
 

 
Abstract - The large deflections of a bi-directional cantilever 

beam that obeys modified Ludwick’s constitutive law and made of 
FGM is analyzed as a layered structure in this study. The 
nonlinearly elastic cantilever beam is subjected to a concentrated 
force at the free end. The modified Ludwick type of material model 
and functionally graded material properties are defined by using 
Marlow's material model in finite element analysis. The results 
show that the number of layers is one of the most important 
properties in the evaluation of both normal stress distributions 
along the thickness direction and deflections of the free ends of 
slender beams. The effect of the number of layers on the stress 
distributions on the beam is obvious when compared particularly 
the single-layered FGM with any of the multi-layered FGMs.  
 
Keywords - Large deflections, functionally graded materials, 

cantilever beams, Ludwick’s law, nonlinearly elastic.  
 

I. INTRODUCTION 
UNCTIONALLY graded materials (FGMs) have long been 
a material of great interest in a wide range of fields. Recent 

trends in 3-D printing technologies have led to a proliferation 
of studies that examine FGMs. In addition, recent years have 
witnessed a growing academic interest in both FGMs and non-
linearly elastic materials. Thus, FGMs have been an object of 
research that examine the behavior of beams subjected to 
various loads [1]. During the last decade, the combination of 
FGMs and nonlinearly elastic materials has been at the center 
of much attention. Many researchers have considered not only 
geometrical nonlinearity but also material nonlinearity. Much 
of the literature since the mid-1990s emphasizes the analytical 
solutions of nonlinear beams subjected to large deflections [2-
4]. 

Lewis and Monasa [5,6] examined a thin cantilever beam 
under a transverse end load and a moment in terms of large 
deflections of the free end. Baykara et al. [7] considered 
nonlinear bi-modulus material behavior to investigate a thin 
cantilever beam with an end moment. A large buckling analysis 
in fibrous materials using Ludwick type material model was 
examined by Jung and Kang [8]. Kang and Li [9,10] took into 
account large and small deflections of nonlinearly elastic 
functionally graded beams (FGBs). The large deflections of a 
slender, non-homogeneous beam under combined loads were 
studied by Sitar et al. [11]. In that study, the beam was modelled 

as a functionally graded material and discretized with a certain 
number of nonlinearly elastic layers that obey generalized 
Ludwick's constitutive law. 

Hacıoğlu [12] examined the variation of Young’s modulus 
relating to power-law and geometrical nonlinearity on the 
deflection. The results of that study showed that gradient 
indexes and material constant in Ludwick’s law significantly 
affect the bending strength of an FGM beam. Hacıoğlu and 
Baykara [13] examined the nonlinear functionally graded beam 
subjected to concentrated and combined loads. Moreover, 
Hacıoğlu et al. [14] studied large deflections of a cantilever 
beam which is made of nonlinearly elastic, modified Ludwick's 
type of material using FEA. Marlow's material model was used 
in Ref. [14] to combine direction dependent material properties 
in the functionally graded material and nonlinearity from 
modified Ludwick’s law. 

However, such studies remain narrow in focus dealing only 
with one-directional functionally graded beams. In all the 
studies reviewed here, the modelling of the FGM beam which 
is layered in the thickness direction is recognized as significant. 
Karamanlı [15,16] investigated the elastostatic behavior of two-
directional functionally graded beams under different sets of 
boundary conditions. A bending analysis study was presented 
to examine the effects of different sets of boundary conditions 
on FGM beams [17].  

In this study, the large deflections of a nonlinearly elastic bi-
directionally functionally graded cantilever beam subjected to 
end load are presented. A combination of the bi-directional 
FGM model and nonlinearity of material properties based on 
modified Ludwick's law is introduced. The material properties 
vary through both thickness and length directions with respect 
to the function of FGMs. Firstly, we present the effect of the 
number of layers in thickness direction on the deflections at the 
end of the beam. Then, bi-directional layer is applied and the 
effect of both thickness and length directions are examined. 

II. PROBLEM DEFINITION AND MODELING 
A slender cantilever beam of length, L through x axis and the 

rectangular cross-section of thickness, h through y axis and 
width, b is used as seen in Fig. 1. The bi-directional functionally 
graded beam is composed of several rigidly bonded layers 
which are named as nh and nl in thickness (h) and length (L) 
directions, respectively. Layers are assumed to be 
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incompressible. Fy is the point load applied vertically at the free 
end of the beam as defined in Fig. 1. 
 

 
Figure 1: Geometric details of the beam.  

 
The modified Ludwick’s constitutive model that governs the 

stress-strain relationship is given by the following expression 
[18], 

 

𝜎 = sign(𝜀)𝐸 ((|𝜀| + 𝜀0)
1
𝑘 − 𝜀0

1
𝑘)          for all 𝜀,              (1)   

 
where, 𝜎 and 𝜀 defines normal stress and strain respectively. 
𝐸, 𝜀0, and 𝑘 are material constants and sign(𝜀) represents the 
symbol function which has a value of 1 or -1 in a case of tension 
or compression. Here, Ludwick’s constitutive relation is 
obtained by setting 𝜀0 = 0 while Hooke’s constitutive law is 
obtained by setting 𝑘 = 1. In order to define the material model 
of modified Ludwick type material, Marlow's first-invariant 
constitutive model was adapted in this study [19].  In Marlow’s 
form, it is assumed that strain energy potential changes only 
with the first deviatoric invariant. Calculated stress-strain 
values of generalized Ludwick type material is used by 
Marlow’s model to reproduce stress-strain curve. A commercial 
finite element analysis software, ABAQUS supports the 
Marlow strain energy potential form. Plane stress assumption 
was considered and the geometry was modeled as 2-D shell 
structure in ABAQUS. The 4-node linear quadrilateral shell 
elements with reduced integration and hourglass control (S4R) 
were used to model the mesh geometry. 

The effective material properties of a bi-directionally graded 
FGMs are calculated by [16], 

 

𝐸(�̅�, �̅�) = (𝐸1 − 𝐸2) (1 −
�̅�

2𝐿
)

𝑝𝑥

(
1
2

+
�̅�
ℎ

)
𝑝𝑦

+ 𝐸2,                 

                                                                                                           (2)
                                 −ℎ/2 ≤ �̅� ≤ ℎ/2 and 0 ≤ �̅� ≤ 𝐿,                

 

 
where E1 and E2 are Young’s modulus at certain points and px, 
py are the gradation exponents of the FGM (Fig. 3). In the case 
of bi-directional gradation, Young’s modulus of each layers is 
calculated as follows,  
 

𝐸𝑖,𝑗 =
1

Δ𝑖Δ𝑗
∫ ∫ 𝐸(�̅�, �̅�)𝑑�̅�𝑑�̅�

𝑗Δ𝑗

(𝑗−1)Δ𝑗

𝑖Δ𝑖

(𝑖−1)Δ𝑖

, (3) 

 
where i and j represent the order of a layer, Δi and Δj are the 
thickness and length of each layer. Ei,j is the averaged Young’s 
modulus of a certain layer. 

III. NUMERICAL EXAMPLES 
The first set of numerical examples aimed to examine the 

generalized Ludwick type bi-directional functionally graded 
beam by dividing it into a finite number of layers through only 
thickness direction. To compare the difference between one-
directional and two-directional partitions, the beam is modelled 
as a bi-directionally layered structure in the second set of 
examples. The cantilever beam in Fig. 1 made of bi-directional 
functionally graded material obeying generalized Ludwick’s 
constitutive law has a length of L = 1000 mm, a thickness of h 
= 50 mm, and width of b = 100 mm. The effective material 
parameters are set to E1 = 300 MPa, E2 = 70 MPa, k = 1.5, and 
ε0 = 0.07.  The gradation exponents are taken to be px = 5 and py 
= 2. The only load applied to the beam is the concentrated force 
Fy having magnitudes of 100, 200, 300, 400, and 500 N and 
acting towards to vertical direction.   

A. Generalized Ludwick Type One-directionally Layered Bi-
directional Functionally Graded Beam 

The effects of the number of vertical layers on the modelling 
bi-directional FGM beam are examined in this example. The 
number of layers through the thickness direction is nt =1, 5, 10, 
and 20 while it is constant through the length direction as nl = 
1. The comparison of deflections and the stress distributions on 
the beams is given in Fig. 2 in the case that the applied load is 
500 N. The maximum tensional normal stresses occur on the 
top surface of the beam and the magnitudes are 10.8, 8.12, 7.95, 
and 9.38 MPa for nt = 1, 5, 10, and 20, respectively. However, 
these maximum values are undoubtedly affected due to the 
presence of singularity points located at the top and bottom 
corners of the clamped surface of the beam. Considering Saint 
- Venant’s principle, to avoid the misleading effects of 
singularity points, stress values are measured at a certain point, 
where the maximum stress values are converged. The normal 
stresses measured at that point are 8.89, 6.21, 6.05, and 6.04 
MPa for nt = 1, 5, 10, and 20 respectively. 
 

 
Figure 2: The large deflections and normal stresses on one-

directionally layered FGM beam with respect to the number of layers 
in the thickness direction. 

312 International Conference on Engineering Technologies (ICENTE’22)

E-ISBN: 978-605-72066-2-6 November 17-19, 2022, Konya, TURKEY

_________________________________________________________________________________________________________________



 

 

The properly converged normal stress results show that a 
single layered FGM beam is not capable of representing an 
actual FGM beam in terms of either stress distributions or large 
deflections. On the other hand, modeling beams as multi-
layered structures are able to simulate the FGM beam accurate 
enough, regardless of the number of layers. 

The vertical (𝛿v) and horizontal (𝛿h) deflections (in mm) of 
the beam considering the applied loads are given in Table 1 for 
each number of layers cases. The maximum vertical and 
horizontal deflections depend on mostly the applied load. The 
variation of the number of layers through the thickness direction 
seems not to affect the deflections significantly. The values for 
nt = 5, 10, and 20 are very close to each other in this particular 
example. 

Table 1: Deflections of the free end of one directionally layered FGM 
beam (in mm). 

  nt = 1  nl = 1 nt = 5  nl = 1 nt = 10  nl = 1 nt = 20 nl = 1 

F [N] 𝛿v 𝛿h 𝛿v 𝛿h 𝛿v 𝛿h 𝛿v 𝛿h 

100 144.1 17.8 158.1 19.4 157.5 19.3 157.4 19.2 

200 274.7 55.7 300.3 62.9 299.4 62.4 299.2 62.3 

300 382.8 104.1 415.2 117.9 414.2 117.1 414.0 117.0 

400 468.4 154.9 503.6 174.2 502.6 173.3 502.4 173.1 

500 535.2 203.5 570.9 226.9 569.9 225.9 569.8 225.7 
 

B. Generalized Ludwick Type Two-directionally Layered Bi-
directional Functionally Graded Beam 

The analysis of a two-directionally layered, bi-directional 
functionally graded beam is presented in this section. The 
number of layers through the thickness is nt = 20 and through 
the length is nl = 1, 5, 10, and 20. In Fig. 3, the variation of 
Young’s modulus is given over a bi-directional 20×20 layered 
FGB. Young’s modulus in the left and right top corners are the 
same and equal to E2. 
 

 
Figure 3: Young’s modulus gradient in the bi-directional 20×20 

FGB. 
 

The large deflections of the free ends and normal stress 
distributions on the beams under the effect of concentrated 
force Fy = 500 N are given in Fig. 4. The converged normal 
stress values obtained from a specific point far from the 
singularity regions are 6.04, 5.93, 5.91, and 5.90 MPa for nl = 
1, 5, 10, and 20 respectively when nt = 20. The result obtained 
from a vertically single-layered beam is the most distinctive one 
with a magnitude of 6.04 MPa. The differences among the 
multi-layered beams are negligible. 

 
Figure 4: The large deflections and normal stresses of bi-

directional FGBs depend on the number of layers in the thickness and 
length directions. 

 
Table 2 shows the deflections of the end points considering 

to magnitude of the load and the number of layers. The free end 
deflection of the 20×1 layered beam is the maximum, while 
20×20 layered beam’s is the minimum. Besides, the differences 
in the deflections among two-directionally layered beams are 
much less than observed between one-directionally layered and 
the other beams, the same as in the stress distributions. 

Table 2: Deflections of the free end of the 2-D FGB (in mm). 

 nt = 20 nl = 1 nt = 20 nl = 5 nt = 20 nl = 10 nt = 20 nl = 20 

F [N] 𝛿v 𝛿h 𝛿v 𝛿h 𝛿v 𝛿h 𝛿v 𝛿h 

100 157.4 19.2 153.5 18.4 153.3 18.4 153.3 18.4 

200 299.2 62.3 292.4 59.9 292.2 59.8 292.1 59.8 

300 414.0 117.0 405.7 112.8 405.5 112.7 405.4 112.6 

400 502.4 173.1 493.7 167.5 493.4 167.4 493.3 167.3 

500 569.8 225.7 561.1 219.1 560.9 218.9 560.8 218.9 
 

IV. CONCLUSION 
Evaluation of both material and geometrical nonlinearities 

rise from the slender geometry; nonlinearly elastic material 
behavior and functional gradation of effective material 
properties is an intensely challenging process. Although there 
are several analytical studies on FGMs, finite element 
simulations are limited. In this study, a generalized Ludwick 
type nonlinearly elastic, bi-directional functionally graded 
beam is modeled as a layered structure to analyze by 
commercial FEA software. The effects of the number of layers 
on the normal stress distribution and end deflections are 
examined. Since the division of the beam into layers is a 
laborious process and adding more layers directly increases the 
CPU time, bi-directional FGB is studied as a one-directionally 
layered structure. Then the same beam is two-directionally 
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divided into layers. Results show that a homogenous beam is 
not capable of representing an FGB. On the other hand, there is 
no significant difference between one-directionally layered 
beam models. Two directionally layered beam models are very 
successful in simulating bi-directional FGBs. The results are 
converged at a certain number of layers. The stress distribution 
and large deflection of FGBs show the almost same behavior in 
20×10 and 20×20 layered beams. The results presented here 
should be verified by further studies to increase our ability to 
understand the effects of the modelling parameters.   
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