaches is rather complicated

due to complex mechanical behaviour [28]. Some analytical solutions were presented

for uniformly distributed micro-cracks [41–45]. Several researchers investigated the

effect of micro-cracks on the propagation of the main crack and obtained solutions

with analytical approximations under certain restrictive assumptions [29, 41, 46, 47].

Tamuzs and Petrova [48] presented a review of studies that focus on problems and

methods to investigate macro-crack growth in materials with micro-damages.

1.2 Modelling Approaches

There are different numerical approaches to simulate dynamic fracture such as, Finite

Element Method (FEM), Discrete Element Method (DEM), Molecular Dynamics

(MD), Boundary Element Method (BEM), and Peridynamics (PD). These methods

have been used to model a mathematical representation of fracture modelling.

1.2.1 Finite Element Method

The equations of motion in continuum mechanics cannot be directly applied to the

discontinuous field because the spatial derivatives in differential equations fail to exist

when a discontinuity exists, such as a crack [4]. Thus, external criteria or special

treatments are needed to introduce damage or cracks in such problems. Modifications

on the classical models and FEM has been used to develop crack propagation and

damage models to overcome those issues. FEM has been used with modifications

such as cohesive-zone [49], element-erosion [50], and extended-FEM (XFEM) [51] to

simulate crack propagation with a numerical approach.

XFEM resolves the mesh dependency problem [52]. Although XFEM was presented

to analyse and simulate the dynamic crack propagation [52, 53], it increases the cost

of simulations because of subdivision of cut elements for numerical integration [54].

Furthermore, branching criteria and artificial damage models are still required as

input in this model. An interface damage model was studied to model the failure

in matrix/fibre interfaces [55]. The crack needs to be tracked by using, for example,
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level set [54]. The use of tracking of the crack path was studied in [56]. XFEM might

not give a proper solution when fragmentation starts in the material. Although some

researchers [57–64] stated that the XFEM is a useful method for simulating crack

propagation, it is necessary to adjust the input fracture energy to precisely examine

the dynamic fractures [65, 66]. Moreover, complexity and cost as a result of the

sub-division of cut elements are other disadvantages of crack propagation modelling

with XFEM [66].

The cohesive law implemented in finite elements was used in cohesive FEM. The

cohesive zone model framework was first introduced by Dugdale [67] and Barenblatt

[68]. Cohesive zone elements were developed to adapt the cohesive zone model in

fracture mechanics [69, 70]. The cohesive zone elements usually placed between

continuum elements can open to simulate crack initiation or crack propagation.

However, the actual crack path should be defined first to place the cohesive zone

elements. Pre-defining of the crack paths and damage modes are problematic due to

the wave propagation and interaction with crack. Placing the cohesive zone elements

as pre-defined is difficult because cascading branching or arresting the propagation

of secondary branches can be formed in different material under the same loadings

[71]. An additional problem is mesh dependency in cohesive zone finite element

methods [72]. To allow a crack pass through the elements rather than along the

element boundaries, enrichment functions (additional degrees of freedom) were added

in discontinuous displacement field. The restriction of crack propagation path with

element boundaries causes inaccurate results in element-erosion and the cohesive-zone

techniques [65].

A stress-based continuum damage mechanics (CDM), the Sun-Khaleel model, was

used to simulate fracture of glass impacted by solid particles [73]. The CDM

model with a vanishing element technique explicitly took into account the strength

degradation of glass. A large-scale classical molecular dynamics simulation was

conducted to model the fracture of glass under hypervelocity impact load [74]. The

initiation of fracture at the bottom of the plate was observed. Also, it was stated that

fracture proceeded through the coalescence of nanopores or nanovoids created due to
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the pressure wave emanating from impact. It was suggested that the FEM simulations

could be used to extend such atomistic studies to macroscopic sizes.

1.2.2 Discrete Element Method

Rabczuk et al. [75] and Kosteski et al. [76] studied the dynamic crack propagation

with Discrete Element Method (DEM). Braun and Fernández-Sáez [77] suggested a

2D discrete model and applied it to the benchmark problem in [19], though crack

paths were lattice dependent for coarse meshes. Therefore, a more comprehensive and

robust approach is a considerable requisite to determine crack nucleation, propagation,

and interactions [28].

1.2.3 Molecular Dynamics

Another approach to dynamic fracture is atomistic modelling, such as Molecular

Dynamics (MD) simulations. Dynamic fractures based on atomistic simulations were

described briefly in [78]. The large-scale (exceeding one billion atoms) atomistic

modelling of dynamic fracture was widely studied [79, 80]. However, it is difficult

to model the original geometry because MD simulations can be applicable on only

small scales bodies in a relatively short time. Using very high loading rate to

accelerate simulations causes unrealistic results. Although MD can provide necessary

information about the process of dynamic fracture, it still cannot achieve predictive

capabilities for dynamic fracture [3]. On the other hand, MD simulations can predict

dynamic fracture of the entire structure precisely, to obtain stress wave reflections

from boundaries [54]. A sufficient high loading can lead to unstable crack path and

cracks cannot branch with a certain criterion [54, 81]. However, the speed of crack

propagation and the angle of crack branching were not captured correctly. For instance,

the crack propagation of only one of the two branches and the other being blocked

causes instabilities in MD simulations [54].

1.2.4 Boundary Element Method

Boundary element methods were used to analyse an arbitrary crack path and

micro-crack formation, crack branching, crack closure and friction for the macroscopic

problems [82, 83].
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1.2.5 Peridynamics

Silling and Askari [84] presented Peridynamics (PD) method, which naturally involves

crack modelling, nucleation, and progression in a continuum, thus overcoming the

deficiencies of classical numerical approaches. Silling [85] established PD as a

non-local form of continuum mechanics. PD is a non-local formulation in an integral

form in contrast to the local differential form of classical continuum mechanics [86].

Figure 1.2 [87] shows a comparison of classical continuum mechanics (CCM) as a

local form, peridynamics (PD) as a non-local form and molecular dynamics (MD). In

Figure 1.2(a), a material point can only interact with the near neighbours. This is why

the classical continuum model is defined as "local". In contrast to local theory, the

material point can interact with the points within a certain range in non-local theory.

Figure 1.2(b) represents Peridynamics as a non-local model. From this perspective, the

non-local theory is a kind of molecular dynamics model. When the radius that limits

the interaction between material points, is determined as infinitely large, the non-local

theory can be called a continuous version of MD model (Figure 1.2(c)) In general,

therefore, it seems that the non-local theory in a continuous body can be defined as a

bridge between CMM and MD models.

Figure 1.2 : Comparison of (a) Classical (local) continuum mechanics, (b)
Peridynamics and (c) Molecular dynamics.

In Figure 1.2 (a), the point x in the body B, has interaction with the other points

adjacent to itself. In continuum mechanics, the number of neighbour points is normally

3, 5, and 7 (including itself) for one, two, and three dimensional space, respectively.

However, in PD the point x can establish bonds with the points located within a

distance δ . Neighbour points in this distance, δ are called as family members of x in
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the horizon Hx. As a nature of non-local theory, the number of family members can be

more than in local theory’s and it depends on the horizon. Overall, in PD, a continuum

body is defined with material points with a volume in space. Each material points can

interact with points located with a certain distance that is defined as the horizon. The

interaction forces between a material point with other points in the horizon determine

that material point’s behaviour.

PD as a non-local continuum model is capable of solving dynamic fracture problems,

and it does not require a pre-defined guide for dynamic crack propagation [85]. Since

PD is based on integro-differential equations instead of spatial derivatives, it complies

with problems comprising discontinuities such as cracks [85]. The equation of motion

can be directly applied in discontinuous fields. To compute the total force density

acting on a specific material volume, integration is used. Moreover, deformation

gradients are not used in the formulation [54].

Silling and Lehoucq [88] conducted a convergence study of force densities of PD

and the classical elasticity theory to examine the robustness and efficiency of the

theory. Besides some researchers applied PD theory in different applications such

as, nano-scale structures [89, 90], damage in composite materials under quasistatic,

impact or shock loading [91, 92], damage analysis of viscoplastic materials [93, 94],

dynamic fracture and crack branching in glass [71, 95], coupling of PD and FEM

for failure prediction [96, 97], damage propagation in layered glass under impact

loading [98], for anisotropic materials [99], problems of heat conduction [100, 101],

cracks generated from corrosion pits [102], and examining composite laminates under

explosive loading [103]. Madenci and Oterkus [87] published a book that consists of

detailed.

1.3 Motivation of the Thesis

In dynamic fracture mechanics, fracture toughness is a material property that defines

a material’s characteristics under impact loadings. It describes the resistance of a

material to fracture which affected by micro/macro- crack interaction. Rubinstein [41],

Rose [29], Brencich and Carpinteri [26] presented analytical methods for investigation

of micro/macro- crack interaction with uniformly distributed micro-crack patterns. The

solutions that belong to the interaction of intricate micro-crack patterns are not widely
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presented in the current literature [28]. One of the most recent studies on the effect

of small cracks on a macro-crack propagation is presented in [104]. They provide a

relation between various locations, density, and numbers of cracks and macro-crack

propagation speed. The models considered in that study are single crack collinear

to the main crack, two symmetrical cracks, and horizontal and transverse array of

cracks. Another study carried out by Basoglu et al. [28] presents arbitrary micro-crack

patterns using the same bond-based PD models. They observed that a crescent-like

micro-crack distribution near the macro-crack tip cause the highest shielding effect

and so that a considerable increase has shown in material toughness. In both studies,

two-dimensional plates involving macro-cracks along their mid-axis are subjected to

displacement-controlled tensile-load.

Effects of two-dimensional micro-cracks placed in a three-dimensional body on crack

propagation need to be investigated to fill gaps in the literature. Moreover, recent

studies have restricted to evaluate of the micro-crack toughening mechanism only with

regularly pre-located micro-cracks. This study seeks to obtain data which will help to

address these research gaps. One purpose of this thesis was to extend the Peridynamic

theory to simulate the stochastically distributed micro-cracks around the macro-crack

tip. In that manner, a realistic approach to investigate the relationship between the

micro-crack toughening mechanism and crack propagation was aimed. Moreover,

the problem described by Kalthoff and Winkler in [105, 106] was adopted to better

understand the toughening effect in an impact problem. Part of the aim of this section is

to develop a two-dimensional micro-crack script that is compatible with the numerical

solution of Peridynamic theory. Thus, the Kalthoff-Winkler problem, widely known

in the literature, was used to study the effects of micro-cracks on crack propagation.

Moreover, a new two-dimensional crack generation script was developed to be used in

numerical solutions of the Peridynamic theory. The investigation of crack propagation

and studies on script development also provide a basis for wire rope analysis.

The problem of modelling steel wire ropes with finite elements has been widely

addressed. There are two and three-dimensional finite element modelling and stress

analysis studies in the literature. The commonly followed method deals with wire

rope structures subjected to axial loading and bending forcing. Moreover, much of the

current literature on wire ropes pays particular attention to static loading conditions.
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Thus far, there is a relatively small body of literature concerned with dynamic loading

due to the complexity of the structure. Although PD theory has been adopted in many

applications since its development, it needs to be well analysed before being used in

complex structures such as wire ropes due to many numerical modelling parameters.

Since no commercial software has been produced and it has been implemented

with codes written by individual researchers, firstly, convergence analyses should be

conducted on studies of wire ropes. A wire rope structure subjected to transverse

impact load was modelled within Peridynamic framework to carry out convergence

studies. Two pre-defined crack surfaces were located in a section of a wire. A

transverse load was applied to the wire section. The crack propagation velocity was

considered to examine the effect of numerical parameters on the failure mechanism.

These findings contribute in several ways to one understanding of dynamic fracture

of wire ropes and provide a basis for modelling of wire ropes using Peridynamic.

Numerical parameters thought to be influencing crack propagation have been explored

for that purpose.

1.4 Outline of the Thesis

The theoretical structure of bond-based Peridynamic theory was explained in Chapter

2. The fundamental of the Peridynamic equation of motion was briefly reviewed.

Damage modelling, crack definition, micro-crack creation, impact modelling,

discretization scheme for the equation of motion formula, and convergence studies

were described and discussed. The impact modelling in PD was formulated and

convergence studies were presented. A flowchart and script to define the cracks or

micro-cracks in the PD application were given and explained in detail in this chapter.

After general information related to Peridynamics in the literature, in Chapter 3, the

bond-based Peridynamic model was adopted and used to investigate the effect of

micro-cracks on the material toughness for a reference impact problem that defined

by Kalthoff-Winkler in [105,106]. Various simulations were carried out. The effective

number of micro-cracks that causes the toughening effect was investigated in a constant

area. Moreover, the number of micro-cracks that should be pre-built in the body in an

expanding area was determined to obtain the toughening effect. Results of numerical

studies and discussions are given.
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Subsequently, in Chapter 4, a brief summary and literature survey on wire rope

structure and modelling were introduced to remind the different aspects of modelling.

The chapter starts with a brief failure mechanism analysis of wire ropes. Then, the

structure and components of wire ropes and mathematical modelling studies were

reviewed. An enhanced literature review was conducted to summarize the numerical

models and reported test results in recent years. The detail definitions of the contact

phenomena of wire ropes were stated.

In Chapter 5, which is the main body of the thesis study, a theoretical scheme

of analysing wire ropes subjected to impact load with Peridynamic theory was

proposed. The codes and used programs were given and explained. Then, a series

of tests were carried out to examine the effect of transverse impact loading on

wire rope cross-sections. The applicability of Peridynamic theory was studied with

m-convergence and δ -convergence setups. A set of parameters for preparing wire rope

to PD analysis were suggested. The results of models were evaluated and possible

consequences of different parameters were discussed. These studies concentrated on

crack propagation that caused by impact loading. The crack propagation velocities and

fracture mode transitions were showed. The effect of compression waves on the crack

propagation was investigated.

In the last part of the thesis, Chapter 6, after summarizing the studies done in general

terms, Peridynamic theory applied to the rope structures and the results obtained were

discussed. On the other hand, the thesis document was discussed by the author with

the studies planned to be done in the future and its application to different problems.
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2. METHODOLOGY

The fundamentals of Peridynamic theory and the methodology employed were

explained in this chapter. The equation of motion, damage modelling, crack definition,

discretization, and convergence schemes in Peridynamic theory were given. Moreover,

a comparison study was conducted to compare Peridynamic theory with finite element

analysis and analytical solutions.

2.1 Peridynamic Formulation

Silling [85] presented PD theory to overcome the problem of the mathematical

framework that is inoperative for discontinuous situations such as crack formation in

classical continuum mechanics. The use of partial derivatives to define the relative

displacement and force between two particles results in the fact that the equations

are naturally undefined in discontinuity regions. PD’s equation of motion is based on

integral equations, so that it is applicable for both continuity and discontinuity zones.

In the bond-based PD theory, first presented in [85], force density vectors between two

material points are equal in magnitude and being parallel. This formulation has been

extended to state-based PD formulation by Silling et al. [107], which defines force

density vectors as unequal in terms of magnitude.

The equation of motion in Peridynamic theory for any material point is given in [84].

It is the formulation of the acceleration of any point at x at time t:

ρü(x, t) =
∫
Hx

f
(
u
(
x′, t
)
−u(x, t),x′−x

)
dVx′+b(x, t), (2.1)

where Hx is a spherical region with radius (δ ) called horizon, x′ is a family member of

the material point x inside its horizon, u is the displacement vector, b is the body load,

ρ is the mass density, f is the force vector that the material point x′ exerts on particle

x, and dVx′ is the infinitesimally small volume of point x′.

13



The relative position vector between two material points in the undeformed state is

denoted as

ξξξ = x′−x. (2.2)

The relative displacement vector after deformation in Figure 2.1 is denoted as

ηηη= u′
(
x′, t
)
−u(x, t) . (2.3)

The current relative position vector in the deformed configuration [84, 87]:

y′−y = ηηη+ξξξ . (2.4)

Position and force vectors of two material points in the reference state and after

deformation are shown in Figure 2.1. The x is a material point and x′ is one of

the family members of x. The blue points represent the Reference positions of two

material points. After the body that consists of these material points is deformed, the

points relocated and presented with red points.

Figure 2.1 : Position and force vectors of two material points.

The interaction between material points x and x′ is called a bond. A bond connects

a material point to any other that only located in the horizon. The idea of extending

a bond over a finite distance is the fundamental concept of PD theory. The material
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points that build interactions are in direct contact with each other. For a given material

point x, there is a limit distance to create bonds, called the horizon with radius δ , such

that

|ξξξ |> δ ⇒ f(ηηη,ξξξ ) = 0 ∀ ηηη. (2.5)

This formulation states that there is no connection between a point x and material

point outside the horizon. To make a connection and act the force between points, the

relative position vector length, |ξξξ | should be smaller then δ . As shown in Figure 2.2

(reproduced from [89]), material points inside the horizon called a family member.

Figure 2.2 : A material point x can only interact with a family member x′ in the
horizon with radius δ .

The conservation of linear momentum is assured with the following properties of

pairwise force function f,

f(−ηηη,−ξξξ ) =−f(ηηη,ξξξ ) ∀ ηηη,ξξξ . (2.6)

Moreover, the following formulation states conservation of angular momentum in PD,

(ξξξ +ηηη)× f(ηηη,ξξξ ) = 0 ∀ ηηη,ξξξ . (2.7)
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The given equation is the cross product of the pairwise force function vector and the

relative current position vector. The result should be zero to make a parallel constraint

between the force and position vector.

When a material is considered as micro-elastic, the pairwise force function can derive

from a scalar micro-potential w,

f(ηηη,ξξξ ) =
∂w
∂ηηη

(ηηη,ξξξ ) ∀ ηηη,ξξξ . (2.8)

The local strain energy density can be calculated by the sum of micro-potentials.

Because micro-potential refers to the energy in a bond. The unit is the energy per

unit volume squared. The integral of micro-potential over a given volume, such as

the horizon, gives the energy per unit volume in the body and the local strain energy

density can be obtained follow as

W =
1
2

∫
Hx

w(ηηη,ξξξ )dVξξξ ∀ ηηη,ξξξ . (2.9)

The factor of 1/2 should be included in the equation because each material point only

has half of the strain energy in a bond. It can be said that the bond between two material

points can be evaluated as an elastic spring and a scalar micro-potential function in a

single bond can be written as

w(ηηη,ξξξ ) =
1
2

cs2|ξξξ |. (2.10)

The bond-constant is obtained by comparing the energy densities of Peridynamic and

classical continuum theory. They are given in one-, two-, and three-dimensional

structures [87]. In three-dimensional space, the bond constant stated as

c =
12E
πδ 4 , (2.11)

where E is the elastic modulus or Young’s modulus.

As stated in [87], a constraint condition of

κ =
5µ

3
or ν =

1
4
, (2.12)
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where κ is bulk modulus, µ is the shear modulus, and ν is Poisson’s ratio, requires that

in bond-based PD, the bond constant can be expressed as

c =
30µ

πδ 4 or c =
18κ

πδ 4 . (2.13)

The bond-stretch in equation 2.10 can be expressed as [87]

s =
|ξξξ +ηηη|− |ξξξ |
|ξξξ |

. (2.14)

The derivative of micro-potential gives the pairwise force function f, as

∂w
∂ηηη

(ηηη,ξξξ ) = f(ηηη,ξξξ ) =
ξξξ +ηηη

|ξξξ +ηηη|
f (|ξξξ +ηηη|,ξξξ ) ∀ ηηη,ξξξ , (2.15)

where f is a scalar-valued function and it is expressed as follows:

f (|ξξξ +ηηη|,ξξξ ) = cs. (2.16)

2.2 Damage Model in Peridynamics

In PD, the failure criteria can be considered as the bond is broken when the bond

stretch s between two material points exceeds a pre-defined critical stretch value sc.

Considering a bond is not recoverable after failure, the history-dependent scalar valued

step function µ (t,ξξξ ) can be combined with the bond-force equation as

f (|ξ +ηηη|,ξξξ ) = csµ (t,ξξξ ) , (2.17)

where

µ(t,ξξξ ) =
{

1 if s(t ′,ξξξ )< sc for all 0≤ t ′ ≤ t
0 otherwise. (2.18)

Critical-stretch value sc determines the maximum relative elongation value in which

the bond forces still can be active. In linear-elastic model, the relation between relative

elongation or stretch and bond force is linear, as shown in Figure 2.3 (reproduced

from [89]). If the stretch of a bond exceeds the critical stretch value, the bond vanishes.
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These bonds are not allowed to be repaired after breaking. Thus, the bond breaking or

damage can be defined as irreversible and history dependent.

Figure 2.3 : Linear relation between critical stretch and bond force.

In order to determine the critical stretch for a particular material, the critical energy

release rate can be used. Silling and Askari [84] derived the critical energy release

rate for bond-based peridynamics. This formulation can be used to determine the

critical stretch. The following integral is the summation of the work for terminating all

interactions between material points located at different sides of fracture surfaces. The

integral form of the critical energy release rate is

Gc =
∫

δ

0

{∫ 2π

0

∫
δ

z

∫ cos−1 z/ξ

0

(
1
2

cξ s2
cξ

2
)

sinφdφdξ dθ

}
dz. (2.19)

Figure 2.4 [87] shows the points x( j−) and x(k+) that are placed on opposite sides of the

fracture surface. The yellow area with (+) sign is the integral region. The integration

in spherical coordinates, ξ ,θ ,φ provide the required work to diminish the connection

between x( j−) and x(k+) in the spherical cap.

The integral formulation of critical energy release rate Gc becomes as follow in

three-dimensional analysis,

Gc =
1
2

cs2
c

(
δ 5π

5

)
. (2.20)

Substituting for bond constants given by equation 2.13 gives the critical stretch as

follow,

sc =

√√√√ Gc(
3µ +

(3
4

)4
(

κ− 5µ

3

))
δ

. (2.21)
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Figure 2.4 : Fracture surface and integration domain for critical energy release rate.

As stated by Madenci and Oterkus [87], this formulation shows that the critical stretch

was found to be significantly associated with variable horizon, δ . Therefore, in PD

theory, there is a relationship between the value of horizon and a physical material

properties, critical energy release rate. The critical stretch value is only usable for

linear elastic brittle materials with a known critical energy release rate. In the case of

viscoplasticity, the material has a non-linear behaviour and the material properties will

become time-dependent. Therefore, the critical stretch value can not be used as a valid

failure criterion.

The local damage parameter for a material point concerning broken bonds is defined

as [84]

ϕ (x, t) = 1−
∫
Hx

µ (x, t,ξξξ )dVξξξ∫
Hx

dVξξξ

. (2.22)

The expression defines the local damage in terms of broken bonds. It is the weighted

ratio of the number of damaged interactions to the whole initial interaction cluster of a

material point.

Figure 2.5 shows a material point and its family members in the horizon at an initial

state. After deformation, the bonds connecting family members over the crack surface
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with the material point are considered broken [87]. The local damage is expressed

between 0 and 1. In the initial state, the local damage is zero, which means the material

point can interact with all family members. The local damage formulation can be used

as an indicator to identify the fracture. As shown in Figure 2.5, during the fracture

surface creation, a material point lost its bonds with family members on the other side

of the fracture surface.

Figure 2.5 : Initial and damaged model.

2.2.1 Fracture modes and crack propagation

Madenci and Oterkus [87] examined the question of using critical stretch as a damage

parameter for a linear elastic material. Moreover, the linear elastic material was

investigated in some serial of experiments by Ayatollahi and Aliha [108]. The

experiments were carried out on a diagonally loaded square plate. Figure 2.6 [87]

shows the comparison of experimental results and peridynamic analysis results.

Figure 2.6 : Peridynamic crack propagation and experimental results with various
crack orientation angles.
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One can find that the fracture modes change from Mode I to Mode II with the initial

crack orientation in Figure 2.6. The angle between initial crack and horizontal axis

varied with α = 0◦,15◦,30◦,45◦, and 62.5◦. When the crack is located parallel to the

horizontal axis (α = 0◦), the mode I fracture was observed. With the increase of the

initial crack angle, e.g. α = 62.5◦, the fracture mode II governed the crack propagation.

The crack paths in simulations have a good agreement with paths in experiments. This

example validates the use of critical stretch values to simulate crack propagation paths

and fracture modes.

2.2.2 Local damage for crack growth

The horizon in PD is generally chosen as three times the distance between material

points, i.e. δ = 3∆, for computational efficiency. This formulation directly affects the

measure of local damage.

Figure 2.7 [87] shows the local damage of a material point with crack planes located in

various positions. In the first case, as shown in Figure 2.7(a), the crack plane is located

through the horizon. The all bonds between the material point at the centre and its

family members located above the crack plane (dashed line) are eliminated. The local

damage is φ ≈ 0.38 for the point at the centre. The material point will lose nearly half

of its interaction when the horizon extends to infinity. When the crack plane starts from

nearly ahead of the material point, as shown in Figure 2.7(b), the number of bonded

interactions are increased. Thus, the local damage at the centre point is smaller in that

case and it is about φ ≈ 0.14. The third state, Figure 2.7(c) shows that the material

point at the centre has lost its connection more than the second state and the local

damage value is φ ≈ 0.24.

Figure 2.7 : Local damage in PD (a) on the crack plane, (b) in front of the crack tip,
and (c) behind the crack tip. The green lines indicate unbroken PD

interactions and dashed lines with dots indicate broken PD interactions.
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As a result, a crack path can be defined in PD with a horizon δ = 3∆. On the other

hand, the local damage can not be used to identify the exact crack path without the

knowledge of other material points bonds interaction states. To determine a crack

path properly, the neighbouring local damage values in a body should be evaluated.

Moreover, local damage is directly related to the distance between the crack surface

and corresponding material point. If a crack surface does not coincide with the horizon

area of a material point, there is no local damage. However, when a crack surface is

located at a distance of 0.5∆,1.5∆, and 2.5∆ from a material point, the local damages

are found as φ ≈ 0.38,φ ≈ 0.16, and φ ≈ 0.02, respectively. The question of how

to identify a crack surface, or determining a section as a fracture arises at this point.

Madenci and Oterkus [87] stated that crack surfaces could only be visible at a distance

of 2∆ between material point and crack, and also, presented that crack propagation

can be determined with an error less than 2∆. An illustrative example of a crack path

indicating the local damage values is shown in Figure 2.8 [87].

Figure 2.8 : Local damage and crack propagation.

2.2.3 Micro-crack definition

In many engineering applications, cracks may have existed in materials in different

positions, angles, and lengths. In PD, removing bonds passing through crack surfaces

is a suitable approach to determine a predefined crack. Madenci and Oterkus [87]

examined the damage value of the material points by considering their location with
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respect to the crack surface. They showed that material points close to the crack tips

might have different damage values with respect to the other material points around the

crack region. Figure 2.9 shows a pre-defined crack plane and material points exposed

to bond-breakage due to the intersection of bonds with this plane. The pre-defined

crack plane may be located at any position between the material points in the presented

model. The bonds between the material point and its family members are considered

as diminished when they intersect with the crack plane that is located between material

points. The material points whose horizon intersects with the crack plane are damaged

at specific amounts shown on the colour scale.

Figure 2.9 : Micro-crack plane (thick continuous line). The broken bonds are shown
with lines with arrows.

The amount of damage is directly related to the proximity to fracture plane, and

the points closest to the crack plane suffer more damage than distant ones. The

crack plane’s length can be adjusted to determine whether the fracture is a micro-

or macro-crack.
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2.3 Impact Modelling

Impact loading can be modelled in PD by defining contact between two bodies. The

inter-penetration of bodies is blocked with a certain algorithm. The target body is

defined as deformable, but it is possible to define the impactor as either deformable

or rigid. The contact modelling of a rigid impactor and deformable impactor need

different techniques.

2.3.1 Rigid impactor

As shown in Figure 2.10 [87], a rigid impactor has a velocity towards to a target

material at time t. While the impactor is not deformable during analysis, the target

body is governed by PD equation of motion. In the simulation, the inter-penetration

between bodies should not be allowed while contact modelling. The rigid impactor

interpenetrates the target time t +∆t. This is the first step of the contact between two

bodies. The red coloured material point should not be inside the impactor in Figure

2.10. To satisfy the real physical conditions, the points inside the impactor have moved

to its new position at time t +∆t. The algorithm moves the material points to near of

impactor surface. This is how the contact surface between two bodies defined in PD.

Figure 2.10 : Representation of contact between a rigid impactor and deformable
target subjected to impact load.

The velocity of a material point, x(k) that has moved in a new position at time step

t +∆t can be formulated as [87],

vt+∆t
(k) =

ut+∆t
(k) −ut

(k)

∆t
, (2.23)
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where ut+∆t
(k) represents modified displacement vector at time t + ∆t and ut

(k) is the

displacement vector at time t. ∆ refers to the time increment.

The moving material point x(k) contributes to the reaction force from target to the

impactor at time t +∆t. F(k) can be found by

Ft+∆t
(k) =−1×ρ(k)

(
vt+∆t
(k) −vt+∆t

(k)

)
∆t

V(k), (2.24)

where vt+∆t
(k) is the velocity at time t +∆t before moving the material point x(k). The ρk

and Vk are the density and volume, respectively.

The total reaction force Ft+∆t at time t +∆t is the summation of the forces generated

from all material points that were initially inside the impactor. The total force can be

expressed follow as,

Ft+∆t = ∑
k=1

Ft+∆t
(k) λ

t+∆t
(k) , (2.25)

where

λ
t+∆t
(k) =

{
1 inside impactor
0 outside impactor . (2.26)

2.3.2 Flexible impactor

In the flexible impactor model, both impactor and the target body are considered

deformable. They are both governed by the PD equation of motion. However, the

continuum mechanics requires to prevent sharing the same position by multiple points.

Therefore, a critical distance rsh is defined to avoid intersections. Thus, two material

points are forced to repel each other to create contact. The short-range repelling force

between points is formulated as [109]

fsh
(
y( j),y(k)

)
=

y( j)−y(k)∣∣y( j)−y(k)
∣∣min

{
0,csh

(∣∣y( j)−y(k)
∣∣

2rsh
−1

)}
, (2.27)

where parameters can be chosen as short-range constant csh = 5c and critical distance

rsh = ∆2.
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2.4 Numerical Solution Method

The solution of Peridynamic equation of motion needs numerical techniques for spatial

and time integrations due to the integro-differential equation structure that is not

easily solved with analytical solutions [87]. The spatial integration approach was

employed using a meshless scheme for simplicity purposes. For this reason, a body

or a domain is divided into volumes with certain numbers. These volumes can be

called collocation or material points (see Section 2.4.1). Numerical techniques need

the convergence of the results. To efficient use of computational sources, the optimum

values of parameters should be determined. An examining of PD parameters in terms

of numerical convergence is given in Section 2.4.2.

The volume of each material point that affects spatial integration consists of the whole

volumes of material points in a horizon can intersect with horizon boundaries. The

problem of truncated volumes of material points arises on the surface of a horizon.

To avoid this misleading volume effect, a volume correction factor is defined and

formulated. Please see the reference [87], Section 7.2. The backward and forward

difference explicit integration schemes are used to apply time integration. The using

of an explicit scheme is needed to evaluate a convergence study to provide stability of

analysis. The time integration and the convergence studies are given in the reference

[87], Section 7.3 and Section 7.4, respectively. To apply PD to static and quasi-static

problems, Kilic and Madenci [110] presented Adaptive Dynamic Relaxation (ADR)

technique. The inertial terms in PD equation of motion avoided the system converging

to a static state (see [87], Section 7.5). The other subjects and applications in

numerical modelling of PD, such as surface effects, application of initial and boundary

conditions, no-fail zone, spatial partitioning, and parallel computing are given in detail

in [87].

2.4.1 Discretization in peridynamics

To solve the PD equation of motion given in equation 2.1 is usually not possible by

analytical tools. Hence, the initial continuum body is discretized into points with

specific volumes to solve the PD equation of motion. The discretized form of the

governing equation for the material point k by considering all material points inside

the horizon can be written as
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where un
k represents the displacement of a material point k at the nth time-step. The

volume of material point j is defined as Vj = (∆x)3 in a three-dimensional problem

where ∆x denotes the constant grid spacing [84].

2.4.2 Numerical convergence scheme

Some important parameters affect the computational process and analysis, such as

the distance between material points ∆, the horizon radius δ . The purposes of high

accuracy and minimum computational time require examining and adjusting these

parameters. Silling and Askari [84] presented that the horizon value can be determined

with regard to length dimensions. Madenci and Oterkus [87] stated that the horizon

does not have as a physical meaning in macro-scale and can be determined with

benchmarks to obtain the most efficient analysis. They performed some serial tests on

a one-dimensional bar subjected to strain loading. The horizon size varies in different

numbers: δ = {1,3,5,10,25,50}∆. The convergence tests results showed that δ = ∆

and 3δ = ∆ models should be chosen to sustain the accuracy. Figure 2.11 shows the

effect of two horizon size; (a) δ = ∆ and (b) δ = 3∆, on the crack propagation and

branching in the example of a square plate with a central crack subjected to a velocity

of V0 = 50 m/s [87].

Higher values of horizon cause excessive wave dispersion and thus, a discrepancy is

observed between numerical and analytical results. Moreover, increasing of material

points results in an excessive number of family member for a material point. That

will result in higher computational time. On the other hand, δ = 3∆ should be chosen

instead of δ = ∆. Otherwise, proper crack propagation can not be obtained. The crack

propagates with grid dependency and branching can not occur.

The numerical convergence studies on the analysis of wire rope subjected to impact

loading were discussed in Chapter 5. In question convergence studies were conducted

to investigate proper horizon size and number of material points in a family of a

material point, so on the distance between material points. As stated in [111], three

types of convergence studies were carried out. The m-convergence is the first type of

convergence. m is a multiplier in the definition of horizon formula: δ =m×∆. Thus,
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(a) δ = ∆ (b) δ = 3∆

Figure 2.11 : A case study to examine the horizon size effect on the crack
propagation and branching. The plate is subjected to V0 = 50 m/s along

vertical axis.

the number of family members can be adjusted and the horizon can be dependent on

the distance between material points (∆). In this type of convergence, m numbers are

changing while δ is fixed. The second type of convergence is called δ -convergence

that investigates the effect of horizon sizes while m number is constant. The detail

explanation and examples were given in Section 5.3.1 and 5.3.2.

2.5 Test Suit and Model Validation

Peridynamic theory explained within the scope of this thesis study has been tested

with a problem found in the literature. Thus, the validity of the developed script and

its comparison with the results published in the literature were made.

A benchmark problem was conducted to compare Peridynamic theory with classical

continuum mechanics, i.e., analytical and finite element analysis. Failure mode in

PD was turned off to avoid crack initiation and propagation. Because the loading

is uni-axial static and only displacements in the main axes have examined this

comparison study’s scope.

The benchmark problem concerned an isotropic rectangular thin plate subjected to

uni-axial static tension. Figure 2.12 shows a rectangular plate subjected to uniform

tension, σ0.
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Figure 2.12 : Geometry of a plate subjected uni-axial tension.

The dimensions of the plate are L = 1000 mm, W = 500 mm, and h = 10 mm. The

material properties of the plate are Young’s modulus, E = 200 GPa; Poisson’s ratio,

ν = 1/3; mass density, ρ = 7,850 kg/m3. The applied load is uni-axial tension loading,

σ0 = 200 MPa. Initial and boundary conditions, PD discretization and time integration

parameters were given in Table 2.1.

Table 2.1 : PD model parameters of the isotropic plate under uni-axial tension.

Parameter Value
Number of material points in the x-direction, ndivx 100
Number of material points in the y-direction, ndivy 50
Number of material points in the z-direction, ndivz 1
Total number of particles, ndivx×ndivy×ndivz 5,000
Spacing between material points, ∆ 10 mm
Incremental volume of material points, ∆V 1×10−6 m3

Boundary layer volume, ∆V∆ 50×10−6 m3

Applied body force density, bx = (σ0Wh)∆V∆ 2×1010 N/m3

Horizon, δ 3.015∆

Incremental time step size, ∆t 1.0 s
Total number of time steps 1,000

The body was free of any displacement constraints in PD. However, a displacement

constraint on y-axis and rotation constraint around z-axis were applied to left and right

edges in FEM analysis to avoid rotation of the body. The tension on each side of the

structure was applied as a body force density in the boundary layer. Figure 2.13(a) and

(b) show uniform discretization and meshing of the plate in PD and FEM, respectively.
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Two-dimensional finite element analysis model of the plate was generated in the

Abaqus/CAE software. The material properties were defined as isotropic elastic. The

plane stress approach was considered owing to the simplicity of the problem. The part

was defined as 2-D planar deformable shell type. In the meshing process, quad element

shape and medial axis algorithm were chosen to obtain a regular mesh. The mesh size

was controlled with a constant number, 5 mm. Therefore, the four-node bilinear plane

stress quadrilateral element (CPS4R) with reduced integration and hourglass control

was used. The model consists of 20,000 mesh elements and 20,301 nodes.

Figure 2.13 : (a) Discretization in PD and (b) meshing in FEM.

Displacements of material points were monitored to achieve a steady-state solution.

The sufficient number of time steps is 1,000 used in the analysis. Figure 2.14 shows the

comparison of the PD and FEM in terms of displacements ux(x,y= 0) and uy(x = 0,y).

Figure 2.14 : Displacements (a) ux(x,y = 0) for PD, (b) uy(x = 0,y) for PD, (c)
ux(x,y = 0) for FEM, and (d) uy(x = 0,y) for FEM.
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The displacements in PD for ux(x,y = 0) and uy(x = 0,y) were given in Figure

2.14(a) and (c), respectively. Figure 2.14(b) and (d) represent finite element analysis

displacements for ux(x,y = 0) and uy(x = 0,y), respectively.

Although displacements in x-axis show a similar pattern in both PD and FEM, they

differentiate near edges for uy analyses, as shown in Figure 2.14(c) and (d). The applied

boundary conditions in FEM lead to distortion in the analysis. Boundary conditions

that sustain horizontal stability in FEM lead to a distortion in the analysis. This effect

causes an imperceptible misrepresentation near edges. However, it does not affect the

displacements in y = 0 and x = 0 significantly. Therefore, it is not very important in

the comparison analysis.

The analytical solutions for ux(x,y = 0) and uy(x = 0,y) were given as,

ux(x,y = 0) =
σ0

E
x and uy(x = 0,y) =−ν

σ0

E
y. (2.29)

Figure 2.15 and Figure 2.16 show the comparison of displacements in PD, FEM, and

analytical solutions.

Figure 2.15 : Displacement along the centre x-axis.
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The graphs represent similar characteristics in PD, FEM, and analytical results. The

close agreement between PD and analytical results was observed. This comparison

study confirms the validity of Peridynamics in a static loading problem.

Figure 2.16 : Displacement along the centre y-axis.
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3. KALTHOFF WINKLER EXPERIMENT

The Kalthoff–Winkler experiments [105] is a classical impact study examining the

crack propagation under various impact conditions. It was performed with the

high-strength maraging steel plate (X2NiCoMo 18 9 5) having two parallel notches.

The plate is impacted by a steel impactor, as shown in Figure 3.1 [105]. Kalthoff [106]

stated that the high-strength maraging steel shows an almost linear-elastic behaviour

and the linear-elastic equations can describe the stress distribution around the crack

tip. When shear bands control the fracture at loading rates, crack propagation is nearly

parallel to the notch (Mode II). On the other hand, at low rates of loading, a mode

transition occurs. The crack propagates as Mode I and micro-elastic PD theory is valid

to simulate this brittle fracture as stated by Silling [112]. As indicated in [105], the

projectile impact with a specific velocity results in a brittle fracture in the target body

and this study only focused on this failure mode.

Figure 3.1 : The Kalthoff–Winkler experimental setup.

In recent years, several authors have suggested various approaches to modelling the

Kalthoff–Winkler problem. Silling [107,112] presented the PD solution of the problem
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as a part of the validation process of PD theory. The crack propagation angle from

the vertical axis was determined by bond-based PD in [87]. Ren et al. [113, 114]

proposed the dual horizon PD formulation to reduce the calculation cost and examined

the problem in this aspect. Amani et al. [115] proposed implementing state-based

PD for thermo-plasticity to simulate the Kalthoff–Winkler problem effectively. Gu et

al. [116] extend this study by implementing non-uniform discretization and Voronoi

diagrams in PD. Also, the effect of plate dimensions and model parameters such as

impact velocity, plate thickness on the crack propagation speed, and the crack angle

were investigated with the state-based PD model [14]. Moreover, Trask et al. [117]

applied a mesh-free quadrature rule for the discretization of PD material points and

verified the model with results from the Kalthoff–Winkler experiment. On the other

hand, a reformulated thermo-visco-plastic model study was made to demonstrate the

effect of impact velocity on the crack propagation speed [118].

To the author’s best knowledge, the effect of micro-cracks on crack propagation

in a material subjected to an impact load stands out as a gap in the literature

that needs further investigation. Therefore, in this chapter, bond-based PD is

applied to monitor the effect of micro-cracks on dynamic crack propagation. This

chapter examines the relationship between stochastically predefined defects and the

toughening mechanism in the Kalthoff–Winkler problem using bond based PD. A

two-dimensional micro-crack definition and examining the effect of stochastically

pre-located micro-cracks on the three-dimensional body using PD theory are

considered as a novel approach.

The dimensions of the plate in Figure 3.2(a) are L = 0.200 m, W = 0.100 m, and

h = 0.009 m. The distance between the notches (slits) is d = 0.050 m, and they are

located symmetrically with a length of a = 0.050 m. The notch thickness is n = 0.0015

m. In the initial state, plate boundaries are traction-free and at rest. The cylindrical

impactor is assumed to be a rigid body with sizes of D = φ0.050 m and H = 0.050

m. The mass of the impactor is 1.57 kg. The velocity of the impactor is v =−32 m/s

through the y axis. The discretized model of the steel body is generated with 201×

101×9 material points along x, y, and z axes, respectively (Figure 3.2(b)). The spacing

between material points (grid size) is determined as ∆ = 0.001 m in all directions, and

the radius of the horizon is δ = 3.015×∆ as in [87].
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Figure 3.2 : The Kalthoff–Winkler (a) experimental setup and (b) peridynamic
discretization model.

The total number of particles is 180,873. The time-step in simulation is specified as

∆t = 8.7×10−8 s, and the critical-stretch is defined as sc = 0.01, as suggested in [87].

The dimensions and properties of the model and Peridynamic simulation parameters

used in the study were given in Table 3.1.
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Table 3.1 : Dimensions and parameters in Kalthoff-Winkler simulations.

Parameter Value
L 0.200 m
W 0.100 m
h 0.009 m
d 0.050 m
a 0.050 m
n 0.0015 m
D φ0.050 m
H 0.050 m
Rigid impactor mass 1.57 kg
ν in y axis -32 m/s
∆ 0.001 m
δ 3.015×∆

ndivx 201
ndivy 101
ndivz 9
Total number of particles 180,873
∆t ∆t = 8.7×10−8 s
sc 0.01

The material properties of the steel plate are the same as in [87] and given in Table 3.2.

Table 3.2 : Material properties of maraging steel.

Young’s modulus, E Poisson’s ratio, ν Mass density, ρ

191 GPa 0.25 8000 kg/m3

3.1 Benchmark Problem

“The crescent-shaped micro-crack pattern” case defined in [28] is demonstrated to

show that the micro-crack definition and the bond-based PD implementation are

applicable for the Kalthoff–Winkler problem. Then, the effects of the location of

micro-cracks and their density on the crack propagation velocity are presented in next

sections.

To examine the effect of micro-cracks on the toughening mechanism and the

macro-crack propagation speed, various micro-crack pattern models were studied in

[28]. They proposed that the crescent-like distribution of micro-cracks is the most

effective among all models to resist crack propagation and increase the material’s

toughness. In the benchmark problem, the crescent-shaped micro-crack pattern
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was adapted to the Kalthoff–Winkler experiment. Figure 3.3 shows that predefined

micro-cracks are placed around the notch tip and along the main crack path that

was observed in the reference model of the Kalthoff-Winkler experiment without

micro-cracks (Figure 3.4(a)).

Figure 3.3 : Geometric details of the benchmark study: crescent-like micro-crack
pattern.
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In the reference model, no micro-cracks are defined in the material as in the experiment

and there are only two notches that dominate the initiation points of macro-cracks.

The main crack initiates the propagation at 30.5 µs (350th time-step). The crack

propagation reaches the right and left edges at 91.4 µs (1050th time-step) (Figure

3.4(a)), and the average velocity is 1345 m/s. Considering the cracks’ required time to

reach edges, all models in this study were run to 117.5 µs (1350th time-step). Although

the fracture process is completed at 1050th time-step, model time was determined as

1350 time-step to observe the damage path properly.

Figure 3.4 : (a) Crack propagations in Kalthoff–Winkler experiment (without
micro-crack case) and (b) in the benchmark problem at 91.4 µs.
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The damage pattern of the benchmark model at 91.4 µs is presented in Figure 3.4(b).

The main crack starts occurring at 30.5 µs as same with without micro-crack model in

the benchmark problem. However, the crack cannot reach the edge at 91.4 µs due to

the decrease in propagation velocity.

To compare the cases at the final stage, the crack path of the reference model at 95.7

µs is given in Figure 3.5(a). The crack propagation of crescent-shaped micro-crack

case reaches the edge at 95.7 µs (1100th time-step) (Figure 3.5(b)), and the average

velocity is 1188 m/s.

Figure 3.5 : (a) Crack propagations in Kalthoff–Winkler experiment (without
micro-crack case) and (b) in the benchmark problem at 95.7 µs.
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Herein, the crack propagation velocity of the benchmark model with micro-cracks

reduces about 12% compared to the original experiment model.

Brencich and Carpinteri [26] stated that opening and coalescence of micro-cracks

cause stress redistribution and energy dissipation mechanisms. Using part of input

mechanical energy by the pre-existing micro-cracks weakens the propagation of the

main crack and creates a shielding effect called toughening by micro-cracks. The

deceleration in main macro-crack velocity is a result of this toughening mechanism.

Therefore, this validation study confirms that the presence of micro-cracks can cause

a fracture toughening effect that reduces the crack propagation velocity in this impact

loading simulation.

3.2 Stochastically Distributed Micro-Cracks

To analyse randomly distributed micro-cracks with analytical methods is more

challenging. Thus, with the bond-based PD method, effects of micro-cracks

on macro-crack propagation by varying micro-crack amounts and densities were

examined in this section.

3.2.1 Micro-cracks with varying densities

Three different densities of micro-crack cases are investigated in the reference region

defined as in Figure 3.6. The micro-crack patterns are stochastically determined, and

they are of the same length. In the first model, the default density of micro-cracks in the

reference zone is defined as n0 = N0/A0 where N0 is the number of micro-cracks and

A0 is the area of the reference region. Three simulations were performed with varying

density of micro-cracks, n0 = {0.75,1,1.25} in the reference area A0. The results of

the parametrized density of micro-cracks are used to compare the crack propagation

speed of without micro-cracks case.

The simulation of the original experiment without micro-cracks can be seen for

comparison purposes in Figure 3.4(a). In the current model, macro-cracks start

to propagate at 30.5 µs. Macro-cracks reach edges approximately at 91.4 µs. In

Figure 3.7(a), the density of micro-cracks in the reference area (A0) is assigned as

n0 × 0.75 and the macro-cracks propagation is given at 91.4 µs. It can be seen

that the macro-cracks reach the edge within the same time according to the case
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Figure 3.6 : Geometric details of the micro-crack pattern in the reference zone A0
with the reference density n0.

without micro-cracks. The case of n0× 1 is shown in Figure 3.7(b). When the tip of

macro-cracks at 91.4 µs is examined, the propagation speed of macro-cracks decreases

with the increase in the density of micro-cracks and macro-cracks, which can precisely
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reach the edge after 91.4 µs. In Figure 3.7(c), the density of micro-cracks is increased

compared to the reference model with the multiplier 1.25. Propagation of macro-cracks

slows down more according to without micro-cracks, n0×0.75, and n0×1 cases.

Figure 3.7 : The crack path of the case (a) n0×0.75, (b) n0×1, and (c) n0×1.25
cases at 91.4 µs (1050th time-step).
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Due to the change in macro-cracks propagation path angle, cracks reach the edge

approximately simultaneously as the n0×1 case. The crack patterns in all simulations

are nearly straight and very similar to patterns in [14, 87, 113, 114, 116]. Once

macro-cracks pass over the reference zone of micro-cracks, velocities of macro-crack

tips can be determined for each model. In Figure 3.8, the velocity data is presented after

52.2 µs when the macro-crack tips can be observable after passing the reference region

of micro-cracks. Considering that macro-cracks reaching the edge of the body at 91.4

µs in the case of without micro-cracks, the velocity comparisons should be considered

up to this time. Crack propagation without micro-cracks and with pre-determined

micro-cracks with different densities are quantitatively compared by calculating the

velocities of macro-crack tips from 52.2 to 91.4 µs.

Figure 3.8 : The macro-crack propagation velocities of without micro-crack and with
micro-crack cases with densities n0×{0.75,1,1.25} between 52.2 and

91.4 µs. The initial and maximum velocities are shown with black boxes.

The average velocities of without micro-crack case and with micro-crack cases with

densities, n0 = {0.75,1,1.25} are 1345 m/s, 1327 m/s, 1284 m/s, and 1165 m/s,

respectively. In without micro-crack case, average velocities and the trend agree with

models in [58, 76, 77] that validate the current approach for the problem. Moreover,

Gu et al. [116] and Guo and Gao [14] emphasized that the macro-crack initiation time
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is about 30 µs that is very close to the values in the experiment (29 µs) and the current

model (30.5 µs). Without micro-cracks and the low-density of micro-cracks (n0×0.75)

conditions show similar trends since their velocities are very close to each other. In

addition to this, in the case of n0 × 1, the trend seems similar despite the average

velocity decreases. In without micro-cracks and n0× 0.75 models, the macro-crack

propagation velocities reach a maximum in approximately 60.9 µs. However, in the

cases of n0× 1 and n0× 1.25 macro-cracks, the time to reach the maximum speed

has a delay with 65.3 µs and 78.3 µs, respectively. In addition to this, while the

velocity profiles of the without micro-crack and n0×0.75 cases are very similar, more

dense models (n0× 1 and n0× 1.25) lead to deceleration in macro-crack propagation

according to their number of micro-cracks. In conclusion, models show that the

number of micro-cracks in the same area is an important parameter in toughening

mechanism. Besides, in n0×1.25 case, the initial velocity is relatively low compared

to the other three models.

3.2.2 Micro-cracks with various number

The effect of the number of micro-cracks on the toughening mechanism is investigated

in this section. In Figure 3.9, geometrical details of A0: the reference area in Section

3.2.1, A1: the inner area, and A2: the outer area, including A0 and A1 are given.

Figure 3.9 : Geometric details of the micro-crack pattern in A0, A1, A2 regions with a
micro-crack density of n0.
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Two more micro-crack zones around the notch tips were defined. The densities of

micro-cracks are preserved as n0 in all zones by changing the number of micro-cracks

depending on the area. Figure 3.10 shows the crack propagations.

Figure 3.10 : The crack path of cases (a) A1 (b) A0, and (c) A2 cases at 91.4 µs
(1050th time-step).
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All regions that contain several micro-cracks proportional to their area are compared to

the original experiment simulation in Section 3.2.1. Macro-crack propagation without

micro-cracks was presented in Figure 3.4(a). In the inner region A1, the pattern that

contains the least number of micro-cracks does not produce a significant change in the

propagation of macro-cracks (Figure 3.10(a)). The required time for macro-cracks

to reach the vertical edge is the same as in without micro-cracks case (91.4 µs).

Micro-crack pattern in the region A0 decreases the macro-crack propagation velocity.

As seen in Figure 3.10(b), the macro-cracks can reach the edge exactly after 91.4

µs. The region A2 contains the greatest number of micro-cracks defined by increasing

the number of micro-cracks with keeping constant the density. The crack propagation

path obtained from the simulation result can be seen in Figure 3.10(c). While complete

fracture occurs at 91.4 µs in without micro-cracks case, macro-crack propagation in A2

case cannot reach vertical edges of the body before 104.4 µs due to the high number

of micro-cracks.

In Figure 3.11, macro-crack propagation velocities between the 52.2 µs and 91.4 µs

are given for the without micro-cracks and with micro-cracks cases (A0, A1, and A2).

Figure 3.11 : The macro-crack propagation velocities of without micro-cracks, A1,
A0, and A2 cases between 52.2 and 91.4 µs. The initial and maximum

velocities are shown with black boxes.
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Average velocities during that time interval are 1345 m/s, 1284 m/s, 1347 m/s, and

1219 m/s, respectively. Although some deviations are observed at 74.0 µs, 78.3 µs,

and 87.0 µs, the propagation of cracks in the cases without micro-cracks and A1

are very similar. Therefore, it can be deduced that the toughening mechanism can

only be triggered with a sufficient number of micro-crack clusters. However, there

is a significant reduction in the average velocity of the reference area case A0 and

the largest area case A2. The acceleration of the cracks tip in the A0 and A2 cases

show similar trends with the other cases. On the other hand, the profiles reach their

maximum velocities with a delay compared to other models. In the cases of without

micro-cracks and A1 maximum values are reached at about 60.9 µs, while in A0 and

A2 cases, the maximum velocities are reached at 65.3 µs and 69.6 µs, respectively.

Also, velocity differences between the four models decrease as the time advances.

Guo and Gao [14] explained the crack propagation and dynamic failure according to

the wave propagation, especially “compressive wave” in [106]. They stated that Mode

II crack propagation is driven by this wave until 60 µs. After that time, the shape

of compressional wave is distorted and the effective Mode II crack propagation ends.

After that, waves reflected by the boundary drive the crack propagation and weaken the

propagation process [14]. The micro-cracks located on the path of compression waves

can cause a distortion effect on these waves. Thus, the shape of the waves becomes

vague early and its effect on the crack propagation weaken. In this study, the maximum

velocity of without micro-cracks case is observed at 60.9 µs (Figures 3.8 and 3.11).

Conversely, maximum values are delayed to 65.3 and 69.6 µs (Figure 3.11) and even

to 78.3 µs (Figures 3.8), and average velocities decrease in cases with sufficient

micro-crack patterns in terms of toughening mechanism. Hence, the delay in reaching

the maximum velocities and the decrease of average velocities can be caused by

compression waves being distorted early and reaching the edge lately because of

micro-cracks on the wave path.

Consequently, while the less density of stochastically located micro-cracks around

the crack tip does not affect toughening mechanism, adding more micro-cracks in

the same area can reduce the crack tip velocity and increase the toughness with an

appreciable difference. The results show that the insufficient number of micro-cracks

are inadequate to slow down crack tip’s propagation velocities. The density of
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micro-cracks in a constant area and the number of micro-cracks in expanding areas

are significant parameters on the toughening mechanism of a material. Using fracture

modelling competence of PD can help improve understanding of the design of more

endurance geometries. Modelling results provide the solution of certain cases, either

the length or distances of micro-cracks can be investigated in future studies. Overall,

considering the trends of models together, it is observed that velocity differences

between models decrease as the macro-cracks approach edges of the body. This part

of the dissertation was published as an article in the journal (see [119]).
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4. WIRE ROPES

Wire ropes and generally cable systems can experience unexpected breakage during

material handling processes. Since the usage area of cable systems spans a wide range,

the failure and damage of ropes are of interest to various research fields including

mining, civil, and mechanical engineering. Wire rope damage directly affects the

material handling process in any plant such as ports, decks, or ships. The failure of

wire ropes brings risks in terms of load damage or loosing and can cause accidents

resulting in serious injuries.

Consequently, a deep understanding of wire ropes’ failure mechanism is an important

research topic to avoid unexpected damage. Unfortunately, many researchers have

studied only certain loading conditions, such as bending or tensional loading, using

finite element analysis. The impact loading in the both axial or transverse direction

to wire rope still requires more investigation. An impact load can result in an

undetermined mechanical response of the rope.

Corrosion, insufficient lubrication, porosities in the working area, and wear can

decrease the strength of wire ropes. It should be noted that ropes should be checked for

broken wires and, inspected and maintained within a certain period during working.

In general, ropes should be examined at least once per month or more often, in

accordance with the instruction of the competent person in a typical material handling

area. Depending on the rope’s condition, the competent person may deem it necessary

to reduce the time interval between examinations.

In a special examination, the wire rope should be carefully examined if an incident has

occurred which could have caused damage to the wire rope and/or its termination, or if

a rope has been brought back into operation after dismantling followed by reassembly.

There are some points that need to be covered by the examination. Although a wire

rope should be examined throughout its length, a particular care should be taken at the

following locations:
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• The termination points of both moving and stationary ropes,

• That part of the rope which passes through the block or over sheaves,

• In the case of systems performing repetitive operations, any part of the rope which

lies over sheaves while the system is in a loaded condition

• That part of the rope which lies over a compensating sheaves

• Any part of the rope which may be subject to abrasion by external features,

• Internals of the rope, for corrosion and fatigue

• Any part of the rope exposed to wear.

The result of the examination should be recorded in the examination record for the

system. The rope should be examined in the area where it passes out from the

termination, as this position is critical for the onset of fatigue (wire breaks) and

corrosion. The terminal fittings themselves should also be examined for signs of

distortion or wear. When broken wires are evident close to, or within, the termination,

it may be possible to shorten the rope and re-fit the terminal fittings. However, the wire

rope’s resulting length should be sufficient to allow for the minimum required number

of rope wraps on the drum.

Non-destructive testing (NDT) by electromagnetic techniques may be used as an aid

to visual inspection to determine areas and levels of rope deterioration. When it is

the intention to use electromagnetic means of NDT as an aid to visual examination,

the rope should be subject to an initial electromagnetic NDT examination as soon as

possible after the rope has been installed.

Discard decisions about wire rope focus most predominantly on the number of

broken wires, but other damage mechanisms such as wear, corrosion, distortion, and

mechanical damage must also be considered. The decision to discard a wire rope must

be based not on whether the rope has become unsafe, but whether it will become unsafe

before the next inspection.

To ensure the health and safety of wire ropes, one should follow the recent standards

and instructions provided by manufacturers.
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Figure 4.1 shows a damaged wire rope. The broken wires can be seen in the outer

strand. On visual inspection of the wire rope, several fractures of the individual wires

were observed. Internal corrosion and wear were observed on the inner surface of the

outer strands of the wire rope. This effect caused that material becomes more brittle

under more humid climate conditions.

Figure 4.1 : A damaged wire rope.

According to Mahmoud [120], environmental effects can cause an adverse effect on

not only wire cross sectional area reduction, but also on ductility loss. The influence

of hydrogen embrittlement can result in a fracture of a wire with a minimal necking,

as shown in Figure 4.2 [120]. The reduced ductility means that the wire structure can

show a brittle regime of fracture under loading.

Figure 4.2 : Brittle wire fracture with minimal necking.

51



Therefore, reasons for the catastrophic fracture of the wire rope need more

investigation with the aspect of crack initiation and propagation.

The classical equilibrium equations of wire ropes were derived by Love. Most

of researchers presented analytical solutions and physical models based on this

equilibrium equations in the literature. The modelling of wire ropes is a very

challenging work due to the complex geometry of multi-lay strands. In theoretical

studies, most of the varying aspects depended on non-frictional and contact-less

cases. Numerical studies provide solutions that take into account the effect of friction,

contact, and boundary conditions [121].

In this chapter, the structure and components of wire ropes were introduced. The

different type of wire ropes and lay types were presented. After revisiting the historical

usage, the modern day strand types such as Seale, Filler, and Warrington were defined

with examples.

A literature review was presented to investigate the different aspects of wire rope

modelling and analysis. The fundamental theory of cable systems and wire ropes

were explained and then, four theoretical models; Purely tensile or fibre model,

Semi-continuous strand model, Theory of thin rods model, Helical rod model were

explained. An enhanced literature review was conducted to summarize the numerical

models and reported test results in recent years in the third section.

4.1 Structure of Wire Ropes

The oldest records of ropes were found on Egypt drawings and dated approximately

12000 to 9000 BC. These were made of hides, hair, and plants. Human civilization

used ropes for lifting, dragging heavy loads. With the industrial revolution, the modern

type of wire ropes was developed and used in silver mines in Harz Mountains in 1834

[121].

Basic geometry and components of a wire rope are shown in Figure 4.3 [122]. The

strand is composed of helically shaped wires. Outer strands are wrapping around the

core strand. Each strand has a centre wire that determines the geometrical coordinates

of the helical path. The acting load on the rope mostly carried by the strands. The core

member is guiding for helical wrapping strands.
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Figure 4.3 : Components of a wire rope.

The wire ropes are named by the laid direction of the strands around the core. Various

lay types of wire ropes are given in Figure 4.4. Right regular lay (sZ), left regular lay

(zS), right lang lay (zZ) and left lang lay wire (sS) cores are defined.

Figure 4.4 : Wire rope lay types: (a) right regular lay (sZ), (b)left regular lay (zS), (c)
right lang lay (zZ), (d) left lang lay wire (sS).
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In Figure 4.4(a), wires are wrapping around outer strands in left way and these strands

composed the wire rope in the opposite right direction. In the "sZ" symbol, the small

"s" represents the left lay direction of a wire and the capital "Z" represents the right lay

direction of a strand around the core [122]. The centre core is a simple straight strand

for all types [121]. Outer strands form a helical path around the centre core. Various

types of wire ropes can be designed with different numbers of wires and strands, and

lay directions for different applications. In Figure 4.5, a fundamental wire rope axial

section is given. Six helical wires are wrapping around a straight centre core and it is

called as 1x6 wire strand.

Figure 4.5 : Cross sectional view of 1x6 wire strand.

Seale, Filler, and Warrington are the most commonly used types of wire ropes [121].

The cross sectional areas of these primary strands are given in Figure 4.6.

Figure 4.6 : Basic strand types.

The independent wire rope core (IWRC) is given in Figure 4.7. It is termed as 6x36

Warrington-Seale wire rope with a steel core.
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Figure 4.7 : 6x36 Warrington-Seale (IWRC) type wire rope with a steel core.

A rotating and a rotation resistant wires rope are given in Figure 4.8(a) and (b),

respectively [123]. The opposite placement of inner and outer core provides a rotation

resistance under axial loading.

(a) Rotating 6x36 rope IWRC (b) Non-rotating 18x7 rope IWRC

Figure 4.8 : The schematic cross section description of the strands of rotating and
non-rotating IWRC.

4.2 Theory of Wire Ropes

Steel wire ropes are widely used for various applications, especially in elevators,

cranes, ships, and other handling operations. Therefore, they consist of an important

research subject in both mechanical and civil engineering. From 1970’s to the present,
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wire rope theory and its complex structure were extensively studied by a number of

researchers.

Love (1944) presented the well-known general theory of rods and governed the

equilibrium equations of a thin rod on an arc section [124]. The studies on wire ropes

mostly have based on these formulations. The equilibrium equations are a starting

point for most of analytical and numerical solutions of wire ropes. Timoshenko [125]

investigated and defined the mechanical behaviour of wire ropes in his book. A

restricted and linearised form of equations governed by Green and Laws [126] to

obtain stresses in helical wires in cables. Hruska [127] proposed simple constraints

to investigate the mechanical behaviour of wire ropes.

4.2.1 Theoretical models

A brief introduction to theoretical models of cable and wire ropes is presented. There

are four main types of models of wire ropes.

4.2.1.1 Purely tensile or fibre model

Hruska [127] presented the purely tensile model in 1951. In this simple model, there is

no boundary condition. The contact was defined as purely radial and contradiction was

not taken into account. Ropes were only subjected to tensile loading and moments were

not applied. The friction was neglected and the whole strand deflection can be thought

of as infinitely small. Knapp [128] extended the theory by including compression

of the core. Velinsky [129] developed a theory for the analysis of fibre-core wire

rope subjected to an axial force and twisting moment. After solving the linear theory

equations, the theory is applied to Seale fibre-core wire ropes. The theoretically

obtaining Young’s modulus and Poisson’s ratio of the structure showed similar results

with the experiment.

4.2.1.2 Orthotropic sheet model

Hobbs and Raoof [130] introduced the semi-continuous strand model, also known as

the orthotropic sheet model. In this model, homogenized wire layers were thought

of as an equivalent orthotropic cylindrical sheet. Modelling multi-layered strands and

theoretical analysis of large-diameter wire ropes can be studied using this model [131].

In some studies [132–136], each layer was replaced with a cylinder of orthotropic,

56



transversely isotropic body. A linear static elastic model was developed to model more

complex geometries subjected to axial loads using discrete thin rod theory [137, 138].

This model focused on the problem of asymmetry in earlier models and the generation

of a general model to examine the pre-slip response of helical strands. Moreover,

wire/core friction contacts were taken into account by a constant curvature bending.

4.2.1.3 Theory of thin rod

Ramsey [139] introduced the theory of thin rod in 1988. The theory was a derivation

and application of the direct approach presented by Green and Laws [126]. Stresses in

helical wires in cables were determined with various loading conditions.

4.2.1.4 Helical rod model

The model presented by Phillips and Costello [140] was based on the formulations

derived by Love [124]. Costello and other authors’ works had continued in the

subject, such as contact stresses in thin twisted rods [141], large deflections of helical

spring due to bending [142], analytical Investigation of wire rope [143], a simplified

bending theory for wire rope [144], stresses in multi layered cables [145], wire rope

with complex cross sections [146], static response of reduced rotation rope [147],

effective modulus of twisted wire cables [148], a more exact theory for twisted wire

cables [149], axial impact of twisted wire cables [150], bird-caging in wire rope [151],

torsional stiffness of twisted wire cables [152], viscoelastic response of a strand [153],

effective length of a fractured wire in wire rope [154], analysis of wire ropes with

internal wire rope cores [155]. Moreover, Costello published a book that presented a

general view of studies [156].

4.3 Literature Review

As a result of their complex structure, analysing each strand in a rope to determine

deformations and stress distributions along a rope is challenging. Some researchers

have presented analytical solutions of wire rope theory with certain assumptions.

The basic theory for wire ropes under tensile loading with regarding to tension and

torsion was studied in [127, 157]. It neglected the boundary conditions. The theory

did not cover the contact stresses. Costello [156] and Utting and Jones [158, 159]
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created a more general form. In their solution, a wire in a wire rope can be considered

as a helically curved rod. Moreover, the rope geometry and inter-wire contacts were

defined with various assumptions.

A simplified finite element analysis model for armoured ropes was proposed by

Carlson et al. in [160]. Cutchins et al. [161] studied damping isolators. The vibration

isolation and shock absorption ability of wire ropes were modelled and analysed in

there. Chiang [162] studied on characterizing a simple stranded wire cable under axial

loading.

Moreover some researchers used various methodologies and modelling technique to

analyses and design wire ropes and related mechanisms [163, 164]. Cardou and

Jolicoeur [165] examined design criteria of wire ropes and compared analytical

models. The theory of slender curved rods was used to determine the extension

of a strand subjected to axial and torsional loading [166]. Shield and Costello

[167, 168] examined the effect of wire rope mechanics on the material properties of

cord composites with both an elasticity approach and an energy approach. Moreover

they investigated the bending of cord composite plates [169]. The bending of cord

composite cylindrical shells was also examined in [170,171]. Velinsky [172] developed

an analysis of stiffened, wire-strand based structures with compressive forcing.

The analytical solutions to obtain contact stresses in multi-layered strands with a

metallic core were governed in [173]. Jiang et al. [174] used three-dimensional solid

brick elements to develop a concise FEM model for a wire rope. The model that

contains structural and load symmetries combined the effect of different loading types.

Nawrocki et al. [175] developed a finite element model for simple straight wire rope

strands.

Some of the important articles about wire rope modelling, analysis, and experiments

are summarized from this point.

Phillips and Costello [140] proposed a procedure for determining the stresses in twisted

wire cables. They took into account large changes in helix angle caused by loading.

With some representative examples, the contact line loads between each wires were

determined. The contact line load increased with increasing axial loading on the cable

up to a top point and then decreased. This was caused by the straightening of the cable
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wires, such as the increasing of helix angle. Their findings indicated that the change

in helix geometry due to loading should be considered an important parameter to solve

governing equations.

Machida and Durelli [176] determined the axial force, bending, and torsion moments

in a helical wire. Besides, the axial force and twisting moment were investigated in

a 7-wire strand subjected to axial and torsional displacements. Experimental strain

analysis and theoretical results were compared to explain that the minimal contact

force and resultant frictional forces were too small due to small lay angle and large

helix angle.

Costello and Phillips [148] investigated the effective modulus of twisted wire cables

by a load-deflection relation for two types of end conditions. They also showed that

cables that had fixed ends against rotation were stiffer than that had free ends. The

end conditions were important factors that determine the cable stiffness. In the paper,

friction was neglected and wires were assumed as extensible.

Costello and Miler [122] developed a theory that determined the static response of a

wire rope. The wires of a strand were wound in different directions. The axial strain

was given as a function of the axial forces for two examples, i.e.: ropes with zero

end-moment and ropes restrained against rotation. The results indicated that a lang lay

rope should never be used if the ends are free to rotate. A lang lay rope under tension

shows no significant stiffness due to running out of the lay.

In 1980, Costello and Miler [147] presented a reduced rotation wire rope model in

which friction is neglected. They also provided experimental results for a 1x19 wire

rope.

Velinsky et al. [146] predicted the behaviour of a wire rope with complex cross sections

with regard to axial static response. They indicated that when a wire rope was restricted

to rotate, maximum normal stress was obtained in the centre.

Lanteigne [177] studied the mechanical behaviour of aluminium conductor steel

reinforced conductors subjected to static loads that combine tension, torsion and

bending. The developing stiffness matrix was presented and results in bending forcing

showed similar characteristics with Costello [145].
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Chien and Costello [154] investigated the effective length of a fractured wire. The

contact loads between the wires and Coulomb type friction were taken into account.

They proposed that the effective length to the pitch of the outer strand can be constant

value for certain cross sections.

Phillips and Costello [155] determined the stresses of an each wire in a complex wire

rope with a wire rope core. The forcing scenarios were tension, torsion, and bending

over a sheave. The friction was neglected. They found that the effective modulus of

elasticity was higher than previous studies for an IWRC.

Velinsky [129] developed the non-linear theory on analysing complex wire ropes. The

bending and twisting of thin rods were taken into account in the non-linear equations.

A 6x19 Seale wire rope was tested. In comparison to the non-linear theory and linear

theory, they showed similar results in most cases.

Kumar et al. [178] developed a closed form solution for elastic deformations in

multi-layered strand subjected to tensile and torsional forcing. The layout of layers,

number of wires, and direction and magnitude of lay angles were found as significant

parameters of deformation characteristics. Besides, they proposed examples that

demonstrate their solutions.

Velinsky [179] developed a methodology for modelling a wire strand in which

non-linear equations were numerically solved. Then, with the curve fitting, polynomial

expressions for designing a wire rope was proposed.

Jiang [180] examined non-linear and linear analysis of wire ropes with a general

formulation that consisted of seven stiffness and deformation constants. Both wire

ropes with the complex cross sections and basic wire strands can be analysed with

this given general formulation. Jiang et al. [181] studied on finite element model of a

wire strand to examine the effect of ending conditions. To reduce the computational

sources, the strand was considered cyclic symmetric. The contact forces and relative

deformations trough the contact lines were taken into account were analysed regarding

the fixed-end conditions. Jiang et al. [174] developed a helically symmetric finite

element model for a three-layered straight wire rope. They compared the results with

Costello’s elasticity theory [156] and experimental data of Utting and Jones [158,159].
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Yardibi [182] examine the stresses of a wire subjected to axial loading and bending of

wire ropes in his thesis. Then, Şentürk [183] studied modelling and analysis of wire

rope strand under axial loading using FEM.

Nawrocki and Labrosse [175] developed a finite element model using Cartesian

iso-parametric formulation to consider inter-wire motions.

Elata et al. [184] examined the mechanical behaviour of a wire rope with an

independent wire core (IWRC). The model considered the double-helix structure of

each wire and relation between wire level stress and overall applied load.

Ghoreishi et al. [185] presented a model for axial behaviour of synthetic ropes. The

presented model contained six helical wires wrapped around a straight core. A

normal force and torque were applied. However, the model was only validated within

limited small helix angles. Ghoreishi et al. [186] developed a continuum model for

multi-layered fibrous structures subjected to axial loads. The structure was considered

a set of coaxial helices characterized by their external lay angle and radius. The axial

loads were static and constitutive material was assumed as linear. The friction between

fibres was neglected. This analytical model was proposed as a useful closed form

formulation, which allowed to optimize the rope constructions.

4.3.1 Experimental studies

Durelli et al. [187] conducted a series of tests to examine the strain and stresses

characteristics of steel strands subjected to axial loadings. They found that strains

in some wires were not linearly related to the load. Moreover, the points in different

wires at a transverse cross section of a strand did not carry the same stress. They

proposed some possible source of this behaviour; local variation in wire geometry,

external particles and related friction variations between wire and core. They also

determined the effective Young’s Modulus of the strand restricted as 1̃65 GPa.

Utting and Jones [188] reported experimental test results of wire rope strands subjected

to static axial loads. The strands were restrained at both ends and strain gage load

cells gave tensile load data and the associated twisting moment. The presented

experimental results of extension and rotation movements were in good agreement

with the corresponding theoretical predictions. They also carried out tests on straight
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single steel strands consisting of seven wires subjected to axial loads with various end

conditions [158, 159]. As a result, a mathematical model of a strand was developed to

obtain the change of helix angle, Poisson’s ratio effects, wire flattening, and friction

between core and wires.

Raoof and Hobbs [189] conducted experimental studies to examine the torsional

characteristics of structural strands. The torsional stiffness for static and dynamic cases

and hysteresis graphs were given for axially preloaded strands.

Bateman et al. [190] developed a computer simulation that models the roadway wire

rope safety fence impacted by a vehicle to reduce the number of real scale crash tests.

The model was based on the vehicle’s dynamic motion and quasi-static mechanical

response of the wire rope.

Onur and İmrak [191] investigated the fatigue lifetime of 6x36 Warrington-Seale

wire rope bending over a sheave with various diameters. The study extended to the

experimental and theoretical investigation of a wire rope subjected to normal load

[192].

4.3.2 Recent studies on impact load and contacts in wire rope modelling

A review of recent studies that examine wire ropes subjected to impact load was given

in this section. Moreover, articles considering contact states were also examined.

Cardou and Jolicoeur [165] summarized the contact modes under ideal conditions such

as wire diameters and lay angles having exactly their nominal value. The first contact

mode is radial contact: the wires in the same layer do not touch each other, but only

do to those in adjacent layers. The second contact mode is lateral contact: the wires

in the same layer are in contact, but they do not touch with the adjacent layers. The

last mode is the mixed type: the wires are in contact with both those in the same

layer and adjacent layers. Both radial and lateral contact occur. Cardou and Jolicoeur

stated that one of these contact types should be selected in analysis because of static

indeterminacy [165].

The detail definitions of the contact phenomena of wire ropes were stated by Hobbs

and Raoof [193]. They stated that two types of inter-wire contact were observed in a

typical multi-layered helical wire strand, as seen in Figure 4.9. The first contact type
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is between wires in a given single layer, which governs the hysteresis characteristics

under cyclic loading and affects the stiffness in overall axial, torsional, and free

bending cases. Mode A in Figure 4.9 simply simulates this contact type between

adjacent "parallel" wires. Hobbs and Raoof evaluated this class of contact was similar

to the line contact between parallel cylinders in terms of contact stress theory. In a 1x6

strand, these line contacts can be observed between outer wires and the core wire.

The mode B in Figure 4.9 is the other type of inter-wire contacts occurring between the

layers of a helical strand which is termed as trellis contact. There is an oblique angle

between the crossing layers. The contact stresses are higher than the line contacts

because of the small cross sectional area as expected. The high stress concentrations

can occur in the contact area because of trellis contact, especially in transverse loading

conditions. The elastic, hysteric and fatigue properties of a wire rope can only be

understood by examining how these two significant contact mechanism modelled.

Figure 4.9 : The contact types between wires in a helical strand.

Foti and Roseto [194] modelled the elastic-plastic behaviour of metallic strands with

a new formulation. They defined two basic internal contact modes. In Figure 4.10(a),

the radial contact and in Figure 4.10(b) the lateral contact states are given. In the radial

contact case, surfaces of outer wires are in contact with the surface of the core, but

not among them. Conversely, in the second case, contacts only existed between outer
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wires, not between core and outer wires. These modes were defined by Hobbs and

Raoof [193] and Cardou and Jolicoeur [165] in 1996 and 1997, respectively.

Figure 4.10 : Definition of contact modes in a cross section of view of a strand, (a)
radial contact and (b) lateral contact. d and d0 are diameters of the outer

wire and core, respectively. α is the lay angle.

In the same study, Foti and Roseto [194] stated that the definition of the internal

contact among wires was based on surface-to-surface contact pairs approach. It

took into account both possible relative sliding between wires and deformability of

contact surfaces. The classic Coulomb’s law was used as a friction model. They used

CONTA 174 and TARGE 170 elements to model each contact pair and an Augmented

Lagrangian algorithm was defined to enforce contact compatibility conditions. Then,

Pure Penalty algorithm was preferred to minimize the sensitivity of the solution to the

normal contact stiffness. One of the important subjects in the study is that neglecting of

wire flattening phenomena formed by the deformation of the contact surface between

wires and core. Although this surface deformation can result with a cross section

profile of a wire, it was neglected for practical purposes as in many studies.

Jiang et al. [174,195] proposed a finite element model considering plastic deformation

and internal contact conditions. They used three-dimensional solid brick elements

for the discretization of bodies. They stated that contacts between the centre and

outer wires were modelled using contact elements that provide positive pressure

transfer between surfaces. Figure 4.11 shows the condensed mesh at the near edge

of the contact region. To sustain the computational efficiency, the outer regions can

be modelled with coarse meshes. Therefore, the Coulomb friction sliding can be

simulated by surface-to-surface contact approach.
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Figure 4.11 : Finite element mesh of a slice of 1/12 of a 7-wire strand (a) global view,
(b) detailed view in contact region. Rc is the radius of the centre core.

Jiang et al. [196] presented work on statically indeterminate contacts in axially loaded

wire strand. They proposed that 10-5 of the wire radius is a suitable error for maximum

penetration between contact surfaces. The finite element mesh model of the unstable

contact condition is given in Figure 4.12.

Figure 4.12 : Finite element mesh of a mixing type contact. More dense mesh
structures are applied to the contact regions.
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Jiang [197] examined the mechanical behaviour of a simple wire strand under pure

bending. In this study, the contact elements between the surfaces were used to simulate

the surface-to-surface contact with the Coulomb friction sliding. In this model, the

diameter of the centre core diameter is greater than the outer wires’. Therefore, wires

on the outer layers do not have contacts with each other.

The mesh in the FEM analysis made by Jiang [197] is given in Figure 4.13. The

concentrated mesh can be seen in the vicinity of the contact region.

Figure 4.13 : Increased mesh number in the contact region.

Argatov et al. [198] examined the wear characteristics of wire ropes subjected to cyclic

bending over a sheave. They modelled the contact deformation and the transverse

contraction of a simple helical wire.

Fontanari et al. [199] investigated the elasto-plastic mechanical behaviour of a

Warrington-Seale type of wire rope using finite element method. The mesh volumes

consisted of eight node brick elements, as seen in Figure 4.14. The radial dimension of

a mesh was lower than 1/12 of the wire radius and the longitudinal length was at least

1/10 of the axial span to make the analysis mesh independent. The contact of the wires

was modelled by surface-surface contact definition with four nodes contact elements.

Figure 4.14 shows contacts that defined between wires in different layers. The contacts

between wires in the same layers were not defined.
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Figure 4.14 : Finite Element mesh of a Warrington-Seale (WS12+6/6+6+1) strand
and the detail view of contact.

Fontanari et al. [200] presented more detail on contact definition of a meshed body

in the article about fire behaviour of steel wire ropes. In this paper, the body of

wires was discretized using 8-nodes brick structural elements. Then contacts were

defined as surface-to-surface four nodes contact elements. They stated that an iterative

convergence analysis was made to obtain to minimize the number of contact pairs. The

3D model of the mesh and contact surfaces of the wire can be seen in Figure 4.15.

Figure 4.15 : Identification of the contact surfaces with four surface approach.

Bruski [201] presented a study on bending properties of a commonly used wire rope

in cable barriers: 3x7 19 mm. In this paper, numerical studies by using FEM were

compared to experimental tests. The relationship between moment and curvature

was investigated. The inter-contact definition of wires in the study was based on a

penalty-based mortar contact algorithm as in [202].

Huang et al. [203] proposed a co-simulation method based on multi-body dynamics

and FEM to determine the dynamic responses of a wire rope in a hoisting system of a

crane. They presented a detail contact modelling definition in the study. The two types
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of contacts in the multi-layered strand wire rope were stated as explained in previous

studies. The first the contact between two wires in a neighbour layer and the second

is the contact between adjacent parallel wires in the same layer, which can be seen in

Figure 4.10. The contact modelling used in this study is surface-to-surface contact type

with a finite sliding between wires. In addition, the tangential behaviour was modelled

with penalty friction formulation with the coefficient of 0.15. The two end surface

of wire ropes were coupled kinematically to apply the concentrated forces on the end

surfaces.

Judge et al. [204] modelled spiral strand cables in 3D and examined stresses in various

cross sections. The contacts between wires in the same layer and between a wire and

the core were modelled as surface-to-surface to simplify the construction. To define

the contact surface, AUTOMATIC_SINGLE_SURFACE in LS-DYNA was used in the

simulations. The friction coefficient was given as 0.115 in all simulations.

Karathanasopoulos et al. [205] modelled a strand in 2D for examining the elasto-plastic

axial-torsional response of a helical wire rope. In order to define the radial contact

of the helical wires with the central core, node-to-node contact pairs were used

considering fully kinematically coupling. The mesh and contacts between inter-wires

are shown in Figure 4.16 [205].

Figure 4.16 : Dimensions and 2D mesh of a helical strand.
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İmrak and Erdönmez [206] introduced a technique of modelling wire rope with IWRC.

The new technique was then applied for both right regular lay and lang lay IWRCs and

conducted FEM analysis with various loading conditions for validation [207].

Erdönmez and İmrak [208] proposed to use of the Frenet-Serret frame for generation

helical structures. A circle or a quadrilateral were swept to generate both single helical

and nested helical solid structures by using the moving trihedron along the centreline of

the helical geometry. Moreover, an algorithm was presented to model helical structures

without length limitation with an accurate and valid mesh. Then, a FEM analysis

was conducted under an axial strain loading condition. A helical line of contact was

obtained between the centre wire and the outer helical wires, shown in Figure 4.17(a).

When using finer mesh in models, smoother helical line of contact between wires

occurred Figure 4.17(b) [208].

Figure 4.17 : Contact force distribution on (a) simple straight strand and (b) centre
wire with finer mesh.

Erdönmez [209] generated a three-dimensional solid model of a triple helix geometry.

Then, a generalized form procedure was presented to define parametric equations to

model n-tuple helical geometries.

Erdönmez [210] addressed one of the problematic issues on the meshing process of

wire ropes. The proposed method to model the mesh of classical and compacted wire

strand is shown in Figure 4.18(a) and (b), respectively. Comparison of contact force

distribution for related wire strand configurations was also given in Figure 4.18(c) and

(d). The loading was the static strain in the axial direction of the wire strand. Linear

hexahedral elements of type C3D8R were used in mesh process.
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Erdönmez [211] proposed a multi-layered compacted wire rope model that allows

users to create any length of compacted independent wire rope core geometry by

changing wire radius and pitch length.

Figure 4.18 : Meshing of (a) straight centre wire and (b) outer compacted wire.
Comparison of contact force distribution along (c) classical and (d)

compacted wire strand.

Kastratović et al. [212] studied the crack propagation in a single wire in a strand under

the axial loading, shown in Figure 4.19. The relation between crack depth and stress

intensity factors were given in this article.

Figure 4.19 : Meshing of wire strand with a pre-crack.
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5. MODELLING OF WIRE ROPES USING PERIDYNAMIC THEORY

This chapter provides a brief overview of the coding process and managing outputs.

It then goes on to modelling wire ropes using Peridynamic theory. Firstly, it is

aimed to provide information on coding and analysing of Peridynamic models. A

script for micro-crack creation was given to ensure the reproducibility of simulations

in this study. The algorithm of material point generation for wire section was also

given. Sharing the knowledge of handling with outputs was considered a guide for

everyone who studies Peridynamics and similar output files. In the following section,

an introduction to modelling of wire ropes in Peridynamic theory was given. The

contact states and loading conditions were discussed. Case studies were prepared.

Convergence studies were carried out to explore the applicability of Peridynamic

theory on wire sections. These studies have concentrated on assessing crack

propagation in wire ropes subjected to impact loading. The proposed discretization

parameters of wire rope stands were discussed in the aspect of Peridynamic modelling.

5.1 Codes and Software

Fortran language has been still a powerful and fast way in solution of numerical

methods, however, the lack of visualization abilities requires to use of some other

programs in post-processing of the results. To overcome this issue, results obtained

from a Fortran code need to be exported to another program, e.g. Matlab or Ovito. The

Kalthoff-Winkler Fortran codes provided by Madenci and Oterkus [87] writes results

to MATLAB files. These files are cxcg.m, cycg.m, czcg.m, uxcg.m, uycg.m, uzcg.m,

vxcg.m, vycg.m, vzcg.m, and dmgcg.m. The naming of the file names is based on the

physical properties and axes names. For example, in the first group, cxcg.m means the

x coordinates of the material points, cycg.m contains the y coordinates of the material

points, and czcg.m consists of z coordinates of the material points. In the second group,

uxcg.m, uycg.m, and uzcg.m contain the displacements of each material points in x, y,

and z axes, respectively.
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The third group vxcg.m, vycg.m, and vzcg.m stores the data of velocity components

of each material points in x, y, and z axes, respectively. The file dmgcg.m is damage

values of each material points. In question Fortran code can be downloaded from

the book’s publisher database [213]. For users who are not familiar with Fortran

language (old but fast), Matlab is recommended. It is hoped that explanations in

this and the next sections will contribute to a deeper understanding of numerical

modelling of Peridynamic theory. The reader should bear in mind that the Matlab

code is not as fast as Fortran code provided in [87]. It should be noted that using

of parallel computing in Matlab can decrease the simulation time. On the other

hand, Matlab presents a very user friendly environment. It is an interpreter and

does not need compiling. Thus, the debugging process can be more comfortable for

new programmers. Moreover, embedded visualization tools in Matlab allow users to

create and check out geometries and other physical properties in an easy and fast way.

Different methods can have been proposed to work on the solution of Peridynamics and

other numerical methods. However, in the first step, it may be helpful to start in Matlab.

A user can use the workspace, observe bugs, and plot the geometries easily. However,

after pre-processing, compiling the script in Fortran language is strongly recommended

for the efficiency purposes. In the third step, the user needs a visualization tool and

transfer data to another program, such as Matlab and Ovito. In the next sections,

plotting the results in Ovito and Matlab is explained.

5.1.1 Handling with Outputs

A Fortran program for the Kalthoff-Winkler PD simulation was given by Madenci and

Oterkus [87]. This program print results in *.m files, as stated in the previous section.

In the next two sections, two programs for handling these *.m files were proposed and

compared. Moreover, basic scripts used in the plotting process were given.

5.1.1.1 Outputs in Matlab

The list of *.m files produced from the Fortran code is given in Table 5.1. It should be

noted that files only contain data of the simulation results in the last time step, 1350 as

stated in [87]. In the original configuration, time series are not stored in these files. To

overcome this issue, a new script is presented in the next section. A basic program is

given to plot results in Matlab without any modification (Appendix A).
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Table 5.1 : Output *.m files of Fortran program of Kalthoff-Winkler problem.

File name Description
cxcg.m Coordinates of material points in x axis
cycg.m Coordinates of material points in y axis
czcg.m Coordinates of material points in z axis
dmgcg.m Damage of material points
uxcg.m Displacements of material points in x axis
uycg.m Displacements of material points in y axis
uzcg.m Displacements of material points in z axis
vxcg.m Velocities of material points in x axis
vycg.m Velocities of material points in y axis
vzcg.m Velocities of material points in z axis

The script should be in the same folder as the output files obtained from the Fortran

program. The user can change the variable names in the scatter plot function to plot

other outputs. Figure 5.1 shows a figure output of this script.

Figure 5.1 : A plot window in Matlab generated with the script in Appendix A.

In the script, only three figures were plotted: displacement in y axis, velocity in y axis,

and damage. It should be noted that these results are outputs of the last time-step in the
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simulation. Therefore, they only represent the last state of the points. The script also

produces an alternative three-dimensional representation for damage with modified

coordinates, as shown in Figure 5.1.

5.1.1.2 Outputs in Ovito

The Open Visualization Tool (OVITO) is a 3D visualization software developed by

Stukowski [214]. The free-basic version can be used to plot Peridynamic simulation

results. It is designed to plot the atomistic and particle simulation data. A Matlab script

is provided in Appendix B to save the vectors in Matlab as a *.xyz file. The detailed

information about *.xyz file type can be found in [215]. It has several variations; in

general, it consists of coordinates and other properties of particles. It allows the user

to save the properties of a particle as time-series. The script given in Appendix B, only

converts the output files from the end of the simulation. A preview window from Ovito

that plotted from files from the script in Appendix B is given in Figure 5.2. In addition

to this, there is a faster and useful way to plot the damage and other physical quantities

in Ovito.

Figure 5.2 : A preview window from Ovito. The input file is from Appendix B.
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The script given in Appendix C can be inserted at the end of each time iteration in

question Kalthoff-Winkler Fortran code. The script creates a *.xyz file, named as

Results.xyz. This file consists of 13 columns as shown in Figure 5.3.

Figure 5.3 : The definitions of the physical properties of particles in Ovito.

The first three columns store the x, y, z coordinates, respectively. They can be used to

examine model with constant coordinates. However, to see the displacement of points,

the last three columns should be chosen. The columns between 4-6 are displacement

data in the same order. Columns 7, 8, and 9 are velocities. Column 10 is the damage

and it can be labelled in Ovito as Total Energy. After, in Add Modification menu,

colour coding can be added and connected to Total Energy. The last three columns,

11-13, consist of the last position coordinates of particles. A user can choose both

these last three columns or first three columns for indicating positions of particles.

Figure 5.4 shows an example view of the Kalthoff-Winkler problem at a time-step.

Colour coding modification was used to plot the damage in the body. Start and end

values are set to 0 and 1. Since the local damage is defined as a proportion, the scale

can be adjusted between 0 and 1. Then, it can be converted to percentages. The colour

coding is jet.
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Figure 5.4 : A preview window of particles as time-series in Ovito.

5.1.2 Micro-Crack Code

The micro-crack definition in Peridynamic was given in Section 2.2.3. Figure 2.9

shows a micro-crack line located between material points. The algorithm used to

define in question micro-cracks is depicted as a flowchart in Figure 5.5. It is a precise

step-by-step series of instructions to create a crack plane in a Peridynamic theory. A

developed script is given in Appendix D by using this flowchart. It is coded in Fortran

language. This script can be inserted in the Kalthoff-Winkler Fortran code or any type

of Peridynamic analysis code. This recipe considers that the user has already defined

the location of cracks. It starts with identifying pre-defined the micro-crack plane

locations. Coordinates and lengths of micro-crack planes are ridden from an external

text file. An example text file that contains crack information is given in Appendix

D.1. Here, the first three columns are x, y, and z coordinates of the top of the crack,

respectively. The coordinates in z direction are all zero to obtain a complete crack

plane through the z axis. The script initiates forming of a crack plane from these top

point coordinates within a given length. The generated crack plane is perpendicular to

xy plane. The inclination of the plane is determined with the CCW angle between the

crack plane and y axis. It is given for each crack in the fourth column.
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Figure 5.5 : The flowchart used for the determination of broken bonds to define
micro-cracks.
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In the end column, lengths of crack planes in xy plane are stored. This ∗.txt file is

imported at the first step of the algorithm. Then, material points are checked out to

identify of which have a horizon that intersects with the crack planes. In the next step,

every family members of a material point are evaluated if the bonds intersect the crack

planes. The determined bonds are flagged as broken. The damaged material points is

depicted in Figure 5.6 that visualized in OVITO. The crack plane is indicated with a

red continuous line.

Figure 5.6 : The damaged material points and the crack line in OVITO.

5.2 Wire Rope Modelling Code

The Matlab codes for modelling a single wire section was given in Appendix E. Matlab

is a very user friendly tool for designing 3D models with particles. The given script

uses the length_x, height_y, and width_z data to define a box that contains the wire

cross section. The parameter, diameter is used to determine the radius of the wire. To

avoid numerical errors, tol value is used in comparing processes. ndivx, ndivy, and

ndivz are numbers of material points in x,y, and z axes, respectively. dx is the distance

between material points. Then, the script determines coordinates of material points in
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nested for loops. The if condition in the inner for loop evaluates the circle expression,

and assigns coordinate values when they are within the radius of the cross section.

Figure 5.7 shows the output of the Matlab script for different discretization values.

Figure 5.7 : Wire sections generated with the script given in Appendix E. ndivx and
ndivy are (a) 31, (b) 61, and (c) 91.

Different algorithms, such as polygon based outer surface can be used for wire

cross section modelling. The existing literature on Peridynamic modelling lacks

clarity regarding the discretization of circular shaped structures. This basic modelling

approach has been proposed in this study, considering to form a basis for future studies.

In general, Matlab and Fortran have advantages in different aspects for numerical

modelling. Although choosing a compiler or interpreter is affecting the simulation

time, debugging and visualization requires different programs. Overall, Fortran is the

fastest language in numeric simulations. Ovito can be used to visualize the time-series

results owing to easy handling ability on particle simulations. On the other hand,

Matlab is a very useful program both in the run and plot damages, velocities, and

deformations.

5.3 Modelling of Wire Ropes using Peridynamic Theory

A fundamental 1x6 helical wire rope strand structure was taken into account for

investigating wire failure mechanism with Peridynamics. It is apparent that the central

core and outer wires are in contact, whereas wires in the outer layer have no contact

along the circumferential direction in Figure 5.8. This contact condition modelling

refers to the model that termed as radial contact by Cardou and Jolicoeur [165] and

termed as trellis contact by Hobbs and Raoof [193]. A recent study based on this

model examined the elasto-plastic mechanical response of the wire rope [205], shown

in Figure 4.16.
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Figure 5.8 : 3D view of a 1x6 wire rope with 1/2 lay length and contacts.

The case study in this work is given in Figure 5.9. The impact of the steel 1x6 wire-rope

with a cylindrical impactor is the main objective of this section.

Figure 5.9 : 3D view of a wire rope subjected to impact load.

Much of the literature on modelling the mechanical behaviour of wire ropes seems to

have been based on loads consisted of axial tension or bending moments. Most of

studies summarized in previous sections have suffered from lack of transverse impact

loading. Chaplin [216] stated that the nature of the helical structure of a wire rope
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leads to radial load components due to applied stresses. However, the radial forces can

also affect the outer wires from an external source. The model presented in Figure 5.9

simulates a transverse impact load on a wire rope. It is assumed that the impactor is a

rigid body.

Finite Element Method has been commonly used to model and analyse wire ropes.

That is why previous studies of modelling wire ropes have not dealt with discretization

problem but creating a mesh of the body. Three dimensional mesh elements allow

creating finite volumes of wires. However, in Peridynamics, a body consists of

meshless discretization scheme as opposed to FEM. Further research is needed to better

understand how a wire rope system can be discretized in Peridynamics.

A single wire section was taken into account to investigate the crack propagation in

a wire rope subjected to transverse impact load. Two symmetrical pre-cracks were

placed in the wire section as can be seen in Figure 5.10.

Figure 5.10 : Dimensions of a single wire subjected to impact load.
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The same algorithm used in Section 2.2.3 was adopted with some modifications (see

Figure 2.9 and Figure 5.5). However, to examine the crack propagation properly, two

main cracks were defined in this simulation. The length of cracks were determined to

obtain the crack propagation to the edges. The cracks started from the top surface of

the wire and ended at the centre of the wire. No boundary conditions were applied to

the wire section. Initially, the wire section was free of displacement and at rest.

The dimensions of both impactor and a single wire model containing two symmetrical

pre-cracks are given in Table 5.2. This model was designed to examine only a single

wire section subjected to transverse load, as shown in Figure 5.10. The pre-defined

cracks propagate with different velocities with regard to setup parameters. Therefore,

a single circular wire should be investigated under impact loading due to complex

contact states between wires in a strand.

The diameter of the cylindrical rigid impactor is D = φ0.025 m, the height of the

impactor is H = 0.025 m. The mass of the impactor is 0.785 kg. The velocity of

the impactor is v = −32 m/s through the y axis. The diameter of the wire section

is WD = φ0.090 m. The distance between the pre-cracks is d = 0.029 m, and they

are located symmetrically with regard to the vertical axis. The thickness of the wire

section is t = 0.003 m.

Table 5.2 : Dimensions and mechanical properties of impactor and single wire model.

Parameter Value
D φ0.025 m
H 0.025 m
ν 32 m/s
WD φ0.090 m
d 0.029 m
t 0.003 m
Rigid impactor mass 0.785 kg
Poisson’s ratio, ν 0.25
Young’s modulus, E 191 GPa
Mass density, ρ 8000 kg/m3

A series of numerical convergence studies were designed to determine correct

parameters for a wire rope structure in Peridynamics. In order to understand how

discretization and horizon size affect the dynamic crack propagation, a series of

convergence tests setup was proposed in Figure 5.11.
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Figure 5.11 : Convergence tests setup in 1-D for simplicity: (a) m-convergence
(constant δ = 0.003 m), (b) δ -convergence (constant m = 3).
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The convergence schemes in Peridynamics consisted of spatial variables such as

horizon size and the number of neighbour material points in a horizon [111]. In the

m-convergence step, m determines number of material points in the horizon. In this

type of convergence, the horizon size is constant, but the number of material points

in the horizon increased because of smaller ∆ (distance between two material points)

as shown in Figure 5.11(a). The second type of convergence is δ -convergence. As

opposed to m-convergence, in this type of convergence, the material points in a horizon

are constant, whereas the horizon becomes smaller as depicted in Figure 5.11(b).

5.3.1 Convergence tests: m-convergence

The parameters of m-convergence test suit are given in Table 5.3. The number of

material points was generated with ndivx×ndivy×ndivz material points along x, y, and

z-axes, respectively. ndivx, ndivy, and ndivz determines the distance between material

points ∆x, ∆y, and ∆z, because dimensions of the wire section is constant. The four m

parameters are used with the constant horizon. The constant horizon δ is 0.003 m with

m = 2, 3, 4, and 5. The number of total material points are 8,460 for m = 2; 25,440

for m = 3; 56,440 for m = 4; and 105,984 for m = 5. The time-step is specified as

∆t = 8.7×10−8 s, and the critical-stretch is defined as sc = 0.01 as suggested in [87].

Table 5.3 : m-Convergence test setup and parameters.

m 2 3 4 5
Horizon, δ (m) - constant 0.003 0.003 0.003 0.003
ndivx 61 91 121 151
ndivy 61 91 121 151
ndivz 3 4 5 6
Diameter of the wire (m) 0.09 0.09 0.09 0.09
Thick in z direction (m) 0.003 0.003 0.003 0.003
Particle radius (m) 0.000750 0.000500 0.000375 0.000300
∆x, ∆y, ∆z (m) 0.001500 0.001000 0.000750 0.000600
m 2 3 4 5
Volume of a material point (m3) 3.38E-09 1.00E-09 4.22E-10 2.16E-10
Total node number 8,460 25,440 56,440 105,984
Points in contact layer 15 19 21 25
Contact length (m) 0.0210 0.0180 0.0150 0.0144

The four test setups are given in Figure 5.12. The damage scale is defined between

0-100% and will be used in the next figures.
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In equation 2.22, ϕ (x, t) was defined as a weighted ratio of the number of damaged

bonds to the number of initial bonds. It varies between 0 and 1. However, the damage

value was represented between 0 - 100% to demonstrate the proportion of the number

of bonds being broken. 0% means that all bonds of a material point are in bond, and

with increasing the damage percentage, bonds of a material point are breaking. In this

initial state, wire sections have pre-defined cracks. The single points in the top layers

are deleted to create a planer contact surface between projector and wire section. The

horizon size δ = 0.003 m is constant in this setup.

(a) m = 2 (b) m = 3

(c) m = 4 (d) m = 5

Figure 5.12 : The discretized wire section with two pre-cracks for horizon size
δ = 0.003 m at the initial state.
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In all simulations, the crack propagation initiates at 21.8 µs (250th time-step). In

Figure 5.13, the crack propagations in the wire sections can be seen at 47.9 µs (550th

time step). In this model, cracks can reach the edge at only at m = 2 case. There is no

complete failure in m= {3,4,5} models.

(a) m = 2 (b) m = 3

(c) m = 4 (d) m = 5

Figure 5.13 : The crack propagation for horizon size δ = 0.003 m at 47.9 µs (550th
time step).

The crack propagations at 60.9 µs (700th time-step) are shown in Figure 5.14. In

this time step, cracks in all scenarios reach the edge and complete failure of the wire

section was observed. Overall, the complete failure for each case can be observed at
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52.2 µs for m = 2 case and at 60.9 µs for m= {3,4,5} cases. From these figures, a

significant difference in terms of damage can be observed in the top layers of models.

As a reminder, in Table 5.3, the contact length of each model were given as for m =

2: 0.0210, m = 3: 0.0180, m = 4: 0.0150, and m = 5: 0.0144. The contact between

the impactor and the top layer of the section decreases while the m number increases.

The model m = 2 has the largest contact line; this effect may have provided protection

to particles at the top layer. With decreasing the contact line, damages in the top layer

become more visible.

(a) m = 2 (b) m = 3

(c) m = 4 (d) m = 5

Figure 5.14 : The crack propagation for horizon size δ = 0.003 m at 60.9 µs (700th
time step).
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Figure 5.15 shows the crack propagation velocities for m-convergence tests. Although

the complete simulation duration is 117.5 µs, the duration between 17.4-56.6 µs was

given because of comparison purposes. The crack does not propagate after reaching

edges. From Figure 5.15 the cracks in all cases (m= {2,3,4,5}), starts to propagate

at 21.8 µs. After a transient zone where between 21.8 and 34.8 µs, velocities show

a stable characteristics. Cracks propagate with a constant velocity until reaching to

edges. m = 2 model differs from m = {3,4,5} models in average velocity and time of

end of crack propagation. The model m = 2 reaches edges 8.7 µs earlier than others.

Figure 5.15 : The crack propagation velocities of m-convergence test cases between
17.4 and 56.6 µs.

The displacement in the y-direction along the central x axis of the wire section is

given in Figure 5.16. The y = 0 line is given in black line for referring to the initial

condition. This demonstration shows that displacements along the central x axis in

cases m= {3,4,5} present similar results. However, m = 2 case differs from other

scenarios. As a consequence, m = 2 model seems inadequate to model the wire section.

These results also indicate another important point in terms of increasing the number

of family members. The crack propagation velocities and deflection characteristics in

m= {3,4,5} models are very similar. Therefore, there is no need for increasing the m

number, and computational time and cost.

88



Figure 5.16 : Displacement in the y-direction of m-convergence tests along the
central x axis at 56.6 µs .

5.3.2 Convergence tests: δ -convergence

The parameters of δ -convergence test suit are given in Table 5.4. The number of

material points was generated with ndivx×ndivy×ndivz material points along x, y,

and z-axes, respectively.

Table 5.4 : δ -Convergence test setup and parameters.

Horizon, δ (m) 0.0045 0.003 0.00225 0.0015
m - constant 3 3 3 3
ndivx 61 91 121 181
ndivy 61 91 121 181
ndivz 3 4 5 7
Diameter of the wire (m) 0.09 0.09 0.09 0.09
Thick in z direction (m) 0.003 0.003 0.003 0.003
Particle radius (m) 0.000750 0.000500 0.000375 0.000250
∆x, ∆y, ∆z (m) 0.001500 0.001000 0.000750 0.000500
Volume of a material point (m3) 3.38E-09 1.00E-09 4.22E-10 1.25E-10
Total node number 8,460 25,440 56,440 178,108
Points in contact layer 15 19 21 27
Contact length (m) 0.0210 0.0180 0.0150 0.0130
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As stated in m-convergence tests, ndivx, ndivy, and ndivz determines the distance

between material points ∆x, ∆y, and ∆z, because dimensions of the wire section are

constant. In tests, four horizon parameters were used with constant m. Horizon values

were chosen as δ = {0.0045,0.003,0.00225,0.0015} m. The number of material

points in each horizon volume was kept constant as m = 3.

In order to obtain constant m, the number of material points (ndivx, ndivy, and ndivz) in

each direction was adjusted as shown in the Table 5.4. The distance between material

points (∆x, ∆y, and ∆z) in each direction were adjusted to preserve the same m in every

direction. The constant m value is 3 with various horizon sizes.

The number of total material points are 8,460 for δ = 0.0045 m; 25,440 for δ = 0.003

m; 56,440 for δ = 0.00225 m; and 178,108 for δ = 0.0015 m. The time-step is

specified as ∆t = 8.7× 10−8 s, and the critical-stretch is defined as sc = 0.01 as

suggested in [87].

The convergence test suits are given in Figure 5.17. The damage scale of material

points is defined between 0-100%. In equation 2.22, ϕ (x, t) was defined as a weighted

ratio of the number of damaged bonds to the number of initial bonds. It varies

between 0 and 1. However, the damage value was represented between 0 - 100%

to demonstrate how many percent of bonds are broken. 0% means that all bonds

of a material point are in bond, and with increasing the damage percentage, bonds

of a material point are breaking. The initial state is identical to the δ -convergence

test. There are two symmetrical pre-defined cracks in the wire. The horizon sizes

are δ = {0.0045,0.003,0.00225,0.0015} m and the m = 3 is constant for each case.

It should be noted that the model with δ = 0.0045 has very a course discretization

because of the small number of material points in each direction.

Figure 5.18 shows the crack propagation at 47.9 µs (550th time-step). As similar

to m-convergence tests, cracks in δ -convergence tests were started to propagate at

21.8 µs (250th time-step). At this time, what stands out in this figure is the rapid

propagation of cracks in the model δ = 0.0015. Cracks reach to edges of wire sections

only in δ = 0.0015 case. Moreover, the thickness of crack path is thinner in the model

δ = 0.0015 than others. It can be observed that decreasing the horizon size with the

constant number of family members increases the crack propagation velocity.
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Figure 5.19 consists of the last states of simulations at 700th time-step. The crack

propagations at 60.9 µs can be seen in figure. Cracks in the three cases (δ =

{0.003,0.00225,0.0015}) reach edges and complete failure occurs. As opposed to

the other three models, crack propagation in the δ = 0.0045 with m = 3 case stopped

after an initial fracture. The crack tip propagation ends in 39.2 µs. On the other hand,

the other three models show different velocity characteristics. The crack propagation

ends in δ = 0.003 m case at 60.9 µs (Figure 5.19(b)).

(a) δ = 0.0045 m (b) δ = 0.003 m

(c) δ = 0.00225 m (d) δ = 0.0015 m

Figure 5.17 : The discretized wire section with two pre-cracks for m = 3 at the initial
state.
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However, crack propagations in cases δ = 0.00225 m and δ = 0.0015 m complete their

advancing and reach the edges at 52.2 µs and 47.9 µs, respectively. These differences

can be observed in the time-velocity graph in Figure 5.20.

(a) δ = 0.0045 m (b) δ = 0.003 m

(c) δ = 0.00225 m (d) δ = 0.0015 m

Figure 5.18 : The crack propagation for m = 3 at 47.9 µs (550th time step).

In Figure 5.19, as similar to m-convergence models, material points in the top contact

layer were damaged with different amounts. In Table 5.4, the contact length of

each model were given as for δ = 0.0045 : 0.0210,δ = 0.003 : 0.0180,δ = 0.00225 :

0.0150,δ = 0.0015 : 0.0130. The contact between the impactor and the top layer of the

section decreases while the δ decreases. The model δ = 0.0045 has the largest contact
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line; this effect may have provided protection to particles at the top layer. On the other

hand, it may avoid the progression of compressional wave properly. With decreasing

the contact line, the damaged in the top layer becomes more visible.

(a) δ = 0.0045 m (b) δ = 0.003 m

(c) δ = 0.00225 m (d) δ = 0.0015 m

Figure 5.19 : The crack propagation for m = 3 at 60.9 µs (700th time step).

The crack propagation velocities for δ -convergence tests are given in Figure 5.20. The

total simulation duration is 117.5 µs to see a complete failure. However, in Figure 5.20,

the time between 17.4 and 47.9 µs due to comparison purposes. As can be seen in the

Figure cracks in all cases δ = {0.0045,0.003,0.00225,0.0015} starts to propagate at

21.8 µs. Nevertheless, the model δ = 0.0045 cracks initiate to advance with a low
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velocity with regard to other models. Then, it barely propagates and stopped at 39.2

µs. This result provides valuable information about the discretization of the circular

wire section model. The model δ = 0.0045 does not seem suitable for PD modelling of

a wire section with given parameters in Table 5.4. After a transient zone, between 21.8

and 30.5 µs, it can be said that the velocities tend to be constant over time. Overall,

the average crack propagation velocities increase with smaller horizon values.

Figure 5.20 : The crack propagation velocities of δ -convergence test cases between
17.4 and 47.9 µs.

As given in m-convergence study, the displacement in the y direction along the central

x axis was presented in Figure 5.21. The initial state of x axis was given in black line

for referring to the initial condition. Interestingly, the deflection on the non-damaged

centre area was observed to similar in each model. However, in the crack path region,

the deflections differ from each other. The largest displacement along the x axis can be

observed in model δ = 0.0045 and it is decreasing with smaller horizons. There is a

need to compare the crack propagation paths at the end of simulations. The final states

of models at 60.9 µs is clearly seen in Figure 5.19. Figure 5.19 (a) can not be taken

into consideration because of the failure of propagation. An evaluation is carried out

between models δ = {0.003,0.0025,0.0045}.
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Figure 5.21 : Displacement in the y-direction of δ -convergence tests along the
central x axis at 47.9 µs.

In Figure 5.19(b), the crack starts to propagate with a certain angle with x axis.

Then, it immediately continues advancing along the x axis. This direction changing

refers to a mode transition. Firstly, it starts with Mode II (in-plane shear), after

that, the path becomes parallel to the horizontal axis and Mode I (opening) mode

becomes dominant in propagation. This transition can also be detected in Figure

5.19(c), but with small amount. In the last model, δ = 0.0015 (Figure 5.19(d)), the

mode transition disappeared. As a consequence, the differences in deflections and

propagation velocities can be explained with the mode transitions.

5.3.3 Convergence tests comparison

Table 5.5 shows the average crack propagation velocity of each model. In the end

column of the Table, normalized values with regard to the chosen reference model m

= 3 with δ = 0.00300 were given in percentages. Compared with average velocities in

m-convergence tests, velocities in δ -convergence tests differentiate much more. The

average velocities for m-tests are also in agreement with Figure 5.15. According to

these data, it can be inferred that the minimum value of m (as an indicator of material

points within a horizon) should be 3 for the given model with these parameters and
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dimensions. The average velocities of m = 3,4, and 5 models are very close to each

other. The average velocities for δ -tests indicate that the horizon values can affect the

crack propagation, which is also shown in Figure 5.20.

The data for δ = 0.00450 test should be considered as an outlier. Because the crack

did not propagate in contrast to other models.

Table 5.5 : Average velocity data.

Model Velocity (m/s) Normalized to ref. (%)
m-tests
m = 2 831 142
m = 3 (ref.) 587 100
m = 4 627 107
m = 5 592 101
δ -tests
δ = 0.00450 211* 36*
δ = 0.00300 (ref.) 587 100
δ = 0.00225 704 120
δ = 0.00150 794 135
*Outlier because of non-propagating crack

5.3.4 Wave propagation

The velocity form wave progression in the vertical direction was given in Figure 5.22

for the case with m = 3 and δ = 0.003 m. The time duration is between 0-47.9 µs

because after that time, waves becomes vague.

Figure 5.22(a) shows the initial state. The projectile has not been impacted yet and

there is no contact between the impactor and the body. The contact starts at 4.4 µs,

which initiates a wave (Figure 5.22(b)). Waves can reach the pre-defined crack tip at

13.1 µs. This is the time of forming the Mode II shear loading due to wave progression

(Figure 5.22(d)). This wave is termed as the compressive wave. However, the crack

propagation starts when the compression wave reaches the bottom at 21.8 µs. Here,

the reflected waves from the bottom cause a velocity difference around the crack tip

that initiates and amplifies the crack propagation.

After sequential loading, waves come from the impactor and reflected from the bottom

encounter and this resulted in a distortion in the shape of waves at 47.9 µs (Figure

5.22(l)).
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(a) 0 µs (b) 4.4 µs (c) 8.7 µs

(d) 13.1 µs (e) 17.4 µs (f) 21.8 µs

(g) 26.1 µs (h) 30.5 µs (i) 34.8 µs

(j) 39.2 µs (k) 43.5 µs (l) 47.9 µs

Figure 5.22 : The wave propagation on the case with m = 3 and δ = 0.003 m.
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For a detailed inspection, all models’ wave propagation was given in Appendices F and

G from 0 to 60.9 µs.

The wave propagation of m-convergence test suit for m = {2,3,4,5} with constant

δ = 0.003 m were given in Appendix F. The time durations are given as follow, in

Figure F.1: 0-13.1 µs; in Figure F.2: 17.4-30.5 µs; in Figure F.3: 34.8-47.9 µs; and in

Figure F.4: 52.2-60.9 µs.

The wave propagation of δ -convergence test suit for δ =

{0.0045,0.003,0.00225,0.0015} m with constant m = 3 were given in Appendix

G. The time durations are given as follow, in Figure G.1: 0-13.1 µs; in Figure G.2:

17.4-30.5 µs; in Figure G.3: 34.8-47.9 µs; and in Figure G.4: 52.2-60.9 µs.
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6. CONCLUSIONS

The purpose of the current study was to examine the dynamic fracture in materials

subjected to impact load. These findings contribute in several ways to our

understanding of dynamic fracture mechanism and provide a basis for numerical

analysis of wire ropes subjected to impact load.

The bond-based Peridynamic model was used to understand the dynamic crack

propagation, the compressional wave, and effect of micro-cracks on the material

toughness for a classical impact loading problem, Kalthoff-Winkler. The one most

obvious finding to emerge from this part of the study is that the less than a certain

number of randomly located micro-cracks around the crack tip has no positive effect on

fracture toughening mechanism. Nevertheless, adding more pre-defined micro-cracks

in the same region can decrease crack propagation velocity and significantly increase

toughness. The second major finding was that there needs a certain number of

micro-cracks for occurring of toughening effect. Moreover, an insufficient number

of micro-cracks can not decelerate the propagation of cracks. A certain number of

micro-cracks should be placed in the body in order to obtain the toughening effect.

In general, therefore, it seems that the density of micro-cracks in a constant area

and the number of micro-cracks in expending areas are significant parameters on

toughening mechanism in a brittle material subjected to impact load. The results

of this investigation complement those of earlier studies. These findings support

PD’s competence as an alternative to classical continuum mechanics for modelling

of fracture and thus, designing of strengthen geometries. Although the study has

successfully demonstrated that crack propagation and fracture characteristics, it has

certain limitations in terms of properties of micro-cracks. The length and distances

of micro-cracks can be investigated in future studies. This would be a fruitful area

for further work. More test cases on the distribution of micro-cracks would help

researchers establish a greater degree of knowledge.
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A serial of studies was then carried out to constitute a basis for analysing wire ropes

subjected to impact load with PD theory. The analysis and example tests focused on

examining crack propagation in a wire section under transverse loading. The axial

loading can cause a radial load component because of the helical structure of a wire

rope. On the other hand, radial loads do not have to be formed because of the axial

load; they can be applied from an external source. Surface shears can be created due

to radial loads that react with the normal or transverse tension. A certain number

of wire in a rope can break, and this does not cause losses in overall rope strength

if the breakage of the strands were well distributed. However, damaging a certain

number of wire could have resulted in a catastrophic failure. Understanding the failure

mechanism of a single wire, a strand, and whole wire rope structure is vitally important

in that aspect. This part of the study has examined the parameters which were thought

to contribute to the analysis of wire rope failures with PD theory. Findings of the

m-convergence test suit inferred that the minimum value of m (as an indicator of

material points within a horizon) should be 3 for the given model with these parameters

and dimensions. Besides, the average velocities in m= {3,4,5} models do not differ

significantly. On the other hand, δ value has more effect on crack velocities than m

value. Results indicated that the horizon value, δ = 0.00450 is not applicable for

the model with given parameters. The δ -test suit provide valuable knowledge on

crack propagation in a wire’s cross section. Taken together, these results suggest

that there is an association between crack propagation and horizon size. With the

understanding of wave progression and mode transition relation, the model δ = 0.0015

can be considered as a better parameter choice for the given model. The Mode I

crack opening transition in the reference model indicates a routing of the crack in

the horizontal direction.

This study aims to contribute to this growing area of research by exploring the effect

of the micro and macro crack relation on the dynamic brittle failure mechanisms.

For the past decades, studies of numerical analysis of wire rope modelling have been

restricted to axial static loading using Finite Element Method. The test suits presented

here provides one of the first investigations into how model the crack propagation

and related failure mechanism of wire ropes using Peridynamics. The importance

and originality of this study is that it explores, for the first time, the effect of PD
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model parameters for a given wire rope cross section subjected to impact load. This

study provides new insights into the analysis of wire ropes with a non-local continuum

model, Peridynamics. The generalisability of these results is subject to certain

limitations. For instance, the complete analysis of a strand provides a more accurate

analysis of fracture and failure in wire ropes. Also, more test suit can be designed to

obtain more accurate wire rope geometry. Notwithstanding these limitations, the study

provides a basis for understanding of crack propagation in wire ropes.

Further studies, which take the complete structure of wire rope into account, will need

to be undertaken. This study lays the groundwork for future research into the failure

mechanism of wire ropes subjected to impact loads. The contact of the wires forming

the rope on each other will be the basis of further studies to be done, modelling the

wires as circular cross-section and elliptical in angular cross-section. As experimental

studies, the development of a micro-crack to be created on the wire should be examined

experimentally and the results obtained with Peridynamics model should be compared.
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APPENDIX G: The wave propagation of δ -convergence test setups for
δ = {0.0045,0.003,0.00225,0.0015} m with constant m = 3. Times durations
for each figure: Figure G.1: 0-13.1 µs; Figure G.2: 17.4-30.5 µs; Figure G.3:
34.8-47.9 µs; Figure G.4: 52.2-60.9 µs.
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APPENDIX A

1 % A Matlab script for plotting output
2 % files of Fortran (for AC PhD)
3 clc
4 clear
5

6 %% Load coordinate files
7 % Name of x coordinate vector is: xcoord
8 cxcg;
9 % Name of y coordinate vector is: ycoord

10 cycg;
11 % Name of z coordinate vector is: zcoord
12 czcg;
13

14 %% Load displacement files
15 % Name of x displacement vector is: dispx
16 uxcg;
17 % Name of y displacement vector is: dispy
18 uycg;
19 % Name of z displacement vector is: dispz
20 uzcg;
21

22 %% Load velocity files
23 % Name of x velocity vector is: velx
24 vxcg;
25 % Name of y velocity vector is: vely
26 vycg;
27 % Name of z velocity vector is: velz
28 vzcg;
29

30 %% Load damage file
31 % Name of damage vector is: dmg
32 dmgcg;
33

34 %% Pre-processing
35 % Assign dmg to a new dmg2 file.
36 dmg2=dmg;
37 % Clear the very small values that means nothing.
38 % They are produced from Fortran calculations.
39 dmg2(dmg2≤0)=0;
40

41 %% Plotting
42 % Close figure windows to avoid overlapping
43 close all
44

45 %Figure 1: Damage
46 figure
47 % Scatter plot uses vectors for coordinates
48 % 20 is a scale for dimension of points
49 % 'filled' is for filled points
50 scatter3(xcoord,ycoord,zcoord,20,dmg2,'filled')
51 %Labeling axes.
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52 xlabel('x-axis')
53 ylabel('y-axis')
54 zlabel('z-axis')
55 %Set view angle in 3D
56 view(20,75)
57 %Title of the graph
58 title('Figure 1: Damage in Kalthoff-Winkler')
59 % Add a colormap to see the limits
60 colormap jet
61 colorbar
62 % Saving figure as a Matlab file *.fig
63 savefig('Result-damage.fig')
64

65 % Figure 1_alternative: Damage
66 % Add displacement to coordinates
67 last_xcoord = xcoord + dispx;
68 last_ycoord = ycoord + dispy;
69 last_zcoord = zcoord + dispz;
70 figure
71 scatter3(last_xcoord,last_ycoord,last_zcoord,20,dmg2,'filled')
72 %Labeling axes.
73 xlabel('x-axis')
74 ylabel('y-axis')
75 zlabel('z-axis')
76 %Set view angle in 3D
77 view(20,75)
78 %Title of the graph
79 title('Figure 2: Damage - with modified coords')
80 % Add a colormap to see the limits
81 colormap jet
82 colorbar
83 % Saving figure as a Matlab file *.fig
84 savefig('Result-modified-coords.fig')
85

86 %Figure 3: Displacement in y-axis
87 figure
88 scatter3(xcoord,ycoord,zcoord,20,dispy,'filled')
89 xlabel('x-axis')
90 ylabel('y-axis')
91 zlabel('z-axis')
92 view(20,75)
93 title('Figure 3: Displacement in y axis in Kalthoff-Winkler [m]')
94 colormap jet
95 colorbar
96 savefig('Result-dispy.fig')
97

98 %Figure 4: Velocities in y-axis
99 figure

100 scatter3(xcoord,ycoord,zcoord,20,vely,'filled')
101 xlabel('x-axis')
102 ylabel('y-axis')
103 zlabel('z-axis')
104 view(20,75)
105 title('Figure 4: Velocities in y axis in Kalthoff-Winkler [m/s]')
106 colormap jet
107 colorbar
108 savefig('Result-vely.fig')
109 %End of script
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APPENDIX B

1 % A Matlab script for converting output
2 % to a *.xyz files (for AC PhD)
3 clc
4 clear
5

6 %% Load coordinate files
7 % Name of x coordinate vector is: xcoord
8 cxcg;
9 % Name of y coordinate vector is: ycoord

10 cycg;
11 % Name of z coordinate vector is: zcoord
12 czcg;
13

14 %% Load damage file
15 % Name of damage vector is: dmg
16 dmgcg;
17

18 %% Pre-processing
19 % Assign dmg to a new dmg2 file.
20 dmg2=dmg;
21 % Clear the very small values that means nothing.
22 % They are produced from Fortran calculations.
23 dmg2(dmg2==0)=NaN;
24

25 % Eleminate irrelevent particles.
26 xcoord(isnan(dmg2))=NaN;
27 ycoord(isnan(dmg2))=NaN;
28 zcoord(isnan(dmg2))=NaN;
29

30 % Total number of particles.
31 totnode=length(xcoord);
32 out = [xcoord(:),ycoord(:),zcoord(:),dmg2(:)];
33

34 % Open a *.xyz file
35 fid = fopen('output_dmg_ovito.xyz', 'w');
36 % Write data
37 fprintf(fid, '%d\n\n', totnode);
38 %Close the *.xyz file
39 fclose(fid);
40 % Save the *.xyz file
41 save('output_dmg_ovito.xyz','out','-append' ...
42 ,'-nocompression','-ascii')
43

44 %Name of *.xyz file is: output_dmg_ovito.xyz
45

46 %End of script
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APPENDIX C

1 !This script can be inserted in the time
2 !iteration do loop in the Fortran program
3 !for Kalthoff-Winkler PD simulation provided
4 !in the book by Madenci and Oterkus
5

6 ! A script for saving results as xyz file
7 ! in Kalthoff-Winkler problem (for AC PhD)
8

9 !Calculate the last coords:
10 do i = 1,totnode
11 last_coord(i,1) = coord(i,1) + disp(i,1)
12 last_coord(i,2) = coord(i,2) + disp(i,2)
13 last_coord(i,3) = coord(i,3) + disp(i,3)
14 enddo
15

16 !Writing result files to result.xyz: coord(i,1)
17 ! coord(i,3) coord(i,3) disp(i,1) disp(i,1)
18 ! disp(i,1) vel(i,1) vel(i,1) vel(i,1) dmg(i,1)
19

20 !Writing initial values
21 if (tt.eq.1) then
22 write(*,*) "Saving data at time=0"
23 open(21,file = 'results.xyz')
24 write(21,821) totnode
25 write(21,822) 0
26 do i = 1,totnode
27 write(21,823) coord(i,1), coord(i,2), coord(i,3), disp(i,1)&
28 , disp(i,2), disp(i,3), vel(i,1), vel(i,2)&
29 , vel(i,3), dmg(i,1), last_coord(i,1)&
30 , last_coord(i,2), last_coord(i,3)
31 enddo
32 close(21)
33 endif
34

35 !Writing result files: coord(i,1) coord(i,3) coord(i,3) disp(i,1)
36 ! disp(i,1) disp(i,1) vel(i,1) vel(i,1) vel(i,1) dmg(i,1)
37

38 if ((tt.eq.36).or.(tt.eq.50).or.(tt.eq.100).or.(tt.eq.150)&
39 .or.(tt.eq.200).or.(tt.eq.250).or.(tt.eq.300)) then
40 write(*,*) 'Saving value at time=', tt
41 open(21,file = 'results.xyz',position='append')
42 write(21,821) totnode
43 write(21,822) tt
44 do i = 1,totnode
45 write(21,823) coord(i,1), coord(i,2), coord(i,3), disp(i,1)&
46 , disp(i,2), disp(i,3), vel(i,1), vel(i,2)&
47 , vel(i,3), dmg(i,1), last_coord(i,1)&
48 , last_coord(i,2), last_coord(i,3)
49 enddo
50 close(26)
51 endif
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52

53 if ((tt.eq.350).or.(tt.eq.400).or.(tt.eq.450).or.(tt.eq.500)&
54 .or.(tt.eq.550).or.(tt.eq.600).or.(tt.eq.650)) then
55 write(*,*) 'Saving value at time=', tt
56 open(21,file = 'results.xyz',position='append')
57 write(21,821) totnode
58 write(21,822) tt
59 do i = 1,totnode
60 write(21,823) coord(i,1), coord(i,2), coord(i,3), disp(i,1)&
61 , disp(i,2), disp(i,3), vel(i,1), vel(i,2)&
62 , vel(i,3), dmg(i,1), last_coord(i,1)&
63 , last_coord(i,2), last_coord(i,3)
64 enddo
65 close(26)
66 endif
67

68 if ((tt.eq.700).or.(tt.eq.750).or.(tt.eq.800).or.(tt.eq.850)&
69 .or.(tt.eq.900).or.(tt.eq.950).or.(tt.eq.1000)) then
70 write(*,*) 'Saving value at time=', tt
71 open(21,file = 'results.xyz',position='append')
72 write(21,821) totnode
73 write(21,822) tt
74 do i = 1,totnode
75 write(21,823) coord(i,1), coord(i,2), coord(i,3), disp(i,1)&
76 , disp(i,2), disp(i,3), vel(i,1), vel(i,2)&
77 , vel(i,3), dmg(i,1), last_coord(i,1)&
78 , last_coord(i,2), last_coord(i,3)
79 enddo
80 close(26)
81 endif
82

83 if ((tt.eq.1050).or.(tt.eq.1100).or.(tt.eq.1150).or.(tt.eq.1200)&
84 .or.(tt.eq.1250).or.(tt.eq.1300).or.(tt.eq.nt)) then
85 write(*,*) 'Saving value at time=', tt
86 open(21,file = 'results.xyz',position='append')
87 write(21,821) totnode
88 write(21,822) tt
89 do i = 1,totnode
90 write(21,823) coord(i,1), coord(i,2), coord(i,3), disp(i,1)&
91 , disp(i,2), disp(i,3), vel(i,1), vel(i,2)&
92 , vel(i,3), dmg(i,1), last_coord(i,1)&
93 , last_coord(i,2), last_coord(i,3)
94 enddo
95 close(26)
96 endif
97

98 821 format(I6)
99 822 format('Time=',I4)

100 823 format(e10.3,1x,e10.3,1x,e10.3,1x,e12.5,1x,e12.5,1x&
101 ,e12.5,1x,e12.5,1x,e12.5,1x,e12.5,1x,e12.5,1x&
102 ,e10.3,1x,e10.3,1x,e10.3)
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APPENDIX D

1 ! This script can be inserted in the Fortran program
2 ! for Kalthoff-Winkler PD simulation provided
3 ! in the book by Madenci and Oterkus after line section,
4 ! "PD bonds penetrating through the crack surface are broken"
5

6 ! A script for creating micro-cracks
7 ! in Kalthoff-Winkler problem (for AC PhD)
8

9 !Microcrack integars
10 integer nmc, namc, zz, col
11 !Microcrack parameters
12 parameter(nmc = 200) !number of max micro crack
13 parameter(namc = 45) !number of actual micro crack on left side
14

15 !Microcrack reals
16 real *8 tol, pangle, crack_length, alpha_angle
17 real *8 perangle, pnormaly, pnormalx, ppery
18 real *8 pperx, slope, slopep, seg_int
19 real *8 DDD3, DDD2, DDD, NNN, DDD4, DDD5
20

21 !Microcrack matrices and vectors
22 real *8 ptcpm(nmc,5), ptcp(3), mcpn(3)
23 real *8 mcptpn(3), pmp(3), pmp3(3), P0(3)
24 real *8 uuu3(3), uuu2(3), P1(3)
25 real *8 uuu(3), www(3), ip(3), uuu4(3), uuu5(3)
26

27 !Start - Definition of the micro crack
28 write(*,*) "Definition of the micro crack surface"
29 tol = 1.0d-6
30

31 do zz = 1,nmc
32 ptcpm(nmc,1) = -99.000d0;
33 ptcpm(nmc,2) = -99.000d0;
34 ptcpm(nmc,3) = -99.000d0;
35 ptcpm(nmc,4) = -99.000d0;
36 ptcpm(nmc,5) = -99.000d0;
37 enddo
38

39 ! Open the crack file
40 ! 1st coloum: top point x
41 ! 2nd coloum: top point y
42 ! 3rd coloum: top point z
43 ! 4th coloum: angle
44 ! 5th coloum: lenght
45

46 open(1,file='points.txt')
47 read (1, *) ((ptcpm(i, j), j = 1, 5), i = 1, namc)
48 close(1)
49

50 ! Microcrack top point 1
51 ! For a single arbitrary crack
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52 ! ptcpm(1,1) = -0.0277d0
53 ! ptcpm(1,2) = -0.0013d0
54 ! ptcpm(1,3) = 0.0d0
55 ! ptcpm(1,4) = 0.64000d2
56 ! ptcpm(1,5) = 3.0d0
57

58 do zz = 1,namc
59 ptcpm(zz+namc,1) = - ptcpm(zz,1);
60 ptcpm(zz+namc,2) = ptcpm(zz,2);
61 ptcpm(zz+namc,3) = ptcpm(zz,3);
62 ptcpm(zz+namc,4) = - ptcpm(zz,4);
63 ptcpm(zz+namc,5) = ptcpm(zz,5);
64 enddo
65

66 do zz = 1, (2*namc) !integer +
67

68 !ENTER crack plane angle between
69 ! -0.89999d2 < pangle < +0.89999d2
70 ! if=0: 0 -1 0 direction CW
71 pangle = ptcpm(zz,4) !real +
72

73 ! !ENTER crack lenght
74 crack_length = ptcpm(zz,5) !real +
75

76 alpha_angle = -pangle !real +
77 perangle = 0.90000d2 + alpha_angle !real +
78

79 if (alpha_angle == 0.90000d2) then
80 pnormaly = 1.0d0 !real +
81 pnormalx = 0.0d0 !real +
82 ppery = 0.0d0 !real +
83 pperx = -1.0d0 !real +
84 else if (alpha_angle == 0.00000d2) then
85 pnormaly = 0.0d0
86 pnormalx = 1.0d0
87 ppery = 1.0d0
88 pperx = 0.0d0
89 else
90 slope = tan((alpha_angle*pi)/180) !real +
91 slopep = tan((perangle*pi)/180) !real +
92 pnormalx = ((1.0d0/(slope**2.0d0+1.0d0))**0.5d0)
93 pnormaly = ( pnormalx*slope )
94 ppery = ...

(((slopep**2.0d0)/((slopep**2.0d0)+1.0d0))**0.5d0)
95 pperx = (ppery/slopep)
96 endif
97 !real !micro crack plane normal +
98 mcpn(1) = pnormalx
99 mcpn(2) = pnormaly

100 mcpn(3) = 0.0d0
101

102 !real !micro crack perpendicular plane normal +
103 mcptpn(1) = pperx
104 mcptpn(2) = ppery
105 mcptpn(3) = 0.0d0
106

107 !real + !real !top middle point on micro crack plane and perp ...
plane +

108 pmp(1) = ptcpm(zz,1)
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109 pmp(2) = ptcpm(zz,2)
110 pmp(3) = ptcpm(zz,3)
111

112 !bottom middle point on micro crack plane +
113 pmp3(1) = ( pmp(1) - (mcptpn(1) * (crack_length*dx)) )
114 pmp3(2) = ( pmp(2) - (mcptpn(2) * (crack_length*dx)) )
115 pmp3(3) = ( pmp(3) - (mcptpn(3) * (crack_length*dx)) )
116

117 do i = 1, totnode
118 !limit i bottom top plane perpendicular to microcrack plane
119 P0(1) = coord(i,1) !real +
120 P0(2) = coord(i,2)
121 P0(3) = coord(i,3)
122

123 uuu3 = ( P0-(pmp3-(mcptpn*2.0d0*dx)) ) !real +
124 DDD3 = dot_product(uuu3,mcptpn) !real +
125 uuu2 = ( P0-(pmp+(mcptpn*2.0d0*dx)) ) !real +
126 DDD2 = dot_product(uuu2,mcptpn) !real +
127

128 if ( (DDD3≥0.0d0) .and. (DDD2≤0.0d0) ) then
129

130 do j = 1, numfam(i,1)
131 cnode = nodefam(pointfam(i,1)+j-1,1)
132

133 !limit cnode bottom top plane perpendicular to ...
microcrack plane

134 P1(1) = coord(cnode,1) !real +
135 P1(2) = coord(cnode,2)
136 P1(3) = coord(cnode,3)
137

138 uuu = ( P1-P0 ) !real +
139 www = ( P0-pmp ) !real +
140 DDD = dot_product(mcpn,uuu) !real +
141 NNN = -dot_product(mcpn,www) !real +
142 !compute the intersection parameter
143 seg_int = ( NNN / DDD ) !real +
144

145 if ( (seg_int < 0.0d0) .or. (seg_int > 1.0d0) ) then
146

147 else
148 ip = ( P0 + (seg_int*uuu) ) !real+
149 uuu4 = ( ip - pmp3 ) !real+
150 DDD4 = ( dot_product(uuu4,mcptpn) ) !real+
151 uuu5 = ( ip - pmp ) !real+
152 DDD5 = ( dot_product(uuu5,mcptpn) ) !real+
153

154 if ( ( ((abs(DDD4))<tol) .or. (DDD4>0) )&
155 .and. ( (abs(DDD5)<tol) .or. (DDD5<0) ) ) then
156 fail(i,j)=0
157 endif
158 endif
159 enddo
160 endif
161 enddo
162 enddo
163 !End - Definition of microcrack
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APPENDIX D.1

1 ! Delete this information before proceeding.
2 ! 1. column: x-coordinate of the top of the crack.
3 ! 2. column: y-coordinate of the top of the crack.
4 ! 3. column: z-coordinate of the top of the crack.
5 ! 4. column: the angle between crack plane and -y axis.
6 ! 5. column: crack plane length in xy plane.
7 -0.0351 -0.0038 0.0000 66.0000 3.0000
8 -0.0345 -0.0002 0.0000 -9.0000 3.0000
9 -0.0343 0.0008 0.0000 64.0000 3.0000

10 -0.0341 -0.0053 0.0000 30.0000 3.0000
11 -0.0339 0.0064 0.0000 62.0000 3.0000
12 -0.0334 0.0106 0.0000 12.0000 3.0000
13 -0.0323 0.0134 0.0000 -63.0000 3.0000
14 -0.0322 -0.0101 0.0000 -29.0000 3.0000
15 -0.0275 -0.0098 0.0000 22.0000 3.0000
16 -0.0253 -0.0122 0.0000 -40.0000 3.0000
17 -0.0191 -0.0114 0.0000 38.0000 3.0000
18 -0.0351 0.0029 0.0000 72.0000 3.0000
19 -0.0354 0.0083 0.0000 38.0000 3.0000
20 -0.0206 -0.0099 0.0000 22.0000 3.0000
21 -0.0381 -0.0005 0.0000 -18.0000 3.0000
22 -0.0329 0.0118 0.0000 -50.0000 3.0000
23 -0.0251 -0.0098 0.0000 -65.0000 3.0000
24 -0.0331 -0.0066 0.0000 -66.0000 3.0000
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APPENDIX E

1 % A Matlab script for create a wire
2 % cross section (for AC PhD)
3 clc
4 clear
5

6 %% Definitions
7 % Increment
8 nnum = 0;
9 % Cable box length

10 length_x = 0.09;
11 % Cable box height
12 height_y = 0.09;
13 % Cable box width
14 width_z = 0.003;
15 % Center cable diameter
16 diameter = 0.09;
17 % A tolerance value for avoid numerial erros.
18 tol=1e-6;
19

20 % Number of material points in x direction in box
21 ndivx = 121;
22 % Number of material points in y direction in box
23 ndivy = 121;
24 % Number of material points in z direction in box
25 ndivz = 6;
26 % Total node number
27 totnode = ndivx*ndivy*ndivz;
28 % Cordinates of material points matrix
29 coord=zeros(totnode,3);
30 % Distance between material points
31 dx=length_x/(ndivx-1);
32

33 for i = 1 : ndivx
34 for j = 1 : ndivy-1
35 for k = 1 : ndivz
36

37 coordx = -1.0e0 / 2.0e0 * length_x + (i - 1) * dx;
38 coordy = -1.0e0 / 2.0e0 * height_y + (j - 1) * dx;
39 coordz = -1.0e0 / 2.0e0 * width_z + (k - 1) * dx;
40

41 if ( (coordy^2 + coordx^2) ≤ ((diameter / 2 + ...
tol)^2) )

42 nnum=nnum+1;
43 coord(nnum,1) = coordx;
44 coord(nnum,2) = coordy;
45 coord(nnum,3) = coordz;
46

47 end
48 end
49 end
50 end
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51

52 %%
53 close all
54

55 scatter3(coord(:,1),coord(:,2),coord(:,3),20,'filled')
56 xlabel('x-axis')
57 ylabel('y-axis')
58 zlabel('z-axis')
59 view(0,90)
60 title('wire')
61

62 %End of script
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APPENDIX F

m = 2 m = 3 m = 4 m = 5
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Figure F.1 : The wave propagation on m-convergence tests with δ = 0.003 m during
between 0-13.1 µs.
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m = 2 m = 3 m = 4 m = 5
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Figure F.2 : The wave propagation on m-convergence tests with δ = 0.003 m during
between 17.4-30.5 µs.
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m = 2 m = 3 m = 4 m = 5
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Figure F.3 : The wave propagation on m-convergence tests with δ = 0.003 m during
between 34.8-47.9 µs.
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m = 2 m = 3 m = 4 m = 5
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Figure F.4 : The wave propagation on m-convergence tests with δ = 0.003 m during
between 52.2-60.9 µs.
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APPENDIX G

δ = 0.0045 δ = 0.003 δ = 0.00225 δ = 0.0015
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Figure G.1 : The wave propagation on δ -convergence tests with m = 3 during
between 0-13.1 µs.
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Figure G.2 : The wave propagation on δ -convergence tests with m = 3 during
between 17.4-30.5 µs.
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Figure G.3 : The wave propagation on δ -convergence tests with m = 3 during
between 34.8-47.9 µs.
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Figure G.4 : The wave propagation on δ -convergence tests with m = 3 during
between 52.2-60.9 µs.
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Underground Funicular ‘Tunnel’ in Istanbul. Elevator Technology 20, ELEVCON
2014, Paris, France.
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