Sayısal Sistem Tasarım Uygulamaları

Xilinx – Yeni proje oluşturmak

elect the device and design flow for th	ne project	28
Property Name	Value	
Product Category	General Purpose	
Family	Spartan3E> Gerce	klemeyeceğiniz iç
Device	XC3S500E burg	a sectikleriniz co
Package	CP132	
Speed	-5	y ilenin degil.
Top-Level Source Type	HDL	-
Synthesis Tool	XST (VHDL/Verilog)	-
Simulator	ISim (VHDL/Verilog)	
Preferred Language	VHDL	
Manual Compile Order		
	Mode	lsim XE – VHDL de
Enable Enhanced Design Summary		acahilirsiniz
Enable Message Filtering		eçebili Silliz.
Display Incremental Messages		

VHDL Sunum I.pdf içindeki ilk örneği deneyeceğiz. Bunun için önce AND_gate.vhd adlı modülü oluşturalım.

🚾 New Source Wiz	ard							×	
Define Module Specify ports	for module.	Entity o ancak n belirtirs	luşturn nodülü eniz .vl	nak n gii nd d	için riş çı losya	tek yol kışların anızda c	bu değ ı burac otomat	;il, 1a :ik	
Entity name	AND_gate	olarak gö	örünece	ektir	: (tü	m giriş	çıkışlaı	rım	
Architecture name	Behavioral	birer bitlik- hiçbiri bus değil)							
	Port Name		Direction	n	Bus	MSB	LSB		
А			in	•					
В			in						
X			out	•					
			in	•					
			in	-					
			in	•					
			in	•					
			in	•					
			in	▼					
			in	•					
			in	T				•	
More Info				< Ba	ick	Next >	Canc	el	

- Next, next Finish diyerek projeyi oluşturuyoruz. Karşımıza "Design Summary" dosyası geliyor. Bu dosya şu anda tertemiz..
- Biz AND_gate.vhd'yi açıp architecture yazıyoruz. (Architecture için bknz: VHDL_sunuml.pdf) Herşey hazır geldiğinden yazacağımız tek satır:

X <= A and B;

Bir sonraki aşamaya geçmeden önce:

- AND_gate modülünü nasıl oluşturduysak, bir de OR_gate modülü oluşturun.
- (ipucu: veya işlemi or ile tanımlanmıştır.)

AND_gate ve OR_gate modülleriniz hazırsa, bunları bir üst modülde nasıl kullanacağımızı görelim:

- Üst modül olan ao_logic.vhd için de ister wizard kullanarak ister dosyayı oluşturduktan sonra yazarak modul entity sini giriyoruz.
- Bu modulun mimarisi altında 2 AND_gate alt modülü var. Bunları eklemek için hierarcy'de AND_gate.vhd seçili iken, Process → design utilites altında "View HDL Instantenation Template" çalıştırılır. Karşımıza şu gelir: COMPONENT AND gate

```
PORT(

A : IN std_logic;

B : IN std_logic;

X : OUT std_logic

);

END COMPONENT;

Inst_AND_gate: AND_gate PORT MAP(

A => ,

B => ,

X =>

);

Component bir defa üst modüle taşınırsa, onu farklı farklı isimlerle istediğimiz sayıda kullanabiliriz. Modüle ve giriş çıkışlarına isim

verme isi Port man ile vapılır. PORT MAP, alt modüldeki A B ve X sinvallerini üst modülde naşıl isimlendirdiğimizi göstermek
```

verme işi Port map ile yapılır. PORT MAP, alt modüldeki A,B ve X sinyallerini üst modülde nasıl isimlendirdiğimizi göstermek içindir. Template AND-OR-logic altına kopyalanır ve temel sunumun ilgili sayfasındaki şekle göre isimler yenilenir:

G1: AND_gate PORT MAP(G2: AND_gate PORT MAP(
	A => IN1,		A => IN3,	
	B => IN2,		B => IN4,	
	X => OUT1		X => OUT2	
););		

OR_gate modüllünü de G3 ismi ile siz ekleyin!

 Herşeyi eklediniz, ama devrenizin içindeki bağlantıları da tanımlamanız gerekir:

signal OUT1, OUT2:std_logic;

- Dikkat etmeniz gerekenler:
 - Birbiri ile eşleşen sinyaller uyumlu mu? (aynı türde mi tanımlanmış? Örn: X:std_logic iken, OUT1 de std_logic mi?)
 - Syntax doğru mu?

Hepsi tamamsa, RTL schematic oluşturulabilir. (bknz: Xilinx ISE nasıl kurulur?)

Şunu elde edeceksiniz:

Test Bench

- Simulasyon için bir test bench oluşturalım. Projeye yeni bir "VHDL Test Bench" ekleyerek işe başlayın. (Test dosyasını ao_logic modülü için hazırlayacaksınız.)
- Uzun uzun bir şeyler gelecek önünüze, ama sizin şimdilik clock ve reset ile işiniz olmadığından <clock>_process :process ve stim_proc: process işlemlerini görmezden gelip, yeni bir process yazmanız gerekiyor.
- Ben şunu yazdım:

ve elde ettiğim:

Farklı test processleri yazarak devrenizi deneyin