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Fracture Mechanics

A field of mechanics concerned with the study of propagation of cracks in

materials.

Crack: A line or surface that split a without breaking into separate parts.

Fracture (or damage): Local separation of a body into two or more pieces.

Field of Fracture Mechanics (FM): Linear Elastic FM, Elastic-Plastic FM,

Dynamic FM, Viscoelastic FM and, Viscoplastic FM




Modelling Approaches

Finite Element Method
Discrete Element Method
Molecular Dynamics
Boundary Element Method

PERIDYNAMICS



Motivation

Pre-defined micro crack interaction with macro crack propagation
Kalthoff-Winkler Experiment

Wire rope modelling using Peridynamic
Parameter studies

Failure mechanism

Impact loading



What is Peridynamics?

Peridynamics is a continuum formulation

Peridynamic (PD) theory uses integral equations

No spatial derivatives
Equations apply everywhere regardless of discontinuities
No need for external supplied «crack growth law»

Multiple crack paths can evolve in complex patterns and

not known in advance.



Classical Continuum Mechanics

Interaction between material points are expressed in terms of traction
vectors.

Local interaction
Partial derivatives are not defined along discontinuities.
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Local Peridynamics Molecular dynamics




Peridynamic Theory

The peridynamic theory is a
reformulation of the equation of motion
in solid mechanics that is better suited
for modeling bodies with discontinuities,

such as cracks.

Horizon for
point x




Peridynamic Theory

The equation of motion in PD theory:

Deformed State
pu(x, 1) = j flu(x', 1) —ux, 1), X' —x)dVy + b(x, 1)
Hx
\\f(éﬂl)
+1
Bond Force: f(n,&)= S cs
& +nl-[¢]
St retCh: S | E,.' Reference State

12E z

Bond constant: ¢= 75




Failure in Peridynamics

When the stretch between two material points is

A
greater than its critical value, bond breakage f

OCCuUTrsSs.

Modified Bond Force:
JUE+ |, &) = csu(t, &)

Damage: —

1 ifs(@, &) <scforall0 <7 <t,
ut, &) = { 0 otherwise




Damage in Peridynamics

The broken bonds of a material point
between the family members in its
horizon.

Damaged bonds: Red lines with arrows
Crack: Red thick line
Local Damage:

B fjﬁ# (I,I,é)dVg
fﬁdVg

o(x,t)=1

[EEN
=

40%

35%

30%

1 25%

1 20%

1 15%

0
0
Q
s
D O«

\b\c)
b oooc
O 00 O ¢

7

VRN A AN

O
D O O OO

D O
D O O

> O OO0 00000 O0C




Impact Modelling

Contact between a rigid impactor and deformable target subjected
to impact load.
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Numerical Solution Method

Discretization:

pruy =Y f(u} —uj,x;—x¢) Vj+ b}
J

Numerical convergence:

Some important parameters affect the computational process and
analysis, such as the distance between material points and horizon

radius.



Test Suit — Model Validation
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The analytical solutions for u,(x,y = 0) and u,(x = 0,y) were given as,

()

Displacement (mim)

uy(x,y=0) = %x and wuy(x=0,y)= —V@y. o L.

E

Figure 2.14 : Displacements (a) u(x,y = 0) for PD, (b) uy(x = 0,y) for PD, (c)
uy(x,y = 0) for FEM, and (d) uy(x = 0,y) for FEM.




Test Suit — Model Validation
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Kalthoff — Winkler Experiment

Experimental setup
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Fig. 1: Experimental set up (schematically)
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Kalthoff — Winkler Experiment

High-strength maraging steel a D
E =191 GPa, v =0.25, Density = 8000 kg/m

12 mis

‘LH
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L=0.2m W=0.1m,h=0.009m,d=0.05m,a=0.05m,n=1.5 mm,



Kalthoff — Winkler Experiment

The discretized model 201 x 101 x 9 o D

material points along x, y, and z axes.
A=0.00lm 6=3.015xAm
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Kalthoff — Winkler Experiment

Crack growth in PD and Experiment




Micro-Crack Toughening Mechanism

X 2:1




Micro-Crack Toughening Mechanism

Pre-located
micro-cracks

Micro-crack
damages

Crack propagation

reaches the edge

a) Without micro-crack at 91.4 us Damage b) Benchmark model at 91.4 us Damage

0 . 100% 0 S

B 100%

Average velocity: 1345 m/s Average velocity: 1188 m/s



Stochastically Distributed Micro-Cracks

Micro-cracks with varying densities

no = No/Ag

n, = {0.75,1,1.25}




Micro-cracks with Varying Densities

(a) (b) © Damage

Ng = 0.75 Ng = 1 Ng = 1.25

Average velocity: 1327 m/s 1284 m/s 1165 m/s



Micro-cracks with Varying Densities
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Micro-cracks with Various Number

d
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Micro-cracks with Various Number

(2) (b) (©

Damage
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Average velocity: 1284 m/s 1345 m/s 1219 m/s



Micro-cracks with Various Number
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WIRE ROPES

Core Strand

THEEE

Seale Filler Warrington

:i'\.

| /=—— Wire Rope
|

Costello, G.A. and Miller, R.E. (1977). Lay Effect of Wire Rope., lll Univ Dep Theor Appl Mech TAM Rep, (422).
Erdénmez, C. (2010). Mathematical Modeling And Stress Analysis Of Wire Ropes Under Certain Loading Conditions, Phd thesis, Istanbul Technical University
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Recent Studies i 1
Mahmoud 2007 40/ T

0 | L. S SUN S—— —
00 02 04 06 08 10 12 1.4 16 18 20
Strain (%)

(b) Stress strain curve

F E M P C r‘a C k P ro p a gat i O n Fig. 1. Brittle fracture in a wire test specimen.

Fracture strength for a high strength

steel bridge cable wire with a surface crack
Hydrogen embrittlement -> ductility loss

The axial tensile stress.

(a) Wire fracture with minimal necking



A Damaged Wire Rope




Modelling of Wire Ropes /w PD

FORTRAN

4P kalt_micro_crack.f80

main

integer ndivx, ndivy, ndivz, ntotneode, nt, maxfam, nnum, cnode,
(ndivx
(ndivy
(ndivz
{nbnd
{ntotno ndivx * ndivy * ndivz)

(nt
(maxfam

integer nmc, namc, zz, col
{nmc

(namc

real *8 length, width, thick, dx, delta, dens, emod, pratio, smc

MATLAB

E' Editor - D\Adem\MATLAB kalt_orkalt_or.m

| kalt_or.m [ + |

1= (o=l e

2 — clear

2= ndivx = 201;

4 — ndivy = 101;

5= ndivz = 9;

6 — nbnd = 0;

7 - ntotnode = ndivx * ndivy * ndivz;
g

== nt = 1;

10 — maxfam = 200;

11

12 — coord (l:ntotnode, 1) = QO;

13 — coord(l:ntotnode, 2) = 0;

14 — coord(l:ntotnode, 3) = 0;

150 = numfam (1 :ntotnode, 1) = 0;

lé — numfamnew (1 :ntotnode, 1) = 0;




Handling with Outputs

MATLAB

Figure?. — O
File Edit View Inset Tools Desktop Window Help

Dade | & |08 E

Figure 2: Damage - with modified coords
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Handling with Outputs - OVITO

a
Ed Y h s | o [l d coh [kl
& File column mapping ? X
Top n ¢
Please specify how the data columns of the input file should be
mapped to OVITO properties.
il modification...
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[ column 3
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L x Column 6 | Displacement ~|Z ~ E
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0 to @y g m
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Crack Code

4444404444+
44444044444
$4444044444¢
+44044444
+44044444
+44 044444
+4404444+4
+44094444
+449+0444
+44444444

+4
2R
.
.
+4
+4
.4

Crack plane

Damage

0% [P 0%

rl

Start with defining a
micro crack plane
coordinates and length

A 4

Find a material point if
its horizon intersect
with the crack plane

A 4

Determine a family
member for the point

between the point and its family
member intersects with the crack

Yes
A 4

Break the bond and add
damage

Yes

All family members
of the point are checked

Yes
v

Calculate the damage of
the material point and exi




Wire Rope Modelling
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Wire Rope Modelling in PD

Dimensions and mechanical properties of the impactor and single wire

Parameter Value

D 00.025 m
H 0.025 m
v 32 m/s
WD 00.090 m
d 0.029 m

t 0.003 m
Rigid impactor mass 0.785 kg
Poisson’s ratio, v 0.25
Young's modulus, E 191 GPa

Mass density, p

8000 kg/m’




Convergence Tests

Table 5.3 : m-Convergence test setup and parameters.

Im 2 3 4 5
Horizon, 6 (m) - constant 0.003 0.003 0.003 0.003
ndivx 61 91 121 151
ndivy 61 a1 121 151
ndivz 3 4 5 H
Diameter of the wire (m) 0.09 0.09 (.09 0.09
Thick in z direction (m) 0.003 0.003 0.003 0.003
Particle radius (m) 0.000750 0.000500 0.000375 0.000300
Ax, Ay, Az (m) 0.001500 0.001000 0.000750 0.000600
m 2 3 4 5
Volume of a material point (m’) 338E09 1.00E-09 422E-10 2.16E-10
Total node number 8.460 25440 56.440 105,984
Points in contact layer 15 19 21 25
Contact length (m) 0.0210 0.0180 0.0150 0.0144

6=2A A=0.0015

6=3A A=0.001

§=4A A=0.00075

6=5A A=0.0006

(a) m-convergence (constant horizon radius, §)

6=3A A=0.0015
o ] ° ] ] e ] e
o 6=3A A=0.001
T o |e|eoe|e|e|e]|e

§=3A A=0.00075

6=3A A=0.0005

Dimensions are in meters (m)

(b) 8-convergence: constant material points number in a horizon




m-convergence

Initial State with pre-cracks

Damage 0 - 100%:
The weighted ratio of the number
of damaged bonds:

f}ﬁ" .Iu (K,f,é)dVg
er dVg

(P(K'.'I) =1-

(aym=2 (bpm=3

(c)m=4 (dm=5

+
Damage

o 0% [ S 100%

Figure 5.12 : The discretized wire section with two pre-cracks for horizon size é =
0.003 m at the initial state.



(aym=2 (bym=3 (aym=2 (bym=3

(c)ym=4 (dym=5 (c)m=4 (dm=5

+ “
Damage Damage

o 0% P I 00 o—a: %D 100

Figure 5.13 : The crack propagation for horizon size 8 =0.003 mat 47.9 us (550th Figure 5.14 : The crack propaga[ion for horizon size 6 = 0.003 m at 60.9 us (700th
time step). time step).



m-convergence

The contact between the impactor and
the top layer of the section decreases
while the m number increases.

(aym=2 (bym=3

The model m = 2 has the largest contact
line; this effect may have provided
protection to particles at the top layer.

With decreasing the contact line,
damages in the top layer
become more visible.

(com=4 (ddm=5



m-convergence
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Figure 5.15 : The crack propagation velocities of m-convergence test cases between Figure 5.16 : Displacement in the y-direction of m-convergence tests along the central
17.4 and 56.6 ps. x axis at 56.6 s .



O-conve rgence tests

Table 5.4 : §-Convergence test setup and parameters.

Horizon, é (m) 0.0045 0.003 0.00225 0.0015
m - constant 3 3 3 3

ndivx 61 91 121 181
ndivy 61 91 121 181
ndivz 3 4 5 7
Diameter of the wire (m) 0.09 0.09 0.09 0.09
Thick in z direction (m) 0.003 0.003 0.003 0.003
Particle radius (m) 0.000750 0.000500 0.000375 0.000250
Ax. Ay, Az (m) 0.001500 0.001000 0.000750 0.000500
Volume of a material point (m’) 3.38E-09 1.00E-09 4.22E-10 1.25E-10
Total node number 8.460 25,440 56.440 178,108
Points in contact layer 15 19 21 27
Contact length (m) 0.0210 0.0180 0.0150 0.0130

6=2A A=0.0015

6=3A A=0.001

§=4A A=0.00075

6=5A A=0.0006

(a) m-convergence (constant horizon radius, §)

6=3A A=0.0015
o ] ° ] ] e ] e
o 6=3A A=0.001
T o |e|eoe|e|e|e]|e

§=3A A=0.00075

6=3A A=0.0005

Dimensions are in meters (m)

(b) 8-convergence: constant material points number in a horizon




(a) 6 =0.0045 m (b) 6 =0.003 m (a) 6 =0.0045 m (b) d =0.003m

(c)d =0.00225m (d) 6 =0.0015m (c) d =0.00225 m (d)d =0.0015m
t Damage t Damage
o 0% . 00 o—x 0% D W 00

Figure 5.18 : The crack propagation for m =3 at 47.9 us (550th time step). Figure 5.19 : The crack propagation for m = 3 at 60.9 us (700th time step).



d-convergence
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Figure 5.20 : The crack propagation velocities of 8-convergence test cases between Figure 5.21 : Displacement in the y-direction of §-convergence tests along the central
17.4 and 47.9 ps. x axis at 47.9 ps.
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(c)d =0.00225m (d) d=0.0015m Figure 5.22 : The wave propagation on the case with m = 3 and § = 0.003 m.
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Comparison 6 and m-convergences

Table 5.5 : Average velocity data.

Model Velocity (m/s) Normalized to ref. (%)
m-lests

m=2 83l 142
m = 3 (ref) 587 100
m=4 627 107
m=5 592 101
O-tests

o = 0.00450 211#* 36%
8 = 0.00300 (ref) 587 100
o =0.00225 704 120
o =0.00150 794 135

*Outlier because of non-propagating crack



Conclusions

KALTHOFF WINKLER MODELLING

* PD can be applied on the simulation of micro-cracks’ effect on the
material toughness for an impact loading problem.

* Less density of located micro-cracks around the crack tip has no effect
on toughening mechanism.

* Adding more micro-cracks in the same area can reduce the crack tip
velocity and increase the toughness.



Conclusions

KALTHOFF WINKLER MODELLING

* An effective number of micro-cracks can cause the toughening.

* |nsufficient number of micro-cracks are inadequate to slow down crack
tip's propagation velocities.

* To obtain the toughening effect, a certain number of pre-defined micro-
cracks should be located.



Conclusions
WIRE ROPE MODELLING

* Crack propagations in a wire section under transverse loading were
examined.

A basis for analysing wire ropes subjected to impact load with PD theory
was proposed.

* One of the first investigations into how model the crack propagation and
related failure mechanism of wire ropes using PD was carried out.



Conclusions

Findings of the m-convergence test suit inferred that the minimum value of
m (as an indicator of material points within a horizon) should be 3 for the
given model with these parameters and dimensions.

Average velocities in m =3, 4, and 5 models do not differ significantly.

6 value has more effect on crack velocities than m.

Horizon value, 6 = 0.00450 m is not applicable for the model with given
parameters.

The model 6 = 0.0015 m can be considered as a better parameter choice for
the given model.

The Mode | crack opening transition in the reference model indicates a
routing of the crack in the horizontal direction.



Future Studies

* The complete analysis of a strand provides a more accurate analysis of
fracture and failure in wire ropes.

 More test suit can be designed to obtain more accurate wire rope
geometry.

e Complete structure of wire rope can be modelled.

 Wire sections can be modelled as elliptical in angular cross-section.

* PD model can be compared with experimental studies.
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Dynamic Crack Propagation and
Its Interaction With Micro-Cracks
in an Impact Problem

The dvnamic fracture behavior of brittle materials that contain micro-level cracks should be
examined when material subjected to impact loading. We investigated the effect of micro-
cracks on the propagation of macro-cracks that initiate from notch tips in the Kalthoff—
Winkler experiment. a classical impact problem. To define predefined micro-cracks in
three-dimensional space, we proposed a two-dimensional micro-crack plane definition in
the bond-based pevidymamics (PD) that s a non-local form of classical continum
theory. Randomly distributed micro-cracks with differemt number densities in a constan!
area and number in expending area models were examined fo monitor the toughening of
the material. The velocities of macro-crack propagation and the ime required for compler-
ing fractures were considered in several predefined micro-cracks cases. It has been
observed that toughening mechanism is enly initiated by exceeding a certain momber of
mifcro-cracks; therefore, there is a positive correlation between the density of predefined
micro-cracks and macro-crock propagation rale and, alve, foughening mechanism.
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