
Copyright © 2004, Binnur Kurt

Indexing Spatial DataIndexing Spatial Data15

406

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

IntroductionIntroduction

►Many applications(e.g., CAD, GIS) operate on spatial
data, which include points, lines, polygons and so on

►Conventional DBMSs are unable to support spatial data
processing efficiently
– First, spatial data are large in quantity, complex in structures and

relationships

– Second, the retrieval process employs complex spatial operators
like intersection, adjacency, and containment

– Third, it is difficult to define a spatial ordering, so conventional
techniques(e.g., sort-merge) cannot be employed for spatial
operations

►Spatial indexes need!

407

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Query ProcessingQuery Processing

►It is expensive to perform spatial operations (e.g., intersect,
contain) on real spatial data

►Thus, simpler structure that approximates the objects are
used: Minimum Bounding Rectangle or circle

►Example: intersection

•A
•B

MBRA
MBRB

•Step1: perform intersection operation
between MBRA and MBRB

•Step2: if MBRA intersects with MBRB,
then perform intersection operation
between A and B

408

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Query Processing (Con’t)Query Processing (Con’t)

►►MultiMulti--step spatial query processingstep spatial query processing
1. The spatial index prunes the search space to a set of candidates

2. Based on the approximations of candidates, some of the false hits
can be further filtered away

3. Finally, the actual objects are examined to identify those that
match the query

– The multi-step strategy can effectively reduce the number of
pages accessed, the number of data to be fetched and tested and
the computation time through the approximations

– Types of spatial queries

• Spatial selection: point query, range(window) query

• Spatial join between two or more different entities sets

409

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

A Taxonomy of spatial indexesA Taxonomy of spatial indexes

►Classification of spatial indexes
1. The transformation approach

• Parameter space indexing

– Objects with nn vertices in a kk-dimensional space are mapped
into points in a nknk-dimensional space

– e.g.) two-dimensional rectangle described by the two corner

(x1,y1) and (x2, y2) => a point in a four-dimensional space

• Mapping to single attribute space

– The data space is partitioned into grid cells of the same size,
which are then numbered according to some curve-filling
methods(e.g., hilbert curve, z-ordering, snake-curve)

410

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

A Taxonomy of spatial indexes (Con’t)A Taxonomy of spatial indexes (Con’t)

►Classification of spatial indexes

2. The non-overlapping native space indexing approach

• Object duplication

• Object clipping

411

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

A Taxonomy of spatial indexes (Con’t)A Taxonomy of spatial indexes (Con’t)

►Classification of spatial indexes

3. The overlapping native space indexing approach

• Partitioning hierarchically the data space into a manageable
number of smaller subspaces

• Allowing the overlapping between bounding subspaces

• The overlapping minimization is very important

• e.g.)

– binary-tree: kd-tree, LSD-tree, etc.

– B-tree: k-d-b-tree, R-tree, R*-tree, TV-tree, X-tree, etc.

– Hashing: Grid-files, BANG files, etc.

– Space-Filling: Z-ordering, Filter-tree, etc.

412

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexingBinary-tree based indexing

►The characteristics
– A basic data structure for representing data items whose index

values are ordered by some linear order

– Repetitively partitioning a data space

►Types of binary search trees
– kd-tree

– K-D-B-tree

– hB-tree

– skd-tree

– LSD-tree

413

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The kd-treeBinary-tree based indexing: The kd-tree

►The kd-tree
– k-dimensional binary search tree to index multi-attribute data

– A node in the tree serves both representation of a actual data
point and direction of search

– A discriminator is used to indicate the key on which branching
decision depends

– A node P has two children, a left son LOSON(P) and a right son
HISON(P)

– If discriminator is the jth attribute, then the jth attribute of any
node in the LOSON(P) is less than the jth attribute of node P, and
the jth attribute of any node in the HISON(P) is greater than or
equal to that of node P

414

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The kd-tree (con’t)Binary-tree based indexing: The kd-tree (con’t)

►The kd-tree

– Complications arise when an internal node(Q) is deleted

• One of the nodes in the subtree whose root is Q must
replace Q

• To reduce the cost of deletion, a non-homogeneous
kd-tree was proposed

– The kd-tree has been the subject of intensive research
over the past decade: clustering, searching, storage
efficiency and balancing

415

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The kd-tree (con’t)Binary-tree based indexing: The kd-tree (con’t)

(0,0)

(100,100)

D(30,90)

F(80,70)
B(10,75)

A(40,60)

C(25,1590)
E(70,20)

A

B E

C D A

discriminator

0 (x-axis)

1 (y-axis)

0 (x-axis)

(a) data space (b) kd-tree

416

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The K-D-B-treeBinary-tree based indexing: The K-D-B-tree

►The K-D-B-tree

– is a combination of a kd-tree and B-tree

– consists of a region page and a point page

• region page: <region, page-ID> pairs

• point page: <point, record-ID> pairs

– is perfectly height-balanced

– has poorer storage efficiency, nevertheless

417

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

►Splitting

– data page splitting

• A split will occur during insertion of a new point into
a full point page

• The two resultant point pages will contain almost the
same number of data points

• The split of a point page may cause the parent region
page to split as well, which may propagate upward

418

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

►Splitting

– region page splitting

• A split will occur when a region page is full

• A region page is partitioned into two region pages
such that both have almost the same number of
entries

• The split may propagate downward

• The downward propagation may cause low storage
utilization

419

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The K-D-B-tree (Con’t)Binary-tree based indexing: The K-D-B-tree (Con’t)

s1

s22

s2

s11

s13
s12

s21

(a) k-space

(b) K-D-B Tree

420

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The hB-treeBinary-tree based indexing: The hB-tree

►The hB-tree

– problem in the K-D-B-tree

• The split of one index node can cause descendant
nodes to be split as well. This may cause sparse
index nodes to be created

– To overcome this problem, the hB-tree (the holey brick
B-tree) allows the data space to be holey

– Based on the K-D-B-tree => height-balanced tree

– Data nodes + Index nodes

– Data space may be non-rectangular and kd-tree is used
to space representation in internal nodes

421

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

x1

y1

X=x1

Y=y1B

B A

A

B

A holey brick is represented via a kd-tree. A holey brick is a
brick from which a smaller brick hash been removed. Two
leaves of the kd-tree are required to reference the holey brick
region denoted by B.

422

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

x1

y3

y1
y2

x3x2

y5
y4 F

E

D
C A

B
G

y1

x1 x2

y5y3

y3y4

x3

FG

GE

C

ED

BA

y4

x3

Z:

W: Z:

x2

y5

y3y4

x3

FG

G
BAext

y1

x1

y3

C

ED

E

before split

after split

423

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Binary-tree based indexing: The hB-tree (Con’t)Binary-tree based indexing: The hB-tree (Con’t)

►The advantages

– Overcoming the problem of sparse nodes in the K-D-B-
tree

– The search time and the storage space are reduced
because of the use of kd-tree

►The disadvantages

– The cost of node splitting and node deletion are
expensive

– The multiple references to data nodes may cause a path
to be traversed more than once

424

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R-treeB-tree based indexing: The R-tree

►The R-tree

– A multi-dimensional generalization of the B-tree

– A height-balanced tree

– Having received a great deal of attention due to its well
defined structure

– Like the B-tree, node splitting and merging are required

425

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►The structure of the R-tree

– Leaf node : a set of entries of <MBR, object-ID>

• MBR: a bounding rectangle which bounds its data
object

• object-ID: an object identifier of the data object

– Index node : a set of entries of <MBR, child-pointer>

• MBR: a bounding rectangle which covers all MBRs
in the lower node in the subtree

• child-pointer: a pointer to a lower level node in the
subtree

426

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

R3

R6

R4

R7
R5

R2

R8

R1

R1 R2

r1

R3 R4 R5

r4 r5 r6 r7r1 r2 r3

R6 R7 R8

s3 s4 s5 s6 s7s1 s2

r2

r4

r5

r6

r7

s1

r3

s3

s2

s4

s5
s6

s7

k-dimensional data space

R-tree

index node

leaf node

427

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►Search
– Query operations: intersect, contain, within, distance, etc.

– Query rectangle: a rectangle represented by user

– The search algorithm

• Recursively traverse down the subtrees of MBR which
intersect the query rectangle

• When a leaf node is reached, MBRs are tested against the
query rectangle and then their objects are tested if they insect
the query rectangle

– Primary performance factor: minimization of overlaps between
MBRs of index nodes => determined by the splitting
algorithm(different from other R-tree variants)

428

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R-tree (Con’t)B-tree based indexing: The R-tree (Con’t)

►Insertion

– Criterion: least coverage

• The rectangle that needs least enlargement to
enclose the new object is selected, the one with the
smallest area is chosen if more than on rectangle
meets the first criterion

►Deletion

– In case that the deletion causes the leaf node to
underflow, the node is deleted and all the remaining
entries of that node are reinserted from the root

429

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R*-treeB-tree based indexing: The R*-tree

►The R*-tree

– Minimization of both coverage and overlap is crucial to
the performance of the R-tree. So the near optimal of
both minimization was introduced by Beckmann et al.:
The criterion that ensures the quadratic covering
rectangles is used in the insertion and splitting
algorithms

– Dynamic hierarchical spatial indexes are sensitive to
the order of the insertion of data: Beckmann proposed a
forced reinsertion algorithm when a node overflows`

430

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R+-treeB-tree based indexing: The R+-tree

►The R+-tree
– A compromise between the R-tree and the K-D-B-tree

– Overcoming the problem of the overlapping of internal nodes of
the R-tree

– The R+-tree differs from the R-tree:

• Nodes of an R+-tree are no guaranteed to be at least half filled

• The entries of any internal node do not overlap

• An object identifier may be stored in more than one leaf node

– The disjoint MBRs avoid the multiple search paths for point
queries

431

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

B-tree based indexing: The R+-tree (Con’t)B-tree based indexing: The R+-tree (Con’t)

R3

R6

R4

R10
R5

R2

R9

R1

R1 R2

r1

R3 R4 R5

r4 r5 r6 r7

r1 r2 r3

R7 R8 R9

s3 s5 s6

s4s1 s2

r2

r4

r5

r6

r7

s1

r3

s3

s2

s4

s5
s6

s7

k-dimensional data space

R+-tree

R8

R7

R6

s6

s1

R10

s3

s5 s6 s7

432

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Cell methods based on dynamic hashing:
The grid file

Cell methods based on dynamic hashing:
The grid file

►The grid file

– Based on dynamic hashing for multi-attribute point data

– Two basic structures: k linear scales + k-dimensional
directory

– grid directory: k-dimensional array

– Each grid need not contain at least m objects. So a data
page is allowed to store objects from several grid cells
as long as the union of these cells from a rectangular
rectangle, which is known as the storage region

433

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

grid directory

data pagesc
al

e s

The Grid file layout

storage region

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

434

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

►Splitting by insertion

– In the case where the data page is full, a split is required

• The split is simple if the storage region covers more than
the grid cells

• Otherwise a new (k-1)-dimensional hyperplane partitions
the corresponding storage region into two subspaces

– The corresponding storage region: partition into two
regions and distribute objects into the existing page
and a new data page

– Other storage regions: unaffected

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

435

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

grid directory

data pagesc
al

e s

Splitting by insertion

new data page

hyperplane

new object

storage
region

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

436

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

►Merging by deletion

– Deletion may cause the occupancy of a storage region
to fall below an acceptable level, which triggers
merging operations

– If the joint occupancy of two or more adjacent storage
regions drops below a threshold, then the data pages are
merged into one

– Two merging approaches: neighbor system and buddy
system

Cell methods based on dynamic hashing:
The grid file (Con’t)

Cell methods based on dynamic hashing:
The grid file (Con’t)

437

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Spatial objects orderingSpatial objects ordering

►The space-filling curves

– Mapping multi-dimensional objects to one-dimensional
values

• Numbering each grid in a space according to
mapping function (e.g., Peano-Hilbert curve, z-
ordering, gray-ordering, etc.)

• one-dimensional locational key is a number

– A B+-tree is used to index the objects based on
locational keys

438

In
de

xi
ng

 S
pa

tia
l D

at
a

15

File Organization

Spatial objects ordering (Con’t)Spatial objects ordering (Con’t)

1111

1110

1300

14001200

1100
1114

1113

1112

1100

z-ordering

k’ + 5m-h if k is the SW son of k’
k’ + 2*5m-h if k is the NW son of k’

k = k’ + 3*5m-h if k is the SE son of k’
k’ + 4*5m-h if k is the NE son of k’

mapping function

e.g.) z-ordering

