
Abstract - Measuring software maintainability is of vital 

importance for improving software product quality. Using a 

software quality model in the development life cycle, the quality of 

the system can be continuously evaluated and improved to reduce 

the maintenance cost. According to ISO/IEC 25010 Software 

Quality Models Standard, the maintainability characteristic of 
software product quality is composed of five sub characteristics; 

modularity, modifiability, reusability, analyzability and 

testability. This paper proposes a quality measurement model to 

evaluate the maintainability of software classes in terms of their 

reusability and modifiability characteristics in large-scale 
software systems. The model is based on software properties that 

are strongly related to reusability and modifiability, such as size, 

complexity, cohesion, coupling, and inheritance. First, our method 

categorizes metric values of software classes in the test system as 

low, medium and high.  This categorization is done based on the 
average and median values for these metrics that are obtained 

from reference software systems. Then, the proposed 

measurement method uses the levels of the metrics to calculate the 

reusability and modifiability scores of each class in the system. The 
scores fall in one of the five categories; very low, low, medium, 

high, and very high. The developers of the software system can 

examine classes with low and very low scores and then refactor 

them if necessary. This continuous evaluation and refactoring 

during the development can increase the quality of the system and 
reduce maintenance costs. We applied our model on two large-

scale industrial mobile applications and discussed the results with 

the development teams of the systems. We saw that our approach 

could reasonably grade classes on their reusability and 

modifiability characteristics.

Keywords - Quality Model, Software Metrics, Software 

Maintainability, Reusability, Modifiability. 

I. INTRODUCTION

igh maintenance cost is considered as an important  
problem for software companies, because this complex 

process typically consumes 50-70% of the total effort allocated 
to a software development project [1], [2]. Main reasons for this 
high cost are frequently changing customer demands and 
technological developments that cause the software systems to 
be updated constantly, and the increasing complexity of the 
programs. It is expected that the software systems could be 
developed, modified, extended, and corrected in a short time 
without a degradation in its performance. Therefore, many 
researchers study on models for measuring the maintainability 
characteristic of the software product quality. The objective is 

to help developers in detecting modules that are not properly 
designed and need refactoring to decrease maintenance costs.
  The maintainability is defined by IEEE standard glossary of 
Software Engineering as “the ease with which a software 
system or component can be modified to correct faults, improve 
the performance or other attributes, or adapt to a changed 
environment” [3]. According to ISO/IEC 25010 Software 
Quality Models Standard [4], the maintainability characteristic 
of software product quality is composed of five sub 
characteristics; modularity, modifiability, reusability, 
analyzability and testability. 

In this paper, we propose a quality model for evaluating 
the maintainability of large-scale object-oriented software 
systems. Our model is based on the reusability and 
modifiability, because these sub characteristics are the main  
factors that affect the maintenance cost. Software developers 
need to know which classes can be reused at different stages of 
the systems or in other projects. Similarly, they need to know 
the cost of modifying classes for adding new features, 
refactoring or bug fixing. In our hierarchical model, to measure 
reusability and modifiability we use properties of object-
oriented systems such as size, cohesion, coupling, complexity , 
and inheritance. We assigned software code metrics for each 
property. The metrics can be easily from programs obtained and 
using their values the maintainability of a system can be 
measured and enhanced. We tested our model on two large-
scale industrial projects and discussed our findings with the 
developers of the projects. The results show that our model can 
be used to detect software classes that have low reusability or 
modifiability values because they were not properly designed.
Such classes can be refactored to improve the maintainability  
of the system  

The rest of the paper starts with related work in Section 2. 
Section 3 gives information definition of the maintainability in
ISO / IEC 25010 standard and explains the structure of the 
proposed model. Steps of model construction is explained in 
Section 4. The empirical study and validation results are shared 
in Section 5. Final section concludes the paper. 

II. RELEATED WORK

Many studies have used different prediction models for 
maintainability quality. Muthanna et al. [5], investigated the use 
of software design metrics to statistically evaluate the 
maintainability quality of large software systems. They model 

A quality model for evaluating maintainability 
of object-oriented software systems

Özlem AKALIN1 and Feza BUZLUCA2

1 Istanbul Technical University, Istanbul/Turkey, akalino@itu.edu.tr
2 Istanbul Technical University, Istanbul /Turkey, buzluca@itu.edu.tr

H

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

614



can be applied only to procedural programs and it is not suitable 
for object-oriented software systems. 

Aggarwal et al. [6] developed a Fuzzy model to measure the 
maintainability of the software system. They defined four 
factors affecting maintainability, namely average number of 
live variable, average life span of variables, average cyclomatic 
complexity, and the comments ratio. Their model classifies
maintainability as very good, good, average, poor and very 
poor. There are total 81 rules in the model for all inputs and 
outputs. They test the model only on the projects developed by 
undergraduate engineering students. 

Bagheri and Gasevic [7] evaluated the maintainability of 
software product line feature models. They proposed different 
structural metrics in their study and used manually the three 
main sub-characteristics of the maintainability: analyzability , 
changeability and understandability. 

Rizvi and Khan [8] investigated a maintainability model 
including understandability and modifiability sub-
characteristics on software design phase. They proposed 
different design metrics for quality measurement and
constructed Maintainability Estimation Model for Object-
Oriented software in the design phase (MEMOOD). The model 
generates only project-based results and it do not give 
information about software classes. 

Bansiya and Davis [9] built a hierarchical quality model for 
object-oriented designs named QMOOD, which contains 
structural and behavioral design properties of classes, objects, 
and their relationships. QMOOD has four layers which include 
Design Quality Attributes, Object Oriented Design Properties, 
Object-Oriented Design Metrics, Object Oriented Design 
Components. 

In our study, we created a model that uses code metrics to 
measure the reusability and modifiability characteristics of 
software classes in object-oriented systems.  We evaluated our 
model on two large-scale industrial projects and validated the
results with developers of the projects.  

III. SOFTWARE MAINTAINABILITY AND HIERARCHICAL MODEL

Software maintainability is defined as the necessary effort for
addition of new features to the software system and elimination 
of defects. In the ISO / IEC 25010: 2011 “System and software 
quality models” standard, the maintainability quality 
characteristic consists of five sub-characteristics including 
modularity, modifiability, reusability, analyzability and 
testability. In our proposed model, we consider reusability and 
modifiability characteristics, because they are main factors that 
affect the maintenance cost. Reusability is defined as the degree 
to which a software component can be used in more than one 
system or in implementing other software components. 
Modifiability is expressed as the degree to which a software 
system can be efficiently modified without introducing defects 
or degrading existing product quality [4]. 

In this study, we propose a hierarchical model that uses low-
level code metrics to measure the high-level quality 
characteristic maintainability. The general structure of the 

Figure 1: Hierarchical Structure of the Quality Model

model is shown in Figure 1. The values of class-based code 
metrics are obtained from the software systems. These values are 
used to calculate values of properties such as size, complexity, 
cohesion, coupling and inheritance. Properties determine the 
values of reusability and modifiability quality characteristics 
for each class. Using these values, developers can find classes 
that increase the maintainability costs and need refactoring. 

IV. CONSTRUCTION OF THE MODEL

A. Property Selection

    At the first stage of the model development, we select the 
main properties of object-oriented programs that can be used to 
determine reusability and modifiability values of classes. The
selected properties and their influence on reusability and 
modifiability characteristics are explained below.

Code size:  The size of the source code negatively 
influences reusability of a class. For the simplicity of the 
model, effect of size on the modifiability is ignored
because other factors are more dominant.
Complexity: The complexity of the source code has a 
negative influence on the class’ reusability and 
modifiability so that as complexity increases, reusability 
and modifiability of the class decreases.
Cohesion: The cohesion of a class positively influences 
its reusability and modifiability. Therefore, when 
cohesion increases, the reusability and modifiability of 
the class increases.
Coupling: The coupling between classes negatively 
influences the system’s reusability and modifiability so 
that as the Coupling between classes increases, the 
reusability and modifiability of the system decreases.
Inheritance: The degree of class inheritance has a 
negative influence on the reusability and modifiability of 
the system so that as the degree of class inheritance 
increases, the reusability and modifiability of the system 
decreases.  

B. Metric selection

At the second stage of the model development, we determine 
metrics that should be used to measure the selected properties.
Metrics are selected based on observations of authors about the 
metrics and on results of different research conducted in recent 
years [6-11]. Selected metrics are explained below.

Coupling Between Object Classes (CBO) has been proposed 

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

615



by Chidamber & Kemerer [13]. If a class is coupled to more 
classes, its reusability and modifiability possibilities become
lower. 

Weighted Methods per Class (WMC) metric represents the 
sum of complexities of all methods in a class. Since high value 
of WMC metric indicates error-proneness, its reusability 
decreases and changes over the class take longer.

Depth of Inheritance Tree (DIT) metric calculates the depth 
of inheritance of given class in the class hierarchy. The deeper 
class have more properties and more methods, thus the 
possibility of its modifiability and reusability decreases.

Tight Class Cohesion (TCC) is a metric used to the relative
number of methods directly connected via accesses of 
attributes. It is easy to refactor and understand the classes with 
high TCC so it has a positive effect on modifiability of a class.

Foreign Data Providers (FDP) is the number of different  
foreign attributes accessed by a method. since high FDP 
indicate that the class includes methods with different  
responsibilities, its reusability may become more unmanaged.

Number of Methods (NOM) metric shows the total number 
of methods of given class. High NOM value shows that the class 
has too much responsibility so it negatively affects reusability 
of a class.

The properties of the class, the metric value corresponding to 
the property, and the effect of the characteristic of the metric 
are shown Table 1. 

C. Constructing the Prediction Model  

Since values of different metrics change in very different  
ranges, to create an understandable model, first we categorize 
the values of the metrics as low (LOW), medium (MED), and 
high (HIGH) based on their typical values such as mean, 
median and standard deviation. The typical values for 
categorizing the metrics are obtained from open source projects 
that reached certain maturity.  We used iPlasma tool [12] to 
gather metrics for each class from the reference open source 
software systems including WordPress-Android [16], FastHub
[17], RxJava [18]. Since DIT metric values are in ordinal scale 
and may include asymmetric outlier values, median calculation 
(Medm) is used for tagging it as shown in equation 1. Mean 
calculation (Mean m) and standard deviation (Std) are used for 
other metrics, which are interval scale. Tagging rule for NOM, 
CBO, TCC, WMC, FDP metrics is shown in equation 2. 

Our model assigns a numeric value (-1, 0, or 1) as score to 
each category based on the effect of the metric on the 
characteristic. For example, if a metric has a HIGH value and 
its affects the measured characteristic positively than this metric 
has the score +1. Table 2 shows the rules used to assign scores 
to metrics.   

     
     (1) 

Table 1: The 
corresponding properties of the metrics and the metric's effect on the 

characteristic

Table 2: Score values corresponding tag values

   

¶
(2)

Using the scores and the effect of metrics given in Table 1 
the model calculates the output values for reusability and 
modifiability of each software class. The output value is the 
sum of all related metric scores for the quality characteristic as 
shown in equation 3. 

=
,  

                         (3)
  

    Output values change in the range between [-5,5] for 
reusability and [-4,4] for modifiability. In order to categorize 
the reusability and modifiability characteristics for each class, 
we also tag the output values. The output rule used in the 
reusability and modifiability model is shown Table 3. As a 
result of the output rules, we obtain a data set in the matrix form 
with n rows and m+1 columns for prediction where n is number 
of class and m is number of metric. As each column refers to a 
software metric, each row of the matrix refers to 
  

Table 3: Output rules for tag values

Output Reusability Modifiability

VERY HIGH c c

HIGH c c

MED - c - c

LOW -3 c - 2 - c -2

VERY LOW -5 c -4 Output c = -4

metric values for a software class. The last element of the row 
is the output tag value of software class, which is used to 

Property Metric

The metric's effect on the 

characteristic 

Reusability Modifiability

Coupling CBO - Negative
Coupling FDP Negative -
Code Size NOM Negative -
Inheritance DIT Negative Negative
Cohesion TCC Positive Positive
Complexity WMC Negative Negative

Scorec

tagc
Values for positive 

effect
Values for negative 

effect
HIGH 1 -1

MED 0 0
LOW -1 1

tagc= 

HIGH if (Mc m + Std )

MED if (Mc < Meanm + Std or

        Mc <Meanm -Std) 

LOW if (Mc m r+ Std )

tagc= 
HIGH if (Mc Medm)

MED if (Mc = Medm) 

LOW if (Mc < Medm) 

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

616



categorize the reusability or modifiability characteristic. 
     Output intervals are not strict and can be flexible for 
different projects. For example, in order to find about ten 
percent of the worst-developed part of a project in terms of 
reusability, only those with an output value of “-5” can be 
defined as VERY LOW. Similarly, only the output value “4” 
can be defined as VERY HIGH to find the best developed about 
ten percent of a project in terms of modifiability.

V. EMPIRICAL STUDY AND EVALUATION

A. Model Results for Empirical Study

Two android mobile applications that are developed in
industrial projects are examined for the evaluation of the model. 
They are very popular commercial projects that are extensively  
used in real-world. Project A has 1071 classes and Project B has 
450 classes. Project A and Project B have developed in 18 
months and 12 months, respectively. Since the projects were 
written with Java language, mean and median values in the 
model are obtained from open source projects written in Java. 
Open source project selection criteria are as follows: a) software 
must be written in the same language with software project 
which is selected to evaluate; b) open source software is 
selected as possible as from the similar topics to the selected 
project for evaluation; c) software must be at a certain maturity.

We applied our prediction model on a live release of the 
Project A and Project B. To tag classes according to reusability 
and modifiability characteristics, we first calculated mean and 
median values for each metrics using selected open source 
projects. Then we tagged metric values for Project A and 
Project B in accordance with the median and mean values. The 
metric tag values’ numbers obtained for the projects are shown 
in Table 4 and Table 5. To create output values, we have labeled 
classes using the proposed model for each project. Some of the 
observed results are shown as:

Project A has 173 classes labeled as VERY HIGH and 
165 classes labeled as HIGH for reusability so it is 
considered that approximately thirty-third percent of 
Project A is highly reusable. Otherwise, Project A has 84 
classes labeled as VERY LOW and 187 classes labeled 
as LOW for reusability so it can be said that about 
twenty-five percent of the project is quite low in terms of 
reusability.
Project B has 14 classes labeled as VERY HIGH and 50 
classes labeled as HIGH for reusability so it is considered 
that approximately fifteen percent of Project B is highly 
reusable. Otherwise, Project B has 18 classes labeled as
VERY LOW and 166 classes labeled as LOW for 
reusability so it can be said that reusability of the project 
for about forty percent is rather difficult.
Project A has 96 classes labeled as VERY HIGH and 229 
classes labeled as HIGH for modifiability so it is 

Table 4: Reusability results for Project A and Project B 

Table 5: Modifiability results for Project A and Project B 

considered that it is quite easy to make a modification for
about thirty percent of the project. Otherwise, Project A 
has 67 classes labeled as VERY LOW and 270 classes 
labeled as LOW for modifiability so it can be said that 
about thirty-third percent of the project is quite low in 
terms of modifiability. 
Project B has 17 classes labeled as VERY HIGH and 34 
classes labeled as HIGH for modifiability so it is 
considered that approximately ten percent of Project B is 
extremely easy to modify. Otherwise, Project B has 5 
classes labeled as VERY LOW and 159 classes labeled 
as LOW for modifiability so it can be said that 
modifiability of the project for about thirty-third percent 
is rather difficult.  

Class-based example results based on the values obtained 
from the model result are shown in Table 6 and Table 7. We 
interpreted the output values in terms of reusability and 

Table 6: Class-based Reusability results 

84

187

462

165 173

18

166
202

50
14

0

50

100

150

200

250

300

350

400

450

500

VERY

LOW

LOW MED HIGH VERY

HIGH

N
u

m
b

e
r 

O
f 

C
la

ss
e

s

Class output value 

Project A Project B

67

270

409

229

96

5

159

235

34
17

0

50

100

150

200

250

300

350

400

450

VERY

LOW

LOW MED HIGH VERY

HIGH

N
u

m
b

e
r 

o
f 

C
la

ss
e

s

Class output value 

Project A Project B

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

617



Table 7: Class-based Modifiability results 

modifiability through the metrics that the classes have. The 
observed results for Table 6 and Table 7 are commented as:

Class 1 has the low coupling, inheritance, cohesion and 
high complexity and size so its reusability is medium 
level. Also, since it has low coupling, inheritance, 
cohesion and high complexity, its modifiability is 
medium level. Thus, we can infer that its reusability and 
modifiability is medium in terms of maintainability.
Class 2 has the low coupling, inheritance, complexity and 
high cohesion and size so its reusability is high level. 
Moreover, since it has low coupling, inheritance, 
complexity and high cohesion, its modifiability is very 
high level. As can be inferred, its reusability is high and 
also its modifiability is very high in terms of 
maintainability
Class 3 has high coupling, size, complexity and low 
cohesion so its reusability is very low level. Also, since 
it has high coupling, complexity and low cohesion, its 
modifiability is very low level so that its reusability and 
modifiability is very low in terms of maintainability.

By examining the results obtained from the model, it  
becomes possible to deduce from which direction the class 
should be developed.

B. Model Validation and Threads to Validity

The proposed methodology is validated with the help of 
development teams. We use Analytical Hierarchical Process 
(AHP) to evaluate teams’ opinions. It is a structured technique 
for analyzing complex multi-attribute decisions. It provides the 
decision maker to set priorities and make the best decision for 
solving a problem. Users of the AHP decompose their decision 
problem into a hierarchy of more easily comprehended sub-
problems, each of which can be analyzed independently [14].

We prepared a survey for each property of the reusability 
and modifiability characteristics to obtain metric coefficients 
through AHP. In our study, we aim to evaluate maintainability 

Table 8: Reusability values for Pearson Correlation 
Calculation  

Table 9: Modifiability values for Pearson Correlation 
Calculation

Classes

OUTPUT
VERY 
HIGH

MED MED HIGH LOW

Model_Mod 5 3 3 4 2

AHP_Mod 1.12 0.99 0.96 1.0 0.8

Model_Mod: Modifiability Calculated with Model  

AHP_ Mod: Modifiability Calculated with AHP

model’s validation using the survey results. During the survey 
as size, cohesion, coupling, inheritance and complexity
properties are calculated for reusability, cohesion, coupling,
inheritance and complexity properties are calculated for 
modifiability. After the opinions of the teams were taken as a 
result of the survey, metric coefficients were obtained with  
AHP. Results are calculated for both reusability and 
modifiability characteristic. To identify the relationships 
between the model and AHP results, we analyzed Pearson 
correlation matrix for each value. In order to calculate the 
correlation between AHP and the model results, we assigned 
numeral values as 5, 4, 3, 2, 1 for VERY HIGH, HIGH, MED, 
LOW, VERY LOW model results, respectively.

Each correlation matrix has a correlation coefficient (R) for 
each result pair and R can range from - 1 and +1. While the 
value of R, +1, represents perfect positive correlation, the value 
of R, - 1, represents perfect negative correlation. While 
correlation coefficient values between 0.70 and 1.00 are 
accepted as a strong positive correlation in Pearson Correlation 
Analysis, values between - 1.00 and - 0.70 are accepted as a 
strong negative correlation [15]. 

The metrics for all the five properties of reusability and for 
all the four properties of modifiability were measured for both 
the projects. Initially, metric values were normalized and then 
were multiplied by their corresponding weight values according 
to AHP result for the projects. The results calculated with AHP 
and the proposed models is shown in Table 8 and Table 9.  

Table 10 presents Pearson correlation coefficient between 
the proposed model and AHP model which is created as a result 
of the survey. As can be inferred, all the two coefficients depict 
significant positive correlation between the proposed 

Table 10: Pearson Correlation Results for Project A and 
Project B 

FDP NOM DIT TCC WMC Output

Class 1 LOW HIGH LOW LOW HIGH MED

Class 2 LOW HIGH LOW HIGH LOW HIGH

Class 3 HIGH HIGH MED LOW HIGH
VERY 
LOW

CBO DIT TCC WMC Output 

Class 1 LOW LOW LOW HIGH MED

Class 2 LOW LOW HIGH LOW
VERY 
HIGH

Class 3 HIGH MED LOW HIGH
VERY 
LOW

Classes

OUTPUT HIGH
VERY 
HIGH

VERY 
LOW

LOW LOW

Model_Reu 4 5 1 2 2

AHP_Reu 1.23 1.22 0.94 0.9 0.97

Model_ Reu: Reusability Calculated with Model 

AHP_ Reu: Reusability Calculated with AHP

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

618



Project A Project B

R R2 R R2

Reusability 0.7679 0.5866 0.8819 0.7777

Modifiability 0.8282 0.681 0.7581 0.5747

model and AHP model. Therefore, it is clear that the proposed 
model may be able to predict a class’s reusability and 
modifiability in terms of maintainability. The flow that occurs 
as a result of construction and evaluation stages has been shown
Figure 2. 

We need to explain some threats to validity of the proposed 
work for providing completeness and accuracy. The 
maintainability prediction model has been tested on the 
software projects developed in Java language. However, it is 
likely to be valid for the software projects which developed 
different object-oriented programing languages. Further 
research should be done to evaluate on different projects. 
Moreover, we used only 6 different source code metrics for 
development of the quality model in this study. Some of other 
static source code object-oriented metrics can be used for 
examining different properties except the properties in the 
proposed model.

VI. CONCLUSION

We have developed a quality model to quantify 
maintainability of the software classes in terms of their 
reusability and modifiability. We used two industrial software 
projects to evaluate the performance of our model in the real 
world. We structurally categorized software classes using code
metrics and compared statistically our results to the developer 
teams’ opinions. Consequently, our model shows that object-
oriented metrics can effectively be used as predictors to 
evaluate maintainability of software systems. 

Our model results provide different advantages in the
software development phase. It generally helps to determine 
software class quality in terms of their maintainability level. 
Software developers can focus on software classes that have
low quality. Moreover, the model gives information about 
reasons for their low or high quality levels, such as cohesion, 
coupling etc. Hence, developers can easily refactor classes to 
increase their quality level and significantly reduce the 
maintenance cost of the system. 

REFERENCES

[1] Pigoski, Thomas M. Practical software maintenance: best practices for 
managing your software investment,Wiley Publishing, 1996.

[2] Sommerville, Software Engineering, 6th ed., Harlow, Addison-Wesley, 
2001.S

[3] IEEE STD 610.2: IEEE Standard Glossary of Software Engineering 
Terminology, 1990. 

[4] ISO/IEC 25010. ISO/IEC 25010:2011: Systems And Software 
Engineering – Systems And Soft-Ware Quality Requirements And 
Evaluation (Square) – System And Software Quality Models. Geneva: 
ISO, 2011. 

Figure 2: Construction and Evaluation of the Quality Model

[5] Muthanna, S., et  al. "A maintainability model for industrial software 
systems using design level metrics." Reverse Engineering, 2000. 
Proceedings. Seventh Working Conference on. IEEE, 2000.

[6] Aggarwal, Krishan K., Yogesh Singh, and Jitender Kumar Chhabra. "An 
integrated measure of software maintainability." Reliability and 
maintainability symposium. Proceedings. Annual. IEEE, 2002.

[7] Bagheri, Ebrahim, and Dragan Gasevic. "Assessing the maintainability of 
software product line feature models using structural metrics." Software 
Quality Journal 19.3: 579-612,2011.

[8] Rizvi, S. W. A., and Raees A. Khan. "Maintainability estimation model 
for object-oriented software in design phase (memood).",2010.

[9] Bansiya, Jagdish, and Carl G. Davis. "A hierarchical model for object-
oriented design quality assessment." IEEE Transactions on software 
engineering 28.1: 4-17, 2002. 

[10] Genero, Marcela, et al. "Using metrics to predict OO information systems 
maintainability." International Conference on Advanced Information 
Systems Engineering. Springer, Berlin, Heidelberg, 2001.

[11] Singh, Charu, Amrendra Pratap, and Abhishek Singhal. "Estimation of 
software reusability for component based system using soft computing 
techniques." Confluence The Next Generation Information Technology 

Summit (Confluence), 2014 5th International Conference-. IEEE, 2014.
[12] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel, 

"iPlasma:An integrated platform for quality assessment of object- 
oriented design," In Proceedings of the 21st IEEE International 
Conference on Software Maintenance, pp. 77-80, 2005. 

[13] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics suite for object 
oriented design." IEEE Transactions on softwareengineering 20.6 (1994): 
476-493.

[14] Sharma, A., Kumar, R., Grover, P.S.: Estimation of Quality for Software 
Components - an Empirical Approach. ACM SIGSOFT Software 
Engineering Notes 33(5), 1–10 (2008) -639.

[15] Dagpinar, Melis, and Jens H. Jahnke. "Predicting maintainability with 
object-oriented metrics-an empirical comparison." Reverse Engineering, 
WCRE 2003. Proceedings. 10th Working Conference on. IEEE, 2003.

[16] https://github.com/wordpress-mobile/WordPress-Android/
[17] https://github.com/k0shk0sh/FastHub
[18] https://github.com/ReactiveX/RxJava

International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), 

May 11-13, 2018 Safranbolu, Turkey

619


