
1File Organization
Copyright Copyright ©© 220004 04 Version Version 00..11..99

File Organization
Binnur Kurt

binnur.kurt@ieee.org

Istanbul Technical UniversityIstanbul Technical University
Computer Engineering DepartmentComputer Engineering Department

2

About the LecturerAbout the Lecturer

� BSc

İTÜ, Computer Engineering Department, 1995

� MSc

İTÜ, Computer Engineering Department, 1997

� Areas of Interest

¾ Digital Image and Video Analysis and Processing

¾ Real-Time Computer Vision Systems

¾ Multimedia: Indexing and Retrieval

¾ Software Engineering

¾ OO Analysis and Design

3

Welcome to the CourseWelcome to the Course

� Important Course Information

¾ Office Hours

• 14:00-15:00 Tuesday

¾ Course Web Page

• http://www.cs.itu.edu.tr/~kurt/courses/blg341

¾ E-mail

• kurt@ce.itu.edu.tr

4

Grading SchemeGrading Scheme

¾ 3 Projects (30%)

¾ A midterm exam (30%)

¾ A final exam (40%)

¾ You must follow the official Homework Guidelines
(http://www.ce.itu.edu.tr/lisans/kilavuz.html).

¾ Academic dishonesty including but not limited to cheating,
plagiarism, collaboration is unacceptable and subject to disciplinary
actions. Any student found guilty will have grade F. Assignments
are due in class on the due date. Late assignments will generally not
be accepted. Any exception must be approved. Approved late
assignments are subject to a grade penalty.

5

What we want to see in your programsWhat we want to see in your programs

¾ All programs to be written in C/C++

¾ Self contained, well thought of, and well designed
functions/classes

¾ Clean, well documented code, good programming style

¾ Modular design

¾ Do not write codes the way hackers do ☺

6

ReferencesReferences

QA.76.73.C153.F65

QA.76.9.F5.T43

ITU Main Library

QA.76.76.O63.S55

This document is partially based on
http://www.site.uottawa.ca/~lucia/#Teaching

7File Organization

Tell me and I forget.
Show me and I remember.
Let me do and I understand.

—Chinese Proverb

8File Organization

Purpose of the CoursePurpose of the Course

► Objective of Data Structures (BLG221) was to teach ways of
efficiently organizing and manipulating data in main memory.

► In BLG341E, you will learn equivalent techniques for organization
and manipulation of data in secondary storage.

► In the first part of the course, you will learn about "low level" aspects
of file manipulation (basic file operations, secondary storage devices
and system software).

► In the second part of the course, you will learn the most important
high-level file structure tools (indexing, co-sequential processing, B
trees, Hashing, etc).

► You will apply these concepts in the design of C programs for solving
various file management problems

9File Organization

1. Introduction to file management.

2. Fundamental File Processing Operations.

3. Managing Files of Records: Sequential and direct access.

4. Secondary Storage, physical storage devices: disks, tapes and CD-
ROM.

5. System software: I/O system, file system, buffering.

6. File compression: Huffman and Lempel-Ziv codes.

7. Reclaiming space in files: Internal sorting, binary searching,
keysorting.

8. Introduction to Indexing.

9. Indexing

Course OutlineCourse Outline

10File Organization

10. Cosequential processing and external sorting

11.Multilevel indexing and B trees

12.Indexed sequential files and B+ trees

13.Hashing

14.Extendible hashing

Course OutlineCourse Outline

Introduction to File ManagementIntroduction to File Management1

File Organization 12

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

ContentContent

►Introduction to file structures

►History of file structure design

File Organization 13

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Introduction to File OrganizationIntroduction to File Organization

►Data processing from a computer science perspective:

– Storage of data

– Organization of data

– Access to data

►This will be built on your knowledge of

Data StructuresData Structures

File Organization 14

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Data Structures vs. File StructuresData Structures vs. File Structures

►Both involve:

Representation of Data

+

Operations for accessing data

►Difference:
– Data Structures deal with data in main memorymain memory

– File Structures deal with data in secondary storagesecondary storage
devicedevice (File).

File Organization 15

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Computer ArchitectureComputer Architecture

CPU

Main Memory

Second Storage

Registers

Cache

DifferencesDifferences

─ Fast
─ Small
─ Expensive
─ Volatile

─ Slow
─ Large
─ Cheap
─ Stable

RAM
(Semiconductor)

Disk, Tape,
DVD-R

File Organization 16

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Memory HierarchyMemory Hierarchy

File Organization 17

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Memory HierarchyMemory Hierarchy

►On systems with 32-bit addressing, only 232 bytes can be
directly referenced in main memory.

►The number of data objects may exceed this number!

►Data must be maintained across program executions. This
requires storage devices that retain information when the
computer is restarted.
– We call such storage nonvolatile.

– Primary storage is usually volatile, whereas secondary and
tertiary storage are nonvolatile.

File Organization 18

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

How Fast?How Fast?

►Typical times for getting info

– Main memory: ~120 nanoseconds =

– Magnetic Disks: ~30 milliseconds =

►An analogy keeping same time proportion as above

– Looking at the index of a book: 20 seconds

versus

– Going to the library: 58 days

9120 10−×
630 10−×

File Organization 19

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

ComparisonComparison

►Main Memory
– Fast (since electronic)

– Small (since expensive)

– Volatile (information is lost when power failure occurs)

►Secondary Storage
– Slow (since electronic and mechanical)

– Large (since cheap)

– Stable, persistent (information is preserved longer)

File Organization 20

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Goal of the CourseGoal of the Course

►Minimize number of trips to the disk in order to get
desired information. Ideally get what we need in one disk
access or get it with as few disk access as possible.

►Grouping related information so that we are likely to get
everything we need with only one trip to the disk (e.g.
name, address, phone number, account balance).

Locality of ReferenceLocality of Reference in TimeTime and SpaceSpace

File Organization 21

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

Good File Structure DesignGood File Structure Design

►Fast access to great capacity

►Reduce the number of disk accesses

►By collecting data into buffers, blocks or buckets

►Manage growth by splitting these collections

File Organization 22

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

History of File Structure DesignHistory of File Structure Design

1. In the beginning… it was the tape
–– Sequential accessSequential access
– Access cost proportional to size of file

[Analogy to sequential access to array data structure]
2. Disks became more common

–– Direct accessDirect access
[Analogy to access to position in array]

–– IndexesIndexes were invented
• list of keys and points stored in small file
• allows direct access to a large primary file
Great if index fits into main memory.
As file grows we have the same problem we had with a
large primary file

File Organization 23

In
tr

od
uc

ti
on

 to
 F

il
e

O
rg

an
iz

at
io

n
1

History of File Structure DesignHistory of File Structure Design

3. Tree structures emerged for main memory (1960`s)
–– Binary search trees (Binary search trees (BST`sBST`s))
–– BalancedBalanced, self adjusting BST`s: e.g. AVL trees (1963)

4. A tree structure suitable for files was invented:
B treesB trees (1979) and B+ treesB+ trees
good for accessing millions of records with 3 or 4 disk
accesses.

5. What about getting info with a single request?
– Hashing Tables (Theory developed over 60’s and 70’s but still

a research topic)
good when files do not change too much in time.

– Expandable, dynamic hashing (late 70’s and 80’s)
one or two disk accesses even if file grows dramatically

Fundamental File Processing OperationsFundamental File Processing Operations2

25

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

ContentContent

►Sample programs for file manipulation

►Physical files and logical files

►Opening and closing files

►Reading from files and writing into files

►How these operations are done in C and C++

►Standard input/output and redirection

26

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

What is a FILE?What is a FILE?

I wonder...

►A collection of data is placed under permanent or
non-volatile storage

►Examples: anything that you can store in a disk,
hard drive, tape, optical media, and any other
medium which doesn’t lose the information when
the power is turned off.

►Notice that this is only an informal definition!

A file is...

27

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Where do File Structures fit in CS?Where do File Structures fit in CS?

Hardware

Operating System

DBMS

File system

Application

28

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Physical Files & Logical FilesPhysical Files & Logical Files

► Physical file: physically exists on secondary storage;
known by the operating system; appears in its file
directory

► Logical file, what your program actually uses, a ‘pipe’
though which information can be extracted, or sent.

►Operating system: get instruction from program or
command line; link logical file with physical file or device

► Why is the distinction useful? Why not allow our
programs to deal directly with physical files?

29

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Basic File OperationsBasic File Operations

►►Opening a fileOpening a file - basically, links a logical file to a physical
file.

– On open, the O/S performs a series operations that end
in the program that is trying to open the file being
assigned a file descriptor.

– Additionally, the O/S will perform particular operations
on the file at the request of the calling program, these
operations are intended to ‘initialize’ the file for use by
the program.

– What happens when the O/S detects an error?

30

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

hFile: Logical File, “account.txt”: Physical FilehFile: Logical File, “account.txt”: Physical File

#include <stdio.h>
int main(){

FILE *hFile=fopen(“account.txt”,"r");
char c;
while (!feof(hFile)){

fread (&c,sizeof(char),1,hFile) ;
fwrite(&c,sizeof(char),1,stdout) ;

}
fclose(hFile) ;
return 0;

}

31

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

FILEFILE

typedef struct {
unsigned char *curpcurp; // Current active pointer
unsigned char *bufferbuffer; // Data transfer buffer
int level; // fill/empty level of buffer
int bsizebsize; // Buffer size
unsigned short istemp; // Temporary file indicator
unsigned short flags; // File status flags
wchar_t hold; // Ungetc char if no buffer
char fd; // File descriptor
unsigned char token; // Used for validity checking

} FILEFILE;

32

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

C++ CounterpartC++ Counterpart

#include <fstream>

#include <iostream>

using namespace std ;

int main(){

char c;

fstream infile ;

infile.open("account.txt",ios::in) ;

infile.unsetf(ios::skipws) ;

infile >> c ;

33

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

while (! infile.fail()){

cout << c ;

infile >> c ;

}

infile.close() ;

return 0;

}

34

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Physical Files & Logical Files ─ Revisited # 1Physical Files & Logical Files ─ Revisited # 1

►OS is responsible for associating a logical file in a program to a
physical file in disk or tape. Writing to or reading from a file in a
program is done through the OS.

►Note that from the program point of view, input devices (keyboard)
and output devices (console, printer, etc) are treated as files ─
places where bytes come from or sent to

►There may be thousands of physical files on a disk, but a program
only have a limited number of logical files open at the same time.

►The physical file has a name, for instance “account.txt”

►The logical file has a logical name used for referring to the file
inside the program. The logical name is a variable inside the
program, for instance “infile”

35

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Physical Files & Logical Files ─ Revisited # 2Physical Files & Logical Files ─ Revisited # 2

►In C PL, this variable is declared as.

FILE *FILE *infileinfile ;;

►In C++ PL, the logical name is the name of an object of
the class fstreamfstream:

fstreamfstream infileinfile ;;

►In both languages, the logical name infile will be
associated to the physical file “account.txt” at the time of
opening the file.

36

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

More on Opening FilesMore on Opening Files

►Two options for opening a file:

– Open an existingexisting file

– Create a newnew file

37

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

How to do in CHow to do in C

FILE *outfile;

outfile = fopen(“account.txt”, “w”) ;

►The 1st argument indicates the physical name of the file

►The 2nd one determines the “mode”

─the way the file is opened

38

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

The ModeThe Mode

►“r”: open an existing file for reading

►“w”: create a new file, or truncate existing one, for writing

►“a”: open a new file, or append an existing one for writing

►“r+”: open an existing file for reading and writing

►“w+”: create a new file, or truncate an existing one for
reading and writing

►“a+”: create a new file, or append an existing one for
reading and writing

39

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

How to do in C++How to do in C++

fstream outfile;

outfile.open(“account.txt”, ios::out) ;

►The 1st argument indicates the physical name of the file

►The 2nd argument is an integer indicating the mode
defined in the class iosios.

40

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

The ModeThe Mode

►ios::in open for reading

►ios::out open for writing

►ios::app seek to the end of file before each write

►ios::trunc always create a new file

►ios::nocreate fail if file does not exist

►ios::binary open in binary mode

41

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Basic File OperationsBasic File Operations

►►ClosingClosing a filea file - cuts the link between physical and logical
files

– Upon closing, the OS takes care of ‘synchronizing’ the
contents of the file, e.g. often a buffer is used, need to
write buffer content to file.

– In general, files are automatically closed when the
program ends.

– So, why do we need to worry about closing files?

– In C: fclosefclose((outfileoutfile))

– In C++: outfileoutfile..closeclose()()

42

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Basic File OperationsBasic File Operations

►►ReadingReading andand WritingWriting – basic I/O operations.

– Usually require three parameters: a logical file, an
address, and the amount of data that is to be read or
written.

– What is the use of the address parameter?

43

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Reading in CReading in C

char c ; // a character

char a[100] ; // an array with 100 characters

FILE * infile ;

:

infile = fopen(“myfile.txt”, “r”) ;

fread(&c,1,1,infile) ; // reads one character

fread(a,1,10,infile) ; // reads 10 characters

44

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

fread()fread()

fread(&c,1,1,infile) ; // reads one character

fread(a,1,10,infile) ; // reads 10 characters
►1st argument: destination address

►2nd argument: element size in bytes

►3rd argument: number of elements

►4th argument: logical file name

45

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Reading in C++Reading in C++

char c ; // a character
char a[100] ; // an array with 100 characters
fstream infile ;
infile.open(“myfile.txt”, ios::in) ;
infile >> c; // reads one character
infile.read(&c,1) ;
infile.read(a,10); // reads 10 bytes
►Note that thanks to operator overloading in C++,

operator >>>> gets the same info at a higher level

46

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Writing in CWriting in C

char c ; // a character

char a[100] ; // an array with 100 characters

FILE * outfile ;

outfile = fopen(“myfile.txt”, “w”) ;

fwrite(&c,1,1,outfile) ; // writes one character

fwrite(a,1,10,outfile) ; // writes 10 characters

47

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Writing in C++Writing in C++

char c ; // a character

char a[100] ; // an array with 100 characters

fstream outfile ;

outfile.open(“myfile.txt”, ios::out) ;

outfile << c; // writes one character

outfile.write(&c,1) ;

outfile.write(a,10); // writes 10 bytes

48

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Additional File OperationsAdditional File Operations

►Seeking: source file, offset.

►Detecting the end of a file

►Detecting I/O error

49

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Seeking in CSeeking in C

►int fseek(FILE *stream, long offset, int whence);

►Repositions a file pointer on a stream.

►fseek sets the file pointer associated with stream to a new
position that is offset bytes from the file location given by
whence.

►Whence must be one of the values 0. 1, or 2 which
represent three symbolic constants (defined in stdio.h) as
follows:
– SEEK_SET 0 File beginning

– SEEK_CUR 1 Current file pointer position

– SEEK_END 2 End-of-file

50

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Seeking with C++ Stream ClassesSeeking with C++ Stream Classes

A fstream has 2 file pointers: get pointer & put pointer

(for input) (for output)

file1.seekg (byte_offset, origin); //moves get pointer

file1.seekp (byte_offset, origin); //moves put pointer

origin can be ios::beg (beginning of file)

ios::cur (current position)

ios::end (end of file)

file1.seekg (373, ios::beg); // moves get pointer 373 bytes from

// the beginning of file

51

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Calculating File SizeCalculating File Size

int main(int argc, char* argv[]) {

FILE *hFile=fopen(argv[1],"r");

fseek(hFile, 0L, SEEK_END);

int fileLength = ftell(hFile);

printf(“\nFile size is %d”,fileLength) ;

fclose(hFile) ;

return 0;

}

52

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Detecting End of FileDetecting End of File

►In C: Check whether fread returned value 0
int i ;
i = fread(&c,1,1,infile) ; //attempt to read
if (i==0) // true if file has ended

►Alternatively, use the function feof(infile)
►In C++: Check whether infile.fail() returns true

infile >> c ;
if (infile.fail()) // true if file has ended

►Alternatively, use the function infile.eof()
►Also note that fail() indicates that an operation is

unsuccessful, so it is more general than just checking for
end of file

53

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

Logical File Names Associated to Std IO DevicesLogical File Names Associated to Std IO Devices

Logical Name Purpose Default
Meaning in C in C++

Standard Output Console/Screen stdout cout
Standard Input Keyboard stdin cin
Standard Error Console/Screen stderr cerr

►These streams do not need to be open or closed in the
program

54

Fu
nd

am
en

ta
l F

ile
 P

ro
ce

ss
in

g
O

pe
ra

ti
on

s
2

File Organization

RedirectionRedirection

►Some OS allow the default meanings to be changed
through a mechanism called redirection

►Example in Unix
– Suppose that “prog” is the executable program

– Input redirection (standard input becomes file in.txt)

• prog < in.txt

– Output redirection (standard output becomes file out.txt)

• prog > out.txt

– You can also do

• prog < in.txt > out.txt

Managing Files of RecordsManaging Files of Records3

56

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

ContentContent

►Field and record organization

►Sequential search and direct access

►Seeking

57

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Files as a Stream of BytesFiles as a Stream of Bytes

►So far we have looked the file as a stream of bytes
►Consider the program we studied in the last lecture

#include <stdio.h>
int main(){

FILE *hFile=fopen(“example.txt”,"r");
char c;
while (!feof(hFile)){

freadfread (&c,(&c,sizeofsizeof((charchar),1,),1,hFilehFile) ;) ;
fwrite(&c,sizeof(char),1,stdout) ;

}
fclose(hFile) ;
return 0;

}

58

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

“example.txt”“example.txt”

87358CARROLL ALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

79733KNUTH THE ART OF COMPUTER PROGRAMMING

86683KNUTH SURREAL NUMBERS

18395TOLKIEN THE HOBITT

59

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

StreamStream

►Every stream has an associated file position

►When we open a file, the file position is set to the
beginning

► The first freadfread (&c,sizeof(char),1,hFile) ; (&c,sizeof(char),1,hFile) ; will read 8 into cc
and increment the file position

►The 38th freadfread()() will read the newline character (referred
to as ‘\n’ in C/C++) into cc and increment the file position.

►The 39th freadfread()() will read 0 into cc and increment the file
position, and so on.

60

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

File TypesFile Types

A file can be treated as

1. a stream of bytes (as we have seen before)

2. a collection of records with fields

(we will discuss it know)

61

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Field: a data value, smallest unit of data with logical
meaning
► Record: A group of fields that forms a logical unit
►Key: a subset of the fields in a record used to uniquely
identify the record
� MemoryMemory FFileile
� object record
� member field

Field and Record OrganizationField and Record Organization

62

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

In our example, “example.txt” contains information about
books:

►Each line of the file is a recordrecord.

►Fields in each record:

– ISBN Number,

– Author Name,

– Book Title

87358CARROLL ALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

79733KNUTH THE ART OF COMPUTER PROGRAMMING

86683KNUTH SURREAL NUMBERS

18395TOLKIEN THE HOBITT

63

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Primary and Secondary KeysPrimary and Secondary Keys

►Primary Key

A key that uniquely identifies a record.

►Secondary Key

Other keys that may be used for search

►Note that

In general not every field is a key

Keys correspond to fields, or combination of fields, that
may be used in a search

64

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Fixed length
► Begin each field with its Length indicator
► Delimiters to separate fields
► “keyword=value” identifies each field and its content

Methods for Organizing FieldsMethods for Organizing Fields

65

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Fixed-Length FieldsFixed-Length Fields

87358CARROLL ALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

86683KNUTH SURREAL NUMBERS

18395TOLKIEN THE HOBITT

Like in our file of books (field lengths are 5,7, and 25).

66

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Length indicatorLength indicator

0505873580707CARROLL1919ALICE IN WONDERLAND

0505038180404FOLK1515FILE STRUCTURES

0505866830505KNUTH1515SURREAL NUMBERS

0505183950707TOLKIEN1010THE HOBITT

Like in our file of books (field lengths are 5,7, and 25).

67

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

DelimiterDelimiter

87358||CARROLL||ALICE IN WONDERLAND||
03818||FOLK||FILE STRUCTURES||

86683||KNUTH||SURREAL NUMBERS||
18395||TOLKIEN||THE HOBITT ||

68

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Keyword=ValueKeyword=Value

ISBN=ISBN=87358|AU=|AU=CARROLL|TI=|TI=ALICE IN WONDERLAND||

ISBN=ISBN=03818|AU=|AU=FOLK|TI=|TI=FILE STRUCTURES||

ISBN=ISBN=86683|AU=|AU=KNUTH|TI=|TI=SURREAL NUMBERS||

ISBN=ISBN=18395|AU=|AU=TOLKIEN|TI=|TI=THE HOBITT ||

69

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Field Structures: Advantages & DisadvantagesField Structures: Advantages & Disadvantages

Type Advantages Disadvantages

Fixed Easy to Read/Store Waste space with padding

Width length
indicator

Easy to jump ahead to
the end of the field

Long fields require more
than 1 byte to store length
(Max is 255)

Delimited Fields
May waste less space
than with length-based

Have to check every byte
of field against the
delimiter

Keyword
Fields are self
describing allows for
missing fields

Waste space with
keywords

70

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Sequential Search and Direct AccessSequential Search and Direct Access

Search for a record matching a given key

►Sequential Search
– Look at records sequentially until matching record is found.

Time is in O(n) for n records.

– Appropriate for Pattern matching, file with few records

►Direct Access
– Being able to seek directly to the beginning of the record. Time

is in O(1) for n records.

– Possible when we know the Relative Record Number (RRN):
First record has RRN 0, the next has RRN 1, etc.

71

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Direct Access by RRNDirect Access by RRN

►Requires records of fixed length.

– RRN=30 (31st record)

– Record length = 101 bytes

– Byte offset = 30 × 101 = 3030

►Now, how to go directly to the byte 3030 in the file

– By seeking

72

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Seeking in CSeeking in C

►int fseek(FILE *stream, long offset, int whence);

►Repositions a file pointer on a stream.

►fseek sets the file pointer associated with stream to a new
position that is offset bytes from the file location given by
whence.

►Whence must be one of the values 0. 1, or 2 which
represent three symbolic constants (defined in stdio.h) as
follows:
– SEEK_SET 0 File beginning

– SEEK_CUR 1 Current file pointer position

– SEEK_END 2 End-of-file

73

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

ExamplesExamples

►fseek(infile,0L,SEEK_SET);

//moves to the beginning of the file

►fseek(infile,0L,SEEK_END);

//moves to the end of the file

►fseek(infile,-10L,SEEK_CUR);

//moves back 10 bytes from the current position

74

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

►If we have a sorted file, we can perform a binary search to
locate information, this is much faster than sequentially
looking at each record! (recall that sequential search is
O(n), while binary search is O(log2 n)).

►Requires a sorted file (what happens with deletions,
insertions, and updates?)

►Still requires several disk accesses.

Finding Information FastFinding Information Fast

75

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Perform the sorting procedure in memory!

(internal sort)

► Do the binary search in memory, not on disk

► Keep only the record keys and RRN’s in memory, not the
whole record (keysort).

► Better yet, forget about re-organizing the file altogether!

How do we make binary search more efficient?How do we make binary search more efficient?

76

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Just leave data file entry-sequencedJust leave data file entry-sequenced

►Write out the sequence of sorted keys:

index file

►How to use it?

- binary search on index

- use RRN to access record

77

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

An index: a list of pairs (key, reference),
sorted by key

An index: a list of pairs (key, reference),
sorted by key

► Allow direct fast access to files

► Eliminates the need to re-organize or sort the file (files
can be entry sequenced)

► Provide direct access for files with variable length records

► Provide multiple access paths to the file

► Impose an order on a file without rearranging the file

78

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

diskdiskmemorymemory

Index of a File of BooksIndex of a File of Books

Index book file
key reference Address Data record
0135399661 152152 1616 0295738491|Feijen|...
0201175353 335335 6565 0485743659|Dijkstra|...
0295738491 1616 113113 0384654756|Dijkstra|...
0384654756 113113 152152 0135399661|Hehner|…
0485743659 6565 335335 0201175353|Dijkstra|...

79

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Contains a primary key in canonical form, and a pointer to
a record in the file

► Each entry in the primary index identifies uniquely a
record in the file

► Designed to support binary search on the primary key

Primary IndexPrimary Index

80

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Index creation

► Index loading

► Updating of index files

► Record additions / deletions / updates

Basic Operations on IndexesBasic Operations on Indexes

81

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

►Provides multiple views of a data file

► Allows us to search for particular values within fields that
are not primary keys

► Allows us to search using combinations of secondary /
primary keys

► Each entry in a secondary index contains a key value and
a primary key (or list of primary keys).

Use of Multiple IndexesUse of Multiple Indexes

82

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Does not identify records uniquely

► It is not dataless

► Has a canonical form (i.e.there are restrictions on the
values that the key must take)

Secondary KeySecondary Key

83

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► List of secondary keys, sorted first by value of the
secondary key, and then by the value of the primary key

► Updates to the file must now be applied on the secondary
indexes as well.

► The fact that we store primary keys instead of pointers
into the file minimizes the impact of file updates on the
secondary index.

Secondary Index StructureSecondary Index Structure

84

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Author IndexAuthor Index

Secondary key Set of primary keys

Dijkstra 0201175353 0384654756 0485743659

Feijen 0295738491

Hehner 0135399661

85

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Deletion of a RecordDeletion of a Record

►Change only data file and primary index
►Search secondary key, find primary key,

search for primary key in primary index
---> record-not-found

►saved from reading wrong data

86

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Update a RecordUpdate a Record

►Change secondary key:

X rearrange secondary index

►Change primary key:

rearrange primary index

rewrite reference fields of secondary

index (no rearrangement)

►Change other fields: no effect on secondary index

87

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► We can store several primary keys per row in the
secondary index

─This, however, wastes space for some records, and is
not sufficient for other secondary keys.

► We can store a pointer to a linked list of primary keys

─We want these lists to be stored in a file, and to be easy
to manage; hence, the inverted list

Improving Secondary IndexesImproving Secondary Indexes

88

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Solve the problems associated with the variability in the
number of references a secondary key can have

► Greatly reduces the need to reorganize / sort the
secondary index

► Store primary keys in the order they are entered, do not
need to be sorted

► The downside is that references for one secondary key are
spread across the inverted list

Inverted ListsInverted Lists

89

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

► Even though it is preferred to store lists of primary keys,
under certain circumstances it could be better to store
pointers into the file.

─When access speed is critical

─When the file is static (does not suffer updates, or
updates are very seldom)

► Consider also that there is a safety issue related to having
to propagate updates to the file to several indexes, the
updating algorithm must be robust to different types of
failure.

Some NotesSome Notes

90

M
an

ag
in

g
Fi

le
s

of
 R

ec
or

ds
3

File Organization

Fixed Length FieldsFixed Length Fields

class Publication {

public:

char ISBN [12];

char Author [11];

char Title [27];

};

Secondary Storage DevicesSecondary Storage Devices4

92

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

ContentContent

►Secondary storage devices

►Organization of disks

►Organizing tracks by sector

►Organizing tracks by blocks

►Non-data overhead

►The cost of a disk access

►Disk as a bottleneck

93

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Secondary Storage DevicesSecondary Storage Devices

►Since secondary storage is different from main memory
we have to understand how it works in order to do good
file designs.

►Two major types of storage devices
– Direct Access Storage Devices (DASDs)

• Magnetic Disks
Hard Disks (high capacity, low cost per bit)

• Optical Disks
CD-ROM,DVD-ROM
(Read-only/write-once, holds a lot of data, cheap)

– Serial Devices
• Magnetic Tapes

94

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Magnetic DisksMagnetic Disks

►Magnetic disks support direct access to a desired location
►Simplified structure of a disk

– Disk blocks
– Tracks
– Platters
– Cylinder
– Sectors
– Disk heads
– Disk Controller
– Seek Time
– Rotational delay

95

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Components of a DiskComponents of a Disk

►The platters spin (7200 rpm)

►The arm assembly is moved in
or out to position a head on a
desired track. Tracks under
heads make a cylinder
(imaginary!).

►Only one head reads/writes at
any one time

►Block size is a multiple of
sector size (which is fixed)

96

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Looking at a SurfaceLooking at a Surface

►Disk contains concentric trackstracks

►►TracksTracks are divided into sectorssectors

►A sector is the smallest addressable unit in disk

97

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

CylinderCylinder

►Cylinder: the set of tracks on a disk that are
directly above/below each other

►All the information on a cylinder can be
accessed without moving the read/write arm
(seeking)

98

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

The BottleneckThe Bottleneck

►When a program reads a byte from the disk, the operating
system locates the surface, track and sector containing that
byte, and reads the entire sector into a special area in main
memory called buffer.

►The bottleneck of a disk access is moving the read/write
arm. So, it makes sense to store a file in tracks that are
below/above each other in different surfaces, rather than
in several tracks in the same surface.

99

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

How to Calculate Disk CapacityHow to Calculate Disk Capacity

►Number of cylinders = number of tracks in a surface

►Track capacity = number of sector per track

×
bytes per sector

►Cylinder capacity = number of surfaces

×
track capacity

►Drive capacity = number of cylinders

×
cylinder capacity

100

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

An ExampleAn Example

►We have fixed-length records

►Number of records = 50.000 records

►Size of a record = 256 bytes

►Disk characteristics
– Number of bytes per sector = 512

– Number of sectors per track = 63

– Number of tracks per cylinder = 16

– Number of cylinders = 4092

►How many cylinders are needed?

101

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Clusters, Extents and FragmentationClusters, Extents and Fragmentation

►The file manager is the part of the operating system
responsible for managing files

►The file manager maps the logical parts of the file into
their physical location

►A clustercluster is a fixed number of contiguous sectors

►The file manager allocates an integer number of clusters to
a file. An example: Sector size: 512 bytes, Cluster size: 2
sectors
– If a file contains 10 bytes, a cluster is allocated (1024 bytes).

– There may be unused space in the last cluster of a file. This
unused space contributes to internal fragmentationinternal fragmentation

102

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

More on ClustersMore on Clusters

►Clusters are good since they improve sequential access:
reading bytes sequentially from a cluster can be done in
one revolution, seeking only once.

►The file manager maintains a file allocation table (FAT)
containing for each cluster in the file and its location in
disk

►An extent is a group of contiguous clusters. If file is stored
in a single extent then seeking is done only once.

►If there is not enough contiguous clusters to hold a file,
the file is divided into 2 or more extents.

103

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

FragmentationFragmentation

►Due to records not fitting exactly in a sector
– Example: Record size = 200 bytes, sector size = 512 bytes

– to avoid that a record span 2 sectors we can only store 2 records
in this sector (112 bytes go unused per sector

– the alternative is to let a record span two sectors, but in this case
two sectors must be read when we need to access this record)

►Due to the use of clusters
– If the file size is not multiple of the cluster size, then the last

cluster will be partially used.

104

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

How to Choose Cluster SizeHow to Choose Cluster Size

►Some OS allow the system administrator to choose the
cluster size.

►When to use large cluster sizelarge cluster size?
– When disks contain large files likely to be processed

sequentially.

– Example: Updates in a master file of bank accounts (in batch
mode)

►What about small cluster sizesmall cluster size?
– When disks contain small files and/or files likely to be accessed

randomly

– Example : online updates for airline reservation

105

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Organizing Tracks By BlocksOrganizing Tracks By Blocks

►Disk tracks may be divided into user-defined blocks rather
than into sectors.

►The amount transferred in a single I/O operation can vary
depending on the needs of the software designer

►A block is usually organized to contain an integral number
of logical records.

►Blocking Factor = number of records stored in each block
in a file

►No internal fragmentation, no record spanning two blocks

106

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

SubBlocksSubBlocks

►A block typically contains subblocks:

►Count subblock: contains the number of bytes in a block

►Key subblock (optional): contains the key for the last
record in the data subblock (disk controller can search can
search for key without loading it in main memory)

►Data subblock: contains the records in this block.

107

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

NonData OverheadNonData Overhead

►Amount of space used for extra stuff other than data

►►SectorSector--Addressable DisksAddressable Disks
– at the beginning of each sector some info is stored, such as sector

address, track address, condition (if sector is defective);

– there is some gap between sectors

►►BlockBlock--Organized DisksOrganized Disks
– subblocks and interblock gaps is part of the extra stuff; more

nondata overhead than with sector-addressing.

108

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

An ExampleAn Example

► Disk characteristics
– Block-addressable Disk Drive

– Size of track = 20.000 bytes

– Nondata overhead per block = 300 bytes

► File Characteristics
– Record size = 100 bytes

► How many records can be stored per track for the
following blocking factors?
1. Block factor = 10

2. Block factor = 60

109

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Solution for the ExampleSolution for the Example

►Blocking factor is 10

►Size of data subblocks = 1000

►Number of blocks that can fit in a track =

►Number of records per track = 150 records

20000
15.38 15

1300
⎢ ⎥ = =⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

110

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Solution for the ExampleSolution for the Example

►Blocking factor is 60

►Size of data subblocks = 6000

►Number of blocks that can fit in a track =

►Number of records per track = 180 records

20000
3.17 3

6300
⎢ ⎥ = =⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

111

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Accessing a Disk PageAccessing a Disk Page

►Time to access (read/write) a disk block
– seek time (moving arms to position disk head on track)

– rotational delay (waiting for block to rotate under head)

– transfer time (actually moving data to/from disk surface)

►Seek time and rotational delay dominate
– Seek time varies from 1 to 20 msec

– Rotational delay varies from 1 to 10 msec

– Transfer rate is about 1msec fro 4KB page

►Key to lower I/O cost: reduce seek/rotation delays:
Hardware vs. Software solutions?

112

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

An Example of a Current DiskAn Example of a Current Disk

►Model Seagate ST3200822A
►Capacity 200GB
►Transfer Rate

– Maximum Internal 683Mbits/sec
– Maximum External 100Mbytes/sec

►Discs/Heads 2/4
►Bytes Per Sector 512
►Spindle Speed 7200 rpm
►Average Seek 8.5 milliseconds
►Average Latency 4.16 milliseconds

113

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

What is the average time to read one Sector?What is the average time to read one Sector?

►Transfer time = revolution time / #sectors per track

►Average totaltime = average seek time +

average rottional delay +

transfer time

8.5 + 4.16 + 0.05 = 12.71 msec

1 60
6 67200 7200

0.05 sec
170 170 720 170 122400

m

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = = ≅

×

114

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Disk as a BottleneckDisk as a Bottleneck

► Processes are often disk-bound
► network and CPU have to wait a long time for the disk to

transmit data
► Various techniques to solve this problem

1.1. MultiprocessingMultiprocessing: (CPU works on other jobs while waiting for
the disk)

2.2. Disk StripingDisk Striping:
► Putting different blocks of the file in different drives.
► Independent processes accessing the same file may not

interfere with each other (parallelism)
3.3. RAIDRAID (Redundant Array of Independent Disks)
4.4. RAMRAM Disk (Memory Disk) Piece of main memory is used to

simulate a disk (speed vs. volatility)

115

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Disk as a Bottleneck (Con’t)Disk as a Bottleneck (Con’t)

► Various techniques to solve this problem
5.5. Disk CacheDisk Cache:

► Large block of memory configured to contain pages of data
from a disk.

► When data is requested from disk, first the cache is
checked.

► If data is not there (miss) the disk is accessed

116

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

RAIDRAID

►Disk Array: Arrangement of several disks that gives
abstraction of a single, large disk.

►Goals: Increase performance and reliability.

►Two main techniques
– Data striping: Data is partitioned; size of a partition is called the

striping unit. Partitions are distributed over several disks.

– Redundancy: More disks → more failures. Redundant
information allows reconstruction of data if a disk fails.

117

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

RAID LevelsRAID Levels

►Level 0: No redundancy

►Level 1: Mirrored (two identical copies)
– Each disk has a mirror image (check disk)

– Parallel reads, a write involves two disks

– Maximum transfer rate=transfer rate of one disk

►Level 0+1: Striping and Mirroring
– Parallel reads, a write involves two disks

– Maximum transfer rate = aggregate bandwidth

118

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

RAID LevelsRAID Levels

►Level 3: Bit-Interleaved Parity
– Striping Unit: One bit. One Check Disk.
– Each read and write request involves all disks; disk array can

process one request at a time.

►Level 4: Block-Interleaved Parity
– Striping Unit: One Disk Block. One Check Disk.
– Parallel reads possible for small requests, large requests can

utilize full bandwidth
– Writes involve modified block and check disk

►Level 5: Block-Interleaved Distributed Parity
– Similar to RAID Level 4, but parity blocks are distributed over

all disks

119

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

TapesTapes

►Tapes
– are relatively inexpensive
– can store very large amounts of data
– good choice for archivalarchival storage

• we need to maintain data for a long period
• we do not expect to access it very often

►The main drawback of tapes
– they are sequential access devices
– we must essentially step through all the data in order
– cannot directly access a given location on tape
– Mostly used to back up operational data periodically

120

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►A set of parallel tracks

►9 tracks - parity bit

►Frame
– one-bit-wide slice of tape

►Interblock gaps
– permit stopping and starting

Magnetic TapeMagnetic Tape

121

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Reel 1 Reel 2

tape

Read/write head

122

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

In detailIn detail

½”

0
1
1
0
1
1
0
1
0

0
1
1
0
1
1
0
1
0

0
1
1
0
1
1
0
1
0

0
1
1
0
1
1
0
1
0

…

… …… …

…

parity bit

8 bits = 1 byte

123

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Tape OrganizationTape Organization

…

2400’

logical record

BOT
marker

Header block
(describes data blocks)

Data blocks Interblock gap
(for acceleration &
deceleration of tape)

EOT
marker

124

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►There is an interblock gap for each data block
►Space requirement ss

s = n × (b + g)
–– bb is the physical length of a data block

–– gg is the length of an interblock gap

–– nn is the number of data blocks

►Tape density
►Tape speed
►Size of interblock gap

Estimating Tape LengthEstimating Tape Length

125

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Example:
– one million 100-byte records

– 6,250 BPI tape

– 0.3 inches of interblock gap

►How much tape is needed?
– when blocking factor is between 1 and 50

►Nominal recording density

►Effective recording density:
– number of byte per block / number of inches for block

Estimating Tape Length (Con’t)Estimating Tape Length (Con’t)

126

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Factors of data transmission rate
– interblock gaps

– effective recording density

– nominal recording density

– speed of r/w head

– time to start/stop the tape

Estimating Data Transmission TimesEstimating Data Transmission Times

127

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►► DiskDisk
─ Random access

─ Immediate access

─ Expensive seek in sequential
processing

►► TapeTape
─ Sequential access

─ Long-term storage

─ No seek in sequential
processing

► Decrease in cost of disk and RAM

► More RAM space is available in I/O buffers,

► so disk I/O decreases

► Tertiary storage for backup: CD-ROM, tape ...

Disks vs. TapesDisks vs. Tapes

128

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Example: Quantum DLT 8000Example: Quantum DLT 8000

►Sustained Transfer Rate (MB/sec)
– Native 6
– Compressed (up to) 121

►Burst Transfer Rate (MB/sec)
– Synchronous 20
– Asynchronous 12

►Formatted Capacity (GB)
– Native 40
– Compressed 80

►Average File Access Time (sec) 60
►Interface SCSI–2 Fast/Wide

129

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►CD-ROM: Compact Disc Read-Only Memory
– Can hold over 600MB (200,000 pages)

– Easy to replicate

– Useful for publishing or distributing medium

– But, not storing and retrieving data

►CD-ROM is a child of CD audio

►CD audio provides
– High storage capacity

– Moderate data transfer rate

– But, against high seek performance

→Poor seek performance

Introduction to CD-ROMIntroduction to CD-ROM

130

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►CD-ROM
– Philips and Sony developed CD-ROM in 1984 in order to store

music on a disc

– Use a digital data format

– The development of CD-ROM as a licensing system results in
widely acceptance in the industry

– Promised to provide a standard physical format

– Any CD-ROM drive can read any sector which they want

– Computer applications store data in a file not in terms of sector,
thus, file system standard should be needed

– In early summer of 1986, an official standard for organizing files
was worked out

History of CD-ROMHistory of CD-ROM

131

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Master Disc

– Formed by using the digital data, 0 or 1

– Made of glass and coated that is changed by the laser beam

►Two part of CD-ROM
– Pit

• The areas that is hit by the laser beam

• Scatter the light

– Land
• Smooth, unchanged areas between pits

• Reflect the light
laser beam

pit

land

light

Physical Organization of Master DiskPhysical Organization of Master Disk

132

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Encoding scheme
– The alternating pattern of high- and low-density reflected light is

the signal

– 1 : transition from pit to land and back again

– 0s : the amount of time between transitions

►Constraint
– The limits of resolution of the optical pickup, there must be at

least two 0’s between any pair of 1’s (no two adjacent 1s)

– We cannot represent all bit patterns, thus, we need translation
scheme

– We need at least 14 bits to represent 8 bits under this constraint

110 10000100000000EFM000000012

Encoding Scheme of CD-ROMEncoding Scheme of CD-ROM

133

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►CD audio chose CLV format instead of CAV format
– CD audio requires large storage space

– CD audio is played from the beginning to the end sequentially

Format of CD-ROMFormat of CD-ROM

134

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Format of CD-ROMFormat of CD-ROM

►Format of CD-ROM
– CLV(Constant Linear Velocity)

– A single spiral pattern

– Same amount of space for each sector

– Capability for writing all of sectors at the maximum density

– Rotational speed is slower in reading outer edge than in inner
edge

– Finding the correct speed though trial and error

– Characteristics

• Poor seek performance

• No straightforward way to jump to a specified location

135

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Magnetic disk usually uses CAV(Constant Angular Velocity)

– Concentric tracks and pie-shaped sectors

– Data density is higher in inner edge than in outer edge

– Storage waste: total storage is less than a half of CLV

– Spin the disc at the same speed for all positions

– Easy to find a specific location on a disk → good seek
performance

Constant Angular Velocity DiskConstant Angular Velocity Disk

136

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Addressing
– Magnetic disk: cylinder/track/sector approach

– CD-ROM: a sector-addressing scheme

►Track density varies thus, each second of playing time on a CD is
divided into 75 sectors

– 75 sectors/sec, 2 Kbytes/sector

– At least one-hour of playing time

– Maximum capacity can be calculated: 600 Mbytes

60 min * 60 sec/min * 75 sectors/sec = 270,000 sectors

►We address a given sector by referring minutes, second, and sector
of play

– 16:22:34 means 34th sector in the 22nd second in the 16th
minutes of play

Addressing of CD-ROMAddressing of CD-ROM

137

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

► Initially designed for delivering digital audio information

►Store audio data in digital form

►Wave patterns should be converted into digital form

►Measure of the height of the sound: 65,536 different gradation(16
bits)

►Sampling rate: 44.1 kHz, because of 2 times of 20,000 Hz upto
which people can listen

►16 bits sample, 44,100 times per second, and two channel for stereo
sound, we should store 176,400 bytes per seconds

►Storage capacity of CD is 75 sectors per seconds, we have 2,352
bytes per sector

►CD-ROM divides this raw sector as shown in the following figure

Fundamental Design of CD DiscFundamental Design of CD Disc

138

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Raw SectorRaw Sector

12 bytes
synch

4 bytes
sector ID

2,048 bytes
user data

4 bytes
error

detection

8 bytes
null

276 bytes
error

correction

139

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Strong and weak sides of CD-ROM

– Strong aspects of CD-ROM

– Data transfer rate: 75 sectors/sec

– Storage capacity : over 600 Mbytes

– Inexpensive to duplicate and durable

– Weak aspects of CD-ROM

• Poor seek performance (weak random access)

» Magnetic disk: 30 msec, CD-ROM : 500 msec

– Comparison of access time of a large file from several media

• RAM: 20 sec, Disk: 58 days, CD-ROM: 2.5 years

►We should have a good file structure avoiding seeks to an even greater
extent that on magnetic disk

File Structure Problem of CD-ROMFile Structure Problem of CD-ROM

140

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►DVD

– Digital Video disk (DVD-Video)

– Digital Versatile disk (DVD-ROM)

► In September 1995

– As a movie-playback format

– As a computer-ROM format

►Next-Generation optical disc storage technology will replace
audio-CD, videotape, laserdisk, CD-ROM, etc.

What is DVD?What is DVD?

141

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►1980, Sony & Philips → CD-Audio

►1985, Sony & Philips → CD-ROM

►1989, Sony & Philips → CD-I

►1990, Sony & Philips → CD-R

►1995, → CD-E

►1995, September → DVD

The History from CD to DVDThe History from CD to DVD

142

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Single-sided
– DVD5 (4.7 GB/single-layer)
– DVD9 (8.5 GB/dual-layer)

►Double-sided
– DVD10 (9.4 = 4.7x2 GB/dual-layer)
– DVD18 (17 = 8.5x2 GB/dual-layer)

►Write-Once
– DVD-R (3.8 GB/side)

►Overwrite
– DVD-RAM (more than 2.6 GB/side)

DVD CapacityDVD Capacity

143

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

0.6mm

0.6mm

0.6mm

0.6mm

reflexive-layer
substrate

semi-transmissive-layer reflexive-layer

Single sided, dual layerSingle sided, dual layer

(gold-layer) (silver-layer)

Single sided, single layerSingle sided, single layer

144

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Laser-Beam
– CD → infrared light (780nm)

– DVD → red light (635-650nm)

►Capacity
– CD → maximum 680MB

– DVD → maximum 17GB (25 times of CD)

► Reference Speed
– CD → 1.2m/sec. CLV

– DVD → 4.0m/sec. CLV

CD vs. DVDCD vs. DVD

145

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Legend

– I Lead-in area (leader space near edge of disc)

– D Data area (contains actual data)

– O Lead-out area(leader space near edge of disc)

– X Unusable area (edge or donut hole)

– M Middle area (interlayer lead-in/out)

– B Dummy-bonded layer

 (to make disc 1.2mm thick instead of 0.6mm)

Track StructureTrack Structure

146

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
XX I I I DDDDDDDDDDDDDDDDDDDDDOOOXX

reference axis outer edge of disc

direction: continuous spiral from inside to outside of disc.

Single Layer DiscSingle Layer Disc

147

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

(A) Parallel track path (for computer CD-ROM use)
Direction : same for both layers.

(B) Opposite track path (for movies)
Direction : opposite directions
(Since the reference beam and angular velocities are the same
at the layer transition point, the delay comes from refocusing.
This permits seamless transition for movie playback.)

Dual Layer DiscDual Layer Disc

148

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

XX I I I DDDDDDDDDDDDDDDDDDDDDOOOXX layer 1
XX I I I DDDDDDDDDDDDDDDDDDDDDOOOXX layer 0

reference axis
outer edge

of disc

XX I I I DDDDDDDDDDDDDDDDDDDDDOOOXX layer 1
XX I I I DDDDDDDDDDDDDDDDDDDDDOOOXX layer 0

PParallelarallel tracktrack--pathpath

Opposite trackOpposite track--pathpath

149

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►2064 bytes/sector
– organized into 12 rows, each with 172B

– first row starts with 12B sector header

 (ID,IEC,Reserved bytes)

– final row is punctuated with 4B (EDC bytes)

172 x 12 = 2064 bytes/sector 12 rows

172B/rows

Sector StructureSector Structure

150

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

Row Fields within row

0 ID(4B) IEC(2B) RESERVED(6B) Main data(160B : D[0]-D[159])
1 Main data(172B : D[160]-D[331])
2 Main data(172B : D[332]-D[503])
3 Main data(172B : D[504]-D[675])
4 Main data(172B : D[676]-D[847])
5 Main data(172B : D[848]-D[1019])
6 Main data(172B : D[1020]-D[1191])
7 Main data(172B : D[1192]-D[1363])
8 Main data(172B : D[1364]-D[1535])
9 Main data(172B : D[1536]-D[1707])
10 Main data(172B : D[1708]-D[1879])
11 Main data(168B : D[1880]-D[2047]) EDC(4B)

ID : Identification Data (32bit sector number)
IEC : ID Error Correction
EDC : Error Detection Code

151

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►To combat burst error, 16 sectors are interleaved together

 (16 sectors * 12 rows/sector = 192 rows)

►Error correction byes are concatenated
– 10bytes at the end of each row

– 16 rows at the end of the block

Block StructureBlock Structure

152

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

172B 10B

192 rows

16rows

Data Block

Error correction bytes

payload/block =
172 x 192

182 x 208
x 100 = 87 %

153

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Over 2 hours of high-quality digital video

►Support wide screen movies & standard or widescreen TVs (4:3 &
16:9 aspect ratios)

►Up to 8 tracks of digital audio

►Up to 32 subtitle/karaoke tracks

►Up to 9 camera angles

►Multilingual identifying text for title name, album name, song name,
actors, etc.

DVD Video FeaturesDVD Video Features

154

Se
co

nd
ar

y
St

or
ag

e
D

ev
ic

es
4

File Organization

►Encoding Video
– MPEG-2 compression

 (developed by the Motion Pictures Experts Group)

– High-Resolution (better than CD,LD

 3-times better than Video tape)

►Encoding Sound
– Dolby Digital surround AC-3 sound compression

 (support five sound channel plus subwoofer channel

 => left, center, right, rear-left, rear-right channel)

DVD Video Encoding DataDVD Video Encoding Data

Buffer ManagementBuffer Management5

156

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

►A journey of a byte

►Buffer Management

ContentContent

157

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

A journey of a byteA journey of a byte

►Suppose in our program we wrote:
outfile << c;

►This causes a call to the file manager (a part of O.S. responsible
for I/O operations)

►The O/S (File manager) makes sure that the byte is written to
the disk.

►Pieces of software/hardware involved in I/O:
– Application Program
– Operating System/ file manager
– I/O Processor
– Disk Controller

158

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

►Application program
– Requests the I/O operation

►Operating system / file manager
– Keeps tables for all opened files
– Brings appropriate sector to buffer.
– Writes byte to buffer
– Gives instruction to I/O processor to write data from this buffer

into correct place in disk.
– Note: the buffer is an exact image of a cluster in disk.

► I/O Processor
– a separate chip; runs independently of CPU
– Find a time when drive is available to receive data and put data in

proper format for the disk
– Sends data to disk controller

►Disk controller
– A separate chip; instructs the drive to move R/W head
– Sends the byte to the surface when the proper sector comes under

R/W head.

159

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

Buffer Management Buffer Management

►Buffering means working with large chunks of data in main
memory so the number of accesses to secondary storage is reduced.

►Today, we’ll discuss the System I/O buffers. These are beyond the
control of application programs and are manipulated by the O.S.

►Note that the application program may implement its own “buffer”
– i.e. a place in memory (variable, object) that accumulates large
chunks of data to be later written to disk as a chunk.

160

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

System I/O BufferSystem I/O Buffer

Secondary
Storage Buffer Program

Data transferred
by blocks

Temporary storage in MM
for one block of data

Data transferred by
records

161

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

Buffer BottlenecksBuffer Bottlenecks

►Consider the following program segment:
while (1) {
infile >> ch;
if (infile.fail()) break;
outfile << ch;

}

►What happens if the O.S. used only one I/O buffer?
⇒ Buffer bottleneck

►Most O.S. have an input buffer and an output buffer.

162

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

Buffering StrategiesBuffering Strategies

►Double Buffering: Two buffers can be used to allow processing
and I/O to overlap.

– Suppose that a program is only writing to a disk.

– CPU wants to fill a buffer at the same time that I/O is being
performed.

– If two buffers are used and I/O-CPU overlapping is permitted,
CPU can be filling one buffer while the other buffer is being
transmitted to disk.

– When both tasks are finished, the roles of the buffers can be
exchanged.

►The actual management is done by the O.S.

163

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

Program data area

Program data area

To disk

To disk
I/O Buffer 1

I/O Buffer 1

I/O Buffer 2

I/O Buffer 2

(a)

(b)

Double BufferingDouble Buffering

164

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

Other Buffering StrategiesOther Buffering Strategies

►Multiple Buffering: instead of two buffers any number of buffers
can be used to allow processing and I/O to overlap.

►Buffer pooling:
– There is a pool of buffers.

– When a request for a sector is received, O.S. first looks to see that sector is in
some buffer.

– If not there, it brings the sector to some free buffer. If no free buffer exists, it
must choose an occupied buffer. (usually LRU strategy is used)

165

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

►Move mode (using both system buffer & program buffer)

– moving data from one place in RAM to another before they can
be accessed

– sometimes, unnecessary data moves

►Locate mode (using system buffer only or program buffer only)

– perform I/O directly between secondary storage and program
buffer (program’s data area)

– system buffers handle all I/Os, but program uses locations
through pointer variable

Buffering Strategies: Move & Locate modeBuffering Strategies: Move & Locate mode

166

B
uf

fe
r

M
an

ag
em

en
t

5

File Organization

system
buffer

program’s
data area

system
buffer

disk

disk
user’s

program location
(pointer)

Move
mode

Locate
mode

Move Mode and Location ModeMove Mode and Location Mode

File CompressionFile Compression6

168

Fi
le

 C
om

pr
es

si
on

6

File Organization

ContentContent

►Introduction to Compression

►Methods in Data Compression

– Run-Length Coding

– Huffman Coding

169

Fi
le

 C
om

pr
es

si
on

6

File Organization

Data CompressionData Compression

►Reasons for data compression
– less storage

– transmitting faster, decreasing access time

– processing faster sequentially

170

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Fixed-Length fields are good candidates
►Decrease the number of bits by finding a more compact notation
►Cons.

– unreadable by human
– cost in encoding time
– decoding modules ⇒ increase the complexity of s/w
⇒ used for particular application

Data CompressionData Compression

171

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Run-length encoding algorithm
– read through pixels, copying pixel values to file in sequence, except the same

pixel value occurs more than once in succession
– when the same value occurs more than once in succession, substitute the

following three bytes

9special run-length code indicator(e.g. 0xFF)
9pixel value repeated
9the number of times that value is repeated
• Example:

• 22 23 24 24 24 24 24 24 24 25 26 26 26 26 26 26 25 24

RL-coded stream: 22 23 ff 24 07 25 ff 26 06 25 24

Suppressing repeating sequencesSuppressing repeating sequences

172

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Run-length encoding (cont’d)

– example of redundancy reduction

– cons.

• not guarantee any particular amount of space savings

• under some circumstances, compressed image is larger than
original image

– Why? Can you prevent this?

Suppressing Repeating SequencesSuppressing Repeating Sequences

173

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Morse code: oldest & most common scheme of variable-length code

►Some values occur more frequently than others
– that value should take the least amount of space

►Huffman coding
– base on probability of occurrence

• determine probabilities of each value occurring

• build binary tree with search path for each value

• more frequently occurring values are given shorter search
paths in tree

Assigning Variable-Length CodesAssigning Variable-Length Codes

174

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Huffman coding
 Letter: a b c d e f g

 Pr: 0.4 0.1 0.1 0.1 0.1 0.1 0.1

 Code: 1 010 011 0000 0001 0010 0011

 Example: the string “abde”

Î101000000001

Assigning Variable-Length CodesAssigning Variable-Length Codes

175

Fi
le

 C
om

pr
es

si
on

6

File Organization

d(0000) e(0001) f(0010) g(0011)

b(010) c(011)

a(1)
00

0000 0101

000000 001001

Huffman TreeHuffman Tree

176

Fi
le

 C
om

pr
es

si
on

6

File Organization

Lempel-Ziv CodesLempel-Ziv Codes

►There are several variations of Lempel-Ziv Codes.

►We will look at LZ78

►Commands zipzip and unzipunzip and Unix compresscompress and
uncompressuncompress us Lempel-Ziv codes

177

Fi
le

 C
om

pr
es

si
on

6

File Organization

ExampleExample

►Let us look at an example for an alphabet having only two
letters:

aaababbbaaabaaaaaaabaabb
►Rule

– Separate this stream of characters into pieces of text so
that each piece is the shortest string of characters that
we have not seen yet.

178

Fi
le

 C
om

pr
es

si
on

6

File Organization

a|aa|b|ab|bb|aaa|ba|aaaa|aab|aabb
1. We see “a”

2. “a” has been seen, we now see “aa”

3. We see “b”

4. “a” has been seen, we now see “ab”

5. “b” has been seen, we now see “bb”

6. “aa” has been seen, we now see “aaa”

7. “b” has been seen, we now see “ba”

8. “aaa” has been seen, we now see “aaaa”

9. “aa” has been seen, we now see “aab”

10. “aab” has been seen, we now see “aabb”

179

Fi
le

 C
om

pr
es

si
on

6

File Organization

IndexIndex

►We have index values from 1 to n

►For the previous example

1 2 3 4 5 6 7 8 9 10

a|aa|b|ab|bb|aaa|ba|aaaa|aab|aabb
►Encoding

1 2 3 4 5 6 7 8 9 10

0a|1a|0b|1b|3b|2a|3a|6a|2b|9b
180

Fi
le

 C
om

pr
es

si
on

6

File Organization

Lempel-Ziv CodesLempel-Ziv Codes

►Since each piece is the concatenation of a piece already
seen with a new character, the message can be encoded by
a previous index plus a new character.

►A tree can be built when encoding

181

Fi
le

 C
om

pr
es

si
on

6

File Organization

Encoding TreeEncoding Tree

1 2 3 4 5 6 7 8 9 10
a|aa|b|ab|bb|aaa|ba|aaaa|aab|aabb

182

Fi
le

 C
om

pr
es

si
on

6

File Organization

Exercise # 1Exercise # 1

►encode the file containing the following characters,
drawing the corresponding digital tree

“aaabbcbcdddeab”

183

Fi
le

 C
om

pr
es

si
on

6

File Organization

SolutionSolution

1 2 3 4 5 6 7 8

a|aa|b|bc|bcd|d|de|ab
0a|1a|0b|2c|4d|0d|6e|1b

184

Fi
le

 C
om

pr
es

si
on

6

File Organization

Encoding TreeEncoding Tree

1 2 3 4 5 6 7 8
a|aa|b|bc|bcd|d|de|ab
0a|1a|0b|2c|4d|0d|6e|1b

0

1 3

2 8 4

5

6

a b d

a b c

d

7

c e

185

Fi
le

 C
om

pr
es

si
on

6

File Organization

Exercise # 2Exercise # 2

►Encode the file containing the following characters,
drawing the corresponding digital tree

“I AM SAM. SAM I AM”

186

Fi
le

 C
om

pr
es

si
on

6

File Organization

SolutionSolution

1 2 3 4 5 6 7 8 9 10 11

I| |A|M| S|AM|.| SA|M |I |AM.
0I|0 |0A|0M|2S|3M|0.|5A|4 |1 |6.

187

Fi
le

 C
om

pr
es

si
on

6

File Organization

Encoding TreeEncoding Tree

0

1 2

10 5

8

3

I
b A

S

A

6

M

123 4 5 6 78 9 10 11
I| |A|M| S|AM|.| SA|M |I |AM.
0I|0 |0A|0M|2S|3M|0.|5A|4 |1 |6.

4
M

b

7

..

9

A

b

11

..

188

Fi
le

 C
om

pr
es

si
on

6

File Organization

►Some information can be sacrificed

►Less common in data files

►Shrinking raster image
– 400-by-400 pixels to 100-by-100 pixels

– 1 pixel for every 16 pixels

►Speech compression
– voice coding (the lost information is of no little or no value)

Lossy Compression TechniquesLossy Compression Techniques

Reclaiming Spaces in FilesReclaiming Spaces in Files7

190

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

MotivationMotivation

►Let us consider a file of records (fixed length or variable
length)

►We know how to create a file, how to add records to a file,
modify the content of a record. These actions can be
performed physically by using the various basic file
operations we have seen (fopen, fclose, fseek, fread,
fwrite)

►What happens if records need to be deleted?

►There is no basic operation that allows us to remove part
of a file. Record deletion should be taken care by the
program responsible for file organization

191

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Strategies for Record DeletionStrategies for Record Deletion

► How to delete records and reuse the unused space?

1.1. Record Deletion and Storage CompactionRecord Deletion and Storage Compaction

– Deletion can be done by marking a record as deleted

– Note that the space for the record is not released, but
the program that manipulates the file must include
logic that checks if record is deleted or not.

– After a lot of records have been deleted, a special
program is used to squeeze the file-that is called
Storage CompactionStorage Compaction

192

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Strategies for Record DeletionStrategies for Record Deletion

2.2. Deleting FixedDeleting Fixed--Length Records and Reclaiming Length Records and Reclaiming
Space DynamicallySpace Dynamically
– How to use the space of deleted records for storing

records that are added later?
– Use an “AVAIL LIST”, a linked list of available

records.
– A header record stores the beginning of the AVAIL

LIST
– When a record is deleted, it is marked as deleted and

inserted into the AVAIL LIST. The record space is in
the same position as before, but it is logically placed
into AVAIL LIST

193

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

ExampleExample

RRN=RRN=44List Header

SimpsonSimpson SeinfeldSeinfeld ** --11 CramerCramer ** 22 EdwardsEdwards

0 1 2 3 4 5

If we add a record, it can go to the first available spot in the
AVAIL LIST where RRN=4.

194

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Strategies for Record DeletionStrategies for Record Deletion

3.3. Deleting VariableDeleting Variable--Length RecordsLength Records

– Use an AVAIL LIST as before, but take care of the
variable-length difficulties

– The records in AVAIL LIST must store its size as a
field.

– RRN can not be used, but exact byte offset must be
used

– Addition of records must find a large enough record in
AVAIL LIST.

195

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

ExampleExample

4242List Header

SimpsonSimpson|B||B|SeinfeldSeinfeld|J|*|J|*--1|10|1|10|SchumaerSchumaer|M|*21|30||M|*21|30|

0 1 2 3 4

Addition of records must find a large enough record in
AVAIL LIST.

10 bytes 11 bytes 30 bytes10B 11B

196

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Placement Strategies for New RecordsPlacement Strategies for New Records

► There are several strategies for selecting a record from
AVAIL LIST when adding a new record:

1.1. FirstFirst--Fit StrategyFit Strategy
– AVAIL LIST is not sorted by size.

– First record large enough to hold new record is chosen.

► Example:
– AVAIL LIST: size=10,size=50,size=22,size=60

– record to be added: size=20

– Which record from AVAIL LIST is used for the new
record?

197

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Placement Strategies for New RecordsPlacement Strategies for New Records

2.2. BestBest--Fit StrategyFit Strategy
– AVAIL LIST is sorted by size.

– Smallest record large enough to hold new record is
chosen.

► Example:
– AVAIL LIST: size=10,size=22,size=50,size=60

– record to be added: size=20

– Which record from AVAIL LIST is used for the new
record?

198

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Placement Strategies for New RecordsPlacement Strategies for New Records

3.3. WorstWorst--Fit StrategyFit Strategy
– AVAIL LIST is sorted by decreasing order of size.

– Largest record is used for holding new record; unused
space is placed again in AVAIL LIST.

► Example:
– AVAIL LIST: size=60,size=50,size=22,size=10

– record to be added: size=20

– Which record from AVAIL LIST is used for the new
record?

199

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

How to Choose Between StrategiesHow to Choose Between Strategies

►We must consider two types of fragmentation within a
file:

►►Internal FragmentationInternal Fragmentation

– wasted space within a record.

►►External FragmentationExternal Fragmentation

– space is available at AVAIL LIST, but it is so small
that cannot be reused.

200

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Study this!Study this!

►For each of the following approaches, which type of
fragmentation arises, and which placement strategy is
more suitable?

►When the added record is smaller than the item taken from
AVAIL LIST:

►Leave the space unused within record
– type of fragmentation:
– suitable placement strategy:

►Return the unused space as a new available record to
AVAIL LIST
– type of fragmentation:
– suitable placement strategy:

internal
best-fit

external
worst-fit

201

R
ec

la
im

in
g

Sp
ac

es
 in

 F
il

es
7

File Organization

Ways of Combating External FragmentationWays of Combating External Fragmentation

►Coalescing the Holes

– if two records in AVAIL LIST are adjacent, combine
them into a larger record

►Minimize fragmentation by using one of the previously
mentioned placement strategies

– for example: worst-fit strategy is better than best-fit
strategy in terms of external fragmentation when
unused space is returned to AVAIL LIST

BINARY SEARCHING, BINARY SEARCHING,
KEYSORTING & INDEXINGKEYSORTING & INDEXING8

203

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

ContentContent

►Binary Searching

►Keysorting

►Introduction to Indexing

204

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Binary SearchingBinary Searching

►Let us consider fixed-length records that must be searched
by a key value

►If we knew the RRN of the record identified by this key
value, we could jump directly to the record (by using
fseek function)

►In practice, we do not have this information and we must
search for the record containing this key value

►If the file is not sorted by the key value we may have to
look at every possible record before we find the desired
record

►An alternative to this is to maintain the file sorted by key key
valuevalue and use binary searchingbinary searching

205

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Binary Search Algorithm in C++Binary Search Algorithm in C++
templatetemplate <typename KeyType,typename RecordType>
bool BinarySearchBinarySearch(FILE *file,RecordType &rec, KeyType &key){

int lowlow=0,highhigh=getFileLength(file)/sizeof(RecordType)-1 ;
int guessguess ;
while (lowlow<=highhigh){

guess = (high+low)/2 ;

readRecordreadRecord(file,rec,guess) ;

if (EqualEqual (rec.key(),key)) return truetrue ;

if (GreaterGreater (rec.key(),key)) high = guess-1 ;
else low = guess+1 ;

}

return falsefalse;
}

206

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

TBookTBook

typedef struct TBook {

char authorauthor[16] ;

char titletitle[24] ;

char isbnisbn[10] ;

char *key(){return isbn;}

} SBook ;

207

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Equal()Equal()

template <typename KeyType>

bool Equal(KeyType key1,KeyType key2){

if (key1==key2) return true ;

return false ;

}

bool Equal(char *key1,char *key2){

return (strcmp(key1,key2)==0) ;

}

208

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

readRecordreadRecord

template <typename RecordType>

void readRecord(FILE *file,RecordType &rec,int rnn){

fseek(hFile,rnn*sizeof(RecordType),SEEK_SET) ;

fread(&rec,sizeof(RecordType),1,hFile) ;

}

209

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

int main()int main()

int main(int argc, char* argv[]) {

FILE *hFile ;

...

TBook book ;

BinarySearch(hFile,book, "Da Vinci Code") ;

cout << book.author ;

return 0;

}

210

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Binary Search vs. Sequential SearchBinary Search vs. Sequential Search

►Sequential Search: O(n)

►Binary Search: O(log2n)

►If file size is doubled, sequential search time is doubled,
while binary search time increases by 1

211

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

KeysortingKeysorting

►Suppose a file needs to be sorted, but it is too big to fit
into main memory.

►To sort the file, we only need the keys.

►Suppose that all the keys fit into main memory

►Idea

– Bring the keys to main memory plus corresponding
RRN

– Do internal sorting of keys

– Rewrite the file in sorted order

212File Organization

ExampleExample

213File Organization 214File Organization

215

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

How much effort we must do?How much effort we must do?

►Read file sequentially once

►Go through each record in random order (seek)

►Write each record once (sequentially)

216

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Why bother to write the file back?Why bother to write the file back?

►Use keynode array to create an index file instead.

index file records

leave file unchanged

this is called indexingthis is called indexing!!

217

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Pinned RecordsPinned Records

►Remember that in order to support deletions we used
AVAIL LISTAVAIL LIST, a list of available records

►The AVAIL LISTAVAIL LIST contains info on the physical information
of records. In such a file, a record is said to be pinnedpinned

►If we use an index fileindex file for sorting, the AVAIL LISTAVAIL LIST and
positions of records remain unchanged.

►This is a good news ☺

218

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Introduction to IndexingIntroduction to Indexing

►Simple indexes use simple arrays.

►An index lets us impose order on a fileimpose order on a file without
rearranging the file.

►Indexes provide multiple access pathsmultiple access paths to a file ─
multiple indexesmultiple indexes (like library catalog providing search for
author, book and title)

►An index can provide keyed access to variable-length
record files

219

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

A Simple Index for Entry-Sequenced FileA Simple Index for Entry-Sequenced File

►Records (Variable-length)

►Primary key = company label + record ID
key reference field

index:

address of
record

220

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

IndexIndex

►Index is sorted (main memory)

►Records appear in file in the order they entered

►How to search for a recording with given LABEL ID?

– Binary search (in main memory) in the index: find
LABEL ID, which leads us to the referenced field

– Seek for record in position given by the reference field

221

In
tr

od
uc

ti
on

 to
 I

nd
ex

in
g

8

File Organization

Some IssuesSome Issues

►How to make a persistent index

– i.e. how to store the index into a file when it is not in
main memory

►How to guarantee that the index is an accurate reflection
of the contents of the file

– This is tricky when there are lots of additions, deletions
and updates

INDEXINGINDEXING9

223

In
de

xi
ng

9

File Organization

IndexingIndexing

► Operations in order to maintain an Indexed File

1. Create the original empty and data files.

2. Load the index file into memory before using it.

3. Rewrite the index file from memory after using it.

4. Add data records to the data file.

5. Delete records from the data file.

6. Update the index to reflect changes in the data file

224

In
de

xi
ng

9

File Organization

Rewrite the Index File From MemoryRewrite the Index File From Memory

►When the data file is closed, the index in memory needs to
be written to the index file.

►An important issue to consider is what happens if the
rewriting does not take place (power failures, turning the
machine off, etc.)

225

In
de

xi
ng

9

File Organization

Two Important SafeguardsTwo Important Safeguards

►Keep an status flag stored in the header of the index file.
– The status flag is “on” whenever the index file is not up-to-date.

– When changes are performed in the index residing on main
memory the status flag in the file is turned on.

– Whenever the file is written from main memory the status flag is
turned off.

►If the program detects the is index is out-of-date it calls a
procedure that reconstruct the index from the data file

226

In
de

xi
ng

9

File Organization

Record AdditionRecord Addition

►This consists of appending the data file and inserting a
new record in the index.

►The rearrangement of the index consists of “sliding down”
the records with keys larger than the inserted key and then
placing the new record in the opened space.

►Note that this rearrangement is done in main memory

227

In
de

xi
ng

9

File Organization

Record DeletionRecord Deletion

►This should use the techniques for reclaiming space in
files when deleting from the data file

►We must delete the corresponding entry from the index:

– Shift all records with keys larger than the key of the
deleted record to the previous position (in main
memory); or

– Mark the index entry as deleted

228

In
de

xi
ng

9

File Organization

Record UpdatingRecord Updating

►There are two cases to consider:

►The update changes the value of the key field:

– Treat this as a deletion followed by an insertion

►The update does not affect the key field

– If record size is unchanged, just modify the data record.

– If record size changes treat this as a delete/insert
sequence.

229

In
de

xi
ng

9

File Organization

Indexes too Large to Fit into Main MemoryIndexes too Large to Fit into Main Memory

►The indexes that we have considered before could fit into
main memory.

►If this is not the case, we have the following problems:

– Binary searching of the index file is done on disk,
involving several “fseek()” calls

– Index rearrangement (record addition or deletion)
requires shifting on disk

230

In
de

xi
ng

9

File Organization

Two Main AlternativesTwo Main Alternatives

►Tree-structured index such as B-trees and B+ trees
(Chapters 11-12)

►Hashed Organization (Chapters 13,14)

231

In
de

xi
ng

9

File Organization

A Simple Index is still Useful, even in SSDA Simple Index is still Useful, even in SSD

►It allows binary search to obtain a keyed access to a record
in a variable-length record file.

►Sorting and maintaining an index is less costly than
sorting and maintaining the data file, since the index is
smaller

►We can rearrange keys, without moving the data records
when there are pinned records

232

In
de

xi
ng

9

File Organization

Indexing to Provide Access by Multiple KeysIndexing to Provide Access by Multiple Keys

►Suppose that you are looking at a collection of recordings
with the following information about each of them:

– Identification Number

– Title

– Composer or Composers

– Artist or Artists

– Label (publisher)

233

In
de

xi
ng

9

File Organization

Data FileData File

LON|2312|Romeo and Juliet|Prokofiev . . .

RCA|2626|Quarter in C Sharp Minor . . .

WAR|23699|Touchstone|Corea . . .

ANG|3795|Sympony No. 9|Beethoven . . .

COL|38358|Nebeaska|Springsteen . . .

DG|18807|Symphony No. 9|Beethoven . . .

MER|75016|Coq d'or Suite|Rimsky . . .

COL|31809|Symphony No. 9|Dvorak . . .

DG|139201|Violin Concerto|Beethoven . . .

FF|245|Good News|Sweet Honey In The . . .

3232

7777

132132

167167

211211

256256

300300

353353

396396

442442

Actual data recordActual data recordAddress ofAddress of RecordRecord

234

In
de

xi
ng

9

File Organization

Indexing to Provide Access by Multiple KeysIndexing to Provide Access by Multiple Keys

►So far, our index only allows key access. i.e., you can
retrieve record DG188807, but you cannot retrieve a
recording of Beethoven’s Symphony no. 9.

►We need to use secondary key fields consisting of album
titles, composers, and artists.

►Although it would be possible to relate a secondary key to
an actual byte offset, this is usually not done.

►Instead, we relate the secondary key to a primary key
which then will point to the actual byte offset.

235

In
de

xi
ng

9

File Organization

Example: Composer IndexExample: Composer Index

►Composer Index

236

In
de

xi
ng

9

File Organization

Record AdditionRecord Addition

►When adding a record, an entry must also be added to the
secondary key index.

►Store the field in Canonical Form

►There may be duplicates in secondary keys. Keep
duplicates in sorted order of primary key

237

In
de

xi
ng

9

File Organization

Record DeletionRecord Deletion

►Deleting a record implies removing all the references to
the record in the primary index and in all the secondary
indexes.

►This is too much rearrangement, specially if indexes
cannot fit into main memory

238

In
de

xi
ng

9

File Organization

An Alternative to Record DeletionAn Alternative to Record Deletion

►Delete the record from the data file and the primary index
file reference to it. Do not modify the secondary index
files.

►When accessing the file through a secondary key, the
primary index file will be checked and a deleted record
can be identified.

►This results in a lot of saving when there are many
secondary keys

►The deleted record still occupy space in the secondary key
indexes.

►If a lot of deletions occur, we can periodically cleanup
these deleted records also from the secondary key indexes

239

In
de

xi
ng

9

File Organization

Record UpdatingRecord Updating

► There are three types of updates
1. The update changes the secondary key

– We have to rearrange the secondary key index to stay
in sorted order.

2. The update changes the primary key
– Update and reorder the primary key index
– Update the references to primary key index in the

secondary key indexes (it may involve some re-
ordering of secondary indexes if secondary key occurs
repeated in the file)

240

In
de

xi
ng

9

File Organization

Record Updating (Con’t)Record Updating (Con’t)

3. Update confined to other fields

– This will not affect secondary key indexes.

– The primary key index may be affected if the location
of record changes in the data file.

241

In
de

xi
ng

9

File Organization

Retrieving Records using
Combinations of Secondary Keys

Retrieving Records using
Combinations of Secondary Keys

►Secondary key indexes are useful in allowing the
following kinds of queries:
– Find all records with composer “BEETHOVEN”

– Find all records with the title “Violin Concerto”

– Find all records with composer “BEETHOVEN” and title
“Symphony No.9”

242

In
de

xi
ng

9

File Organization

SolutionSolution

►Use the matched list and primary key index to retrieve the
two records from the file.

243

In
de

xi
ng

9

File Organization

Improving the Secondary Index Structure:
Inverted Lists

Improving the Secondary Index Structure:
Inverted ListsInverted Lists

►Two difficulties found in the proposed secondary index
structures:

– We have to rearrange the secondary index file even if
the new record to be added in for an existing secondary
key

– If there are duplicates of secondary keys then the key
field is repeated for each entry, wasting space

244

In
de

xi
ng

9

File Organization

BEETHOVEN ANG3795 DG139201 DG18807 RCA2626

COREA WAR23699

DVORAK COL31809

PROKOFIEV LON2312

RIMSKY-KORSAKOV MER75016

SPRINGSTEEN COL38358

SWEET HONEY IN THE R FF245

Secondary key Set of primary key references
Revised composer indexRevised composer index

►No need to rearrange

►Limited reference array

►Internal fragmentation

Array of ReferencesArray of References

245

In
de

xi
ng

9

File Organization

Inverted ListsInverted Lists

►Organize the secondary key index as an index containing
one entry for each key and a pointer to a linked list of
references.

Secondary Key Index FileSecondary Key Index File
LABEL ID List FileLABEL ID List File

►Beethoven is a secondary key that appears in
records identified by the LABEL IDs:
ANG3795, DG139201, DG18807 and
RCA2626

246

In
de

xi
ng

9

File Organization

AdvantagesAdvantages

►Rearrangement of the secondary key index file is only
done when a new composer’s name is added or an existing
composer’s name is changed. Deleting or adding records
for a composer only affects the LABEL ID List FileLABEL ID List File.
Deleting all records by a composer can be done by placing
a “-1” in the reference field in the secondary index file.

►Rearrangement of the secondary index file is quicker since
it is smaller

►Smaller need for rearrangement causes a smaller penalty
associated with keeping the secondary index file in disk

247

In
de

xi
ng

9

File Organization

Advantages (Con’t)Advantages (Con’t)

►The LABEL ID List File never needs to be sorted since it
is entry sequenced.

►We can easily reuse space from deleted records from the
LABEL ID List File since its records have fixed-length.

248

In
de

xi
ng

9

File Organization

DisadvantagesDisadvantages

►Lost of “locality”: labels of recordings with same
secondary key are not contiguous in the LABEL ID List
File (seeking).

►To improve this, keep the LABEL ID List File in main
memory

249

In
de

xi
ng

9

File Organization

►Selective Index: Index on a subset of records

►Selective index contains only some part of entire index

– provide a selective view

– useful when contents of a file fall into several categories

• e.g. 20 < Age < 30 and $1000 < Salary

Selective IndexesSelective Indexes

250

In
de

xi
ng

9

File Organization

BindingBinding

►In our example of indexes, when does the binding of the
index to the physical location of the record happens?

– For the primary index, binding is at the time the file is
constructed.

– For the secondary index, it is at the time the secondary
index is used.

251

In
de

xi
ng

9

File Organization

Advantages of Postponing BindingAdvantages of Postponing Binding

►We need small amount of reorganization when records are
added or deleted.

►It is safer approach: important changes are done in one
place rather than in many places.

252

In
de

xi
ng

9

File Organization

DisadvantagesDisadvantages

►It results in slower access times (Binary search in
secondary index + Binary search in primary index)

253

In
de

xi
ng

9

File Organization

When to use Tight Binding/Bind-at-retrievalWhen to use Tight Binding/Bind-at-retrieval

►Use Tight Binding

– When data file is nearly static (little or no adding,
deleting or updating of records)

– When rapid retrieval performance is essential.

• Example: Data stored in CD-ROM should use tight
binding

►Use Bind-at-retrieval
– When record additions, deletions and updates occur

more often

COSEQUENTIAL PROCESSINGCOSEQUENTIAL PROCESSING
(SORTING LARGE FILES)(SORTING LARGE FILES)10

255

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

ContentContent

► Cosequential Processing and Multiway Merge

► Sorting Large Files (External Sorting)

256

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Cosequential Processing & Multiway MergingCosequential Processing & Multiway Merging

►K-way merge algorithm: merge K sorted input lists to
create a single sorted output list

►Adapting 2-way merge algorithm

– Instead of naming as List1 and List2 keep an array of
lists: List[1], List[2],..., List[K]

– Instead of naming as item(1) and item(2) keep an array
of items: item[1], item[2],..., item[K]

257

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

2-way Merging Eliminating Repetitions2-way Merging Eliminating Repetitions

Synchronization

►Let item[1] be the current item from list[1] and item[2] be
the current item from list[2].

►Rules:

– If item[1] < item[2], get the next item from list[1].

– If item[1] > item[2], get the next item from list[2].

– If item[1] = item[2], output the item and get the next
items from the two lists.

258

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

K-way Merging AlgorithmK-way Merging Algorithm

► An array of K index values corresponding to the current
element in each of the K lists, respectively.

► Main loop of the K-Way Merge algorithm:
1.1. minItemminItem=index of minimum item in

item[1],item[2],...,item[K]
2. output item[minItemminItem] to output list
3. for i=1 to K do
4. if item[i]=item[minItemminItem] then
5. get next item from List[i]

► If there are no repeated items among different lists, lines
(3)-(5) can be simplified to

get next item from List[minItemminItem]

259

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Implementation # 1Implementation # 1

►The K-Way Merging Algorithm just described works well
if K<8:

►Line(1) does a sequential search on item[1], item[2], ...,
item[K]

Running time: O(K)

►Line(5) just replaces item[i] with newly read item

Running time: O(1)

260

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Implementation # 2Implementation # 2

►When the number of lists is large, store current items
item[1], item[2], ..., item[K] into priority queue (heap).

►Line(1) does a min operation on the heap.

Running time: O(1)

►Line(5) performs a extractextract--minmin operation on the heap:

Running time: O(log2K)

►and an insertinsert on the heap

Running time: O(log2K)

261

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Detailed Analysis of Both AlgorithmDetailed Analysis of Both Algorithm

►Let N = Number of items in output list
M = Number of items summing up all input lists
(Note N≤M because of possible repetitions)

►Implementation # 1
– Line(1): K×N steps
– Line(5): counting all executions: M×1 steps
– Total time: O(K×N+M)⊆O(K×N)

►Implementation # 2
– Line(1): 1×N steps
– Line(5): counting all executions: M×2×log2K steps
– Total time: O(N+M×log2K)⊆O(M×log2K)

262

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Merging as a Way of Sorting Large FilesMerging as a Way of Sorting Large Files

►Characteristics of the file to be sorted

8,000,000 records

Size of a record = 100 Bytes

Size of the key = 10 Bytes

►Memory available as a work area: 10 MB (Not counting
memory used to hold program, OS, I/O buffers, etc.)

Total file size = 800 MB

Total number of bytes for all the keys = 80 MB

►So, we cannot do internal sorting

263

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

SolutionSolution

►Forming runs: bring as many records as possible to main
memory, do internal sorting and save it into a small file.
Repeat this procedure until we have read all the records
from the original file

►Do a multiway merge of the sorted files
►In our example, what could be the size of a run?

Available memory = 10 MB ≅ 10,000,000 bytes
Record size = 100 bytes
Number of records that can fit into available memory =
100,000 records
Number of runs = 80 runs

264

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

80 Internal Sorts80 Internal Sorts

265

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Order of I/O OperationsOrder of I/O Operations

► I/O operations are performed in the following times:

1. Reading each record into main memory for sorting and
forming the runs

2. Writing sorted runs to disk

► The two steps above are done as follows:

– Read a chunk of 10 MB; Write a chunk of 10 MB
(Repeat this 80 times)

– In terms of basic disk operations, we spend:

– For reading: 80 seeks + transfer time for 800 MB

Same for writing.

266

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Order of I/O Operations (Con’t)Order of I/O Operations (Con’t)

3. Reading sorted runs into memory for merging. In order
to minimize “seeks” read one chunk of each run, so 80
chunks. Since the memory available is 10 MB each
chunk can have 10,000,000/80 bytes = 125,000 bytes =
1,250 records

– How many chunks to be read for each run?

– size of a run/size of a chunk = 10,000,000/125,000=80

– Total number of basic “seeks” = Total number of
chunks (counting all the runs) is

80 runs × 80 chunks/run = 802 chunks

267

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Order of I/O Operations (Con’t)Order of I/O Operations (Con’t)

4. When writing a sorted file to disk, the number of basic
seeks depends on the size of the output buffer: bytes in
file/ bytes in output buffer.

– For example, if the output buffer contains 200 K, the
number of basic seeks is 200,000,000/200,000 = 4,000

► From steps 1-4 as the number of records (NN)
grows, step 3 dominates the running time

268

So
rt

in
g

L
ar

ge
 F

il
es

10

File Organization

Step 3 : The BottleneckStep 3 : The Bottleneck

► There are ways of reducing the time for the bottleneck
step 3

1. Allocate more resource (e.g. disk drive, memory)

2. Perform the merge in more than one step – this reduces
the order of each merge and increases the run sizes

3. Algorithmically increase the length of each run

4. Find ways to overlap I/O operations

BB--TreesTrees11

270

B
-T

re
es

11

File Organization

ContentContent

► Introduction to multilevel indexing and B-trees

► Insertion in B Trees

► Search and Insert Algorithms

► Deletion in B Trees

271

B
-T

re
es

11

File Organization

Introduction to Multilevel Indexing and B-TreesIntroduction to Multilevel Indexing and B-Trees

► Problems with simple indexes that are kept in disk:

1. Seeking the index is still slow (binary searching):

– We do not want more than 3/4 seeks for a search

– So, here log2(N+1) is still slow:

272

B
-T

re
es

11

File Organization

Introduction to Multilevel Indexing and B-TreesIntroduction to Multilevel Indexing and B-Trees

► Problems with simple indexes that are kept in disk:

2. Insertions and deletions should be as fast as searches:

– In simple indexes, insertion or deletion take O(n) disk
accesses (since index should be kept sorted)

273

B
-T

re
es

11

File Organization

Indexing with Binary Search TreesIndexing with Binary Search Trees

►We could use balanced binary search trees:

►►AVLAVL Trees
– Worst-case search is 1.44×log2(N+2)

– 1,000,000 keys → 29 Levels

– Still prohibitive

►►Paged BinaryPaged Binary Trees
– Place subtree of size K in a single page

– Worst-case search is logK+1(N+1)

– K=511, N=134,217,727

– Binary trees: 27 seeks, Paged Binary tree: 3 seeks

– This is good but there are lots of difficulties in maintaining
(doing insertions and deletions) in a paged binary tree

274

B
-T

re
es

11

File Organization

Multilevel IndexingMultilevel Indexing

►Consider our 8,000,000 example with keysize =10B

►Index file size = 80 MB

►Each record in the index will contain 100 pairs
(key,reference)

►A simple index would contain: 80,000 records:

Too expensive to search (~16 seeks)

275

B
-T

re
es

11

File Organization

Multilevel IndexMultilevel Index

►Build an index of an index file

►How?

– Build a simple index for the file, sorting keys using the method
for external sorting previously studied

– Build an index for this index

– Build another index for the previous index, and so on

– The index of an index stores the largest in the record it is
pointing to.

276

277

B
-T

re
es

11

File Organization

B-TreesB-Trees

►Again an index record may contain 100 keys

►An index record may be half full (each index record may
have from 50 to 100 keys)

►When insertion in an index record causes it to overfull

– Split record in two

– “Promote” the largest key in one of the records to the
upper level

278

B
-T

re
es

11

File Organization

Example for Order = 4Example for Order = 4

T

Q R S U W Y Z

pointer
data

279

B
-T

re
es

11

File Organization

Inserting XInserting X

►X is between T and Z: insertion in node 3 splits it and
generates a promotion of node X

X

U W X

Node p

Node n

Node o

T

Q R S U W Y Z Y Z

U W X Y Z

280

B
-T

re
es

11

File Organization

PromotionPromotion

► Important: If Node 1 was full, this would generate a new split-
promotion of Node 1. This could be propagated up to the root

Y Z

Node p.n Node p.o

Node n

Node o

promoted
T X

Q R S U W

281

B
-T

re
es

11

File Organization

Example of InsertionsExample of Insertions

►Inserting keys: order = 4

►A,G,F,B,K,D,H,M,J,E,S,I,R,X,C,L,N,T,U,P

►Inserting KK: : Split and Promotion

A B F G

F

A B G K

282

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

F

A B D G K

►Inserting DD

►Inserting HH
F

A B D G H K

283

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

F

A B D G H K M

►Inserting MM

►Inserting JJ: Split and Promotion

F J

A B D G H K M

284

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting EE

►Inserting SS

F J

A B D E G H K M

F J

A B D E G H K M S

285

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting II

►Inserting RR

F J

A B D E G H I K M S

F J

A B D E G H I K M R S

286

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting XX: Split and Promotion

F J R

A B D E G H I K M S X

287

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting CC: Split and Promotion

C F J R

A B

G H I

K M

S X

D E

288

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting LL

C F J R

A B

G H I

K L M

S X

D E

289

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting NN

C F J R

A B

G H I

K L M N

S X

D E

290

B
-T

re
es

11

File Organization

Insertion ExampleInsertion Example

►Inserting T,UT,U

C F J R

A B

G H I

K L M N

S T U X

D E

291

B
-T

re
es

11

File Organization

►Inserting PP

C F

A B

G H I

K L S T U X

D E

N P

J

M R

292

B
-T

re
es

11

File Organization

B-Tree PropertiesB-Tree Properties

► Properties of a B-tree of order mm:

1. Every node has a maximum of m children

2. Every node, except for the root and the leaves, has at
least mm/2/2 children

3. The root has at least two children (unless it is a leaf)

4. All the leafs appear on the same level

5. The leaf level forms a complete index of the associated
data file

293

B
-T

re
es

11

File Organization

Worst-case Search DepthWorst-case Search Depth

►The worst-case depth occurs when every node has the
minimum number of children

294

B
-T

re
es

11

File Organization

ExampleExample

►Assume that we have NN keys in the leaves

So,

For NN=1,000,000 and order mm=512, we have

►There is at most 3 levels in a B-tree of order 512 holding
1,000,000 keys.

() 1
2 / 2

d
N m

−≥ ⋅

()/ 21 log / 2md N≤ +

()2561 log / 2

3.37

d N

d

≤ +
≤

295

B
-T

re
es

11

File Organization

Outline of Search AlgorithmOutline of Search Algorithm

► Search (KeyType key)

1. Find leaf: find the leaf that could contain key, loading all
the nodes in the path from root to leaf into an array in
main memory

2. Search for key in the leaf which was loaded into main
memory

296

B
-T

re
es

11

File Organization

Deletions from B-TreeDeletions from B-Tree

► The rules for deleting a key KK from a node nn :

1. If nn has more than the minimum number of keys and KK is
not the largest key in nn, simply delete KK from nn.

2. If nn has more than the minimum number of keys and KK is
the largest key in nn, delete KK from nn and modify the
higher level indexes to reflect the new largest key in nn.

3. If nn has exactly the minimum number of keys and one of
the siblings has “few enough keys”, mergemerge nn with its
sibling and delete a key from the parent node

297

B
-T

re
es

11

File Organization

Deletions from B-Tree (Con’t)Deletions from B-Tree (Con’t)

► The rules for deleting a key KK from a node nn :

4. If nn has exactly the minimum number of keys and one of
the siblings has extra keys, redistributeredistribute by moving some
keys from a sibling to nn, and modify higher levels to
reflect the new largest keys in the affected nodes

298

B
-T

re
es

11

File Organization

ExampleExample

C F

A B
G H I

K L
S T U X

D E

N P

J

M R

299

B
-T

re
es

11

File Organization

ExampleExample

►Deleting HH

C F

A B
G I

K L
S T U X

D E

N P

J

M R

300

B
-T

re
es

11

File Organization

ExampleExample

►Deleting RR

C F

A B
G I

K L
T U X

D E

N P

J

M S

301

B
-T

re
es

11

File Organization

ExampleExample

►Deleting PP

C F

A B
G I

K L
U X

D E

N S

J

M T

302

B
-T

re
es

11

File Organization

ExampleExample

►Deleting DD

C F

A B
G I

K L
U X

E

N S

J

M T

303

B
-T

re
es

11

File Organization

ExampleExample

F

A B C E G I

K L
U X

N S

J

M T

304

B
-T

re
es

11

File Organization

ExampleExample

A B C E

G I K L

U X

N S

F J M T

305

B
-T

re
es

11

File Organization

ImplementationImplementation

typedef struct {

int Count; // Number of keys stored in the current
ItemType Key[MaxKeys];

long Branch[MaxKeysPlusOne];

} NodeType;

Key[MaxKeys]

Branch[MaxKeysPlusOne]

I N D E X F I L E ▪ ▪ ▪
RRN

306

B
-T

re
es

11

File Organization

Implementation (Con’t)Implementation (Con’t)

typedef struct {

int Count; // Number of keys stored in the current
ItemType Key[MaxKeys];

long Branch[MaxKeysPlusOne];

bool Search(KeyFieldType SearchKey,

ItemType & Item);

} NodeType;

307

B
-T

re
es

11

File Organization

bool Search(KeyFieldType SearchKey,...) bool Search(KeyFieldType SearchKey,...)
{

long CurrentRoot;
int Location;
bool Found;

Found = false;
CurrentRoot = Root;
while ((CurrentRoot != -1L) && (!Found)) {

fseek(hFile,CurrentRoot * NodeSize, SEEK_SET);
fread((unsigned char *)(&CurrentNode),NodeSize,1,hFile);
if (SearchNode(SearchKey, Location)) {

Found = true;
Item = CurrentNode.Key[Location];

} else CurrentRoot = CurrentNode.Branch[Location + 1];
}
return Found;

}

308

B
-T

re
es

11

File Organization

bool SearchNode(const KeyFieldType Target, int & Location) const {
bool Found=false;
if (strcmp(Target, CurrentNode.Key[0].KeyField)<0) Location=-1L;
else
{

Location = CurrentNode.Count - 1;
while ((strcmp(Target, CurrentNode.Key[Location].KeyField) < 0)

&& (Location > 0))
Location--;
if (strcmp(Target, CurrentNode.Key[Location].KeyField) == 0)

Found = true;
}

return Found;
}

bool SearchNode(KeyFieldType Target,...) bool SearchNode(KeyFieldType Target,...)

BB++TreesTrees12

310

B
+T

re
es

12

File Organization

ContentContent

► Maintaining a sequence set

► A simple prefix B+ Tree

► Simple Prefix B+ Tree Maintenance: Insertions and
Deletions

311

B
+T

re
es

12

File Organization

MotivationMotivation

►Some applications require two views of a file:

312

B
+T

re
es

12

File Organization

Example of ApplicationsExample of Applications

► Student record system in a university

– Indexed view: access to individual records

– Sequential view: batch processing when posting
grades or when fees are paid

► Credit card system

– Indexed view: interactive check of accounts

– Sequential view: batch processing of payment slips

► We will look at the following two aspect of the problem:

1. Maintaining a sequence set: keeping records in
sequential order

2. Adding an index set to the sequence set

313

B
+T

re
es

12

File Organization

Maintaining a Sequence SetMaintaining a Sequence Set

► Sorting and re-organizing after insertions and deletions is
out of question

► We organize the sequence set in the following way
– Records are grouped in blocksblocks
– Blocks should be at leastat least half fullhalf full
– Link fieldsLink fields are used to point to the preceding block

and the following block (similar to doubly linked list)
– Changes (inserted/deletion) are localized into blocks

by performing:
1.1. Block SplittingBlock Splitting when insertioninsertion causes overflow
2.2. Block MergingBlock Merging or RedistributionRedistribution when deletiondeletion

causes underflow
314

B
+T

re
es

12

File Organization

ExampleExample

►Block Size = 4

►Key = Last NameLast Name

Forward Pointer

Backward Pointer

ADAMS... BIXBY... CARSON... COLE...

DENVER... ELLIS...

n

o

315

B
+T

re
es

12

File Organization

Insertion with OverflowInsertion with Overflow

►Insert “BAIRD...”

ADAMS... BAIRD... BIXBY...

CARSON... COLE...

ADAMS... BIXBY... CARSON... COLE...
n

n

o

316

B
+T

re
es

12

File Organization

Deletion with MergingDeletion with Merging

ADAMS... BAIRD... BIXBY... BOONE...

BYNUM... CARSON... CARTER...

n

o

DENVER... ELLIS...
p

COLE... DAVIS...
q

►Delete “DAVIS...”

317

B
+T

re
es

12

File Organization

Deletion with Merging (Con’t)Deletion with Merging (Con’t)

ADAMS... BAIRD... BIXBY... BOONE...

BYNUM... CARSON... CARTER...

n

o

p

COLE... DENVER... ELLIS...
q

►Block p is available for re-use

318

B
+T

re
es

12

File Organization

Delete “BYNUM”, then Delete “CARTER”Delete “BYNUM”, then Delete “CARTER”

ADAMS... BAIRD... BIXBY... BOONE...

CARSON...

n

o

p

COLE... DENVER... ELLIS...
q

319

B
+T

re
es

12

File Organization

Solution # 1Solution # 1

►We can merge Block o and q

ADAMS... BAIRD... BIXBY... BOONE...
n

o

p

CARSON... COLE... DENVER... ELLIS...
q

320

B
+T

re
es

12

File Organization

Solution # 2: Deletion with RedistributionSolution # 2: Deletion with Redistribution

ADAMS... BAIRD... BIXBY...

BOONE... CARSON...

n

o

p

COLE... DENVER... ELLIS...
q

321

B
+T

re
es

12

File Organization

Advantages and Disadvantages of Sequence SetAdvantages and Disadvantages of Sequence Set

►Advantages

– No need to re-organize the whole file after
insertions/deletions

►Disadvantages

– File takes more space than unblocked files (since
blocks may be half full)

– The order of the records is not necessarily physicallyphysically
sequential (we only guarantee physical sequentiality
within a block)

322

B
+T

re
es

12

File Organization

Choosing Block SizeChoosing Block Size

►Main memory constraints (must hold at least 2 blocks)

►Avoid seeking within a block (e.g., in sector formatted
disks choose block size equal to cluster size).

323

B
+T

re
es

12

File Organization

Adding an Index Set to the Sequential SetAdding an Index Set to the Sequential Set

►Index will contain SEPERATORS instead of KEYS

ADAMS... BERNE...

BOBOLEN... CAGE...

n

o

CAMCAMP... DUTTON...p

EEMBRY... EVANS...q

FFABER... FOLK...r

FOLKSFOLKS... GADDIS...s

BOBO

CAMCAM

EE

FF

FOLKSFOLKS

324

B
+T

re
es

12

File Organization

The Simple Prefix B+ TreeThe Simple Prefix B+ Tree

►The simple prefix B+ treesimple prefix B+ tree consists of

–– Sequence SetSequence Set

–– Index SetIndex Set: similar to a B-tree index, but storing the
shortest separators for the sequence set.

325File Organization

EE

Example: Order of the index set is 3Example: Order of the index set is 3

BOBO CAMCAM FF FOLKSFOLKS

ADAMS-BERNE BOLEN-CAGE CAMP-DUTTON EMBRY-EVANS FABER-FOLK FOLKS-GADDIS

n o p q r s

326

B
+T

re
es

12

File Organization

Search in a Simple Prefix B+ TreeSearch in a Simple Prefix B+ Tree
►Search for “EMBRY”

– Retrieve Node m (Root)
– Since “EMBRY”> “E”, so go right, and retrieve Node o.
– Since “EMBRY”< “F”, so go left, and Block # q
– Look for the record with key “EMBRY” in Block # q

EE

BOBO CAMCAM FF FOLKSFOLKS

ADAMS-BERNE BOLEN-CAGE CAMP-DUTTON EMBRY-EVANS FABER-FOLK FOLKS-GADDIS

q

Node n Node o

Node m

327

B
+T

re
es

12

File Organization

Simple Prefix B+ Tree MaintenanceSimple Prefix B+ Tree Maintenance

►Example:

– Sequence set has blocking factor 4

– Index set is a B tree of order 3

HH OO

A,C,E,G H,J,L,N O,Q,S

Node n

n o p

328

B
+T

re
es

12

File Organization

Example (Cont’d)Example (Cont’d)

1. Changes which are local to single blocks in the sequence set
– Insert “U”

• Go to the root
• Go to the right of “O”
• Insert “U” to Block p

HH OO

A,C,E,G H,J,L,N O,Q,S,UU

Node n

n o p

–There is no change in the index set

329

B
+T

re
es

12

File Organization

Example (Cont’d)Example (Cont’d)

– Delete “O”
• Go to the root
• Go to the right of “O”
• Delete “O” from Block p

HH OO

A,C,E,G H,J,L,N Q,S,U

Node n

n o p
–There is no change in the index set: “O” is still a perfect separator

for Blocks o and p

330

B
+T

re
es

12

File Organization

Example (Cont’d)Example (Cont’d)

2. Changes involving multiple blocks in the sequence set
– Delete “S” and “U”

HH OO

A,C,E,G H,J,L,N Q

Node n

n o p

–Now Block p becomes less than ½ full (UNDERFLOW)

331

B
+T

re
es

12

File Organization

Example (Cont’d)Example (Cont’d)

► Since Block o is full, the only position is re-distribution bringing
a key from Block o to Block p

► We must update the separator “O” to “N”

HH NN

A,C,E,G H,J,L N,Q

Node n

n o p

332

B
+T

re
es

12

File Organization

Example (Cont’d)Example (Cont’d)
► Insert “B”

– Go to the root
– Go to the left of “H” to Block n
– Block n would have hold A,B,C,E,G
– Block n is split

HH NN

A,B,C,E,G H,J,L N,Q

Node n

n o p

A,B,C E,G

split

333

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

HH NN

E,G H,J,L N,Q

Node n

q o p
A,B,C

n

► So this causes Node n to split

334

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

E,G H,J,L N,Q

Node n

q o p
A,B,C

n

NN

HH

Node o

Node p

335

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

E,FF,G H,J,L N,Q

Node n

q o p
A,B,C

n

NN

HH

Node o

Node p

► Insert “F”

336

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

E,F,G H N,Q

Node n

q o p
A,B,C

n

NN

HH

Node o

Node p

► Delete “J” and “L”

► This is an UNDERFLOW. You may think to redistribute Blocks
o and q: E,F,G,H becomes E,F and G,H.

337

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

E,F,G H,N,Q

Node n

q o p
A,B,C

n

NN

Node o

► Why this is not possible?
► Blocks o and q are not siblings! They are cousins.
► Merge Blocks o and p
► Send Block p to AVAIL LIST
► Remove the Link Between Node o and Block p

338

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

HH

E,F,G H,N,Q

Node n

q o p
A,B,C

n

NN

HH

Node o

Node p

► Send Nodeo and p to AVAIL LIST

339

B
+T

re
es

12

File Organization

EE

Example (Cont’d)Example (Cont’d)

HH

E,F,G H,N,Q

Node n

q o p
A,B,C

n

► Blocks were reunited as a big happy family again ☺

HashingHashing13

341

H
as

hi
ng

13

File Organization

ObjectivesObjectives

► Introduce the concept of hashing
► Examine the problem of choosing a good hashing

algorithm
► Explore three approaches for reducing collisions
► Develop and use mathematical tools for analyzing

performance differences resulting from the use of
different hashing techniques

► Examine problems associated with file deterioration and
discuss some solutions

► Examine effects of patterns of records access on
performance

342

H
as

hi
ng

13

File Organization

ContentContent

►Introduction to Hashing

►Hash functions

►Distribution of records among addresses, synonyms and
collisions

►Collision resolution by progressive overflow or linear
probing

343

H
as

hi
ng

13

File Organization

MotivationMotivation

►Hashing is a useful searching technique, which can be
used for implementing indexes. The main motivation for
Hashing is improving searching time.

►Below we show how the search time for Hashing
compares to the one for other methods:

– Simple Indexes (using binary search): O(log2N)

– B Trees and B+ trees: O(logkN)

– Hashing: O(1)

344

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

►The idea is to discover the location of a key by simply
examining the key. For that we need to design a hash
function.

►A Hash FunctionHash Function is a function h(k) that transforms a key
into an address

►An address space is chosen before hand. For example, we
may decide the file will have 1,000 available addresses.

►If U is the set of all possible keys, the hash function is
from U to {0,1,...,999}, that is

h : U → {0,1,...,999}

345

H
as

hi
ng

13

File Organization

ExampleExample

8888888484××82=682=6888888
84 8284 82TRTREEEE

0040047676××79=679=600400476 7976 79LOLOWELLWELL

2902906666××65=465=429029066 6566 65BABALLLL

HOME HOME
ADDRESSADDRESSPRODUCTPRODUCT

ASCII ASCII codecode
forfor firstfirst twotwo
lettersletters

NAMENAME

346

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

LOLOWELLWELL

hh((nn))

BABALLLL

TRTREEEE

347

H
as

hi
ng

13

File Organization

What is Hashing?What is Hashing?

►There is no obvious connection between the key and the
location (randomizing)

►Two different keys may be sent to the same address
generating a CollisionCollision

►Can you give an example of collision for the hash function
in the previous example?

348

H
as

hi
ng

13

File Organization

AnswerAnswer

►LOWELL, LOCK, OLIVER, and any word with first two
letters LL and OO will be mapped to the same address

h(LOLOWELL)=h(LOLOCK)=h(OLOLIVER)=004004

►These keys are called synonyms. The address “004004” is
said to be the home address of any of these keys.

►Avoiding collisions is extremely difficult

►Do you know the birthday paradox?

►So we need techniques for dealing with it.

349

H
as

hi
ng

13

File Organization

Reducing CollisionsReducing Collisions

1. Spread out the records by choosing a good hash function

2. Use extra memory: increase the size of the address space

– Example: reserve 5,000 available addresses rather
than 1,000

3. Put more than one record at a single address: use of
buckets

350

H
as

hi
ng

13

File Organization

A Simple Hash FunctionA Simple Hash Function

►To compute this hash function, apply 3 steps:
►►Step 1Step 1: transform the key into a number.

LOWELLLOWELL

LL OO WW EE LL LL

7676 7979 8787 6969 7676 7676 3232 3232 3232 3232 3232 3232

ASCII code

351

H
as

hi
ng

13

File Organization

A Simple Hash Function (Con’t)A Simple Hash Function (Con’t)

►►Step 2Step 2: fold and add (chop off pieces of the
number and add them together) and take the mod
by a prime number

7676 7979 8787 6969 7676 7676 3232 3232 3232 3232 3232 3232

76797679 87698769 76767676 32323232 32323232 32323232

7679+8769+7676+3232+3232+32327679+8769+7676+3232+3232+3232

33,820 33,820 modmod 19937 = 13,88319937 = 13,883

352

H
as

hi
ng

13

File Organization

A Simple Hash Function (Con’t)A Simple Hash Function (Con’t)

►►Step Step 33: divide by the size of the address space
(preferably a prime number)

13,883 13,883 modmod 101 = 46101 = 46

353

H
as

hi
ng

13

File Organization

Distribution of Records among AddressesDistribution of Records among Addresses
►There are 3 possibilities

►Uniform distributions are extremely rare
►Random distributions are acceptable and more easily

obtainable.
354

H
as

hi
ng

13

File Organization

Better than Random DistributionBetter than Random Distribution

►Examine keys for patterns

– Example: Numerical keys that are spread out naturally
such as keys are years between 1970 and 2004

f(year)=(year-1970) mod (2004-1970+1)

f(1970)=0, f(1971)=1,..., f(2004)=34

►Fold parts of the key.

– Folding means extracting digits from a key and adding
the parts together as in the previous example.

– In some cases, this process may preserve the natural
separation of keys, if there is a natural separation

355

H
as

hi
ng

13

File Organization

Better than Random Distribution (Con’t)Better than Random Distribution (Con’t)

►Use prime number when dividing the key.

– Dividing by a number is good when there are sequences
of consecutive numbers.

– If there are many different sequences of consecutive
numbers, dividing by a number that has many small
factors may result in lots of collisions. A prime number
is a better choice.

356

H
as

hi
ng

13

File Organization

RandomizationRandomization

► When there is no natural separation between keys, try
randomization.

► You can using the following Hash functions:

1.1. Square the key and take the middleSquare the key and take the middle

Example: key=453 4532 = 20525209

Extract the middle = 52.

This address is between 00 and 99.

357

H
as

hi
ng

13

File Organization

Randomization (Con’t)Randomization (Con’t)

2.2. Radix transformation:Radix transformation:

Transform the number into another base and then divide
by the maximum address

Example: Addresses from 0 to 99

key = 453 in base 11 = 382

hash address = 382 mod 99 = 85.

358

H
as

hi
ng

13

File Organization

Collision Resolution: Progressive OverflowCollision Resolution: Progressive Overflow

► Progressive overflow/linear probing works as follows:

1.1. Insertion of key kInsertion of key k:

– Go to the home address of k: h(k)

– If free, place the key there

– If occupied, try the next position until an empty
position is found

(the ‘next’ position for the last position is position 0,
i.e. wrap around)

359

H
as

hi
ng

13

File Organization

ExampleExample

360

H
as

hi
ng

13

File Organization

Progressive Overflow (Con’t)Progressive Overflow (Con’t)

2.2. Searching for key kSearching for key k:

– Go to the home address of k: h(k)

– If k is in home address, we are done.

– Otherwise try the next position until: key is found or
empty space is found or home address is reached (in
the last 2 cases, the key is not found)

361

H
as

hi
ng

13

File Organization

ExampleExample

► A search for ‘EVANS’ probes places:
20,21,22,0,1, finding the record at position
1.

► Search for ‘MOURA’, if h(MOURA)=22,
probes places 22,0,1,2 where it concludes
‘MOURA’ in not in the table.

► Search for ‘SMITH’, if h(SMITH)=19,
probes 19, and concludes ‘SMITH’ in not
in the table.

362

H
as

hi
ng

13

File Organization

Advantages DisadvantagesAdvantages Disadvantages

►Advantage: Simplicity

►Disadvantage: If there are lots of collisions of records can
form, as in the previous example

363

H
as

hi
ng

13

File Organization

Search LengthSearch Length

►Number of accesses required to retrieve a record.

average search length ==
sum of search lengths

number of records

364

H
as

hi
ng

13

File Organization

ExampleExample

►Average search length

(1+1+2+2+5)/5=2.2

1
1
2
2
5

365

H
as

hi
ng

13

File Organization

Predicting Record DistributionPredicting Record Distribution

►We assume a random distribution for the hash function.

– N = number of available addresses

– r = number of records to be stored

►Let p(x) be the probability that a given address will have x
records assigned to it

►It is easy to see that

() ()
! 1 1

1
! !

r x x
r

p x
r x x N N

−
⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦

366

H
as

hi
ng

13

File Organization

Predicting Record Distribution (Con’t)Predicting Record Distribution (Con’t)

►For N and r large enough this can be approximated by

() () ()

!

x r Nr N e
p x

x

−

�

367

H
as

hi
ng

13

File Organization

ExampleExample

►N=1000, r=1000

() ()0 11
0 0.368

0!

e
p

−

=�

() ()1 11
1 0.368

1!

e
p

−

=�

() ()2 11
2 0.184

2!

e
p

−

=�

() ()3 11
3 0.061

3!

e
p

−

=�

368

H
as

hi
ng

13

File Organization

Predicting Record Distribution (Con’t)Predicting Record Distribution (Con’t)

►For N addresses, the expected number of addresses with x
records is

N . p(x)

►N=1000, r=1000

()1000 0 368p× =

()1000 1 368p× =

()1000 2 184p× =

()1000 3 61p× =

369

H
as

hi
ng

13

File Organization

Reducing Collision by using more AddressesReducing Collision by using more Addresses

►Now, we see how to reduce collisions by increasing the
number of available addresses.

►Definition: packing densitypacking density = r/N

►Example:

500 records to be spread over 1000 addresses result in
packing densitypacking density = 500/1000 = 0.5 = 50%

370

H
as

hi
ng

13

File Organization

QuestionsQuestions

1. How many addresses go unused? More precisely: What
is the expected number of addresses with no key mapped
to it?

► N×p(0)=1000 ×0.607 = 607

371

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

2. How many addresses have no synonyms? More
precisely: What is the expected number of address with
only one key mapped to it?

► N×p(1)=1000 ×0.303 = 303

372

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

3. How many addresses contain 2 or more synonyms? More
precisely: What is the expected number of addresses with
two or more keys mapped to it?

► N×(p(2)+p(3)+...)= N×(1-p(0)-p(1))= 1000 ×0.09 = 90

373

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

4. Assuming that only one record can be assigned to an
address. How many overflow records are expected?

1×N×p(2) + 2×N×p(3) + 3×N×p(4)+... =

N×(2×p(2)+3×p(4)+...) ≈ 107
► The justification for the above formula is that there is

going to be (i-1) overflow records for all the table
positions that have i records mapped to it, which are
expected to be as many as N⋅p(i)

374

H
as

hi
ng

13

File Organization

A Simpler FormulaA Simpler Formula

►Expected # of overflow records =

#records – Expected # of non-overflow records

= r – (N ⋅ p(1)+N ⋅ p(2)+N ⋅ p(3)+ ⋅ ⋅ ⋅)
= r – (1 – p(0))

= N ⋅ p(0) – (N–r)

375

H
as

hi
ng

13

File Organization

Questions (Con’t)Questions (Con’t)

5. What is the expected percentage of overflow records?
107/500 = 0.214 = 21.4%

► Note that using either formula, the percentage of
overflow records depend only on the packing density
(PD = r/N) and not on the individual values of N or r.

► The percentage of overflow records is

► Poisson function that approximates p(0) is a function of
r/N which is equal to PD (for hashing without buckets).

()() ()()1 0 1
1 1 0

r N p
p

r PD

− −
= − −

376

H
as

hi
ng

13

File Organization

Packing Density-Overflow RecordsPacking Density-Overflow Records

36.8%100%

34.1%90%

31.2%80%
28.1%70%

24.8%60%
21.4%50%

17.6%40%
13.6%30%

9.4%20%
4.8%10%

Overflow Records Overflow Records
%%

Packing Density %Packing Density %

377

H
as

hi
ng

13

File Organization

Hashing with BucketsHashing with Buckets

►This is a variation of hashed files in which more than one
record/key is stored per hash address.

►Bucket = block of records corresponding to one address in
the hash table

►The hash function gives the Bucket AddressBucket Address

►Example:

378

H
as

hi
ng

13

File Organization

ExampleExample

►For a bucket holding 3 records, insert the following keys

LOYD

KING
LAND
MARX

379

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

►We should slightly change some formulas

r

packing density
b N

=
⋅

We will compare the following two alternatives

1. Storing 750 data records into a hashed file with 1000
addresses, each holding 1 record.

2. Storing 750 data records into a hashed file with 500
bucket addresses, each bucket holding 2 records

► In both cases the packing density is 0.75 or 75%.

► In the first case r/N=0.75.

► In the second case r/N=1.50
380

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

►Estimating the probabilities as defined before:

381

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

Calculating the number of overflow records in each case
1.1. b=1b=1 (r/N=0.75):

This is about 29.6% overflow

() () ()
()()

()

1 2 2 3 3 4

1 0

750 1000 1 0.472 750 528 222

Number of overflow records

N p p p

r N p

=

= ⋅ ⋅ + ⋅ + ⋅ +⎡ ⎤⎣ ⎦
= − ⋅ −

= − ⋅ − = − =

L

382

H
as

hi
ng

13

File Organization

Effects of Buckets on PerformanceEffects of Buckets on Performance

2.2. b=b=22 (r/N=1.5):

This is about 18.7% overflow

() () ()
() () ()
() () ()()

() ()
()()

1 3 2 4 3 5

1 2 2 3

1 2 1 0 1

2 2 0 1

750 500 2 2 0.223 0.335 140.5 140

Number of overflow records

N p p p

r N p N p p

r N p p p

r N p p

=

= ⋅ ⋅ + ⋅ + ⋅ +⎡ ⎤⎣ ⎦
= − ⋅ − ⋅ ⋅ + +⎡ ⎤⎣ ⎦

⎡ ⎤= − ⋅ + ⋅ − −⎣ ⎦
= − ⋅ − ⋅ −⎡ ⎤⎣ ⎦
= − ⋅ − ⋅ − = ≅

L

L

383

H
as

hi
ng

13

File Organization

Percentage of Collisions for Different Bucket SizesPercentage of Collisions for Different Bucket Sizes

384

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

1. Bucket Structure

► A Bucket should contain a counter that keeps track of the
number of records stored in it.

► Empty slots in a bucket may be marked ‘//.../’

► Example: Bucket of size 3 holding 2 records

385

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

2. Initializing a file for hashing

► Decide on the Logical Size (number of available
addresses) and on the number of buckets per address.

► Create a file of empty buckets before storing records. An
empty bucket will look like

386

H
as

hi
ng

13

File Organization

Implementation IssuesImplementation Issues

3. Loading a hash file

► When inserting a key, remember to:

► Be careful with infinite loops when hash file is full

387

H
as

hi
ng

13

File Organization

Making DeletionsMaking Deletions

►Deletions in a hashed file have to be made with care

Hashed File using Progressive Overflow

388

H
as

hi
ng

13

File Organization

Making Deletions: Delete ‘MORRIS’Making Deletions: Delete ‘MORRIS’

►If ‘MORRIS’ is simply erased, a search for ‘SMITH’
would be unsuccessful

►Search for ‘SMITH’ would go to home address (position
5) and when reached 7 it would conclude ‘SMITH’ is not
in the file!

Empty Slot

Empty Slot
ProblemProblem: you cannot find ‘SMITH’

389

H
as

hi
ng

13

File Organization

SolutionSolution

►Replace deleted records with a marker indicating that a
record once lived there

►A search must continue when it finds a tombstone, but can
stop whenever an empty slot is found

Deleted Slot

you can find ‘SMITH’

390

H
as

hi
ng

13

File Organization

Be careful in Deleting and Adding a RecordBe careful in Deleting and Adding a Record

►Only insert a tombstone when the next record is occupied
or is a tombstone

►Insertions should be modified to work with tombstones: if
either an empty slot or a tombstone is reached, place the
new record there.

391

H
as

hi
ng

13

File Organization

Effects of Deletions and Additions on PerformanceEffects of Deletions and Additions on Performance

► The presence of too many tombstones increases search
length.

► Solutions to the problem of deteriorating average search
lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address

2. Complete reorganization: re-hashing

3. Use a different type of collision resolution technique

392

H
as

hi
ng

13

File Organization

Other Collision Resolution TechniquesOther Collision Resolution Techniques

1.1. Double HashingDouble Hashing

► The first hash function determines the home address

► If the home address is occupied, apply a second hash
function to get a number c (c relatively prime to N)

► c is added to the home address to produce an overflow
addresses: if occupied, proceed by adding c to the
overflow address, until an empty spot is found.

393

H
as

hi
ng

13

File Organization

ExampleExample

Hashed file using double hashing

394

H
as

hi
ng

13

File Organization

A QuestionA Question

►Suppose the above table is full, and that a key
kk has hh11((kk))=6 and hh22((kk))=3.

►What would be the order in which the
addresses would be probed when trying to
insert kk?

AnswerAnswer: 6, 9, 1, 4, 7, 10, 2, 5, 8, 0, 3

395

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

2.2. Chained Progressive OverflowChained Progressive Overflow

► Similar to progressive overflow, except that synonyms
are linked together with pointers.

► The objective is to reduce the search length for records
within clusters.

396

H
as

hi
ng

13

File Organization

ExampleExample

397

H
as

hi
ng

13

File Organization

Example (Con’t)Example (Con’t)

Progressive OverflowProgressive Overflow Chained Progressive OverflowChained Progressive Overflow

398

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

3.3. Chained with a Separate Overflow AreaChained with a Separate Overflow Area

► Move overflow records to a Separate Overflow Area

► A linked list of synonyms start at their home address in
the Primary data area, continuing in the separate
overflow area

► When the packing density is higher than 1 an overflow
area is required

399

H
as

hi
ng

13

File Organization

ExampleExample

Primary Data AreaPrimary Data Area Overflow AreaOverflow Area

400

H
as

hi
ng

13

File Organization

Other Collision Resolution Techniques (Con’t)Other Collision Resolution Techniques (Con’t)

4.4. Scatter Tables: Indexing RevisitedScatter Tables: Indexing Revisited

► Similar to chaining with separate overflow, but the
hashed file contains no records, but only pointers to data
records.

index index ((hashedhashed)) datafiledatafile

Extendible HashingExtendible Hashing14

402

E
xt

en
di

bl
e

H
as

hi
ng

14

File Organization

ContentContent

► What is extendible hashing?

► Insertions in extendible hashing

► Insertions a closer look at bucket splitting

► Deletions in extendible hashing

► Extendible hashing performance

403

E
xt

en
di

bl
e

H
as

hi
ng

14

File Organization

What is Extendible Hashing?What is Extendible Hashing?

► It is an approach that tries to make hashing dynamic, i.e. to allow
insertions and deletions to occur without resulting in poor
performance after many of these operations.

► Why this is not the case for ordinary hashing?

► Extendible hashing combines two ingredients:

1. Hashing

2. Tries

► Keys are placed into buckets, which are independent parts of a file
in disk.

► Keys having a hashing address with the same prefix share the
same bucket.

► A trie is used for fast access to the buckets. It uses a prefix of the
hashing address in order to locate the desired bucket

404

E
xt

en
di

bl
e

H
as

hi
ng

14

File Organization

Tries and BucketsTries and Buckets

►Consider the following grouping of keys into buckets�
depending on the prefix of their hash addresses

Indexing Spatial DataIndexing Spatial Data15

406

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

ContentContent

► What is extendible hashing?

► Insertions in extendible hashing

► Insertions a closer look at bucket splitting

► Deletions in extendible hashing

► Extendible hashing performance

407

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

IntroductionIntroduction

►Many applications(e.g., CAD, GIS) operate on spatial
data, which include points, lines, polygons and so on

►Conventional DBMSs are unable to support spatial data
processing efficiently
– First, spatial data are large in quantity, complex in structures and

relationships

– Second, the retrieval process employs complex spatial operators
like intersection, adjacency, and containment

– Third, it is difficult to define a spatial ordering, so conventional
techniques(e.g., sort-merge) cannot be employed for spatial
operations

►Spatial indexes need!

408

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Query ProcessingQuery Processing

►It is expensive to perform spatial operations (e.g., intersect,
contain) on real spatial data

►Thus, simpler structure that approximates the objects are
used: Minimum Bounding Rectangle or circle

►Example: intersection

•A
•B

MBRA
MBRB

•Step1: perform intersection operation
between MBRA and MBRB

•Step2: if MBRA intersects with MBRB,
then perform intersection operation
between A and B

409

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Query Processing (Con’t)Query Processing (Con’t)

►►MultiMulti--step spatial query processingstep spatial query processing
1. The spatial index prunes the search space to a set of candidates

2. Based on the approximations of candidates, some of the false hits
can be further filtered away

3. Finally, the actual objects are examined to identify those that
match the query

– The multi-step strategy can effectively reduce the number of
pages accessed, the number of data to be fetched and tested and
the computation time through the approximations

– Types of spatial queries

• Spatial selection: point query, range(window) query

• Spatial join between two or more different entities sets

410

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

A Taxonomy of spatial indexesA Taxonomy of spatial indexes

►Classification of spatial indexes
1. The transformation approach

• Parameter space indexing

– Objects with nn vertices in a kk-dimensional space are mapped
into points in a nknk-dimensional space

– e.g.) two-dimensional rectangle described by the two corner

(x1,y1) and (x2, y2) => a point in a four-dimensional space

• Mapping to single attribute space

– The data space is partitioned into grid cells of the same size,
which are then numbered according to some curve-filling
methods(e.g., hilbert curve, z-ordering, snake-curve)

411

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

A Taxonomy of spatial indexes (Con’t)A Taxonomy of spatial indexes (Con’t)

►Classification of spatial indexes

2. The non-overlapping native space indexing approach

• Object duplication

• Object clipping

412

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

A Taxonomy of spatial indexes (Con’t)A Taxonomy of spatial indexes (Con’t)

►Classification of spatial indexes

3. The overlapping native space indexing approach

• Partitioning hierarchically the data space into a manageable
number of smaller subspaces

• Allowing the overlapping between bounding subspaces

• The overlapping minimization is very important

• e.g.)

– binary-tree: kd-tree, LSD-tree, etc.

– B-tree: k-d-b-tree, R-tree, R*-tree, TV-tree, X-tree, etc.

– Hashing: Grid-files, BANG files, etc.

– Space-Filling: Z-ordering, Filter-tree, etc.

413

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexingBinary-tree based indexing

►The characteristics
– A basic data structure for representing data items whose index

values are ordered by some linear order

– Repetitively partitioning a data space

►Types of binary search trees
– kd-tree

– K-D-B-tree

– hB-tree

– skd-tree

– LSD-tree

414

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The kd-treeBinary-tree based indexing: The kd-tree

►The kd-tree
– k-dimensional binary search tree to index multi-attribute data

– A node in the tree serves both representation of a actual data
point and direction of search

– A discriminator is used to indicate the key on which branching
decision depends

– A node P has two children, a left son LOSON(P) and a right son
HISON(P)

– If discriminator is the jth attribute, then the jth attribute of any
node in the LOSON(P) is less than the jth attribute of node P, and
the jth attribute of any node in the HISON(P) is greater than or
equal to that of node P

415

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The kd-tree (con’t)Binary-tree based indexing: The kd-tree (con’t)

►The kd-tree

– Complications arise when an internal node(Q) is deleted

• One of the nodes in the subtree whose root is Q must
replace Q

• To reduce the cost of deletion, a non-homogeneous
kd-tree was proposed

– The kd-tree has been the subject of intensive research
over the past decade: clustering, searching, storage
efficiency and balancing

416

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The kd-tree (con’t)Binary-tree based indexing: The kd-tree (con’t)

(0,0)

(100,100)

D(30,90)

F(80,70)
B(10,75)

A(40,60)

C(25,1590)
E(70,20)

A

B E

C D A

discriminator

0 (x-axis)

1 (y-axis)

0 (x-axis)

(a) data space (b) kd-tree

417

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The K-D-B-treeBinary-tree based indexing: The K-D-B-tree

►The K-D-B-tree

– is a combination of a kd-tree and B-tree

– consists of a region page and a point page

• region page: <region, page-ID> pairs

• point page: <point, record-ID> pairs

– is perfectly height-balanced

– has poorer storage efficiency, nevertheless

418

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

►Splitting

– data page splitting

• A split will occur during insertion of a new point into
a full point page

• The two resultant point pages will contain almost the
same number of data points

• The split of a point page may cause the parent region
page to split as well, which may propagate upward

419

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

►Splitting

– region page splitting

• A split will occur when a region page is full

• A region page is partitioned into two region pages
such that both have almost the same number of
entries

• The split may propagate downward

• The downward propagation may cause low storage
utilization

420

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

s1

s22

s2

s11

s13
s12

s21

(a) k-space

(b) K-D-B Tree

421

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The hB-treeBinary-tree based indexing: The hB-tree

►The hB-tree

– problem in the K-D-B-tree

• The split of one index node can cause descendant
nodes to be split as well. This may cause sparse
index nodes to be created

– To overcome this problem, the hB-tree (the holey brick
B-tree) allows the data space to be holey

– Based on the K-D-B-tree => height-balanced tree

– Data nodes + Index nodes

– Data space may be non-rectangular and kd-tree is used
to space representation in internal nodes

422

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

x1

y1

X=x1

Y=y1B

B A

A

B

A holey brick is represented via a kd-tree. A holey brick is a
brick from which a smaller brick hash been removed. Two
leaves of the kd-tree are required to reference the holey brick
region denoted by B.

423

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

x1

y3

y1
y2

x3x2

y5
y4 F

E

D
C A

B
G

y1

x1 x2

y5y3

y3y4

x3

FG

GE

C

ED

BA

y4

x3

Z:

W: Z:

x2

y5

y3y4

x3

FG

G
BAext

y1

x1

y3

C

ED

E

before split

after split

424

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

►The advantages

– Overcoming the problem of sparse nodes in the K-D-B-
tree

– The search time and the storage space are reduced
because of the use of kd-tree

►The disadvantages

– The cost of node splitting and node deletion are
expensive

– The multiple references to data nodes may cause a path
to be traversed more than once

425

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R-treeB-tree based indexing: The R-tree

►The R-tree

– A multi-dimensional generalization of the B-tree

– A height-balanced tree

– Having received a great deal of attention due to its well
defined structure

– Like the B-tree, node splitting and merging are required

426

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►The structure of the R-tree

– Leaf node : a set of entries of <MBR, object-ID>

• MBR: a bounding rectangle which bounds its data
object

• object-ID: an object identifier of the data object

– Index node : a set of entries of <MBR, child-pointer>

• MBR: a bounding rectangle which covers all MBRs
in the lower node in the subtree

• child-pointer: a pointer to a lower level node in the
subtree

427

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

R3

R6

R4

R7
R5

R2

R8

R1

R1R2

r1

R3R4 R5

r4r5 r6r7r1r2 r3

R6R7 R8

s3s4 s5 s6s7s1s2

r2

r4

r5

r6

r7

s1

r3

s3

s2

s4

s5
s6

s7

k-dimensional data space

R-tree

index node

leaf node

428

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►Search
– Query operations: intersect, contain, within, distance, etc.

– Query rectangle: a rectangle represented by user

– The search algorithm

• Recursively traverse down the subtrees of MBR which
intersect the query rectangle

• When a leaf node is reached, MBRs are tested against the
query rectangle and then their objects are tested if they insect
the query rectangle

– Primary performance factor: minimization of overlaps between
MBRs of index nodes => determined by the splitting
algorithm(different from other R-tree variants)

429

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►Insertion

– Criterion: least coverage

• The rectangle that needs least enlargement to
enclose the new object is selected, the one with the
smallest area is chosen if more than on rectangle
meets the first criterion

►Deletion

– In case that the deletion causes the leaf node to
underflow, the node is deleted and all the remaining
entries of that node are reinserted from the root

430

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R*-treeB-tree based indexing: The R*-tree

►The R*-tree

– Minimization of both coverage and overlap is crucial to
the performance of the R-tree. So the near optimal of
both minimization was introduced by Beckmann et al.:
The criterion that ensures the quadratic covering
rectangles is used in the insertion and splitting
algorithms

– Dynamic hierarchical spatial indexes are sensitive to
the order of the insertion of data: Beckmann proposed a
forced reinsertion algorithm when a node overflows`

431

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R+-treeB-tree based indexing: The R+-tree

►The R+-tree
– A compromise between the R-tree and the K-D-B-tree

– Overcoming the problem of the overlapping of internal nodes of
the R-tree

– The R+-tree differs from the R-tree:

• Nodes of an R+-tree are no guaranteed to be at least half filled

• The entries of any internal node do not overlap

• An object identifier may be stored in more than one leaf node

– The disjoint MBRs avoid the multiple search paths for point
queries

432

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

B-tree based indexing: The R+-tree (Con’t)B-tree based indexing: The R+-tree (Con’t)

R3

R6

R4

R10
R5

R2

R9

R1

R1R2

r1

R3R4 R5

r4 r5 r6 r7

r1 r2 r3

R7R8 R9

s3 s5 s6

s4s1 s2

r2

r4

r5

r6

r7

s1

r3

s3

s2

s4

s5
s6

s7

k-dimensional data space

R+-tree

R8

R7

R6

s6

s1

R10

s3

s5 s6 s7

433

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Cell methods based on dynamic hashing:
The grid file

Cell methods based on dynamic hashing:
The grid file

►The grid file

– Based on dynamic hashing for multi-attribute point data

– Two basic structures: k linear scales + k-dimensional
directory

– grid directory: k-dimensional array

– Each grid need not contain at least m objects. So a data
page is allowed to store objects from several grid cells
as long as the union of these cells from a rectangular
rectangle, which is known as the storage region

434

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

grid directory

data pagesc
a l

es

The Grid file layout

storage region

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

435

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

►Splitting by insertion

– In the case where the data page is full, a split is required

• The split is simple if the storage region covers more than
the grid cells

• Otherwise a new (k-1)-dimensional hyperplane partitions
the corresponding storage region into two subspaces

– The corresponding storage region: partition into two
regions and distribute objects into the existing page
and a new data page

– Other storage regions: unaffected

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

436

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

grid directory

data pagesc
a l

es

Splitting by insertion

new data page

hyperplane

new object

storage
region

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

437

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

►Merging by deletion

– Deletion may cause the occupancy of a storage region
to fall below an acceptable level, which triggers
merging operations

– If the joint occupancy of two or more adjacent storage
regions drops below a threshold, then the data pages are
merged into one

– Two merging approaches: neighbor system and buddy
system

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

438

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Spatial objects orderingSpatial objects ordering

►The space-filling curves

– Mapping multi-dimensional objects to one-dimensional
values

• Numbering each grid in a space according to
mapping function (e.g., Peano-Hilbert curve, z-
ordering, gray-ordering, etc.)

• one-dimensional locational key is a number

– A B+-tree is used to index the objects based on
locational keys

439

In
de

xi
ng

 S
pa

ti
al

 D
at

a
15

File Organization

Spatial objects ordering (Con’t)Spatial objects ordering (Con’t)

1111

1110

1300

14001200

1100
1114

1113

1112

1100

z-ordering

k’ + 5m-h if k is the SW son of k’
k’ + 2*5m-h if k is the NW son of k’

k = k’ + 3*5m-h if k is the SE son of k’
k’ + 4*5m-h if k is the NE son of k’

mapping function

e.g.) z-ordering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

