CENTRIFUGAL PUMP DESIGN AND PERFORMANCE OPTIMIZATION USING LOSS CORRELATIONS

OĞUZCAN MERCAN

SUPERVISORS: ASSOC. PROF. DR. EMRE ALPMAN
PROF. DR. ERKAN AYDER

4 DECEMBER 2018
MARMARA UNIVERSITY
Outline

- Introduction
- Pump Theory
 - Design of impeller and volute
 - Loss models
 - Code implementation and CFD analysis
- Results & Discussion
 - Prediction results
 - CFD Results
 - Comparison
- Future Work
Introduction

- Flow inside the pump
 - Highly complicated
 - Can be successfully simulated using CFD
- Predicting the pump performance characteristics without
 - performing the time consuming and challenging CFD calculations

- The aim of this thesis
 - To develop a pump performance prediction code using theoretical and empirical energy loss equations from the literature
Introduction

Literature

- There are well known books on pump design topic by Pfleiderer, Gülich and Tuzson
- Loss correlations of Hamkins and Dick are performed for the prediction off-design conditions
- Wiesner developed a formula for the prediction of slip factors
- Blade loading losses are calculated via Pearsall’s formula adapted to centrifugal pumps by Myles
- Various CFD simulation models of centrifugal pumps have been presented in literature
Outline

- Introduction
- Pump Theory
 - Design of impeller and volute
 - Loss models
 - Code implementation and CFD analysis
- Results & Discussion
 - Prediction results
 - CFD Results
 - Comparison
- Future Work
Pump Theory

Three characteristic dimensions should be known in the design calculation of a centrifugal pump

- H_m: Delivery head (m)
- Q: Flow rate (m3/s)
- n: Rotational speed (rpm)
Pump Theory

Design of impeller

Main dimensions of impeller

\[D_1 = \text{Inlet diameter} \]
\[b_1 = \text{Inlet blade width} \]
\[b_2 = \text{Outlet blade width} \]
\[D_s = \text{Pump shaft diameter} \]
\[D_h = \text{Impeller hub diameter} \]
Pump Theory

Design of impeller

Inlet conditions

- **Circumferential velocity**, u
 - Multiplication of angular velocity ω, and impeller radius r
- **Relative velocity**, w
- **Absolute velocity**, c
 - Which is obtained through the vectorial addition of u and w

Outlet conditions

The velocity triangle is described by three vectors:

- **Circumferential velocity**, u
- **Relative velocity**, w
- **Absolute velocity**, c
Pump Theory

Design of volute

- The gradually increasing volute flow cross sections are calculated from the flow rate and from an average velocity at the volute cross section center.

- The usual flow model assumes that the impeller outlet tangential velocity decreases in proportion to the radius to maintain constant angular momentum.
Pump Theory

Loss models

- Theoretical head
- Slip factor
- Inlet loss
- Impeller losses
 - Mismatching loss
 - Friction loss
 - Blade loading loss
- Volute losses
 - Mismatching loss
 - Friction loss
 - Diffusor loss
- Disc friction loss
Pump Theory

Loss models

- Theoretical head (H_m) is calculated from Euler's pump equation, which gives the conservation of angular momentum across the impeller.

- The slip phenomenon has a strong influence on the working condition of centrifugal pumps. Several methods have been proposed by a large number of authors, Stodola, Busemann, Stanitz, Wiesner, Backström etc.

- Wiesner obtained an empirical formula that predicts the slip factor, σ. The formula includes the relation of outlet blade angle β_2, and number of blades, Z.
Pump Theory

Loss models

- Tangential component of the absolute velocity \mathbf{c}_u can be found by extracting tangential component of the relative velocity \mathbf{w}_u from the peripheral velocity \mathbf{u}, by taking into account of slip factor as σu.
Pump Theory

Code implementation

- The pump design and performance optimization software has been implemented on Java 1.8 using Java FX.

- Eclipse which is an integrated development environment (IDE) is used in computer programming. The user interface has been created and edited using the Scene Builder software which is integrated with JavaFx.
Performing initial calculations
- Flow rate (Q)
- Delivery head (H)
- Pump speed (n) are entered

Calculations can be modified by pressing ‘Update Calculation’

‘Calculate Losses’ button executes the loss calculation and opens a new pop-up window that shows the losses
Pump Theory

Code implementation

- Delivery head at design point and off-design conditions are obtained.
- The design can be modified if the final results are below the desired values by returning to the previous window.
- Iterations end by obtaining the performance curve
Pump Theory

CFD Analysis - Pre-processing

- Solid modeling
- Creating domains
Meshing

- Impeller domain have a critical role for calculations. Therefore impeller has more elements compare to inlet and outlet.
- Interiors between impeller - inlet domain and impeller-outlet domain have smaller mesh size due to higher accuracy of analysis.
Pump Theory

CFD Analysis - Pre-processing

Meshing

- Boundary layer mesh (inflation) was applied and layer compression method is selected to preserve the number of layers
- The quality of the resulting grid was checked with the skewness parameter
Pump Theory

CFD Analysis - Pre-processing

- Solver settings
 - The fluid is incompressible and the rotation of the impeller was performed with MRF (Multiple Reference Frame)
 - Steady state analysis were performed.
 - $k-\omega$ based Shear Stress Transport model was used as the turbulence model
 - Static meshing is applied for all domains
Boundary Conditions

Inlet

• The mass flow rate (kg/s) is defined normal to the flow direction of the inlet boundary

Outlet

• Static pressure of 0 Pa (atmospheric pressure) was defined at the pump outlet
Pump Theory

Experimental Setup

- Pump-1 outlet is connected to G2 T-pipe,
- Pump-2 is connected to G1½ T-pipe,
- Pump-3 is connected to G1¼ T-pipe.
Outline

- Introduction
- Pump Theory
 - Design of impeller and volute
 - Loss models
 - Code implementation and CFD analysis
- Results & Discussion
 - Prediction results
 - CFD Results
 - Comparison
- Future Work
Results and Discussion

Loss correlation predictions

The main design parameters

- Flow rate, Q
- Delivery head, H_m
- Rotational speed, n

The calculations can be repeated for each design until the desired pump performance is achieved.
Results and Discussion

Loss correlation predictions – Pump-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1)</td>
<td>65</td>
<td>mm</td>
</tr>
<tr>
<td>(D_2)</td>
<td>142</td>
<td>mm</td>
</tr>
<tr>
<td>(b_1)</td>
<td>19.75</td>
<td>mm</td>
</tr>
<tr>
<td>(b_2)</td>
<td>9.9</td>
<td>mm</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>22</td>
<td>(^\circ)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>26</td>
<td>(^\circ)</td>
</tr>
<tr>
<td>(z)</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>(e)</td>
<td>5</td>
<td>mm</td>
</tr>
<tr>
<td>(n)</td>
<td>2900</td>
<td>rpm</td>
</tr>
<tr>
<td>(Q)</td>
<td>600</td>
<td>l/min</td>
</tr>
</tbody>
</table>
Results and Discussion

Loss correlation predictions – Pump-2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>48</td>
<td>mm</td>
</tr>
<tr>
<td>D_2</td>
<td>106</td>
<td>mm</td>
</tr>
<tr>
<td>b_1</td>
<td>24.5</td>
<td>mm</td>
</tr>
<tr>
<td>b_2</td>
<td>15.6</td>
<td>mm</td>
</tr>
<tr>
<td>β_1</td>
<td>16</td>
<td>°</td>
</tr>
<tr>
<td>β_2</td>
<td>24</td>
<td>°</td>
</tr>
<tr>
<td>z</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>3.5</td>
<td>mm</td>
</tr>
<tr>
<td>n</td>
<td>2900</td>
<td>rpm</td>
</tr>
<tr>
<td>Q</td>
<td>300</td>
<td>l/min</td>
</tr>
</tbody>
</table>
Results and Discussion

Loss correlation predictions – Pump-3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>35</td>
<td>mm</td>
</tr>
<tr>
<td>D_2</td>
<td>94</td>
<td>mm</td>
</tr>
<tr>
<td>b_1</td>
<td>17.5</td>
<td>mm</td>
</tr>
<tr>
<td>b_2</td>
<td>12.1</td>
<td>mm</td>
</tr>
<tr>
<td>β_1</td>
<td>26</td>
<td>°</td>
</tr>
<tr>
<td>β_2</td>
<td>38</td>
<td>°</td>
</tr>
<tr>
<td>z</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>n</td>
<td>2900</td>
<td>rpm</td>
</tr>
<tr>
<td>Q</td>
<td>120</td>
<td>l/min</td>
</tr>
</tbody>
</table>
Results and Discussion

CFD Results

- Approximately 450 iterations were run to reach the convergence criteria of residuals.
- Residual type of RMS (root mean square) is selected.
Results and Discussion

CFD Results – Pump-1

<table>
<thead>
<tr>
<th>Flow rate (l/min)</th>
<th>ΔP (bar)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>2.03</td>
<td>20.71</td>
</tr>
<tr>
<td>600</td>
<td>1.82</td>
<td>18.56</td>
</tr>
<tr>
<td>850</td>
<td>1.1</td>
<td>11.22</td>
</tr>
</tbody>
</table>
Results and Discussion

CFD Results – Pump-2

<table>
<thead>
<tr>
<th>Flow rate (l/min)</th>
<th>ΔP (bar)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1.03</td>
<td>10.51</td>
</tr>
<tr>
<td>300</td>
<td>0.86</td>
<td>8.77</td>
</tr>
<tr>
<td>450</td>
<td>0.64</td>
<td>6.53</td>
</tr>
</tbody>
</table>
Results and Discussion

CFD Results – Pump-3

<table>
<thead>
<tr>
<th>Flow rate (l/min)</th>
<th>ΔP (bar)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.96</td>
<td>9.79</td>
</tr>
<tr>
<td>120</td>
<td>0.73</td>
<td>7.46</td>
</tr>
<tr>
<td>180</td>
<td>0.43</td>
<td>4.39</td>
</tr>
</tbody>
</table>
Results and Discussion

Comparison of Results – Pump-1
Results and Discussion

Comparison of Results – Pump-2

![Graph showing delivery head vs flow rate for different results including CFD, Experimental, and Prediction Results.](chart.png)
Results and Discussion

Comparison of Results – Pump-3

![Graph showing comparison of prediction results, CFD results, and experimental results over Flow Rate (l/min) and Delivery Head (m).]
Results and Discussion

Comparison of Results

<table>
<thead>
<tr>
<th></th>
<th>Q (l/min)</th>
<th>Prediction (m)</th>
<th>Performance (m)</th>
<th>CFD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td></td>
<td>21.05</td>
<td>20.9</td>
<td>20.71</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>17.03</td>
<td>15.85</td>
<td>18.56</td>
</tr>
<tr>
<td>850</td>
<td></td>
<td>8.90</td>
<td>6.51</td>
<td>11.22</td>
</tr>
<tr>
<td>Pump-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>13.04</td>
<td>11.53</td>
<td>10.51</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>9.52</td>
<td>8.99</td>
<td>8.77</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td>3.09</td>
<td>4.07</td>
<td>6.53</td>
</tr>
<tr>
<td>Pump-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>10.48</td>
<td>9.78</td>
<td>9.79</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>7.92</td>
<td>7.9</td>
<td>7.46</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>4.66</td>
<td>5.46</td>
<td>4.39</td>
</tr>
</tbody>
</table>
Results and Discussion

Comparison of Results

- The performance predictions are compared with CFD calculations and experimental measurements of the same pump geometry.

- The performance tool has the advantage of less effort and time spent compare to CFD analysis.

- Predictions showed that the volute design has a significant effect on the pump performance.

- Characteristics of three different pumps using loss correlations are in good agreement with performance curves at BEP and off-design points of the pumps with specific speed range between 40 to 180. Therefore, the developed performance prediction code is highly reliable and consistent.
Results and Discussion

Future Work

There are certain options would be added to the prediction software such as

- Material Library
- Trapezoidal section for volute calculations
- Save project
- Export blade profile
- Printing H-Q curve
Thank You for Listening