Computer Engineering Dep

NiK
.‘6“ (i,,,

Pa

')
5 -BERUn
1773

Copyright © 2004

|stanbul Technical University

al thment

Version0.1.9

About the Lecturer |

d BSc
[TU, Computer Engineering Department, 1995
d MSc

[TU, Computer Engineering Department, 1997
O Areasof Interest
Digital Image and Video Analysis and Processing
Real-Time Computer Vision Systems
Multimedia: Indexing and Retrieval

Software Engineering

vV V VY V V

OO Analysis and Design

Welcome to the Course |

4 Important Course Information
» Office Hours
e 14:00-15:00 Tuesday
» Course Web Page
o http://www.cs.itu.edu.tr/~kurt/courses/blg341
» E-mall
e kurt@ce.itu.edu.tr

Grading Scheme |

» 3 Projects (30%)

» A midterm exam (30%)

» A final exam (40%)

» You must follow the official Homework Guidelines
(http://www.ce.itu.edu.tr/lisang/kilavuz.html).

» Academic dishonesty including but not limited to cheating,

plagiarism, collaboration is unacceptable and subject to disciplinary
actions. Any student found guilty will have grade F. Assignments
are due in class on the due date. Late assignments will generally not
be accepted. Any exception must be approved. Approved late
assignments are subject to a grade penalty.

What we want to see in your programs |

» All programs to be written in C/C++

» Self contaned, well thought of, and well designed
functions/classes

» Clean, well documented code, good programming style
» Modular design

» Do not write codes the way hackers do ©

References

Database Management

FILE mie 4. Systems
Edition [is . Y

STRUCTURES

MICHAEL J. FOLK
BILL ZOELLICK
GREG RICCARDI

An Object-Oriented Approach with C++
Ramakrishnan - Gehrke

ITU Main Library Thisdocument is partially based on
QA.76.73.C153.F65 http://www.site.uottawa.ca/~lucia/#T eaching

QA.76.9.F5.T43
QA.76.76.063.S55

Tell meand | forget.

Show me and | remember.
Let me do and | understand.

—Chinese Proverb

{ File Organization

Purpose of the Course |

» Objective of Data Structures (BLG221) was to teach ways of
efficiently organizing and manipulating data in main memory.

» In BLG341E, you will learn equivalent techniques for organization
and manipulation of datain secondary storage.

» |nthefirst part of the course, you will learn about "low level" aspects
of file manipulation (basic file operations, secondary storage devices
and system software).

» |n the second part of the course, you will learn the most important
high-level file structure tools (indexing, co-sequential processing, B
trees, Hashing, etc).

» You will apply these concepts in the design of C programs for solving
various file management problems

{ File Organization 8]

Course Outline |

Introduction to file management.
Fundamental File Processing Operations.

Managing Files of Records. Sequential and direct access.

> L P

Secondary Storage, physical storage devices. disks, tapes and CD-
ROM.

System software: 1/0 system, file system, buffering.

O

6. File compression: Huffman and Lempel-Ziv codes.

/. Reclaming space in files. Internal sorting, binary searching,
keysorting.

8. Introduction to Indexing.

9. Indexing

{ File Organization 9]

Course Outline |

10. Cosequential processing and external sorting
11.Multilevel indexing and B trees

12.Indexed sequential files and B+ trees
13.Hashing

14.Extendible hashing

{ File Organization 10]

[ntroduction to File Management

Content |

» |ntroduction to file structures
» History of file structure design

1

-
O
©
=
(@))
| -
O
@
L
@)
-+
-
@
B
-
o
@
=
C

[File Organization 12]

Introduction to File Organization |

» Data processing from a computer science perspective:
— Storage of data
— Organization of data
— Accessto data
» Thiswill be built on your knowledge of
Data Structures

1

-
O
©
=

(@))

| -
O
@
L

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 13]

Data Structures vs. File Structures |

» Both involve:

Representation of Data
+

1

Operations for accessing data

» Difference:
— Data Structures deal with datain main memory

— File Structures deal with data in secondary storage
device (File).

-
O
©
=

(@))

| -
O
@
L

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 14]

Computer Architecture |

Differences

1

— Fast
— Small
— Expensive
— Volatile
RAM :
(Semiconductor) Man Memory

|
Disk, Tape,

i Second Storage

[File Organization 15]

-
O
©
I

(@)

| -
O
@
LL

@)
-+
-
@
B

-
i®)
@
=
(-

Memory Hierarchy

—i
HEE = _—____-h--q'“x
] - -
o _’C FL'_______#,-H =
o
-
-
CACHE g =
N s Primary storage
== -
- MAIN MEMORY - -
Request for data /
-
Mﬂ{;NETlE‘ DIEK h— - F_‘;C‘_-{,_"{'I-I'I:tin'.ll'} “_"":tﬁ'['f.'l:gﬂ

—
TAPE Tertiary storage

Data satisfying request

-
O
©
=

(@))

| -
O
@
L

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 16]

Memory Hierarchy I

» On systems with 32-bit addressing, only 252 bytes can be
directly referenced in main memory.

» The number of data objects may exceed this number!

» Data must be maintained across program executions. This
requires storage devices that retain information when the
computer Is restarted.

— We call such storage nonvolatile.

— Primary storage is usually volatile, whereas secondary and
tertiary storage are nonvolatile.

1

-
O
©
=

(@))

| -
O
@
.Lt

@)
-+

-

@
B

-
o

@
=

C

{ File Organization 17]

How Fast? |

» Typical times for getting info
— Main memory: ~120 nanoseconds= 120x10”
— Magnetic Disks: ~30 milliseconds = 30x107
» An analogy keeping same time proportion as above
— Looking at the index of a book: 20 seconds
Versus
— Going to the library: 58 days

1

-
O
©
=
(@))
| -
O
@
L
@)
-+
-
@
B
-
o
@
=
C

{ File Organization 18]

Comparison |

» Main Memory

— Fast (since electronic)

— Small (since expensive)

— Volatile (information is lost when power failure occurs)
» Secondary Storage

— Slow (since eectronic and mechanical)

— Large (since cheap)

— Stable, persistent (information is preserved longer)

1

-
O
©
=

(@))

| -
O
@
.Lt

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 19]

Goal of the Course |

» Minimize number of tripsto the disk in order to get
desired information. Ideally get what we need in one disk
access or get it with as few disk access as possible.

» Grouping related information so that we are likely to get
everything we need with only one trip to the disk (e.g.
name, address, phone number, account balance).

1

L ocality of Referencein and

-
O
©
=

(@))

| -
O
@
.Lt

@)
-+

-

@
B

-
o

@
=

C

{ File Organization 20]

Good File Structure Design I

» Fast access to great capacity

» Reduce the number of disk accesses

» By collecting datainto buffers, blocks or buckets
» Manage growth by splitting these collections

1

-
O
©
=
(@))
| -
O
@
L
@)
-+
-
@
B
-
o
@
=
C

{ File Organization 21]

History of File Structure Design |

1. Inthebeginning... it wasthe tape
— Sequential access
— Access cost proportional to size of file
[Analogy to sequential access to array data structure]
2. Disks became more common
— Direct access
[Analogy to access to position in array]
— Indexeswere invented
* list of keys and points stored in small file
o alowsdirect accessto alarge primary file
Great If index fitsinto main memory.
Asfile grows we have the same problem we had with a
large primary file

1

-
O
©
=

(@))

| -
O
@
L

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 22]

History of File Structure Design |

3. Treestructures emerged for main memory (1960's)
— Binary search trees (BST 9)
— Balanced, sdf adjusting BST 's. e.g. AVL trees (1963)
4. A tree structure suitable for files was invented:
B trees(1979) and B+ trees
good for accessing millions of records with 3 or 4 disk
aCcCesses.
5. What about getting info with asingle request?

— Hashing Tables (Theory developed over 60's and 70’ s but still
aresearch topic)

good when files do not change too much in time.
— Expandable, dynamic hashing (late 70's and 80's)
one or two disk accesses even if file grows dramatically

1

-
O
©
=

(@))

| -
O
@
.Lt

@)
-+
-
@
B

-
o
@
=
C

{ File Organization 23]

2 Fundamental File Processing Operations

Content I

» Sample programs for file manipulation

» Physical filesand logical files

» Opening and closing files

» Reading from files and writing into files

» How these operations are done in C and C++
» Standard input/output and redirection

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 25]

What isaFILE? I

A filelis...

» A collection of datais placed under permanent or
non-volatile storage

» Examples. anything that you can store in a disk,
hard drive, tape, optical media, and any other
medium which doesn’t lose the information when
the power Is turned off.

» Notice that thisis only an informal definition!

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 26]

Where do File Structures fit in CS? I

Application

DBMS

H File system

Operating System

Hardware

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 27]

Physical Files& Logical Files I

» Physical file: physically exists on secondary storage;
known by the operating system; appears in its file
directory

» Logica file, what your program actually uses, a ‘pip€e
though which information can be extracted, or sent.

» Operating system: get instruction from program or
command line; link logical file with physical file or device

» Why Is the distinction useful? Why not alow our
programs to deal directly with physical files?

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 28]

Basic File Operations |

» Opening afile- basically, linksalogical fileto aphysical
file.
— On open, the O/S performs a series operations that end
In the program that is trying to open the file being
assigned afile descriptor.
— Additionally, the O/S will perform particular operations
on the file at the request of the calling program, these

operations are intended to ‘initialize’ the file for use by
the program.

— What happens when the O/S detects an error?

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 29]

hFile: Logical File, “account.txt”: Physical File I

#include <stdio.h>
Int main(){
FILE *hFile=fopen(“account.txt”,"r");
char c;
while ('feof(hFile)){
fread (& c,szeof(char),1,hFile) ;
fwrite(& c,sizeof(char),1,stdout) ;
}
fclose(hFile) ;
return O;

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 30]

FILE I

typedef struct {
unsigned char *curp; // Current active pointer
unsigned char *buffer; // Datatransfer buffer
Int evel, /I fill/lempty level of buffer
Int DSIZE; // Buffer size
unsigned short istemp; // Temporary file indicator
unsigned short flags, // File status flags
wchar t hold,; // Ungetc char If no buffer
char fd,; // File descriptor
unsigned char token; // Used for validity checking
} FILE;

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 31]

C++ Counterpart I

#include <fstream>

#include <iostream>

using namespace std ;

Int main(){
char c;
fstream infile;
Infile.open(*account.txt",i0s::in) ;
Infile.unsetf(ios::skipws) ;
Infile>>c;

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

[File Organization 32]

while (! infile.fail)){
cout << C,
infile>>c ;

}

infile.close() ;

return O;

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

S
<
5

LL

[File Organization

Physical Files& Logical Files— Revisited # 1 I

» OS is responsible for associating a logical file in a program to a
physical file in disk or tape. Writing to or reading from a file in a
program is done through the OS.

» Note that from the program point of view, input devices (keyboard)
and output devices (console, printer, etc) are treated as files —
places where bytes come from or sent to

» There may be thousands of physical files on a disk, but a program
only have alimited number of logical files open at the same time.

» The physical file has a name, for instance “account.txt”

» The logical file has a logical name used for referring to the file
Inside the program. The logical name is a variable inside the
program, for instance “infile’

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 34]

Physical Files & Logical Files— Revisited # 2 I

»In C PL, thisvariable isdeclared as.
FILE *infile;

»In C++ PL, the logical name is the name of an object of
the class fstream:
fstream infile;

»In both languages, the logical name infile will be
assoclated to the physical file “account.txt” at the time of
opening thefile.

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 35]

More on Opening Files I

» Two options for opening afile:
— Open an existing file
— Create anew file

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

[File Organization 36]

Howtodoin C I

FILE *outfile;
outfile = fopen(* account.txt”, “w”
» The 1% argument indicates the physical name of the file
» The 2"d one determines the “ mode”
—the way the file is opened

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

[File Organization 37]

The Mode I

» “I": open an existing file for reading

» “w”: create anew file, or truncate existing one, for writing

»“a’. open anew file, or append an existing one for writing

» “r+”: open an existing file for reading and writing

» “w+": create anew file, or truncate an existing one for
reading and writing

> “at’: create anew file, or append an existing one for
reading and writing

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

=

S
:

I
<
5

LL

{ File Organization 38]

How to do in C++ I

fstream outfile;
outfile.open(“account.txt”, 10s::out) ;
» The 1% argument indicates the physical name of the file

» The 2nd argument is an integer indicating the mode
defined in the class ios.

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 39]

The Mode I

»i0s:in open for reading
»i0s..out open for writing
»i0s:app seek to theend of file before each write

P 10s::trunc aways create anew file
»i0s.:nocreate fail if file does not exist
P 10S::binary open in binary mode

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 40]

Basic File Operations |

» Closing afile- cutsthe link between physical and logical
files
— Upon closing, the OS takes care of ‘ synchronizing’ the

contents of thefile, e.g. often a buffer I1s used, need to
write buffer content to file.

— In generd, files are automatically closed when the
program ends.

— S0, why do we need to worry about closing files?
— In C: fclose(outfile)
— In C++: outfile.clos()

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 41]

Basic File Operations |

» Reading and Writing — basic I/O operations.

— Usually require three parameters. a logical file, an
addr ess, and the amount of data that 1sto be read or
written.

— What isthe use of the addr ess parameter?

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 42]

Reading in C I

char ¢ ; // acharacter
char g/ 100] ; // an array with 100 characters
FILE * infile;

Infile = fopen(* myfile.txt”, “r”) ;
fread(&c,1,1,infile) ; // reads one character
fread(a,1,10,infile) ; // reads 10 characters

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

=

S
:

I
<
5

LL

{ File Organization 43]

fread() |

fread(&c,1,1,infile) ; // reads one character

fread(a,1,10,infile) ; // reads 10 characters
» 15 argument: destination address

» 2"d gargument: element size in bytes

» 3'd argument: number of elements

» 4th argument: logical file name

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 44]

Reading in C++ I

char ¢ ; // acharacter

char g/ 100] ; // an array with 100 characters
fstream infile;

Infile.open(“ myfile.txt”, 1o0s::in) ;

infile >> c; // reads one character
infile.read(&c,1) ;

Infile.read(a,10); // reads 10 bytes

» Note that thanks to operator overloading in C++,
operator >> gets the same info at a higher level

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 45]

Writing in C I

char ¢ ; // acharacter

char g/ 100] ; // an array with 100 characters
FILE * outfile;

outfile = fopen(* myfile.txt”, “w”
fwrite(&c,1,1,outfile) ; // writes one character
fwrite(a,1,10,outfile) ; // writes 10 characters

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

=

S
:

I
<
5

LL

{ File Organization 46]

Writing in C++ I

char ¢ ; // acharacter

char g 100] ; // an array with 100 characters
fstream outfile ;

outfile.open(“ myfile.txt”, 10s:..out) ;

outfile << c; // writes one character
outfilewrite(&c,1) ;

outfilewrite(a,10); // writes 10 bytes

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

=

S
:

I
<
5

LL

{ File Organization 47]

Additional File Operations I

» Seeking: sourcefile, offset.
» Detecting the end of afile
» Detecting 1/O error

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

[File Organization 48]

SeekingIin C |

» int fseek(FILE * stream, long offset, int whence);
» Repositions afile pointer on a stream.

» fseek setsthe file pointer associated with stream to anew
position that Is offset bytes from the file location given by
whence.

» \Whence must be one of the values 0. 1, or 2 which
represent three symbolic constants (defined in stdio.h) as
follows:

— SEEK_SET 0 File beginning
— SEEK CUR 1 Current file pointer position
— SEEK END 2 End-of-file

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 49]

Seeking with C++ Stream Classes |

A fstream has 2 file pointers. get pointer & put pointer
(for input) (for output)

filel.seekg (byte offset, origin); //moves get pointer

filel.seekp (byte offset, origin); //moves put pointer

origin can be 10s::beg (beginning of file)
l0S:.cur (current position)
los:;end (end of file)

filel.seekg (373, 10s::beg); // moves get pointer 373 bytes from
// the beginning of file

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 50]

Calculating File Size I

int main(int argc, char* argv[]) {
FILE *hFile=fopen(argv[1],"r");
fseek(hFile, OL, SEEK END);
Int fileLength = ftell(hFile);
printf(“\nFile size is %d” fileLength) ;
fclose(hFile) ;
return O;

N
0
c

=

I
o
Q

O
)

f=
¢
=

al

D

LL

S
:

I
<
5

LL

{ File Organization 51]

Detecting End of File I

» |n C: Check whether fread returned value O
Inti;
| =fread(&c,1,1,infile) ; //attempt to read
If (1I==0) // true if file has ended

» Alternatively, use the function feof(infile)

» |n C++: Check whether infile.faill() returns true
Infile>>c;
if (infilefail()) // trueif file has ended

» Alternatively, use the function infile.eof()

» Also note that fail() indicates that an operation Is
unsuccessful, so it is more general than just checking for
end of file

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 52]

Logical File Names Associated to Std 10 Devices I

PUrpOSe Defal_JIt I__ogical _Name
Meaning INC |In C++
Standard Output ||Console/Screen || stdout | cout
Standard Input ||Keyboard stdin cin
Standard Error ||Console/Screen || stderr | cerr

» These streams do not need to be open or closed in the
program

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 53]

Redirection I

» Some OS allow the default meanings to be changed
through a mechanism called redirection

» Example in Unix

— Suppose that “prog” is the executable program

— Input redirection (standard input becomes file in.txt)
e prog < in.txt

— Output redirection (standard output becomes file out.txt)
* prog > out.txt

— You can also do
e prog < in.txt > out.txt

N
0
c

=

I
o
Q

O
)

[=
¢
=

al

D

L

S
:

I
<
5

LL

{ File Organization 54]

3 Managing Files ot Records

Content |

» Feld and record organization
» Sequential search and direct access
» Seeking

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

[File Organization 56]

Files as a Stream of Bytes |

» So far we have looked the file as a stream of bytes
» Consider the program we studied in the last lecture
#include <stdio.h>
Int main(){
FILE *hFile=fopen(“ example.txt”,"r");
char c;
while (feof(hFile)){
fread (& c,9zeof(char),1,hFile) ;
fwrite(& c,sizeof(char),1,stdout) ;

}
fclose(hFile) ;

return O;

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

}

{ File Organization 57]

“example.txt” |

8/358CARROLL ALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

797/33KNUTH THE ART OF COMPUTER PROGRAMMING
86683KNUTH SURREAL NUMBERS

18395TOLKIEN THE HOBITT

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 58]

Stream |

» Every stream has an associated file position

» \When we open afile, the file position is set to the
beginning

» Thefirst fread (& c,sizeof(char),1,hFile) ; will read 8 into c
and increment the file position

» The 38th fread() will read the newline character (referred
toas‘\n’ in C/C++) Into ¢ and increment the file position.

» The 39th fread() will read O into ¢ and increment the file
position, and so on.

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 59]

File Types |

A file can be treated as
1. astream of bytes (as we have seen before)
2. acollection of recordswith fields
(we will discuss it know)

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 60]

Field and Record Organization I

» Field: adatavalue, smallest unit of data with logical
meaning

» Record: A group of fields that forms alogical unit

» Key: asubset of the fields in arecord used to uniquely

Identify the record
< Memory File
< object record
< member field

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 61]

8/358CARROLL ALICE IN WONDERLAND
03818FOLK FILE STRUCTURES

86683KNUTH SURREAL NUMBERS

In our example, “example.txt” contains information about
books:

» Each line of thefileis arecord.
» Fields in each record:

— |SBN Number,

— Author Name,

— Book Title

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

797/33KNUTH THE ART OF COMPUTER PROGRAMMING
8395TOLKIEN THE HOBITT je—

[File Organization

Primary and Secondary Keys |

» Primary Key
A key that uniquely identifies a record.
» Secondary Key
Other keys that may be used for search
» Note that
In general not every field isakey

Keys correspond to fields, or combination of fields, that
may be used in a search

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 63]

Methods for Organizing Fields I

» Fixed length

» Begin each field with its Length indicator

» Delimitersto separate fields

» “keyword=value’ identifies each field and its content

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 64]

Fixed-Length Fields |

Likein our file of books (field lengths are 5,7, and 25).

B8/358CARROLL ALICEIN WONDERLAND

03818FOLK FILE STRUCTURES

B0683KNUTH SURREAL NUMBERS
8395TOLKIEN THEHOBITT

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 65]

L ength indicator |

Likein our file of books (field lengths are 5,7, and 25).

058735807CARROLL19ALICE IN WONDERLAND
050381804FOL K 15FILE STRUCTURES
058668305K NUTH15SURREAL NUMBERS

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 66]

Delimiter |

87358|CARROLLJALICE IN WONDERLAND)|

03818|FOLK|FILE STRUCTURES]

86683|KNUTH|SURREAL NUMBERS]

18395|TOLKIEN|THE HOBITT] P)

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

[File Organization 67]

Keyword=Value |

| SBN=87358|]AU=CARROLL|TI=ALICE IN WONDERLAND|
| SBN=03818|AU=FOLK|TI=FILE STRUCTURES]

| SBN=86683|JAU=KNUTH|TI=SURREAL NUMBERS|

| SBN=18395|AU=TOLKIEN|TI=THE HOBITT]| e

™
(90)]
J<
Q
O
ad
©
kd
=
)
=
ok
&
=

{ File Organization 68]

Field Structures. Advantages & Disadvantages |

Type Advantages Disadvantages
Fixed Easy to Read/Store Waste space with padding
Width length Easy to jump ahead to Long fields require more

than 1 byte to store length
(Max is 255)
Have to check every byte

I ndicator the end of the field

May waste |less space

Delimited Fields than with length-based of f_|el_d against the
delimiter
Fields are salf .
S Waste space with
Keyword describing allows for keywords

missing fields

™
(90)]
J<
Q
O
ad
©
kd
=
)
=
ok
&
=

{ File Organization 69]

Seguential Search and Direct Access |

Search for arecord matching agiven key

» Sequential Search

— L ook at records sequentially until matching record is found.
Timeisin O(n) for n records.

— Appropriate for Pattern matching, file with few records

» Direct Access

— Being able to seek directly to the beginning of the record. Time
ISin O(1) for n records.

— Possible when we know the Relative Record Number (RRN):
First record has RRN 0O, the next has RRN 1, etc.

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 70]

Direct Access by RRN |

» Requires records of fixed length.
— RRN=30 (31st record)
— Record length = 101 bytes
— Byte offset = 30 x 101 = 3030
» Now, how to go directly to the byte 3030 in the file
— By seeking

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 71]

SeekingIin C |

» int fseek(FILE * stream, long offset, int whence);
» Repositions afile pointer on a stream.

» fseek setsthe file pointer associated with stream to anew
position that Is offset bytes from the file location given by
whence.

» \Whence must be one of the values 0. 1, or 2 which
represent three symbolic constants (defined in stdio.h) as
follows:

— SEEK_SET 0 File beginning
— SEEK CUR 1 Current file pointer position
— SEEK END 2 End-of-file

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 72]

Examples |

» fseek(infile,OL,SEEK _SET);
//moves to the beginning of thefile
» fseek(infile,0L,SEEK _END);
//moves to the end of thefile
» fseek(infile,-10L,SEEK CUR);
//moves back 10 bytes from the current position

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 73]

Finding Information Fast |

» |f we have a sorted file, we can perform a binary search to

ocate iInformation, this is much faster than sequentially

ooking at each record! (recall that sequential search is
O(n), while binary search is O(log2 n)).

» Requires a sorted file (what happens with deletions,
Insertions, and updates?)

» Still requires several disk accesses.

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 74]

How do we make binary search more efficient? I

» Perform the sorting procedure in memory'!
(Internal sort)
» Do the binary search in memory, not on disk

» Keegp only the record keys and RRN’ s in memory, not the
whole record (keysort).

» Belter yet, forget about re-organizing the file altogether!

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 75]

Just leave data file entry-sequenced |

» \Write out the sequence of sorted keys.
Index file

» How to use It?
- binary search on index
- use RRN to access record

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 76]

Anindex: alist of pairs (key, reference),
sorted by key

» Allow direct fast accessto files

» Eliminates the need to re-organize or sort the file (files
can be entry sequenced)

Provide direct access for files with variable length records
Provide multiple access paths to the file
mpose an order on afile without rearranging the file

vVvyy

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 77]

|ndex of a File of Books |

Index | book file

0135399661 152 | 16 0295738491|Feijen|...
0201175353 335 | 65 0485743659|Dijkstra|...
0295738491 16 : 113 0384654756|Dijkstra)...
0384654756 113 | 192 0135399661 |Hehner|...
|
|
|
I

0485743659 65 335 0201175353|Dijkstra|...

memory disk

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 78]

Primary Index |

» Containsaprimary key in canonical form, and a pointer to
arecord in thefile

» Each entry in the primary index identifies uniquely a
record in thefile

» Designed to support binary search on the primary key

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 79]

Basic Operations on Indexes |

» |ndex creation

» |ndex loading

» Updating of index files

» Record additions/ deletions / updates

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 80]

Use of Multiple Indexes |

» Provides multiple views of adatafile

» Allows usto search for particular values within fields that
are not primary keys

» Allows usto search using combinations of secondary /
primary keys

» Each entry in a secondary index contains akey value and
aprimary key (or list of primary keys).

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 8l]

Secondary Key |

» Does not identify records uniquely
» |t isnot dataless

» Has a canonical form (i.e.there are restrictions on the
values that the key must take)

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 82]

Secondary Index Structure |

» List of secondary keys, sorted first by value of the
secondary key, and then by the value of the primary key

» Updates to the file must now be applied on the secondary
Indexes as well.

» The fact that we store primary keys instead of pointers
Into the file minimizes the impact of file updates on the
secondary index.

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 83]

Author Index |

Secondary key Set of primary keys

Dijkstra 0201175353 0384654756 0485743659
Feijen 0295738491
Hehner 0135399661

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 84]

Deletion of a Record |

» Change only datafile and primary index
» Search secondary key, find primary key,
search for primary key in primary index
---> record-not-found
» saved from reading wrong data

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 85]

Update a Record |

» Change secondary key:
X rearrange secondary index
» Change primary key:
rearrange primary index
rewrite reference fields of secondary
Index (no rearrangement)
» Change other fields: no effect on secondary index

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 86]

|mproving Secondary Indexes |

» \We can store several primary keys per row in the
secondary index

—This, however, wastes space for some records, and IS
not sufficient for other secondary keys.

» \We can store a pointer to alinked list of primary keys

—We want these lists to be stored in afile, and to be easy
to manage; hence, the inverted list

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 87]

Inverted Lists |

» Solve the problems associated with the variability in the
number of references a secondary key can have

» Greatly reduces the need to reorganize / sort the
secondary index

» Store primary keysin the order they are entered, do not
need to be sorted

» Thedownsideisthat references for one secondary key are
spread across the inverted list

™
(90)]
2
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 88]

Some Notes |

» Even though it Is preferred to store lists of primary keys,
under certain circumstances it could be better to store
pointers into thefile.

—\When access speed is critical

—When the file is static (does not suffer updates, or
updates are very seldom)

» Consider also that there Is a safety issue related to having
to propagate updates to the file to several indexes, the
updating algorithm must be robust to different types of
failure.

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

{ File Organization 89]

Fixed Length Fields |

class Publication {
public:

char ISBN [12];
char Author [11];
char Title [27];

™
(90)]
J<
Q
O
ad
©
kd
L
)
=
ok
&
=

[File Organization 90]

Secondary Storage [Devices

Content |

» Secondary storage devices
» Organization of disks

» Organizing tracks by sector
» Organizing tracks by blocks
» Non-data overheao
» The cost of adisk access
» Disk as a bottleneck

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 92]

Secondary Storage Devices I

P Since secondary storage is different from main memory
we have to understand how it works in order to do good
file designs.

» Two major types of storage devices
— Direct Access Storage Devices (DASDS)
e Magnetic Disks
Hard Disks (high capacity, low cost per bit)
e Optical Disks
CD-ROM,DVD-ROM
(Read-only/write-once, holds alot of data, cheap)
— Serial Devices
e Magnetic Tapes

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 93]

Magnetic Disks |

» Magnetic disks support direct access to adesired location

» Simplified structure of a disk
— Disk blocks
— Tracks _ _
— Platters Y =
— Cylinder (&
— Sectors
— Disk heads
— Disk Controller
— Seek Time
— Rotationa delay

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

—= Planer

g — ——

Arm movement ‘_____;,' Rotation

{ File Organization 94]

Components of a Disk |

» The platters spin (7200 rpm)

M » Thearm assembly Ismoved Iin

& or out to position ahead on a

5% desired track. Tracks under s
© heads make a cylinder

g (Imaginary!).

K » Only one head reads/writes at

g any onetime

Q

&

> Block sizeisamultiple of amassemsy N
sector size (which isfixed)

{ File Organization 95]

Looking at a Surface |

» Disk contains concentric tracks
» Tracks are divided into sectors
» A sector IS the smallest addressable unit in disk

Tracks

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

Sector

{ File Organization 96]

Cylinder |

» Cylinder: the set of tracks on adisk that are
directly above/below each other

» All the information on a cylinder can be
accessed without moving the read/write arm
(seeking)

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 97]

The Bottleneck |

» \When a program reads a byte from the disk, the operating
system locates the surface, track and sector containing that
byte, and reads the entire sector into a special areain main
memory called buffer.

» The bottleneck of adisk access is moving the read/write
arm. So, It makes sense to store afile in tracks that are
bel ow/above each other In different surfaces, rather than
INn several tracks in the same surface.

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 98]

How to Calculate Disk Capacity |

» Number of cylinders = number of tracks in a surface

M » Track capacity = number of sector per track
£ x
g bytes per sector
5]
¢l P Cylinder capacity = number of surfaces
3 X
= :
g track capacity
§ » Drive capacity = number of cylinders
X

cylinder capacity

{ File Organization 99]

An Example |

» \We have fixed-length records
» Number of records = 50.000 records
» Size of arecord = 256 bytes

» Disk characteristics
— Number of bytes per sector = 512
— Number of sectors per track = 63
— Number of tracks per cylinder = 16
— Number of cylinders = 4092

» How many cylinders are needed?

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 100]

Clusters, Extents and Fragmentation |

» The file manager isthe part of the operating system
responsible for managing files

» The file manager maps the logical parts of the file into
their physical location

» A cluster isafixed number of contiguous sectors

» The file manager allocates an integer number of clustersto
afile. An example: Sector size: 512 bytes, Cluster size: 2
sectors

— If afile contains 10 bytes, a cluster is allocated (1024 bytes).

— There may be unused space in the last cluster of afile. This
unused space contributes to internal fragmentation

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 101]

More on Clusters |

» Clusters are good since they improve sequential access.
reading bytes sequentially from a cluster can be donein
one revolution, seeking only once.

» The file manager maintains afile alocation table (FAT)
containing for each cluster in the file and itslocation In
disk

» An extent isagroup of contiguous clusters. If file is stored
IN a single extent then seeking is done only once.

» |f there Is not enough contiguous clusters to hold afile,
thefileisdivided into 2 or more extents.

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 102]

Fragmentation |

» Due to records not fitting exactly in a sector
— Example: Record size = 200 bytes, sector size = 512 bytes

— to avoid that a record span 2 sectors we can only store 2 records
In this sector (112 bytes go unused per sector

— the alternative isto let arecord span two sectors, but in this case
two sectors must be read when we need to access this record)

» Due to the use of clusters

— If thefile sizeis not multiple of the cluster size, then the last
cluster will be partially used.

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 103]

How to Choose Cluster Size |

» Some OS allow the system administrator to choose the

» \What about small cluster size?

— When disks contain small files and/or files likely to be accessed
randomly

— Example : online updates for airline reservation

N cluster size.

[> When to use large cluster size?

CD?) — When disks contain large files likely to be processed
) sequentially.

g — Example: Updates in amaster file of bank accounts (in batch
N mode)

=>

@

I®)

-

;

{ File Organization 104]

Organizing Tracks By Blocks |

» Disk tracks may be divided into user-defined blocks rather
than into sectors.

» The amount transferred in asingle |/O operation can vary
depending on the needs of the software designer

» A block is usually organized to contain an integral number
of logical records.

» Blocking Factor = number of records stored in each block
inafile
» No internal fragmentation, no record spanning two blocks

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 105]

SubBlocks |

» A block typically contains subblocks:
» Count subblock: contains the number of bytes in a block

» Key subblock (optional): contains the key for the last
record in the data subblock (disk controller can search can
search for key without loading it In main memory)

» Data subblock: contains the records in this block.

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 106]

NonData Overhead |

» Amount of space used for extra stuff other than data

P Sector-Addressable Disks

— a the beginning of each sector some info Is stored, such as sector
address, track address, condition (if sector is defective);

— there is some gap between sectors

» Block-Organized Disks

— subblocks and interblock gapsis part of the extra stuff; more
nondata overhead than with sector-addressing.

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 107]

An Example |

» Disk characteristics
— Block-addressable Disk Drive
— Size of track = 20.000 bytes
— Nondata overhead per block = 300 bytes

» File Characteristics
— Record size = 100 bytes

» How many records can be stored per track for the
following blocking factors?

1. Block factor = 10
2. Block factor = 60

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 108]

Solution for the Example |

» Blocking factor is 10
» Size of data subblocks = 1000
» Number of blocksthat can fit in atrack =

20000
1300

» Number of records per track = 150 records

~|15.38|=15

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 109]

Solution for the Example |

» Blocking factor i1s 60
» Size of data subblocks = 6000
» Number of blocksthat can fit in atrack =

20000
| 6300

» Number of records per track = 180 records

~317]=3

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 110]

Accessing a Disk Page I

» Time to access (read/write) adisk block
— seek time (moving arms to position disk head on track)
— rotational delay (waiting for block to rotate under head)
— transfer time (actually moving data to/from disk surface)

» Seek time and rotational delay dominate
— Seek time varies from 1 to 20 msec
— Rotational delay varies from 1 to 10 msec
— Transfer rate i1s about 1msec fro 4KB page

» Key to lower |/O cost: reduce seek/rotation delays:
Hardware vs. Software solutions?

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 111]

An Example of a Current Disk I

»Model Seagate ST3200822A

hll > Capacity 200GB

48 P Transfer Rate

> — Maximum Internal 683Mbits/sec

% — Maximum External 100M bytes/sec

> DiscyHeads 214

fz » Bytes Per Sector 512

g » Spindle Speed 7200 rpm

§ » Average Seek 8.5 milliseconds

» Average Latency 4.16 milliseconds

{ File Organization 112]

What Is the average time to read one Sector? I

» Transfer time = revolution time / #sectors per track

1 60
7200) _\7200) 6 6

170 170 720x170 122400

= (0.05msec

» Average totaltime = average seek time +
average rottional delay +
transfer time

85+4.16+0.05=12.71 msec

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 113]

Disk as a Bottleneck |

» Processes are often disk-bound

» network and CPU have to wait along time for the disk to
transmit data

» Various technigues to solve this problem

1. Multiprocessing: (CPU works on other jobs while waiting for
the disk)

2. Disk Striping:
» Putting different blocks of the file in different drives.

» |ndependent processes accessing the same file may not
Interfere with each other (parallelism)

RAID (Redundant Array of Independent Disks)

4. RAM Disk (Memory Disk) Piece of main memory is used to
simulate adisk (speed vs. volatility)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

W

{ File Organization 114]

Disk as a Bottleneck (Con’t) |

» Various techniques to solve this problem
5. Disk Cache:

» Large block of memory configured to contain pages of data
from adisk.

» When dataisreqguested from disk, first the cacheis
checked.

» |f dataisnot there (miss) the disk is accessed

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 115]

RAID I

» Disk Array: Arrangement of several disksthat gives
abstraction of asingle, large disk.

» Goals. Increase performance and reliability.

» Two main technigques
— Datastriping: Datais partitioned; size of a partition is called the
striping unit. Partitions are distributed over severa disks.

— Redundancy: More disks — more failures. Redundant
Information allows reconstruction of dataif adisk fails.

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 116]

RAID Levds I

» |_evel 0: No redundancy

» |evel 1. Mirrored (two identical copies)

— Each disk has amirror image (check disk)

— Parallel reads, awrite involves two disks

— Maximum transfer rate=transfer rate of one disk
» Level 0+1: Striping and Mirroring

— Parallel reads, awrite involves two disks

— Maximum transfer rate = aggregate bandwidth

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 117]

RAID Levds I

» Level 3: Bit-Interleaved Parity
— Striping Unit: One bit. One Check Disk.

— Each read and write request involves all disks; disk array can
process one request at atime.

» |_evel 4: Block-Interleaved Parity
— Striping Unit: One Disk Block. One Check Disk.

— Parallel reads possible for small requests, large requests can
utilize full bandwidth

— Writes involve modified block and check disk

» |_evel 5. Block-Interleaved Distributed Parity

— Similar to RAID Levd 4, but parity blocks are distributed over
al disks

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 118]

Tapes

» Tapes
— arereatively inexpensive
— can store very large amounts of data
— good choice for archival storage
* We need to maintain data for along period
» We do not expect to access it very often

» The man drawback of tapes
— they are sequential access devices
— we must essentially step through all the data in order
— cannot directly access a given location on tape
— Mostly used to back up operational data periodically

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization

119 |

Magnetic Tape |

» A set of parallel tracks
» O tracks - parity bit
» Frame

— one-bit-wide slice of tape

» | nterblock gaps
— permit stopping and starting

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 120]

Red 1 Redl 2

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

Read/write head

[File Organization 121]

|n detall

>

g

O

—

I

V)

i

5 OAd 1O A HdO HdAO

8 o
OAd 1O A AdO HdO Ie)
\.II.I.’. VJ
fO.llOllO,l_.0+|._H
OCd O A O A O M

7 S901Ne afkI0IS Arpuodes

122 |

File Organization

(

Tape Organization |

<t logical record

0 B 2400’ >
=

]

A

@ -
%) A >< " T

S ! N] |

- W \ EOT
IS BOT marker
S Data block

§ marker aDIOCKS Interblock gap

(for acceleration &

Header block deceleration of tape)
(describes data blocks)

{ File Organization 123]

Estimating Tape Length |

» Thereis an interblock gap for each data block
» Space requirement s

s=nx(b+g)
— b isthe physical length of adata block

— g isthelength of an interblock gap
— N isthe number of data blocks

» Tape density

» Tape speed

» Size of interblock gap

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 124]

Estimating Tape Length (Con’t) |

» Example:
— one million 100-byte records
— 6,250 BPI tape

— 0.3 Inches of interblock gap

» How much tape is needed?
— when blocking factor is between 1 and 50

» Nominal recording density

» Effective recording density:
— number of byte per block / number of inches for block

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 125]

Estimating Data Transmission Times |

» Factors of data transmission rate
— Interblock gaps
— effective recording density
— nominal recording density
— speed of r/w head
— time to start/stop the tape

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 126]

Disks vs. Tapes |

» Disk » Tape
N — Random access — Sequential access
g — Immediate access — Long-term storage
E — Expensi_veseek In sequential — No seek in sequential
% pProcessing processing
% » Decreasein cost of disk and RAM
%‘ » More RAM spaceisavailablein I/O buffers,
% » so disk I/O decreases
ﬁ » Tertiary storage for backup: CD-ROM, tape ...

{ File Organization 127]

Example: Quantum DLT 8000 |

» Sustained Transfer Rate (M B/sec)

— Compressed 80
» Average File Access Time (sec) 60
» | nterface SCSI-2 Fast/Wide

N — Native 6

§ — Compressed (upto) 121

B > Burst Transfer Rate (M B/sec)
o — Synchronous 20

ol — Asynchronous 12

v » Formatted Capacity (GB)

= — Native 40

©

:

{ File Organization 128]

| ntroduction to CD-ROM |

» CD-ROM: Compact Disc Read-Only Memory
— Can hold over 600M B (200,000 pages)
— Easy to replicate
— Useful for publishing or distributing medium
— But, not storing and retrieving data

» CD-ROM isachild of CD audio

» CD audio provides
— High storage capacity
— Moderate datatransfer rate
— But, against high seek performance
—Poor seek performance

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 129]

History of CD-ROM |

» CD-ROM

— Philips and Sony developed CD-ROM in 1984 in order to store
music on adisc

— Use adigital dataformat

— The development of CD-ROM as alicensing system resultsin
widely acceptance in the industry

— Promised to provide a standard physical format
— Any CD-ROM drive can read any sector which they want

— Computer applications store datain afile not in terms of sector,
thus, file system standard should be needed

— In early summer of 1986, an official standard for organizing files
was worked out

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 130]

Physical Organization of Master Disk |

» Master Disc
— Formed by using the digital data, O or 1

<
% — Made of glass and coated that is changed by the laser beam
=4 » Two part of CD-ROM
] |
a — Pit
% » The areasthat is hit by the laser beam
% » Scatter the light
% — Land
g * Smooth, unchanged areas between pits
gg e Reflect the light light
\aser beam +
\ land
/ .
pit
{ File Organization 131]

Encoding Scheme of CD-ROM |

» Encoding scheme

— The aternating pattern of high- and low-density reflected light is
the signal

— 1: transition from pit to land and back again
— Os: the amount of time between transitions
» Constraint l, | 00000001, | 10000100000000c,

— The limits of resolution of the optical pickup, there must be at
least two O’ s between any pair of 1's (no two adjacent 19)

— We cannot represent all bit patterns, thus, we need trandlation
scheme

— We need at least 14 bits to represent 8 bits under this constraint

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 132]

Format of CD-ROM |

» CD audio chose CLV format instead of CAV format
— CD audio requires large storage space
— CD audio is played from the beginning to the end sequentially

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 133]

Format of CD-ROM |

» Format of CD-ROM
— CLV(Constant Linear Velocity)
— A single spiral pattern
— Same amount of space for each sector
— Capability for writing all of sectors at the maximum density
— Rotational speed is slower in reading outer edge than in inner
edge
— Finding the correct speed though trial and error
— Characteristics
* Poor seek performance
* No straightforward way to jump to a specified location

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 134]

Constant Angular Velocity Disk |

» Magnetic disk usually uses CAV(Constant Angular Velocity)
— Concentric tracks and pie-shaped sectors
— Datadensity is higher in inner edge than in outer edge
— Storage waste: total storage islessthan ahalf of CLV
— Spin the disc at the same speed for all positions

— Easy to find a specific location on adisk — good seek
performance

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 135]

Addressing of CD-ROM |

» Addressing

— Magnetic disk: cylinder/track/sector approach
— CD-ROM:: a sector-addressing scheme

» Track density varies thus, each second of playing timeonaCD is
divided into 75 sectors

— 75 sectorg/sec, 2 Kbytes/sector
— At least one-hour of playing time
— Maximum capacity can be calculated: 600 Mbytes
60 min * 60 sec/min * 75 sectors/sec = 270,000 sectors
» \We address a given sector by referring minutes, second, and sector
of play
— 16:22:34 means 34th sector in the 22nd second in the 16th

minutes of play
{ File Organization 136]

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

Fundamental Design of CD Disc |

» Initialy designed for delivering digital audio information

» Store audio datain digital form

» \Wave patterns should be converted into digital form

» Measure of the height of the sound: 65,536 different gradation(16
bits)

» Sampling rate: 44.1 kHz, because of 2 times of 20,000 Hz upto
which people can listen

» 16 bits sample, 44,100 times per second, and two channel for stereo
sound, we should store 176,400 bytes per seconds

» Storage capacity of CD is 75 sectors per seconds, we have 2,352
bytes per sector

» CD-ROM divides this raw sector as shown in the following figure

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 137]

Raw Sector |

12bytes | abytes | 2.048bytes | 4 PVIES Shytes | 270DYteS
error error
synch sector ID user data : null :
detection correction

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 138]

File Structure Problem of CD-ROM |

» Strong and weak sides of CD-ROM
— Strong aspects of CD-ROM
— Datatransfer rate: 75 sectors/sec
— Storage capacity : over 600 Mbytes
— Inexpensive to duplicate and durable
— Weak aspects of CD-ROM
» Poor seek performance (weak random access)
» Magnetic disk: 30 msec, CD-ROM : 500 msec
— Comparison of access time of alarge file from several media
e RAM: 20 sec, Disk: 58 days, CD-ROM: 2.5 years

» \We should have a good file structure avoiding seeks to an even greater
extent that on magnetic disk

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 139]

What IsDVD? I

» DVD

— Digital Video disk (DVD-Video)

— Digital Versatile disk (DVD-ROM)
» In September 1995

— Asamovie-playback format

— Asacomputer-ROM format

» Next-Generation optical disc storage technology will replace
audio-CD, videotape, laserdisk, CD-ROM, etc.

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 140]

The History from CD to DVD |

» 1980, Sony & Philips — CD-Audio
» 1985, Sony & Philips — CD-ROM
» 1989, Sony & Philips — CD-
» 1990, Sony & Philips — CD-R
> 1995, — CD-E
» 1905, September — DVD

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 141]

DVD Capacity |

» Single-sided
— DVD5 (4.7 GB/single-layer)
— DVD9 (8.5 GB/dual-layer)
» Double-sided
— DVDI10 (9.4 = 4.7x2 GB/dual-layer)
— DVDI18 (17 = 8.5x2 GB/dual-layer)
» \Write-Once
— DVD-R (3.8 GB/side)

» Overwrite
— DVD-RAM (more than 2.6 GB/side)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 142]

Singlesided, single layer

0.6mm
N 0.6mm
5
= _ substrate
g reflexive-layer
5]
ol Single sided, dual layer
O
(% 0.6mm
IS 0.6mm
:

semi-transmissive-layer

(qold-layen) reflexive-layer

(silver-layer)

{ File Organization 143]

CDvs DVD I

» L aser-Beam
— CD — infrared light (780nm)
— DVD — red light (635-650nm)
» Capacity
— CD — maximum 680M B
— DVD — maximum 17GB (25 times of CD)

» Reference Speed
— CD — 1.2m/sec. CLV
— DVD — 4.0m/sec. CLV

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 144]

Track Structure |

» | egend
— | Lead-in area(leader space near edge of disc)

— D Dataarea (containsactual data)
— O Lead-out area(leader space near edge of disc)
— X Unusable area (edge or donut hole)
— M Middlearea (interlayer lead-in/out)
— B Dummy-bonded layer
(to make disc 1.2mm thick instead of 0.6mm)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 145]

Single Layer Disc |

direction: continuous spiral from inside to outside of disc.
>

XX11'1DDDDDDDDDDDDDDDDDDDDDOOOXX

\

reference axis

outer edge of disc

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 146]

Dual Layer Disc |

(A) Paralld track path (for computer CD-ROM use)
Direction : same for both layers.
(B) Opposite track path (for movies)
Direction : opposite directions
(Since the reference beam and angular velocities are the same
at the layer transition point, the delay comes from refocusing.
This permits seamless transition for movie playback.)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 147]

Parallel track-path

>
XX111DDDDDDDDDDDDDDDDDDDDDOOOXX layer 1

XX111DDDDDDDDDDDDDDDDDDDDDOOOXX layer O
>

Opposite track-path

>

XX111DDDDDDDDDDDDDDDDDDDDDOOOXX layer 1
XX111DDDDDDDDDDDDDDDDDDDDDOOOXX layer O

<
\ outer edge
reference axis of disc

{ File Organization 148]

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

Sector Structure |

» 2064 bytes/sector
— organized into 12 rows, each with 172B
— first row starts with 12B sector header
(ID,IEC,Reserved bytes)
— final row is punctuated with 4B (EDC bytes)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

i 12 rows

{ File Organization 149]

RoOwW Fields within row

ID(4B) IEC(2B) RESERVED(6B) Main data(160B : D[0]-D[159])
Main data(172B : D[160]-D[331])
Main data(172B : D[332]-D[503])
Main data(172B : D[504]-D[675])
Main data(172B : D[676]-D[847])
Main data(172B : D[848]-D[1019])
Main data(172B : D[1020]-D[1191])
Main data(172B : D[1192]-D[1363])
Main data(172B : D[1364]-D[1535])
Main data(172B : D[1536]-D[1707])
0O Main data(172B : D[1708]-D[1879])
1 Main data(168B : D[1880]-D[2047]) EDC(4B)

P PO NOOUTSA,WNEO

ID . Identification Data (32bit sector number)
IEC : ID Error Correction
EDC: Error Detection Code

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization

150 |

Block Structure |

» To combat burst error, 16 sectors are interleaved together
(16 sectors* 12 rows/sector = 192 rows)

» Error correction byes are concatenated
— 10bytes at the end of each row
— 16 rows at the end of the block

—
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 151]

182 x 208

N Data BlOCk 192 rows
&
&
o v
a
Q
o .
S Error correction bytes 16rows
0
>
@
O
C
Q
s 172 x 192
payload/block = x 100 = 87 %

{ File Organization

152 |

DVD Video Features |

» Over 2 hours of high-quality digital video

» Support wide screen movies & standard or widescreen TVs (4.3 &
16:9 aspect ratios)

» Up to 8 tracks of digital audio
» Up to 32 subtitle/karaoke tracks
» Up to 9 camera angles

» Multilingual identifying text for title name, album name, song name,
actors, etc.

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 153]

DVD Video Encoding Data |

» Encoding Video
— MPEG-2 compression
(developed by the Motion Pictures Experts Group)
— High-Resolution (better than CD,LD
3-times better than Video tape)

» Encoding Sound
— Dolby Digital surround AC-3 sound compression
(support five sound channel plus subwoofer channel
=> | eft, center, right, rear-left, rear-right channel)

#
&
=
o
O
3
of
)
N
>
o
o)
-
;

{ File Organization 154]

5 Buffer VManagement

Content |

» A journey of abyte
» Buffer Management

3}

5
5
ok
&
=
ke
&

[File Organization 156]

A journey of abyte |

» Suppose in our program we Wrote:
outfile << c;

» This causes acall to the file manager (apart of O.S. responsible
for 1/0 operations)

» The O/S (File manager) makes sure that the byte iswritten to
the disk.

» Pieces of software/hardware involved in 1/0O:
— Application Program
— Operating System/ file manager
— |/O Processor
— Disk Controller

3}

5
5
ok
&
=
ke
&

{ File Organization

157 |

» Application program
— Requests the I/O operation

» Operating system / file manager
— Keepstables for all opened files
— Brings appropriate sector to buffer.
— Writes byte to buffer

— Givesinstruction to 1/O processor to write data from this buffer
Into correct place in disk.

— Note: the buffer is an exact image of a cluster in disk.

» |/O Processor
— aseparate chip; runs independently of CPU

— Find atime when drive is available to receive data and put data in
proper format for the disk

— Sends data to disk controller
» Disk controller

— A sgparate chip; instructs the drive to move R/W head

— Sends the byte to the surface when the proper sector comes under
R/W head.

{ File Organization 158]

3}

5
5
ok
&
=
ke
&

Buffer Management |

» Buffering means working with large chunks of datain main
memory so the number of accesses to secondary storage is reduced.

» Today, we'll discussthe System 1/0 buffers. These are beyond the
control of application programs and are manipulated by the O.S.

» Note that the application program may implement its own “buffer”
—1.e. aplace in memory (variable, object) that accumulates large
chunks of datato be later written to disk as a chunk.

3}

5
5
ok
&
=
ke
&

{ File Organization 159]

System |/O Buffer |

Datatransferred
O by blocks
/
/
5 Secondary ¥
% Storage [C—| Buffer 'T\’ Program
S J
E /
- K Datatransferred by
= K records
m

Temporary storagein MM
for one block of data

[File Organization 160]

Buffer Bottlenecks |

» Consider the following program segment:
while (1) {
infile >> ch;
1f (infile.fail()) break;
outfile << ch;

)
» \What happens if the O.S. used only one I/O buffer?
= Buffer bottleneck

» Most O.S. have an input buffer and an output buffer.

3}

5
5
ok
&
=
ke
&

{ File Organization 161]

Buffering Strategies |

» Double Buffering: Two buffers can be used to allow processing
and 1/O to overlap.

— Suppose that a program is only writing to a disk.

— CPU wantsto fill abuffer at the same time that 1/O i1s being
performed.

— If two buffers are used and I/O-CPU overlapping is permitted,
CPU can be filling one buffer while the other buffer is being
transmitted to disk.

— When both tasks are finished, the roles of the buffers can be
exchanged.

» The actual management is done by the O.S.

3}

5
5
ok
&
=
ke
&

{ File Organization

162 |

Double Buffering |

|/O Buffer 1 _>
To disk
CYIl Program data area
-L |/O Buffer 2

—|-> 1/0 Buffer 1
/O Buffer 2 o
To disk

3}

5
5
ok
&
=
ke
&

[File Organization 163]

Other Buffering Strategies |

» Multiple Buffering: instead of two buffers any number of buffers
can be used to allow processing and 1/0 to overlap.

» Buffer pooling:
— Thereisapool of buffers.

— When arequest for a sector isreceived, O.S. first looks to see that sector isin
some buffer.

— If not there, it brings the sector to some free buffer. If no free buffer exists, it
must choose an occupied buffer. (usually LRU strategy is used)

3}

5
5
ok
&
=
ke
&

{ File Organization 164]

Buffering Strategies. Move & Locate mode I

» Move mode (using both system buffer & program buffer)

— moving data from one place in RAM to another before they can
be accessed

— sometimes, unnecessary data moves
» Locate mode (using system buffer only or program buffer only)

— perform 1/O directly between secondary storage and program
buffer (program’s data area)

— system buffers handle all 1/Os, but program uses locations
through pointer variable

3}

5
5
ok
&
=
ke
&

{ File Organization 165]

Move Mode and Location Mode |

Move program’s |
mode data area disk

3}

Locate
mode

user’s system

program buffer disk

5
5
ok
&
=
ke
&
@

[File Organization 166]

6 File Compression

Content |

» | ntroduction to Compression
» Methods in Data Compression
— Run-Length Coding
— Huffman Coding

6

C
o
v

S
&
@)
O
2
L

{ File Organization 168]

Data Compression |

» Reasons for data compression
— less storage
— transmitting faster, decreasing access time
— processing faster sequentially

6

C
o
v
S
&
@)
O
2
i

{ File Organization 169]

Data Compression |

» Fixed-Length fields are good candidates

» Decrease the number of bits by finding a more compact notation
» Cons.
— unreadable by human
— cost in encoding time
— decoding modules = increase the complexity of s'w
= used for particular application

6

C
o
v
S
&
@)
O
2
i

{ File Organization 170]

Suppressing repeating sequences |

» Run-length encoding algorithm

— read through pixels, copying pixel valuesto file in sequence, except the same
pixel value occurs more than once in succession

— when the same value occurs more than once in succession, substitute the

(o)

= following three bytes

' v'specia run-length code indicator(e.g. OxXFF)

v'pixel value repeated

= v'the number of times that value is repeated

% Example:

= « 2223242424 2424242425 25 24
RL-coded stream: 22 23 ff 24 07 25 2524

{ File Organization 171]

Suppressing Repeating Sequences |

» Run-length encoding (cont’ d)
— example of redundancy reduction
— cons.
e not guarantee any particular amount of space savings
 under some circumstances, compressed image is larger than
original image
—Why? Can you prevent this?

6

C
o
v

S
&
@)
O
2
L

{ File Organization 172]

Assigning Variable-Length Codes |

» Morse code: oldest & most common scheme of variable-length code

» Some values occur more frequently than others
— that value should take the least amount of space

» Huffman coding
— base on probability of occurrence

 determine probabilities of each value occurring
* build binary tree with search path for each value

e more freguently occurring values are given shorter search
pathsin tree

6

C
o
v
S
&
@)
O
2
i

{ File Organization 173]

Assigning Variable-Length Codes |

» Huffman coding

Letter: a b C d e f g
— Pr: 0.4 0.1 0.1 0.1 0.1 0.1 0.1
Code; 1 010 011 0000 0001 0010 0011
Example: the string “ abde”
=> 10100000

C
o
v
S
&
@)
O
2
i

{ File Organization 174]

Huffman Tree |

6

C
o
v

S
&
@)
O
2
L

[File Organization 175]

Lempel-Ziv Codes |

» There are several variations of Lempel-Ziv Codes.
»Wewill look at LZ78

» Commands zip and unzip and Unix compress and
uncompress us Lempel-Ziv codes

6

C
o
v

S
&
@)
O
2
L

{ File Organization 176]

Example |

» et uslook at an example for an alphabet having only two
letters:

aaababbbaaabaaaaaaabaabb

» Rule

— Separate this stream of characters into pieces of text so
that each piece Is the shortest string of characters that
we have not seen yet.

6

C
o
v
S
&
@)
O
2
i

{ File Organization 177]

alaa|b|abl|bblaaalbajaaaalaablaabb

Wesee"a’

“a’ has been seen, we now see“aa’
Wesee“Db”

“a’ has been seen, we now see “ab”

“b” has been seen, we now see “bb”
“aa’ has been seen, we now see “aad’
“b” has been seen, we now see “ba’
“*aad’ has been seen, we now see “aaad’
“aa’ has been seen, we now see “aab’
10. “aab” has been seen, we now see “aabb’

6

C
o
v
S
&
@)
O
2
i

© 00 NO Uk~ oW

{ File Organization

178 |

| ndex |

» \We have index valuesfrom 1 ton
» For the previous example

1234 56 78 9 10
alaa|b|abl|bblaaalbajaaaalaablaabb

» Encoding

123456 7 89 10
0a|1a|0b|1b|3b[2a3a6a|2b|9b

6

C
o
v
S
&
@)
O
2
i

Lempel-Ziv Codes |

» Since each piece Is the concatenation of a piece already
seen with anew character, the message can be encoded by
a previous index plus a new character.

» A tree can be built when encoding

6

C
o
v

S
&
@)
O
2
L

{ File Organization 180]

Encoding Tree |
0
ﬁ\b

O
1 3

S
Q.
= 2 4 7 5
: I
E

6 9 123456 78 9 10

a b alaa|blablbblasalbajaacalaablaabb
8 10

{ File Organization 181]

Exercise# 1 |

» encode the file containing the following characters,
drawing the corresponding digital tree

* aaabbcbcdddeab”

6

C
o
v

S
&
@)
O
2
L

{ File Organization 182]

Solution |
712 345 07 8

| ajaa|b|bclbed|d|defab
q 0a|1al0b[2cl4d|0d|6e]1b

{ File Organization 183]

Encoding Tree |

6

C
o
v

S
&
@)
O
2
L

12345 67 8
alaalblbc|bed|d|delab
0al1a|0b|2c|4d|0d|6e[1b

{ File Organization 184]

Exercise# 2 |

» Encode the file containing the following characters,
drawing the corresponding digital tree

"1 AM SAM. SAM | AM”

6

C
o
v

S
&
@)
O
2
L

{ File Organization 185]

Solution |

123 4 5 6 [/ 8 O 1011
| IAIM| SIAM].| SA[M |1 |AM.
01|0 |OA|OM|2S|3M[0.|5A |4 |1 |6.

(o
C
o
v
S
&
@)
O
2
i

Encoding Tree

6

M
A
l}r

9

C
o
v
S
&
@)
O
2
i

123456 78 91011
8 111 lIAIM| SIAM[.| SA[M |I |AM.
01[0 |OA|OM [2S|3M|0.[5A |4 |1 |6.

{ File Organization 187]

L ossy Compression Techniques |

» Some information can be sacrificed
» |_ess common in datafiles
» Shrinking raster image
— 400-by-400 pixelsto 100-by-100 pixels
— 1 pixel for every 16 pixels
» Speech compression
— voice coding (the lost information is of no little or no value)

6

C
o
v
S
&
@)
O
2
i

{ File Organization 188]

Reclaiming Spaces/in Files

Motivation |

» et us consider afile of records (fixed length or variable
length)

» \We know how to create afile, how to add recordsto afile,
modify the content of arecord. These actions can be
performed physically by using the various basic file
operations we have seen (fopen, fclose, fseek, fread,
fwrite)

» \What happens if records need to be deleted?

» There is no basic operation that allows us to remove part
of afile. Record deletion should be taken care by the
program responsible for file organization

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 190]

Strategies for Record Deletion |

» How to delete records and reuse the unused space?
1. Record Deletion and Storage Compaction
— Déletion can be done by marking a record as deleted

— Note that the space for the record is not released, but
the program that manipulates the file must include
logic that checks if record is deleted or not.

— After alot of records have been deleted, a special
program is used to squeeze the file-that is called
Storage Compaction

N
Lt
i
f
a3
7]
&
IS
©
O
ad

{ File Organization 191]

Strategies for Record Deletion |

2. Deleting Fixed-Length Records and Reclaiming
Space Dynamically

— When arecord is deleted, it is marked as deleted and
Inserted into the AVAIL LIST. The record spaceisin
the same position as before, but it islogically placed
into AVAIL LIST

N~
% — How to use the space of deleted records for storing
i records that are added later?

3 — Usean“AVAIL LIST”, alinked list of available
Q records.

2] — A header record stores the beginning of the AVAIL
£ LIST

S

K

O

Y

{ File Organization 192]

Example |
List Header RRN=4
y
1 2 3 4 5

0

N
Lt
L
f
a3
7]
&
IS
©
O
ad

If we add arecord, it can go to the first available spot in the
AVAIL LIST where RRN=4.

[File Organization 193]

Strategies for Record Deletion |

3. Deleting Variable-Length Records

— Usean AVAIL LIST asbefore, but take care of the
variable-length difficulties

— Therecordsin AVAIL LIST must storeitssizeas a
field.

— RRN can not be used, but exact byte offset must be
used

— Addition of records must find alarge enough record in
AVAIL LIST.

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 194]

\
\

Example |
arease (R
2

Simpson|B|Seinfel d|J* -1|10[Schumaer|M [* 21|30

0 1 2 3 4
10 bytes 11 bytes 10B 11B 30 bytes

N
Lt
L
f
a3
7]
&
IS
©
O
ad

Addition of records must find alarge enough record in
AVAIL LIST.

[File Organization 195]

Placement Strategies for New Records |

» Thereare sevara strategies for selecting arecord from
AVAIL LIST when adding a new record:

1. First-Fit Strategy

— AVAIL LIST isnot sorted by size.

— Hirst record large enough to hold new record is chosen.
» Example:

— AVAIL LIST: size=10,si1ze=50,s1ze=22,51ze=60

— record to be added: size=20

— Which record from AVAIL LIST isused for the new
record?

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 196]

Placement Strategies for New Records |

2. Best-Fit Strategy
— AVAIL LIST issorted by size.

— Smallest record large enough to hold new record is
chosen.

» Example:
— AVAIL LIST: size=10,9ze=22,51ze=50,51ze=60
— record to be added: size=20

— Which record from AVAIL LIST isused for the new
record?

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 197]

Placement Strategies for New Records |

3. Worst-Fit Strategy
— AVAIL LIST is sorted by decreasing order of size.

— Largest record is used for holding new record; unused
space s placed again in AVAIL LIST.

» Example:
— AVAIL LIST: s1ze=60,9ze=50,51ze=22,91ze=10
— record to be added: size=20

— Which record from AVAIL LIST isused for the new
record?

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 198]

How to Choose Between Strategies |

» \We must consider two types of fragmentation within a
file:
» | nternal Fragmentation
— wasted space within arecord.
» External Fragmentation

— gpaceisavallableat AVAIL LIST, but it isso small
that cannot be reused.

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 199]

N
Lt
L
f
a3
7]
&
IS
©
O
ad

Study thisl! |

» For each of the following approaches, which type of
fragmentation arises, and which placement strategy iIs
more suitable?

» \When the added record is smaller than the item taken from
AVAIL LIST:
» |_eave the space unused within record
— type of fragmentation: internal
— suitable placement strategy: ~ best-fit

» Return the unused space as a new available record to
AVAIL LIST
— type of fragmentation: external
— suitable placement strategy: ~ worst-fit

{ File Organization 200]

Ways of Combating External Fragmentation |

» Coalescing the Holes

— If two recordsin AVAIL LIST are adjacent, combine
them into alarger record

» Minimize fragmentation by using one of the previoudly
mentioned placement strategies

— for example: worst-fit strategy Is better than best-fit
strategy In terms of external fragmentation when
unused space is returned to AVAIL LIST

N
Lt
L
f
a3
7]
&
IS
©
O
ad

{ File Organization 201]

BINARY SEARCHING,

KEYSORTING & INDEXING

Content |

» Binary Searching
» Keysorting
» | ntroduction to Indexing

00)
(@)
=
EI<)
©
E
@)
)
-
@)
B
-
L®)
O
| -
]
c

[File Organization 203]

Binary Searching |

» et us consider fixed-length records that must be searched
oy akey value

» |f we knew the RRN of the record identified by this key

value, we could jump directly to the record (by using
fseek function)

» | n practice, we do not have this information and we must
search for the record containing this key value

» |f the file is not sorted by the key value we may haveto
look at every possible record before we find the desired
record

» An alternative to thisis to maintain the file sorted by key
value and use binary searching

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 204]

Binary Search Algorithm in C++ |

template <typename KeyType,typename RecordType>
bool BinarySearch(FILE *file,RecordType &rec, KeyType &key){

O; Int low=0,high=getFileLength(file)/sizeof (RecordType)-1 ;
<>:_< INt guess ;
= while (low<=high){
g guess = (high+low)/2 ;
g readRecor d(filerec,guess) ;
*§ if (Equal (rec.key(),key)) return true;
:'é if (Greater (rec.key(),key)) high = guess-1;
= elselow = guess+1 ;
}
return false;

}

{ File Organization

205 |

TBook |

typedef struct TBook {
O; char author[16] ;
5 char title[24] -
= char isbn[10] ;
S char *key(){return isbn;}
% } SBook ;

{ File Organization 206]

Equal () |

template <typename KeyType>

bool Equal(KeyType key1l,KeyType key2){
I (keyl==key?2) return true,
return false;

}

bool Equal(char *keyl,char *key2){
return (stremp(key1,key2)==0) ;

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

}

{ File Organization 207]

readRecord |

template <typename RecordType>

void readRecord(FILE *file,RecordType &rec,int rnn){
fseek(hFile,rnn* sizeof (RecordType), SEEK SET) ;
fread(& rec,sizeof(RecordType),1,hFile) ;

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 208]

It main() |

Int main(int argc, char* argvl]) {
FILE *hFile;

TBook book ;

BinarySearch(hFile,book, "DaVinci Code") ;
cout << book.author ;

return O;

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 209]

Binary Search vs. Sequential Search |

» Sequential Search: O(n)

» Binary Search: O(log,n)

» |f file size is doubled, sequential search time Is doubled,
while binary search time increases by 1

0
(@)
=
=
e
=
e
o
-
S
B
=
]
e
S
d
c

{ File Organization 210]

Keysorting |

» Suppose afile needs to be sorted, but it istoo big to fit
Into main memory.

» To sort the file, we only need the keys.
» Suppose that all the keysfit into main memory
» |dea

— Bring the keys to main memory plus corresponding
RRN

— Do internal sorting of keys
— Rewrite the file In sorted order

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 211]

Example |

keynodes array records
key RRN
HARRISON 0 » | HARRISON | 387 Eastern...
KELLOG 1 » | KELLOG |17 Maple...
HARRIS 2 » | HARRIS | 4343 West...
BELL 3 » | BELL | 8912 Hill...

Main Memory Disk

{ File Organization 212]

keynodes array records

key RRN

BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG | 17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...

Internal sorting No change in Disk

In main memory

{ File Organization

213 |

keynodes array

records

BELL | 8912 Hill...

HARRIS | 4343 West...

BELL 3
HARRIS 2
HARRISON 0
KELLOG 1

HARRISON | 387 Eastern...

KELLOG | 17 Maple...

create new sorted file to
replace previous

{ File Organization

214 |

How much effort we must do? |

» Read file sequentially once
» Go through each record in random order (seek)
» \Write each record once (sequentially)

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 215]

Why bother to write the file back? |

» Use keynode array to create an index file instead.

(00

e index file records

g BELL 3 HARRISON | 387 Eastern..
Y HARRIS B KELLOG | 17 Maple...

IS HARRISON 0 HARRIS | 4343 West...

g KELLOG 1 BELL | 8912 Hill...

@)

E leave file unchanged

thisis called indexingt

{ File Organization 216]

Pinned Records |

» Remember that in order to support deletions we used
AVAIL LIST, alist of available records

» The AVAIL LIST contains info on the physical information
of records. In such afile, arecord issaid to be pinned

» |f we use an index file for sorting, the AVAIL LIST and
positions of records remain unchanged.

» Thisisagood news ©

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 217]

Introduction to Indexing |

» Simple indexes use simple arrays.

» An index lets usimpose order on a file without
rearranging the file.

» | ndexes provide multiple access pathsto afile—
multiple indexes (like library catalog providing search for
author, book and title)

» An index can provide keyed access to variable-length
record files

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 218]

A Simple Index for Entry-Seguenced File |

» Records (Variable-length)

00)
= | % LON | 2312 | Symphony N.S | ...
= addressof 62 | RCA | 2626 | Quartet in C sharp | ...
(D)
= record 117 | WAR | 23699 | Adagio | ...
) 152 | ANG | 3795 | Violin Concerto | ...
-
(@) .
=8 » Primary key = company label + record ID
- .
3 key reference field
£ ANG3795 152
: LON2312 17
Index:
RCA2626 62
WAR23699 117
{ File Organization 219]

| ndex |

» | ndex Is sorted (main memory)
» Records appear in file in the order they entered
» How to search for arecording with given LABEL 1D?

— Binary search (in main memory) in the index: find
LABEL ID, which leads usto the referenced field

— Seek for record In position given by the reference field

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 220]

Some [ssues |

» How to make a persistent index

—1.e. how to store theindex into afilewhen it isnot in
main memory

» How to guarantee that the index Is an accurate reflection
of the contents of thefile

— Thisistricky when there are lots of additions, deletions
and updates

00)
(@)
=
EI<)
©
E
@)
+—
-
@)
B
-
L®)
O
| -
]
(-

{ File Organization 221]

o I

Indexing |

» Operationsin order to maintain an Indexed File
Create the original empty and datafiles.

L oad the index file into memory before using it.
Rewrite the index file from memory after using it.
Add data records to the datafile.

Delete records from the datafile.

Update the index to reflect changes in the datafile

9

o)
=

o
S

c

P L e A

{ File Organization 223]

Rewrite the Index File From Memory |

» \When the datafile is closed, the index in memory needsto
be written to the index file.

» An important issue to consider iswhat happens if the
rewriting does not take place (power failures, turning the
machine off, etc.)

9

o)

=
o

S
c

{ File Organization 224]

Two Important Safeguards |

» Keep an status flag stored in the header of the index file.
— The status flag i1s “on” whenever the index file is not up-to-date.

— When changes are performed in the index residing on main
memory the status flag in the file is turned on.

— Whenever the file is written from main memory the statusflag is
turned off.
» |f the program detects the isindex Is out-of-date it calls a
procedure that reconstruct the index from the datafile

9

o)
=

o
S

c

{ File Organization 225]

Record Addition |

» This consists of appending the data file and inserting a
new record in the index.

» The rearrangement of the index consists of “dliding down”
the records with keys larger than the inserted key and then
placing the new record in the opened space.

» Note that this rearrangement is done in main memory

9

o)
=

o
S

c

{ File Organization 226]

Record Deletion |

» This should use the techniques for reclaiming space in
fileswhen deleting from the datafile

» \We must delete the corresponding entry from the index:

— Shift all records with keys larger than the key of the
deleted record to the previous position (in main
memory); or

— Mark the index entry as deleted

9

o)
=

o
S

c

{ File Organization 227]

Record Updating |

» There are two cases to consider:
» The update changes the value of the key field.
— Treat this as a deletion followed by an insertion
» The update does not affect the key field
— If record size is unchanged, just modify the data record.

— If record size changes treat this as a delete/insert
seguence.

9

o)

=
o

S
c

{ File Organization 228]

Indexestoo Large to Fit into Main Memory |

» The indexes that we have considered before could fit into
main memory.

» |f thisis not the case, we have the following problems:

— Binary searching of the index file is done on disk,
Involving several “fseek()” calls

— Index rearrangement (record addition or deletion)
requires shifting on disk

9

o)

=
o

S
c

{ File Organization 229]

Two Main Alternatives |

» Tree-structured index such as B-trees and B+ trees
(Chapters 11-12)

» Hashed Organization (Chapters 13,14)

9

o)
=

o
S

c

{ File Organization 230]

A Simple Index Is still Useful, even in SSD |

» |t allows binary search to obtain a keyed access to arecord
In avariable-length record file.

» Sorting and maintaining an index is less costly than
sorting and maintaining the datafile, since the index is
smaller

» \We can rearrange keys, without moving the data records
when there are pinned records

9

o)

=
o

S
c

{ File Organization 231]

Indexing to Provide Access by Multiple Keys |

» Suppose that you are looking at a collection of recordings
with the following information about each of them:

— |ldentification Number

- — Title

= — Composer or Composers
X

S — Artist or Artists

_ Label (publisher)

{ File Organization 232]

Data File |

Address of Record Actual datarecord

32 LON|2312|Romeo and Juliet|Prokofiev . . .
7 RCA|2626|Quarter in C Sharp Minor . . .

132
167 ANG|3795|Sympony No. 9|Beethoven . . .
211 COL|38358|Nebeaska|Springsteen . . .
256 DG|18807|Symphony No. 9|Beethoven . . .
300 MER|75016|Coq d'or Suite|Rimsky . . .

353 COL|31809|Symphony No. 9|Dvorak . . .
396 DG|139201|Violin Concerto|Beethoven . . .

442 FF|245|Good News|Sweet Honey In The . . .

9

)

=
o

S
c

{ File Organization 233]

Indexing to Provide Access by Multiple Keys |

» So far, our index only allows key access. I.e., you can
retrieve record DG188807, but you cannot retrieve a
recording of Beethoven's Symphony no. 9.

» \We need to use secondary key fields consisting of album
titles, composers, and artists.

» Although it would be possible to relate a secondary key to
an actual byte offset, thisis usually not done.

» | nstead, we relate the secondary key to a primary key
which then will point to the actual byte offset.

9

o)
=

o
S

c

{ File Organization 234]

Example: Composer Index |

» Composer Index

Secondary | Primary
key key

o
Beethoven | ANG3795
E) Beethoven DG139201
é Beethoven DG18807
= Beethoven | RCA2626
Corea WAR23699
Dvorak COL31809

Prokofiev LON2312

{ File Organization 235]

Record Addition |

» \When adding a record, an entry must also be added to the
secondary key index.

» Store the field in Canonical Form

» There may be duplicates in secondary keys. Keep
duplicates in sorted order of primary key

9

o)
=

o
S

c

{ File Organization 236]

Record Deletion |

» Deleting arecord implies removing all the references to
the record in the primary index and in all the secondary
Indexes.

» Thisistoo much rearrangement, specially If indexes
cannot fit Into main memory

9

o)
=

o
S

c

{ File Organization 237]

An Alternative to Record Deletion |

» Delete the record from the data file and the primary index
file reference to it. Do not modify the secondary index
files.

» \When accessing the file through a secondary key, the
primary index file will be checked and a deleted record
can be identified.

» Thisresultsin alot of saving when there are many
secondary keys

» The deleted record still occupy space in the secondary key
Indexes.

» |f alot of deletions occur, we can periodically cleanup
these deleted records also from the secondary key indexes

9

o)
=

o
S

c

{ File Organization 238]

Record Updating |

» There arethree types of updates
1. The update changes the secondary key

— We have to rearrange the secondary key index to stay
In sorted order.

2. The update changes the primary key
— Update and reorder the primary key index

— Update the references to primary key index in the
secondary key indexes (it may involve some re-
ordering of secondary indexes if secondary key occurs
repeated in thefile)

9

o)
=

o
S

c

{ File Organization 239]

Record Updating (Con’t) |

3. Update confined to other fields
— Thiswill not affect secondary key indexes.

— The primary key index may be affected if the location
of record changes in the datafile.

9

o)

=
o

S
c

{ File Organization 240]

Retrieving Records using
Combinations of Secondary Keys

» Secondary key indexes are useful in allowing the
following kinds of queries:
— Find all records with composer “BEETHOVEN”
— Find al records with thetitle “Violin Concerto”

— Find all records with composer “BEETHOVEN” and title
“*Symphony N0.9”

9

o)

=
o

S
c

{ File Organization 241]

Solution |

» Use the matched list and primary key index to retrieve the
two records from thefile.

9

o)
=

o
S

c

Matches Matches | Matched
from from title |list
composer |index (logical
index “and”)
ANG3795 ANG3795 ANG3795
DG139201 COL31809 | DG18807
DG18807 DG18807

RCA2626

{ File Organization

242 |

lmproving the Secondary Index Structure;
Inverted Lists

» Two difficulties found in the proposed secondary index
structures:

— We have to rearrange the secondary index file even if
the new record to be added in for an existing secondary
key

— If there are duplicates of secondary keys then the key
field is repeated for each entry, wasting space

9

o)

=
o

S
c

{ File Organization 243]

Array of References |

» No need to rearrange
» Limited reference array
» |nternal fragmentation

Revised composer index
Secondary key Set of primary key references

BEETHOVEN ANG3795 DG139201 DG18807 RCA2626

)

=
o

S
c

WAR23699

DVORAK COL31809

PROKOFIEV LON2312

RIMSKY-KORSAKOV MER75016

SPRINGSTEEN COL38358
SWEET HONEY IN THER FF245

[File Organization 244]

Inverted Lists |

» Organize the secondary key index as an index containing
one entry for each key and a pointer to alinked list of
references.

LABEL ID List File

= Secondary Key Index File 0 [TON2312 3
o 0 | Beethoven 3 1 IRCA2626 q
5 ; goreak - 2 [WAR23699 |-1
£ Vo ? 3|ANG3795 | 6
3 | Prokofiev 7 4 [DG1]R07 1

» Beethoven is a secondary key that appearsin © | COL31809 | -1
records identified by the LABEL IDs: 6 | DG139201 4
ANG3795, DG139201, DG18807 and 7| ANG36193 0

RCA2626

{ File Organization 245]

Advantages |

» Rearrangement of the secondary key index fileisonly
done when anew composear’ s name Is added or an existing
composer’ s name is changed. Deleting or adding records
for a composer only affectsthe LABEL ID List File.
Deleting all records by a composer can be done by placing
a“-1” inthereference field in the secondary index file.

» Rearrangement of the secondary index file is quicker since
It issmaller

» Smaller need for rearrangement causes a smaller penalty
assoclated with keeping the secondary index file in disk

9

o)
=

o
S

c

{ File Organization 246]

Advantages (Con't) |

» The LABEL ID List File never needs to be sorted since it
IS entry sequenced.

» \We can easlly reuse space from deleted records from the
LABEL ID List File since its records have fixed-length.

9

o)
=

o
S

c

{ File Organization 247]

Disadvantages |

» L ost of “locality”: labels of recordings with same
secondary key are not contiguous inthe LABEL ID List
File (seeking).

» To improvethis, kegpthe LABEL ID List Filein main
memory

9

o)
=

o
S

c

{ File Organization 248]

Sdlective Indexes |

» Selective Index: Index on a subset of records

» Selective index contains only some part of entire index

9

— provide a selective view

— useful when contents of afile fall into several categories
» e.0. 20< Age< 30 and $1000 < Salary

o)
=

o
S

c

{ File Organization 249]

Binding |

» | n our example of indexes, when does the binding of the
Index to the physical location of the record happens?

— For the primary index, binding is at the time thefileis

o constructed.

2 — For the secondary index, it is at the time the secondary
@ Index 1S used.

-

{ File Organization 250]

Advantages of Postponing Binding |

» \We need small amount of reorganization when records are
added or deleted.

» |t Is safer approach: important changes are done in one
place rather than in many places.

9

o)

=
o

S
c

{ File Organization 251]

Disadvantages |

» |t results in slower access times (Binary search in
secondary index + Binary search in primary index)

9

o)
=

o
S

c

{ File Organization 252]

When to use Tight Binding/Bind-at-retrieval |

» Use Tight Binding

— When datafileis nearly static (little or no adding,
deleting or updating of records)

— When rapid retrieval performance is essential.
« Example: Data stored in CD-ROM should use tight
binding
» Use Bind-at-retrieval

— When record additions, deletions and updates occur
more often

9

o)

=
o

S
c

{ File Organization 253]

COSEQUENTTAL PROCESSING

(SORTING LARGE FILES)

Content |

» Cosequential Processing and Multiway Merge
» Sorting Large Files (External Sorting)

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 255]

Cosequential Processing & Multiway Merging |

» K-way merge algorithm: merge K sorted input lists to
create a single sorted output list

» Adapting 2-way merge algorithm
— Instead of naming as List1 and List2 keep an array of
Ists. List[1], List[2],..., List[K]
— Instead of naming asitem(1) and item(2) keep an array
of items: item[1], item[2],..., item[K]

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 256]

2-way Merging Eliminating Repetitions |

Synchronization

» et item[1] be the current item from list[1] and item[2] be
the current item from list[2].

» Rules:
— If item[1] < item[2], get the next item from list[1].
— If item[1] > item[2], get the next item from list[2].

— If item[1] = item[2], output the item and get the next
Items from the two lists.

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 257]

K-way Merging Algorithm |

» An array of K index values corresponding to the current
element in each of the K lists, respectively.

» Main loop of the K-Way Merge algorithm:
1. minltem=index of minimum item in
item[1],item[2],...,item[K]
2. output item[minltem] to output list
3. fori=1toK do
4. If item[i]=item[minltem] then
5. get next item from List[i]
» |f there are no repeated items among different lists, lines
(3)-(5) can be simplified to
get next item from List[minltem|

{ File Organization 258]

=)
=
kd
L
@
o
Gy
1
)
=
=

Implementation # 1 |

» The K-Way Merging Algorithm just described works well
If K<8:

» Line(1) does asequential search on item[1], item([2], ...,
item[K]

Running time: O(K)
» Line(5) just replaces item(i] with newly read item
Running time: O(1)

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 259]

|mplementation # 2 |

» \When the number of listsislarge, store current items
item[1], item[2], ..., item[K] Into priority queue (heap).
» Line(1) does amin operation on the heap.
Running time: O(1)
» Line(5) performs a extract-min operation on the heap:
Running time: O(log,K)
» and an insert on the heap
Running time: O(log,K)

=)
=
kd
L
@
o
Gy
1
)
=
=

{ File Organization 260]

Detalled Analysis of Both Algorithm |

» et N = Number of items in output list
M = Number of items summing up all input lists

(Note N<M because of possible repetitions)
» |mplementation # 1
— Lineg(1): KxN steps
— Ling(5): counting all executions: Mx1 steps
— Total time: O(KxN+M)cO(KxN)
» | mplementation # 2
— Lineg(1): 1xN steps
— Ling(5): counting all executions: Mx2xlog,K steps
— Total time: O(N+ Mxlog,K)cO(Mxlog,K)

{ File Organization 261]

=)
=
kd
L
@
o
Gy
1
)
=
=

Merging as a Way of Sorting Large Files |

» Characteristics of the file to be sorted
8,000,000 records
Size of arecord = 100 Bytes
Size of the key = 10 Bytes

» Memory avallable asawork area: 10 MB (Not counting
memory used to hold program, OS, 1/0 buffers, etc.)

Total filesize=800 MB
Total number of bytesfor all the keys=80 MB
» S0, we cannot do internal sorting

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 262]

Solution |

» Forming runs: bring as many records as possible to main
memory, do internal sorting and save it into asmall file.
Repeat this procedure until we have read all the records
from the original file

» Do a multiway merge of the sorted files

» |n our example, what could be the size of arun?
Avallable memory = 10 MB = 10,000,000 bytes
Record size = 100 bytes

Number of records that can fit into available memory =
100,000 records

Number of runs = 80 runs

=)
=
kd
L
@
o
Gy
1
)
=
=

{ File Organization 263]

80 Internal Sorts |

8,000,000 unsorted records (800 MB)

Stepr ¥ ¢ v ¢ ¢]

Step 4

8 SD Internal Sorts
Step 2 ¢ ¢
8 Runl Run3 Run?? Run?S Run?9 Run80
T
T \tjp 3 /
(@)
©
—l
(@)
c
—
3

8.000.000 records 1n sorted order

{ File Organization 264]

Order of 1/O Operations |

» |/O operations are performed in the following times:

1. Reading each record into main memory for sorting and
forming the runs

2. Writing sorted runsto disk
» The two steps above are done as follows:

— Read achunk of 10 MB: Write achunk of 10 MB
(Repeat this 80 times)

— Interms of basic disk operations, we spend.:
— For reading: 80 seeks + transfer time for 800 MB
Same for writing.

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 265]

Order of 1/0 Operations (Con't) |

3. Reading sorted runs into memory for merging. In order
to minimize “seeks’ read one chunk of each run, so 80
chunks. Since the memory availableis 10 MB each
chunk can have 10,000,000/80 bytes = 125,000 bytes =
1,250 records

— How many chunksto be read for each run?
— 9Sizeof arun/size of achunk = 10,000,000/125,000=80

— Total number of basic “seeks’ = Total number of
chunks (counting all theruns) is

80 runs x 80 chunks/run = 802 chunks

=)
=
kd
L
@
o
Gy
1
)
=
=

{ File Organization 266]

Order of 1/O Operations (Con't) |

4. When writing a sorted file to disk, the number of basic
seeks depends on the size of the output buffer: bytesin
file/ bytesin output buffer.

— For example, If the output buffer contains 200 K, the
number of basic seeks is 200,000,000/200,000 = 4,000

» From steps 1-4 as the number of records (N)
grows, step 3 dominates the running time

=)
=
kd
L
@
o
Gy
1
)
=
3

{ File Organization 267]

Step 3 : The Bottleneck |

» There are ways of reducing the time for the bottleneck
step 3
Allocate more resource (e.g. disk drive, memory)

Perform the merge in more than one step — this reduces
the order of each merge and increases the run sizes

Algorithmically increase the length of each run
Fnd ways to overlap 1/O operations

A

B> W

=)
=
kd
L
@
o
Gy
1
)
=
=

{ File Organization 268]

Content |

» |ntroduction to multilevel indexing and B-trees
» Insertionin B Trees

» Search and Insert Algorithms
» Ddetionin B Trees

11

B-Trees

{ File Organization 270]

Introduction to Multilevel Indexing and B-Trees |

» Problems with ssimple indexes that are kept in disk:
1. Seeking theindex is still low (binary searching):
— We do not want more than 3/4 seeks for a search

&l _ So, herelog,(N+1) is till slow:

g N |log(N+1)

- 15 keys 4
1.000 ~10
100.000 ~llF
1,000,000 ~20

{ File Organization 271]

Introduction to Multilevel Indexing and B-Trees |

» Problems with ssimple indexes that are kept in disk:
2. Insertions and deletions should be as fast as searches:

— In simple indexes, insertion or deletion take O(n) disk
accesses (since index should be kept sorted)

11

B-Trees

{ File Organization 272]

Indexing with Binary Search Trees |

» \We could use balanced binary search trees:

»AVL Trees
— Worst-case search is 1.44xlog,(N+2)
— 1,000,000 keys — 29 Levels
— Still prohibitive
» Paged Binary Trees
— Place subtree of size K in asingle page
— Worst-case search islog,,,(N+1)
— K=511, N=134,217,727
— Binary trees. 27 seeks, Paged Binary tree: 3 seeks

— Thisis good but there are lots of difficulties in maintaining

(doing insertions and deletions) in apaged binary tree
{ File Organization 273]

11

B-Trees

Multilevel Indexing |

» Consider our 8,000,000 example with keysize =10B
» |ndex filesize = 80 MB

» Each record in the index will contain 100 pairs
(key,reference)

» A simple index would contain: 80,000 records:
Too expensive to search (~16 seeks)

11

B-Trees

{ File Organization 274]

Multilevel Index |

» Build an index of an index file
» How?

— Build asimple index for the file, sorting keys using the method
for external sorting previously studied

—i

= — Build an index for thisindex

g — Build another index for the previous index, and so on

Io_'o — Theindex of an index storesthe largest intherecord it is

pointing to.

{ File Organization 275]

Index File
(Level 1)

Index File
(Level 2)

Index File
(Level 3)

Index File
(Level 4)

<- 100 keys->

rec 1

rec 2

rec 100

'\'\

rec 1

N

rec 1

AN

‘ -

rec 79,901

™

rec 80,000

rec 300

/

rec 8

e

rec 1

276

B-Trees |

» Again an index record may contain 100 keys

» An index record may be half full (each index record may
have from 50 to 100 keys)

=] > Wheninsertion in an index record causes it to overfull
4 — Split record in two
E — “Promote” the largest key in one of the recordsto the

upper level

{ File Organization 277]

Example for Order =4 |

data
pointer

11

B-Trees

[File Organization

278 |

Inserting X |

» X isbetween T and Z: insertion in node 3 splitsit and
generates a promotion of node X

Node @ Node © e

[File Organization 279]

Promotion |

————— + promoted

11

B-Trees

Node & Node ©.0 Node ©.0

» Important: If Node 1 was full, this would generate a new split-
promotion of Node 1. This could be propagated up to the root

[File Organization 280]

Example of Insertions |

» Inserting keys: order = 4
>A’G’F’B’K’D’H1M 1J1E1S1| 1R1X1C1L1N1T1U1P

11

» Inserting K: Split and Promotion

B-Trees

[File Organization 281]

Insertion Example |

» Inserting D

11

B-Trees

» Inserting H

[File Organization

282 |

Insertion Example |

» Inserting M

11

» | nserting J. Split and Promotion

B-Trees

[File Organization

283 |

11

B-Trees

Insertion Example |

» Inserting E

» Inserting S

[File Organization 284]

11

B-Trees

Insertion Example |

» Inserting |

» Inserting R

[File Organization 285]

Insertion Example |

» Inserting X: Split and Promotion

[File Organization 286]

Insertion Example |

» | nserting C: Split and Promotion

[File Organization 287]

Insertion Example |

» Inserting L

[File Organization 288]

Insertion Example |

» Inserting N

[File Organization 289]

Insertion Example |

» |nserting T,U

[File Organization 290]

» Inserting P

[File Organization 291]

11

B-Trees

B-Tree Properties |

» Properties of a B-tree of order m:
1. Every node has a maximum of m children

2. Every node, except for the root and the leaves, has at
least V2 children

3. Theroot has at least two children (unlessit is aleaf)
All the leafs appear on the same level

e

5. Theleaf level forms a complete index of the associated

datafile

{ File Organization

292 |

» The worst-case depth occurs when every node has the
minimum number of children

Worst-case Search Depth |

- Level | Minimum number of keys
= (children)
4 1 2
= (root)
- 2 2. [m/2]
3 2. [m/2] - [m/2] =2- [m/2]?
4 2. [m/2]°
d 2 [m/2]%1
{ File Organization

293 |

Example |

» Assume that we have N keysin the leaves
d-1
N>2-(m/2)

d<1+log,,,(N/2)
For N=1,000,000 and order me512, we have

d <1+100g, (N /2)
d<3.37

0,

11

B-Trees

» Thereisat most 3 levelsin aB-tree of order 512 holding

1,000,000 keys.

{ File Organization

294 |

Outline of Search Algorithm |

» Search (KeyType key)

1. Find leaf: find the leaf that could contain key, loading all
the nodes in the path from root to leaf into an array Iin
main memory

2. Search for key in the leaf which was |oaded into main
memory

11

B-Trees

{ File Organization 295]

11

B-Trees

Deletions from B-Tree |

» Therulesfor deleting akey K fromanoden :
If n has more than the minimum number of keysand K is

1.

not the largest key in n, smply delete K from n.

If n has more than the minimum number of keysand K is

the largest key in n, delete K from n and modify the
higher level indexes to reflect the new largest key inn.

If n has exactly the minimum number of keys and one of

the siblings has “few enough keys’, merge n with its
sibling and delete a key from the parent node

{ File Organization

296 |

Deletions from B-Tree (Con't) |

» Therulesfor deleting akey K fromanoden :

4. If nhas exactly the minimum number of keys and one of
the siblings has extra keys, redistribute by moving some
keys from a sibling to n, and modify higher levelsto
reflect the new largest keys in the affected nodes

11

B-Trees

{ File Organization 297]

[File Organization 298]

[File Organization 299]

[File Organization 300]

[File Organization 301]

[File Organization 302]

[File Organization 303]

[File Organization 304]

| mplementation |

typedef struct {
int Count; // Number of keys stored in the current
ltemType Key[MaxKeys];
= long Branch|MaxKeysPlusOne];
it } NodeType;
g _ Key[MaxKeys]

— Branch[MaxK eysPlusOne]

RRN

[File Organization 305]

|mplementation (Con't) |

typedef struct {
Int Count; // Number of keys stored in the current
temType Key[MaxKeys];
- ong Branch[MaxK eysPlusOne];
8 ool Search(KeyFHeldType SearchKey,
E ltemType & Item);

} NodeType;

[File Organization 306]

{

long CurrentRoot;
Int Location,
bool Found,
Found = falseg;
CurrentRoot = Root;
while ((CurrentRoot !'=-1L) & & ('Found)) {
fseek(hFile,CurrentRoot * NodeSize, SEEK _SET);
fread((unsigned char *)(& CurrentNode),NodeSize,1,hFile);
If (SearchNode(SearchKey, Location)) {
Found = true;
Item = CurrentNode.Key[Location];
} else CurrentRoot = CurrentNode.Branch[Location + 1];

}

return Found;

}

11

B-Trees

bool Search(KeyFieldType SearchKey,...) |

{ File Organization

307 |

bool SearchNode(const KeyFieldType Target, int & Location) const {
bool Found=falsg;
If (strcmp(Target, CurrentNode.Key[0].KeyField)<0) Location=-1L,
else
{
Location = CurrentNode.Count - 1,
while ((strcmp(Target, CurrentNode.Key[Location].KeyField) < 0)
& & (Location > 0))
Location--;
If (strcmp(Target, CurrentNode.Key[Location].KeyField) == 0)
Found = true;

11

B-Trees

}

return Found;

}

bool SearchNode(KeyFieldType Target,...) I

{ File Organization

308 |

12

Content |

» Maintaining a sequence set
» A simpleprefix B+ Tree

» Simple Prefix B+ Tree Maintenance: Insertions and
Deletions

12

SRAR(EES

{ File Organization 310]

Motivation |

» Some applications require two views of afile:

mg | Indexed view : Sequential view :

M | Records are indexed by a key | Records can be sequentially
§ accessed in order by key

E Direct, indexed access Sequential access (physically
m

contiguous records)

Interactive, random access | Batch processing (Ex:

co-sequential processing)

{ File Organization 311]

Example of Applications |

» Student record system in auniversity
— Indexed view: accessto individual records
— Sequential view: batch processing when posting

o grades or when fees are paid

it » Credit card system

E — Indexed view: interactive check of accounts
m

— Seqguential view: batch processing of payment dlips
» Wewill look at the following two aspect of the problem:
1. Maintaining a sequence set: keeping records in
sequential order
2. Adding an index set to the sequence set

{ File Organization 312]

&{ —_—
: .
—
+
at)
1.
2.

Records are grouped in blocks
Blocks should be at |east half full
Link fields are used to point to the preceding block

Maintaining a Sequence Set |

» Sorting and re-organizing after insertions and deletionsis
out of question

» \We organize the sequence set in the following way

and the following block (ssmilar to doubly linked list)
Changes (inserted/deletion) are localized into blocks

by performing:
Block Splitting when insertion causes overflow

Block Merging or Redistribution when deletion
causes underflow

{ File Organization

313 |

Example |

» Block Size=4
» Key = Last Name

S‘. » Forward Pointer
g ———+» Backward Pointer
h @
ADAMS...| BIXBY... |CARSON...| COLE... [«
0 i
> DENVER...| ELLIS... - |

{ File Organization 314]

|nsertion with Overflow |

ADAMS...| BIXBY... [CARSON...| COLE...

N B nsert “BAIRD...”

g 0

T ADAMS...| BAIRD... | BIXBY....
= a

> CARSON...| COLE...

{ File Organization

315 |

Deletion with Merging |

(1)
ADAMS...| BAIRD... | BIXBY... | BOONE... [
2 .
o — BYNUM... |CARSON...|CARTER... Pale
g © i
E [DENVER... ELLIS... BE
+ I
—| COLE... | DAVIS... it

» Delete “DAVIS...”

{ File Organization

316 |

Deletion with Merging (Con’t) |

o
ADAMS...| BAIRD... | BIXBY... | BOONE... [«
2] .
M —[BYNUM..[CARSON.|CARTER.. o
g o i
i :
M (4] :
_,| COLE... |DENVER...| ELLIS... .

» Block © Isavalable for re-use

{ File Organization 317]

B+Trees 12

Delete “BYNUM?”, then Delete “CARTER” I

PN |
‘_ ADAMS...| BAIRD... | BIXBY... | BOONE... 4
2 :
—CARSON... P
2 i
9 |
L_,| COLE... |DENVER...| ELLIS... .
{ File Organization 318]

Solution # 1 |

» \We can merge Block ® and @

(1)
N ADAMS...| BAIRD... | BIXBY... | BOONE... 4--:
@ .
! :
¥ |
& e :
© !
_,|CARSON..| COLE... |DENVER..| ELLIS.. | _.

{ File Organization 319]

Solution # 2: Deletion with Redistribution |

®
ADAMS...| BAIRD... | BIXBY.. “
2
3 —{BOONE... [CARSON... o
% @
=
+
= o
J| COLE.. [DENVER..| ELLIS.. .

U Y |

{ File Organization

320 |

Advantages and Disadvantages of Sequence Set

» Advantages

— No need to re-organize the whole file after
Insertions/deletions

21 > Disadvantages

4 — File takes more space than unblocked files (since
n blocks may be half full)

af)

— The order of the records is not necessarily physically
sequential (we only guarantee physical sequentiality
within a block)

{ File Organization 321]

Choosing Block Size |

» Main memory constraints (must hold at least 2 blocks)

» Avoid seeking within ablock (e.g., in sector formatted
disks choose block size equal to cluster size).

12

SRAR(EES

{ File Organization 322]

Adding an Index Set to the Sequential Set |

» Index will contain SEPERATORS Instead of KEY S

QO |[ADAMS..| o | BERNE...
BO
S O [BOLEN.. | oo | CAGE...
CAM
£ © | CAMP... | ool o, DUTTON...
E E
O |EMBRY..| i |, EVANS... .
O | FABER... | vl i, FOLK ...
FOLKS
O | FOLKS... | i | v, GADDIS...

{ File Organization 323]

The Simple Prefix B+ Tree |

» The smple prefix B+ tree consists of
— Sequence Set

— Index Set: similar to a B-tree index, but storing the
shortest separators for the sequence set.

12

SRAR(EES

{ File Organization 324]

Example: Order of theindex set i1s 3 |

v

v

ADAMS-BERNE

—p>

BOLEN-CAGE

—

CAMP-DUTTON

—>

EMBRY-EVANS

>

FABER-FOLK

—»| FOLKS-GADDIS

2/

©

(4]

5/

[File Organization

325 |

Search inaSImple Prefix B+ Tree

» Search for “EMBRY”
— Retrieve Node @ (Root)
— Since“EMBRY”> “E”, so go right, and retrieve Node 6.
— Since “EMBRY "< “F", so go left, and Block # @
— L ook for the record with key “ EM BRY” inBlock # @

AN
—

Node 0]
Node O

Node &

o~

ADAMS-BERNE 9| BOLEN-CAGE |—%»|CAMP-DUTTON —»|EMBRY-EVANS|-»| FABER-FOLK =% FOLKS-GADDIS

[File Organization 326]

Simple Prefix B+ Tree Maintenance |

» Example:
— Seguence set has blocking factor 4
— Index set iIsa B tree of order 3

Node © 'F'{

ACEG<—>HJLN OQS

12

SRAR(EES

[File Organization

327 |

12

SRAR(EES

Example (Cont’ d) |

1. Changeswhich arelocal to single blocks in the sequence set
— Insert“U”
 Gototheroot
« Gototheright of “O”

e |nsert“U” toBlock ©
/7 / /)
A,CEG j«—{ H,JL,N [« O,Q,S,U
(1) (2] ©

—There is no change in the index set

[File Organization 328]

12

SRAR(EES

Example (Cont’ d) |

— Deete*O”
« (o to theroot
« Gototheright of “O”
e Dedete“O” fromBlock ©

/l/ VAN 4
A.CEG |« HJLN |« 0Q,5SU
(1) (2 ©

—Thereis no change in the index set: “O” is still a perfect separator
for Blocks ® and ©

[File Organization 329]

Example (Cont’ d) |

2. Changes involving multiple blocks in the sequence set
. Delete HS” and HU”

/l/ VAN 4
n
m A,CEG [« H,JL,N [«

1 @ 9
—Now Block ©® becomes less than Y2 full (UNDERFLOW)

[File Organization

330 |

Example (Cont’ d) |

» Since Block @ isfull, the only position is re-distribution bringing
akey from Block ® to Block ©

» We must update the separator “O” to “N”

N l /L
Node O
8
|_
+
af)]
ACEG [« HJL N,Q
(1) (2] (3)

[File Organization 331]

Example (Cont’ d) |

» |nsert“B”
— Go to theroot
— Gototheleft of “H” to Block @
— Block @ would have hold A,B,C,E,G

o — Block @ issplit
=
+
m .
Sp“t/*
« | ABC |[«—| EG |)

[. -
"~ - » -
e am mm m -—

[File Organization 332]

Example (Cont’ d)

» So this causes Node @ to split

&]' VAR 4 VAR 4 VAR 4
@ /l g g
=
+
M
ABC E HJL <> N,Q

[File Organization 333]

Example (Cont’ d)

12

B+Trees

ABC HJL

N,Q

[File Organization

334 |

Example (Cont’ d)

» |nsert“F”
Node ©
(Q\|
—
=
+
M

ABC EFG

HJL

N,Q

[File Organization

Example (Cont’ d)
» Deete“J and“L”

No
Node
4>

de
AB,C |« EFG N,Q
1 4 (2] ©
» Thisisan UNDERFLOW. Y ou may think to redistribute Blocks
® and O: E,F,G,H becomes E,F and G,H.

12

B+Trees

(1) !l Node &
H |

[File Organization

336 |

Example (Cont’ d) |

Why thisis not possible?

Blocks ® and @ are not siblings! They are cousins.
Merge Blocks ® and ©

Send Block © to AVAIL LIST

Remove the Link Between Node ® and Block ©

VVvVVYyYVvYy

12

Node O Node &

,'{'l f'l'l

A,B,C EF,G |« HN,Q
(1) 4 (2 ©

[File Organization 337]

B+Trees

Example (Cont’ d)

» Send Node ® and © to AVAIL LIST

e

(Q\
—i
g Node O Node @
: o |
+
af|

ABC |« EFG HNQ
(1) (4] ©

[File Organization

338 |

Example (Cont’ d) |

» Blockswere reunited as a big happy family again ©

&]I /. / /S /
Node ©
3
|_
+
af|
ABC EFG HNQ

[File Organization

339 |

Objectives |

|ntroduce the concept of hashing

Examine the problem of choosing a good hashing
algorithm

Explore three approaches for reducing collisions
Develop and use mathematical tools for analyzing

performance differences resulting from the use of
different hashing techniques

Examine problems associated with file deterioration and
discuss some solutions

Examine effects of patterns of records access on
performance

vVvy VY

3
2
2
T

\4

v

{ File Organization 341]

Content |

» | ntroduction to Hashing
» Hash functions

» Distribution of records among addresses, synonyms and
collisions

» Collision resolution by progressive overflow or linear
probing

3
=
2
T

{ File Organization 342]

Motivation |

» Hashing is auseful searching technique, which can be
used for implementing indexes. The main motivation for
Hashing Is improving searching time.

» Below we show how the search time for Hashing
compares to the one for other methods:

— Simple Indexes (using binary search): O(log,N)
— B Trees and B+ trees: O(log,N)
— Hashing: O(1)

3
=
2
T

{ File Organization 343]

What is Hashing? |

» The ideaisto discover the location of a key by ssmply
examining the key. For that we need to design a hash
function.

» A Hash Function is afunction h(k) that transforms a key
Into an address

» An address space Is chosen before hand. For example, we
may decide the file will have 1,000 available addresses.

» |f U istheset of all possible keys, the hash function is
fromU t0{0,1,...,999}, that is

h:U—{0,1,..,999)

3
2
2
T

{ File Organization 344]

Example |

ASCII| code
. HOME
NAME for first two | PRODUCT ADDRESS
letters
BALL 66 65 66x65=4290 290

3
=
2
T

LOWELL 7679 716x79=6004 004

TREE g4 gy | Oo4X82=0838 1 goq

[File Organization 345]

What is Hashing?

L OWE L L RRN FILE

000
001

h(n) — 0{;4 LOWELlL

BALL

290 |BALL

3
=
2
T

888 | TREE

999

TREE

{ File Organization 346]

What is Hashing? |

» There is no obvious connection between the key and the
location (randomizing)

» Two different keys may be sent to the same address
generating a Collision

» Can you give an example of collision for the hash function
In the previous example?

3
2
2
T

{ File Organization 347]

Answer |

» | LOWELL, LOCK, OLIVER, and any word with first two
letters L and O will be mapped to the same address

h(L OWELL)=nh(L OCK)=h(OLIVER)=004
» These keys are called synonyms. The address “004” Is
sald to be the home address of any of these keys.
» Avoiding collisions is extremely difficult
» Do you know the birthday paradox?
» S0 we heed techniques for dealing with it.

3
2
2
T

{ File Organization 348]

Reducing Collisions |

1. Spread out the records by choosing a good hash function
2. Use extramemory: increase the size of the address space
— Example: reserve 5,000 available addresses rather

3 than 1,000

2 3. Put more than one record at a single address. use of
a buckets

I

{ File Organization 349]

A Simple Hash Function |

» To compute this hash function, apply 3 steps:
» Step 1. transform the key into a number.

LOWELL

3
=
2
T

LI O/W E | L | L

ASCII code
7617987 69|76/7632/32/32/32/32/32

{ File Organization 350]

A Simple Hash Function (Con’t) |

» Step 2: fold and add (chop off pieces of the
number and add them together) and take the mod
by a prime number

76798769 |76|76|32|32/32(32/32|32

3
=
2
T

7679 | 8769 | 7676 | 3232 | 3232 | 3232

7679+8769+7676+3232+3232+3232

33,820 mod 19937 = 13,883

{ File Organization 351]

A Simple Hash Function (Con’t) |

» Step 3: divide by the size of the address space
(preferably a prime number)

13,883 mod 101 = 46

3
=
2
T

{ File Organization 352]

Distribution of Records among Addresses |

» There are 3 possibilities

Uniform Random
All synonyms
(no synonyms) (a few synonyms)
Key Address Key Address Key Address
3
A 0 A 0 A 0
(@) B 1 B | B |
c
= C 2 C 2 C 2
é D 3 D 3 D 3
= 4 4 4
5 5 5
6 6 6

» Uniform distributions are extremely rare

» Random distributions are acceptable and more easlly
obtainable.

{ File Organization 353]

Better than Random Distribution |

» Examine keys for patterns

— Example: Numerical keysthat are spread out naturally
such as keys are years between 1970 and 2004

f(year)=(year-1970) mod (2004-1970+1)
f(1970)=0, f(1971)=1,..., f(2004)=34
» Fold parts of the key.

— Folding means extracting digits from a key and adding
the parts together as in the previous example.

— In some cases, this process may preserve the natural
separation of keys, If thereis anatural separation

3
=
2
T

{ File Organization 354]

Better than Random Distribution (Con’t) |

» Use prime number when dividing the key.

— Dividing by a number is good when there are sequences
of consecutive numbers.

— If there are many different sequences of consecutive
numbers, dividing by a number that has many small
factors may result in lots of collisions. A prime number
IS a better choice.

3
=
2
T

{ File Organization 355]

Randomization |

» When there is no natural separation between keys, try
randomization.

» You can using the following Hash functions:
1. Sguarethekey and takethe middle
Example: key=453 4532 = 205209
Extract the middle = 52.
This address is between 00 and 99.

3
=
2
T

{ File Organization 356]

Randomization (Con’t) |

2. Radix transformation:

Transform the number into another base and then divide
by the maximum address

Example: Addresses from O to 99
key =453 In base 11 = 382
hash address = 382 mod 99 = 85.

3
=
2
T

{ File Organization 357]

Collision Resolution: Progressive Overflow |

» Progressive overflow/linear probing works as follows:
1. Insertion of key k:

— Go to the home address of k: h(K)

— If free, place the key there

— If occupied, try the next position until an empty
position Is found

(the ‘next’ position for the last position is position O,
I.e. wrap around)

3
=
2
T

{ File Organization 358]

__ samle |

key k | Home address - h(k) Complete Table:
COLE 20 0
- BATES 21 1
= ADAMS 21 2
7] | EVANS 20 19
+ 20
21
22

Table size = 23

{ File Organization 359]

Progressive Overflow (Con’t) |

2. Searchingfor key k:
— Go to the home address of k: h(K)
— If k1sin home address, we are done.

— Otherwise try the next position until: key isfound or
empty space is found or home address is reached (in
the last 2 cases, the key Is not found)

3
=
2
T

{ File Organization 360]

Example |

0 | DEAN
EVANS

» A searchfor ‘EVANS' probes places.
20,21,22,0,1, finding the record at position
1

2

% p Search for ‘MOURA’, if ((MOURA)=22, 19

o probes places 22,0,1,2 where it concludes 20 | COLE

% ‘MOURA’ In not In the table. 21 | BATES
8 » Searchfor ‘SMITH’, if h(SMITH)=19, 22 | ADAMS

probes 19, and concludes ‘SMITH’ in not
In the table.

{ File Organization 361]

Advantages X Disadvantages |

» Advantage: Simplicity

» Disadvantage: If there are lots of collisions of records can
form, as in the previous example

3
=
2
T

{ File Organization 362]

Search Length |

» Number of accesses required to retrieve a record.

sum of search lengths
aver age search length =

number of records

3
=
2
T

{ File Organization 363]

0 [DEAN
1 |EVANS
y
= IR
=l 20| COLE
4 21 [BATES
sl 22 | ADAMS

» Average search length
(1+1+2+2+5)/5=2.2

Example |

key k | Home address - h(k)
COLE 20
BATES 21
ADAMS 21
DEAN 22
EVANS 20
key Search Length
COLE 1
BATES 1
ADAMS 2
DEAN 2
EVANS 5

{ File Organization

364 |

Predicting Record Distribution |

» \We assume a random distribution for the hash function.
— N = number of avallable addresses
— r = number of records to be stored

» et p(x) be the probability that a given address will have x
records assigned to it

» |t IS easy to see that

rl 1

3
=
2
T

{ File Organization 365]

Predicting Record Distribution (Con't) |

» For N and r large enough this can be approximated by

: (r/N)X a (/N)
X!

p(x)

3
=
2
T

{ File Organization 366]

Example |

» N=1000, r=1000

p(0) [(1);61 ~0.368
- |
_;’ p(1)[(1);61 —0.368
- |
- p(2)0 (1);6 —~0.184
p(3)[(1);61 - 0.061

{ File Organization 367]

Predicting Record Distribution (Con't) |

» For N addresses, the expected number of addresses with x
recordsis

N . p(X)
» N=1000, r=1000

1000x p(0) = 368

3
=
2
T

1000x p(1) = 368
1000 p(2) =184

1000 p(3) = 61

{ File Organization 368]

Reducing Collision by using more Addresses |

» Now, we see how to reduce collisions by increasing the
number of available addresses.

» Definition: packing density =I/N
» Example:

500 records to be spread over 1000 addresses result in
packing density =500/1000 = 0.5 =50%

3
=
2
T

{ File Organization 369]

Questions |

1. How many addresses go unused? More precisely: What
IS the expected number of addresses with no key mapped
to I1t?

> Nxp(0)=1000 x0.607 = 607

3
=
2
T

{ File Organization 370]

Questions (Con't) |

2. How many addresses have no synonyms? More
precisely: What Is the expected number of address with
only one key mapped to it?

> Nxp(1)=1000 x0.303 = 303

3
=
2
T

{ File Organization 371]

Questions (Con't) |

3. How many addresses contain 2 or more synonyms? More
precisaly: What is the expected number of addresses with
two or more keys mapped to it?

> Nx(p(2)+p(3)+...)= Nx(1-p(0)-p(1))= 1000 x0.09 = 90

3
=
2
T

{ File Organization 372]

Questions (Con't) |

4. Assuming that only one record can be assigned to an
address. How many overflow records are expected?

IXNXpP(2) + 2xXNxp(3) + 3xNxp(4)+... =
Nx(2xp(2)+3xp(4)+...) = 107

» Thejustification for the above formulaisthat thereis
going to be (i-1) overflow records for all the table

positions that have I records mapped to it, which are
expected to be as many as N-p(i)

3
=
2
T

{ File Organization 373]

A Simpler Formula |

» Expected # of overflow records =
#records — Expected # of non-overflow records
=r—(N-p(1)*N-p(2)+N - p(3)+ - - -)
=r—(1-p(0))
=N - p(0) — (N-r)

3
=
2
T

{ File Organization 374]

Questions (Con't) |

5. What Is the expected percentage of overflow records?
107/500 = 0.214 = 21.4%

» Note that using either formula, the percentage of

™ overflow records depend only on the packing density
- (PD =r/N) and not on the individual valuesof N orr.
% » The percentage of overflow recordsis
T r—N(1- p(0)) 1
=1-—(1-p(0
: -5 (1= P(0))

» Poisson function that approximates p(0) is afunction of
r/N which is equal to PD (for hashing without buckets).

{ File Organization 375]

Packing Density-Overflow Records |

Packing Density %| Overflow Records
10% 4 8%
20% 9.4%
™ 30% 13.6%
o 40% 17.6%
% 50% 21.4%
L 60% 24.8%
70% 28.1%
80% 31.2%
90% 34.1%
100% 36.8%

{ File Organization 376]

Hashing with Buckets |

» Thisisavariation of hashed files in which more than one
record/key Is stored per hash address.

» Bucket = block of records corresponding to one address in
the hash table

» The hash function gives the Bucket Address
» Example:

3
=
2
T

{ File Organization 377]

Example |

» For a bucket holding 3 records, insert the following keys

0

key Home Address

W LOYD 34

o KING 33

= LAND 33 ' '

g R - 33| KING
NUTT 33 ILEINID
PLUM 34 BB
REES 34 34| LOYD

{ File Organization 378]

Effects of Buckets on Performance |

» \We should slightly change some formulas
: : I
king density =——
packing density Y

We will compare the following two alternatives

1. Storing 750 data records into a hashed file with 1000
addresses, each holding 1 record.

2. Storing 750 data records into a hasned file with 500
oucket addresses, each bucket holding 2 records

» In both cases the packing density 1s 0.75 or 75%.
» Inthefirst case r/N=0.75.
» In the second case r/N=1.50

{ File Organization 379]

3
2
2
T

3
=
2
T

Effects of Buckets on Performance |

» Estimating the probabilities as defined before:

p(0)

p(1)

p(2)

p(3)

1) r/N=0.75 (b=1)
2) r/N=1.50 (b=2)

0.472
0.223

0.354
0.335

0.133
0.251

0.033
0.126

{ File Organization

380 |

Effects of Buckets on Performance |

Calculating the number of overflow records in each case
1. b=1 (r/N=0.75):

Number of overflow records=

=N-[1-p(2)+2-p(3)+3-p(4)+--]

=r—N-(1- p(0))

= 750—1000-(1-0.472) = 750528 = 222
Thisis about 29.6% overflow

3
=
2
T

{ File Organization 381]

Effects of Buckets on Performance |

2. b=2 (r/N=1.5):
Number of overflow records=
=N:|1 p(3)+2-p(4)+3-p(5)+
=r—N-p(1)-2-N-| p(2)+ p(3)+--]
=r=N-[p(1)+2-(1-p(0)- p(1))]
=r—N-[2-2-p(0)-p(1)
= 750-500-(2-2-(0.223)-0.335) =140.5=140

3
=
2
T

Thisis about 18.7% overflow

{ File Organization 382]

Percentage of Collisions for Different Bucket Sizes |

Bucket Size
Packing Density % | 1 2 5 10 100
75% 206% 18.7% 8.6% 4.0% 0.0%

3
=
2
T

{ File Organization 383]

|mplementation |ssues |

1. Bucket Structure

» A Bucket should contain a counter that keeps track of the
number of records stored In it.

» Empty sotsin abucket may be marked ‘//.../
» Example: Bucket of size 3 holding 2 records

2 [JONES 77777]7]/...]] | ARNSWORTH

3
=
2
T

{ File Organization 384]

|mplementation |ssues |

2. Initializing afile for hashing

» Decideonthe Logical Size (number of available
addresses) and on the number of buckets per address.

» Create afile of empty buckets before storing records. An
empty bucket will look like

O\ /11111111 LT 1T T

3
=
2
T

{ File Organization 385]

|mplementation |ssues |

3. Loading ahashfile
» When inserting a key, remember to:
» Be careful with infinite loops when hash file isfull

3
=
2
T

{ File Organization 386]

Making Deletions |

» Deletions in a hashed file have to be made with care

Record ADAMS | JONES | MORRIS | SMITH
Home Address 5 6 6 5
3
> : :
e a1//11111111
ks 5 [ADAMS
Hashed File using Progressive Overflow 0 | JONES
7 | MORRIS
8 | SMITH

{ File Organization 387]

Making Deletions. Delete ‘MORRIS |

»|f ‘MORRIS Issmply erased, asearch for ‘SMITH’
would be unsuccessful

e 41//////11]] l«Empty Slot
5[ADAMS
= 6 | JONES
B 7 //////]]]] + Empty Siot
8 | SMITH Problem: you cannot find ‘SMITH’

» Search for ‘SMITH’ would go to home address (position
5) and when reached 7 it would conclude ‘SMITH’ is not
In thefile!

{ File Organization 388]

Solution |

» Replace deleted records with amarker indicating that a
record once lived there

i 417111111111
- 5 [ADAMS
= 6 | JONES
@ 7| 44444 | + Deleted Slot
o IR you can find * SMITH’

» A search must continue when it finds a tombstone, but can
stop whenever an empty dot isfound

{ File Organization 389]

Be careful in Deleting and Adding a Record |

» Only insert atombstone when the next record is occupied
or Is atombstone

» | nsertions should be modified to work with tombstones: if
either an empty dot or atombstone is reached, place the
new record there.

3
=
2
T

{ File Organization 390]

Effects of Deletions and Additions on Performance |

» The presence of too many tombstones increases search
length.

» Solutions to the problem of deteriorating average search
lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address

2. Complete reorganization: re-hashing
3. Useadifferent type of collision resolution technique

3
=
2
T

{ File Organization 391]

Other Collision Resolution Techniques |

1. DoubleHashing
» Thefirst hash function determines the home address

» |f the home address is occupied, apply a second hash
function to get a number ¢ (c relatively primeto N)

» cisadded to the home address to produce an overflow
addresses: If occupied, proceed by adding c to the
overflow address, until an empty spot is found.

3
=
2
T

{ File Organization 392]

Example |

k (key) ADAMS | JONES | MORRIS | SMITH
hi(k) (home address) 5 6 6 5
ha(k) =) 3 1 3
3 S _ 2
Hashed file using double hashing 3
= 4
g 5 | ADAMS
6 | JONES
7
8 | SMITH
S
10 | MORRIS

{ File Organization 393]

o AQueion |

» Suppose the above table isfull, and that a key

k has h,(K)=6 and hy(k)=3 XXXXX

» What would be the order in which the 1 XXXXX

= addresses would be probed when tryingto 2 | 288X
= Insert k? 3 | XXXXX
e 4 [XXXXX
% Answer:6,9,1,4,7,10,2,5,8,0, 3 5 XXX
= 6 [XXXXX
7 | XXXXX

8 | XXXXX

9 | XXXXX

10 | XXXXX

{ File Organization o]

Other Collision Resolution Techniques (Con’t) |

2. Chained Progressive Overflow

» Similar to progressive overflow, except that synonyms
are linked together with pointers.

» The objective is to reduce the search length for records
within clusters.

3
=
2
T

{ File Organization 395]

Example |

Key Home Progressive Chained Progr.
Overflow Overflow
v | ADAMS 20 1 1
Ml BATES | 21 1 1
= | COLES 20 3 2
| DEAN 21 3 2
M| EVANS | 24 1 1
FLINT 20 6 3
Average Search Length : 2.5 1.7

{ File Organization 396]

Example (Con’t) |

Progressive Overflow Chained Progressive Overflow

data data |next

Or,l) : : : : :
20 | ADAMS 20 | ADAMS | 22

= 21| BATES 21| BATES | 23
@ 22 | COLES 22| COLES | 25
- 23| DEAN 23| DEAN | -1
24 | EVANS 24 | EVANS | -1

25| FLINT 25| FLINT | -1

{ File Organization 397]

Other Collision Resolution Techniques (Con’t) |

3. Chained with a Separate Overflow Area
» Move overflow recordsto a Separate Overflow Area

» A linked list of synonyms start at their home address in
the Primary data area, continuing In the separate
overflow area

» When the packing density is higher than 1 an overflow
arealsrequired

3
=
2
T

{ File Organization 398]

Example |

Primary Data Area Overflow Area
20 | ADAMS | 0 0| COLES |2
- 21 | BATES 1 1 | DEAN -1
= 22 2| FLINT -1
=2 23 3
17 24| EVANS | -1
T 25

{ File Organization 399]

Other Collision Resolution Techniques (Con’t) |

4. Scatter Tables: Indexing Revisited

» Similar to chaining with separate overflow, but the
hashed file contains no records, but only pointers to data

™ records.

2 Index (hashed) . datafile data next

< : 0| ADAMS 9

g 201 O | [BATES | 3
21] 1 o [COLES | 5
2 3 [DEAN |
23 4[EVANS | -1
24] 4 5 [FLINT | -1

{ File Organization 400]

1«

Content |

What is extendible hashing?

nsertions in extendible hashing

nsertions a closer ook at bucket splitting
Deletions in extendible hashing
Extendible hashing performance

vVvVvyvVvy

-
—i
(@)
=
L
(D)
o
i®)
3
(]

{ File Organization 402]

What is Extendible Hashing? |

» |t is an approach that tries to make hashing dynamic, i.e. to allow
Insertions and deletions to occur without resulting In poor
performance after many of these operations.

» Why thisis not the case for ordinary hashing?

» Extendible hashing combines two ingredients:
1. Hashing
2. Tries

» Keys are placed into buckets, which are independent parts of afile
in disk.

» Keys having a hashing address with the same prefix share the
same bucket.

» A trieisused for fast access to the buckets. It uses a prefix of the
hashing address in order to locate the desired bucket

{ File Organization 403]

-
—i
(@)
=
L
(D)
o
i®)
3
(]

Tries and Buckets |

» Consider the following grouping of keys into buckets|
depending on the prefix of their hash addresses

-
—i
(@)
=
L
(D)
o
i®)
3
(]

{ File Organization 404]

]_5 Indexing Spatial Data

Content |

What is extendible hashing?

nsertions in extendible hashing

nsertions a closer ook at bucket splitting
Deletions in extendible hashing
Extendible hashing performance

vVvVvyvVvy

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 406]

| ntroduction |

» Many applications(e.g., CAD, GIS) operate on spatial
data, which include points, lines, polygons and so on

» Conventional DBM Ss are unabl e to support spatial data
processing efficiently
— First, spatial data are large in quantity, complex in structures and
relationships

— Second, the retrieval process employs complex spatial operators
like intersection, adjacency, and containment

— Third, it isdifficult to define a spatial ordering, so conventional
techniques(e.g., sort-merge) cannot be employed for spatial
operations

» Spatial indexes need!

{ File Organization 407]

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

Query Processing |

P |t IS expensive to perform spatial operations (e.g., intersect,
contain) on real spatial data

» Thus, smpler structure that approximates the objects are
used: Minimum Bounding Rectangle or circle

» Example: intersection

«Stepl: perform intersection operation
between MBR, and MBRg

Step2: iIf MBR, Intersects with MBRg,

then perform intersection operation
between A and B

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 408]

Query Processing (Con't) |

» Multi-step spatial query processing
1. The spatial index prunes the search space to a set of candidates

2. Based on the approximations of candidates, some of the false hits
can be further filtered away

3. Finally, the actual objects are examined to identify those that
match the query

— The multi-step strategy can effectively reduce the number of
pages accessed, the number of datato be fetched and tested and
the computation time through the approximations

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

— Types of spatial queries
o Spatial selection: point query, range(window) query
o Spatial join between two or more different entities sets

{ File Organization 409]

A Taxonomy of spatial Indexes |

» Classification of spatial indexes
1. The transformation approach
e Parameter space indexing

— Objects with n vertices in a k-dimensional space are mapped
Into points in a nk-dimensional space
—e.g.) two-dimensional rectangle described by the two corner
(X1,y7) and (X,, y,) => apoint in afour-dimensional space
e Mapping to single attribute space
— The data space is partitioned into grid cells of the same size,

which are then numbered according to some curve-filling
methods(e.g., hilbert curve, z-ordering, snake-curve)

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 410]

A Taxonomy of spatial indexes (Con’t) |

» Classification of spatial indexes
2. The non-overlapping native space indexing approach
* Object duplication
* Object clipping

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 411]

A Taxonomy of spatial indexes (Con’t) |

» Classification of spatial indexes
3. The overlapping native space indexing approach

o Partitioning hierarchically the data space into a manageable
number of smaller subspaces

 Allowing the overlapping between bounding subspaces
e The overlapping minimization is very important
* e.0.)
— binary-tree: kd-tree, LSD-tree, €tc.
— B-tree: k-d-b-tree, R-tree, R*-tree, TV-tree, X-tree, €tc.
— Hashing: Grid-files, BANG files, etc.
— Space-Filling: Z-ordering, Filter-tree, etc.

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 412]

Binary-tree based indexing |

» The characteristics

— A basic data structure for representing data items whose index
values are ordered by some linear order

— Repetitively partitioning a data space
» Types of binary search trees

— kd-tree

— K-D-B-tree

— hB-tree

— skd-tree

— LSD-tree

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 413]

Binary-tree based indexing: The kd-tree |

» The kd-tree

— k-dimensional binary search tree to index multi-attribute data

— A nodein the tree serves both representation of a actual data
point and direction of search

— A discriminator is used to indicate the key on which branching
decision depends

— A node P has two children, aleft son LOSON(P) and aright son
HISON(P)

— If discriminator is the jt attribute, then the jt attribute of any
node in the LOSON(P) is less than the jth attribute of node P, and
the jth attribute of any node in the HISON(P) is greater than or
equal to that of node P

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 414]

Binary-tree based indexing: The kd-tree (con'’t) |

» The kd-tree

— Complications arise when an internal node(Q) Is deleted

e One of the nodes In the subtree whose root is Q must
replace Q

 To reduce the cost of deletion, a non-homogeneous
kd-tree was proposed

— The kd-tree has been the subject of intensive research
over the past decade: clustering, searching, storage
efficiency and balancing

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 415]

Binary-tree based indexing: The kd-tree (con'’t) |

(100,100)

D|(30,90)
Lo B(jﬂ 73) + b F(80170) discriminator
S O
I A(40,60)
&)
O
<3 C(25,159() o
%) O E(70,20)
(@)
c
x (0,0)
2 (a) data space (0) kd-tree

{ File Organization 416]

Binary-tree based indexing: The K-D-B-tree |

» The K-D-B-tree
— Isacombination of a kd-tree and B-tree
— consists of aregion page and a point page
* region page: <region, page-ID> pairs
e point page: <point, record-ID> pairs
— Is perfectly height-balanced
— has poorer storage efficiency, nevertheless

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 417]

Binary-tree based indexing: The K-D-B-tree (Con’t) I

» Splitting
— data page splitting

A split will occur during insertion of a new point into
afull point page

* The two resultant point pages will contain aimost the
same number of data points

* The split of a point page may cause the parent region
page to split as well, which may propagate upward

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 418]

Binary-tree based indexing: The K-D-B-tree (Con’t) I

» Splitting
— region page splitting
» A split will occur when aregion page is full
A region page is partitioned into two region pages
such that both have almost the same number of
entries
* The split may propagate downward

* The downward propagation may cause low storage
utilization

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 419]

Binary-tree based indexing: The K-D-B-tree (Con’t) I

®

o ° ¢ o °

= . ° S |S

o] o

© ®

a o | © ° o A

= S11 S

& (a) k-space 5. f/

i Sip Sy

= L \

5 S \

@) e °® o®)

E [] [) et °
(b) K-D-B Tree

{ File Organization 420]

Binary-tree based indexing: The hB-tree |

» The hB-tree
— problem in the K-D-B-tree

e The split of one index node can cause descendant
nodes to be split aswell. This may cause sparse
Index nodes to be created

— To overcome this problem, the hB-tree (the holey brick
B-tree) allows the data space to be holey

— Based on the K-D-B-tree => height-balanced tree
— Data nodes + Index nodes

— Data space may be non-rectangular and kd-tree Is used
to space representation in internal nodes

{ File Organization 421]

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

Binary-tree based indexing: The hB-tree (Con't) |
A @

Y1 B : B %D

N

B A

X1

A holey brick is represented via a kd-tree. A holey brick isa
brick from which asmaller brick hash been removed. Two
leaves of the kd-tree are required to reference the holey brick
region denoted by B.

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 422]

Binary-tree based indexing: The hB-tree (Con't) |

g F | B 7 D
LO E A B
< - @ @
© Y2 C A
© Yi ' D E
D X1 X2 X3 G
% D E |
(% before split
@)
5 @ * 2
> - :
@) after split
O P /@ @2 Y3

E VV/Z \ZZ
h R
/
D E .

[File Organization 423]

Binary-tree based indexing: The hB-tree (Con't) |

» The advantages

— Overcoming the problem of sparse nodes in the K-D-B-
tree

— The search time and the storage space are reduced
because of the use of kd-tree

» The disadvantages

— The cost of node splitting and node deletion are
expensive

— The multiple references to data nodes may cause a path
to be traversed more than once

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 424]

B-tree based indexing: The R-tree |

» The R-tree

— A multi-dimensional generalization of the B-tree
— A height-balanced tree

— Having received agreat deal of attention due to its well
defined structure

— Like the B-tree, node splitting and merging are required

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 425]

B-tree based indexing: The R-tree (Con't) |

» The structure of the R-tree
— Leaf node: aset of entries of <MBR, object-1D>
 MBR: a bounding rectangle which bounds its data
object
 object-I1D: an object identifier of the data object
— Index node : aset of entries of <MBR, child-pointer>

« MBR: a bounding rectangle which covers all MBRs
In the lower node in the subtree

e child-pointer: a pointer to alower level nodein the
subtree

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 426]

B-tree based indexing: The R-tree (Con't) |

D g 1 . R2 "

7 B E.I._.._..:._.._E.:._.._..:._.._..._...I ; | ndex node

‘ggz?%Z: it R6 N an”
7 :

BN 7/ B NN\ [T
: T NN\ l N
0 SRR et o
©] W) i L AN\
; - e
W) ' RS 5 |
% ::._1%8__@'
& k-dimensional data space
g R1[R2|
]
o
i®)
c
— R3[R4|R5 R-tree R6[R7|R8
rljr2jr3| |[r4|r5 rolr’/ sl]s2 s3|s4|s5| |s6ls7

{ File Organization 427]

B-tree based indexing: The R-tree (Con't) |

» Search

— Query operations:. intersect, contain, within, distance, etc.
— Query rectangle: arectangle represented by user
— The search algorithm

* Recursively traverse down the subtrees of MBR which
Intersect the query rectangle

* When aleaf node isreached, MBRs are tested against the
guery rectangle and then their objects are tested if they insect
the query rectangle

— Primary performance factor: minimization of overlaps between
MBRs of index nodes => determined by the splitting
algorithm(different from other R-tree variants)

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 428]

B-tree based indexing: The R-tree (Con't) |

» | nsertion
— Criterion: least coverage

 The rectangle that needs |east enlargement to
enclose the new object is selected, the one with the
smallest area is chosen iIf more than on rectangle
meets the first criterion

» Deletion

— In case that the deletion causes the leaf nodeto
underflow, the node is deleted and all the remaining
entries of that node are reinserted from the root

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 429]

B-tree based indexing: The R*-tree |

» The R*-tree

— Minimization of both coverage and overlap is crucia to
the performance of the R-tree. So the near optimal of
both minimization was introduced by Beckmann et al.:
The criterion that ensures the quadratic covering
rectangles is used in the insertion and splitting
algorithms

— Dynamic hierarchical spatial indexes are sensitive to
the order of the insertion of data: Beckmann proposed a
forced reinsertion algorithm when a node overflows’

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 430]

B-tree based indexing: The R*-tree |

» The R*-tree

— A compromise between the R-tree and the K-D-B-tree

— Overcoming the problem of the overlapping of internal nodes of
the R-tree

— The R*-tree differs from the R-tree:
* Nodes of an R*-tree are no guaranteed to be at least half filled
e The entries of any internal node do not overlap
« An object identifier may be stored in more than one leaf node

— The digoint MBRs avoid the multiple search paths for point
gueries

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 431]

B-tree based indexing: The R*-tree (Con't) |

E%E |_lié - ...:-____IR? k-d| mens Onal data Space

NN 77/ \\ _____
- =

% 'i ‘*:R8 hh
| %V l \f R10

LO
i
O
©
D .___4___1 RSL _____ I:l :
T e I : @:m
.g E'..'..T..'..'..T..'..‘.
)
) RIR2
=
é R3|R4IR5R6 R7IR8|RIYR1D
= R*-tree
r1 |2 |r3 s1 s1fs2[s3 s4
r4 Ir5 ré [r7 |s6 s3Is5|s6| 85 E6 |s7

[File Organization 432]

Cell methods based on dynamic hashing:
Thegrid file

» Thegrid file
— Based on dynamic hashing for multi-attribute point data

— Two basic structures: k linear scales + k-dimensional
directory

— grid directory: k-dimensional array

— Each grid need not contain at least m objects. So adata
page is allowed to store objects from severa grid cells
as long as the union of these cells from a rectangular
rectangle, which is known as the storage region

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 433]

Cell methods based on dynamic hashing:
The grid file (Con’t)

® ®
ot o Il @
© rid director
= g y
- ®
© O O
2 3 2 o
ke E | -
- Zﬁ //// o ®| catapage
c
% . ®
% storageregion | A/ Aé

° The Grid file layout

{ File Organization 434]

Cell methods based on dynamic hashing:
The grid file (Con’t)

» Splitting by insertion
— In the case where the data page is full, a split isrequired

e The split issimple if the storage region covers more than
the grid cdlls
e Otherwise anew (k-1)-dimensiona hyperplane partitions
the corresponding storage region into two subspaces
— The corresponding storage region: partition into two

regions and distribute objects into the existing page
and a new data page

— Other storage regions. unaffected

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 435]

Cell methods based on dynamic hashing:
The grid file (Con’t)

new data page
7777 Storage
ot ® ®eo|l| %, /ﬂ region
< < rid director
g new object T / J y
< hyperplane 1 |
Q Z
2 81 ®e
g) & 7 ® data page
P
Q
E—j iz ///4

Splitting by insertion

{ File Organization 436]

Cell methods based on dynamic hashing:
The grid file (Con’t)

» Merging by deletion
— Deletion may cause the occupancy of a storage region
to fall below an acceptable level, which triggers
merging operations
— If the joint occupancy of two or more adjacent storage

regions drops below athreshold, then the data pages are
merged into one

— Two merging approaches: neighbor system and buddy
system

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 437]

Spatial objects ordering |

» The space-filling curves

— Mapping multi-dimensional objects to one-dimensional
values
 Numbering each grid in a space according to
mapping function (e.g., Peano-Hilbert curve, z-
ordering, gray-ordering, etc.)
» one-dimensional locational key i1s anumber

— A B*-treeis used to index the objects based on
locational keys

Ty
—
©
©
A
O
g
p)
o
=
O
©
IS

{ File Organization 438]

Spatial objects ordering (Con't) |

e.g.) z-ordering

LO
— AN AN
© xm \\ Yoo\ K + 5mh if k isthe SW son of k’
© N\ N K' +2*5mh if kisthe NW son of K’
- ~ NN K= |K +3*5m™h if kisthe SE son of kK
O — — K + 4*5mh jf k isthe NE son of K’
B R \
ol R NP S N \\1 N mapping function

L. N
22 N
.E 1111 1113
& .
= Z-ordering

[File Organization 439]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

