
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

RESOURCE MAPPING OPTIMIZATION
FOR DISTRIBUTED CLOUD SERVICES

Ph.D. THESIS

Atakan ARAL

Department of Computer Engineering

Computer Engineering Programme

NOVEMBER 2016

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

RESOURCE MAPPING OPTIMIZATION
FOR DISTRIBUTED CLOUD SERVICES

Ph.D. THESIS

Atakan ARAL
(504122502)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Tolga OVATMAN

NOVEMBER 2016

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

DAĞITIK BULUT HİZMETLERİ İÇİN
KAYNAK EŞLEMENİN İYİLEŞTİRİLMESİ

DOKTORA TEZİ

Atakan ARAL
(504122502)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Asst. Prof. Dr. Tolga OVATMAN

KASIM 2016

Atakan ARAL, a Ph.D. student of ITU Graduate School of Science Engineering and
Technology 504122502 successfully defended the thesis entitled “RESOURCE MAP-
PING OPTIMIZATION FOR DISTRIBUTED CLOUD SERVICES”, which he/she
prepared after fulfilling the requirements specified in the associated legislations, before
the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Tolga OVATMAN
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Feza BUZLUCA
Istanbul Technical University

Prof. Dr. Nadia ERDOĞAN
Istanbul Technical University

Assoc. Prof. Dr. Öznur ÖZKASAP
Koç University

Prof. Dr. Can ÖZTURAN
Boğaziçi University

Date of Submission : 20 September 2016
Date of Defense : 3 November 2016

v

vi

Sabah güneşime,

vii

viii

FOREWORD

First of all, I would like to express my deep appreciation to Dr. Tolga Ovatman, who
is my mentor and advisor, and who has created the productive research environment
in which I have performed my graduate studies. He has been overly generous with his
time and his genius and has provided guidance at key moments in my work while also
allowing me to work independently the most of the time. It has been an honour to be
his first Ph.D. student.

I would like to thank Dr. Can Özturan and Dr. Feza Buzluca for contributing their time
as members of my thesis committee and for their insights and comments which greatly
improved this work. I also thank jury members of my thesis defense and anonymous
reviewers of the publications who have helped me shaping the final product.

I have collaborated with and learned a lot from many members of the Faculty of
Computer and Informatics Engineering. I would like to specifically mention Dr. Berk
Canberk for being such a good mentor and Gökhan Seçinti for patiently answering my
clueless questions about computer communications.

My research in this thesis has been supported by several research funds and
scholarships, including TÜBİTAK 2211 Graduate Scholarship, TBD Leaders of
Technology Graduate Scholarship, NETAŞ Ph.D. Incentive Award, and ITU Scientific
Research Projects. I would like to thank the funding institutions for their support.

I would like to thank my dear friend and colleague, Doğan Altan, who has provided
me a lot of support and encouragement over the years of this thesis. I am also thankful
to him for enduring my anxiety attacks and making me smile the whole way through.

My parents have raised me with a love of science and supported my education
unconditionally. I have been lucky to have their confidence, patience, pride. My
mother have encouraged me through every endeavour with her unconditional love.
It was my father who sparkled my interest in computers at my early ages. I am sure he
would have been very proud of me, as I am of him.

My loving wife, Nilay, has taken care for everything of my life outside the university,
allowing me to freely concentrate on my research. I have spent a lot of time and energy
that should have been dedicated to her, but she has never complained. I am in debt to
her for her patience and understanding. However, her contribution has not been limited
to these. She has listened to every presentation practice of mine and curiously asked me
about every research problem that I have encountered. Although she is not a scientist,
she has provided me some of the best suggestions and criticism on my work. Without
her love and support, I would never be able to conclude this thesis. Thus, I dedicate it
to her.

September 2016 Atakan ARAL

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xv
SYMBOLS...xvii
LIST OF TABLES .. xix
LIST OF FIGURES .. xxi
SUMMARY ...xxiii
ÖZET ... xxv
1. INTRODUCTION .. 1

1.1 Research Problem... 2
1.2 Hypothesis .. 3
1.3 Proposed Solution... 4
1.4 Contribution.. 5

1.4.1 Topology mapping algorithm ... 5
1.4.2 Minimum span heuristic ... 5
1.4.3 Decentralized replica placement algorithm .. 6
1.4.4 Replica discovery heuristic... 6
1.4.5 System modeling and simulation.. 6

1.5 Organization of the Thesis.. 6
2. LITERATURE REVIEW... 7

2.1 Preliminary Information ... 7
2.1.1 Graph and subgraph equivalence.. 7
2.1.2 Facility location problem.. 8
2.1.3 Cloud interoperability... 10
2.1.4 Cloud benchmarking and monitoring... 10

2.2 Virtual Machine Cluster Embedding .. 10
2.3 Local Virtual Machine Mapping .. 13
2.4 Data Replica Mapping.. 14

2.4.1 Centralized methods ... 16
2.4.2 Decentralized methods ... 18

3. SYSTEM MODEL.. 23
3.1 Problem Modeling .. 23

3.1.1 Entities.. 23
3.1.2 Topology mapping problem.. 26
3.1.3 Replica management problem .. 26
3.1.4 Network modeling .. 28
3.1.5 Cost modeling... 29

xi

3.2 Performance Criteria .. 30
4. TOPOLOGY MAPPING ... 33

4.1 Problem Definition ... 33
4.2 Use Case Scenario .. 36
4.3 Proposed Solution... 38

4.3.1 Subgraph isomorphism based mapping.. 40
4.3.2 Heuristic mapping .. 41
4.3.3 Within cloud mapping .. 42

4.3.3.1 MIP formulation .. 44
4.3.3.2 Evenness heuristic ... 45

4.4 Evaluation... 46
4.4.1 Experimental setup ... 46
4.4.2 Baseline heuristics .. 48
4.4.3 Results and discussion.. 49

4.4.3.1 Inter-cloud latency ... 49
4.4.3.2 Cloud-to-user latency... 50
4.4.3.3 Completion time and throughput ... 51
4.4.3.4 Cost .. 53
4.4.3.5 Runtime performance .. 54

4.4.4 Resource Utilization ... 54
5. REPLICATION MANAGEMENT ... 59

5.1 Problem Definition ... 59
5.2 Proposed Solution... 62

5.2.1 Requirements and assumptions .. 63
5.2.2 D-ReP algorithm... 64

5.2.2.1 Source version ... 65
5.2.2.2 Edge version .. 65

5.2.3 Replica discovery ... 67
5.3 Evaluation... 68

5.3.1 Experimental setup ... 68
5.3.2 Evaluation with real workload traces ... 69

5.3.2.1 Latency and cost .. 69
5.3.2.2 Benefit-cost ratio.. 71
5.3.2.3 Network overhead.. 73
5.3.2.4 Convergence .. 74

5.3.3 Evaluation with synthetic data.. 74
5.3.3.1 Probability distributions of the request locations 76
5.3.3.2 Results and discussion ... 76

6. CONCLUSIONS AND RECOMMENDATIONS.. 79
6.1 Contribution.. 79

6.1.1 On problem modeling... 80
6.1.2 On virtual machine placement.. 80
6.1.3 On replica placement .. 81

6.2 Future Work and Limitations.. 82
6.3 Implementation Issues .. 83

xii

6.4 Impact ... 83
REFERENCES.. 85
CURRICULUM VITAE... 96

xiii

xiv

ABBREVIATIONS

SP : Cloud-based service provider
IP, CP : Cloud infrastructure provider
NIST : U.S. National Institute of Standards and Technology
IaaS : Infrastructure as a service
PaaS : Platform as a service
SaaS : Software as a service
VM : Virtual machine
VN : Virtual node
WE : Workflow engine
CDN : Content delivery network
P2P : Peer-to-peer
QoS : Quality of service
FLP : Facility location problem
MIP : Mixed integer programming
VNE : Virtual network embedding
VMCE : Virtual machine cluster embedding
TBM : Topology based mapping
PM : Physical machine
SD : Standard deviation evenness heuristic
SP : Span evenness heuristic
RAN : Random mapping VMCE heuristic
RBN : Round-robin mapping VMCE heuristic
LUF : Least-utilized-first mapping VMCE heuristic
LFF : Least-latency-first mapping VMCE heuristic
cs : Central data storage
D-ReP : Decentralized replica placement
KRL : Known replica locations
LRU : Least recently used
ppm : parts-per-million
BCR : Benefit-cost ratio
PDF : Probability density function

xv

xvi

SYMBOLS

hi : Demand of customer i
di j : Distance between customer i and facility j
Xi j : Boolean closest facility variable
fj : Fixed cost of facility j
Yj : Boolean open facility variable
GC,GF : Cluster and federation topology graph
VC,VF : Vertex sets of the cluster and federation
EC,EF : Edge sets of the cluster and federation
AV

C ,E
V
F : Vertex attributes of the cluster and federation

AE
C,E

E
F : Edge attributes of the cluster and federation

M : Minimum deployment latency
Li : Latency of the network connection i
S : VM size
B : Allocated bandwidth between VMs
D : Size of the data transferred between VMs
λ : Level of replica expansion
α : Percentage of expected replica requests
e : Epoch duration

xvii

xviii

LIST OF TABLES

Page

Table 2.1 : Summary of the literature on virtual machine embedding [1]. 11
Table 2.2 : Summary of the literature on centralized replica placement [2]. 17
Table 2.3 : Summary of the literature on decentralized replica placement [2]. 19
Table 4.1 : Resource requirements of the VMs for the text translation service. ... 37
Table 4.2 : Ranges and default values of simulation variables.............................. 48
Table 4.3 : Average number of VMs assigned. ... 55
Table 4.4 : Average migration and perfect placement counts. 56
Table 5.1 : Ranges and default values of simulation variables.............................. 69
Table 5.2 : Percentages of network overhead factors. ... 73

xix

xx

LIST OF FIGURES

Page

Figure 1.1 : A visualization of NIST cloud definition [3]..................................... 1
Figure 1.2 : Cloud reference model [3]. .. 2
Figure 1.3 : Architecture diagram of the suggested framework............................ 4
Figure 3.1 : Partial entity-relationship model of RalloCloud................................ 25
Figure 3.2 : Hierarchical categorization of the performance criteria. 30
Figure 4.1 : VM cluster embedding [4]... 35
Figure 4.2 : UML activity diagram of the TBM algorithm [4]. 39
Figure 4.3 : Physical infrastructure topology [5]. ... 46
Figure 4.4 : Inter-cloud latency with varying VM size. .. 49
Figure 4.5 : Inter-cloud latency with varying bandwidth size............................... 50
Figure 4.6 : Cloud-to-user latency with varying bandwidth size. 50
Figure 4.7 : Completion time with varying VM size. ... 51
Figure 4.8 : Execution time with varying I/O data length..................................... 51
Figure 4.9 : Throughput with varying demand. .. 52
Figure 4.10: Rejection rate with varying VM size. .. 53
Figure 4.11: Cost with varying I/O data length.. 53
Figure 4.12: Runtime performance with varying federation size........................... 54
Figure 5.1 : An example Cloud topology to illustrate replication and caching [2]. 60
Figure 5.2 : Histogram of distances between data request pairs. 62
Figure 5.3 : Decision tree for the edge version of the D-ReP algorithm. 66
Figure 5.4 : Decision tree to answer a data request at an edge node..................... 68
Figure 5.5 : Latency improvement rate with variable λ .. 70
Figure 5.6 : Latency improvement rate with variable epoch duration. 70
Figure 5.7 : Cost increase rate with variable λ . .. 70
Figure 5.8 : Cost increase rate with variable epoch duration. 70
Figure 5.9 : Benefit-cost ratio with variable λ 71
Figure 5.10: Benefit-cost ratio with variable epoch duration................................. 72
Figure 5.11: Benefit-cost ratio with variable cache capacity. 72
Figure 5.12: Network utilization reduction with variable λ 73
Figure 5.13: Number of replicas and completed operations in time. 74
Figure 5.14: Data request locations with uniform and exponential distributions. . 75
Figure 5.15: Data request locations with normal distribution................................ 75
Figure 5.16: Data request locations with Chi-squared distribution........................ 75
Figure 5.17: Data request locations with Pareto distribution. 76
Figure 5.18: Latency improvement rate with variable λ .. 77
Figure 5.19: Benefit-cost ratio with variable λ 77
Figure 5.20: Variance of the distributions and the BCR (λ = 0.1). 78

xxi

xxii

RESOURCE MAPPING OPTIMIZATION
FOR DISTRIBUTED CLOUD SERVICES

SUMMARY

The magnitude of data being stored and processed in the Cloud is quickly increasing
due to advancements in areas that rely on cloud computing, e.g. Big Data, Internet
of Things and mobile code offloading. Concurrently, cloud services are getting more
global and geographically distributed. To handle such changes in its usage scenario,
the Cloud needs to transform into a completely decentralized, federated and ubiquitous
environment similar to the historical transformation of the Internet. Indeed, research
ideas for the transformation has already started to emerge including but not limited to
Cloud Federations, Multi-Clouds, Fog Computing, Edge Computing, Cloudlets, Nano
data centers, etc.

Standardization and resource management come up as the most significant issues
for the realization of the distributed cloud paradigm. The focus in this thesis is
the latter: efficient management of limited computing and network resources to
adapt to the decentralization. Specifically, cloud services that consist of several
virtual machines, dedicated network connections and databases are mapped to a
multi-provider, geographically distributed and dynamic cloud infrastructure. The
objective of the mapping is to improve quality of service in a cost-effective way. To
that end; network latency and bandwidth as well as the cost of storage and computation
are subjected to a multi-objective optimization.

The first phase of the resource mapping optimization is the topology mapping. In this
phase, the virtual machines and network connections (i.e. the virtual cluster) of the
cloud service are mapped to the physical cloud infrastructure. The hypothesis is that
mapping the virtual cluster to a group of data centers with a similar topology would be
the optimal solution.

Replication management is the second phase where the focus is on the data storage.
Data objects that constitute the database are replicated and mapped to the storage as a
service providers and end devices. The hypothesis for this phase is that an objective
function adapted from the facility location problem optimizes the replica placement.

Detailed experiments under real-world as well as synthetic workloads prove that the
hypotheses of the both phases are true.

xxiii

xxiv

DAĞITIK BULUT HİZMETLERİ İÇİN
KAYNAK EŞLEMENİN İYİLEŞTİRİLMESİ

ÖZET

Bulut sistemlerinde saklanan ve işlenen verinin boyutu büyük bir hızla artmaktadır.
Bunun başlıca nedeni Büyük veri, Nesnelerin İnternet’i ve mobil kod aktarımı
gibi Bulut bilişime dayalı alanlardaki gelişmelerdir. Aynı zamanda, bulut tabanlı
hizmetler de hızla daha küresel ve coğrafi olarak dağıtık hale gelmektedir. Kullanım
senaryosundaki bu değişiklikler ayak uydurabilmek için Bulut Bilişim geçmişte
İnternet’in yaşadığı değişime benzer şekilde tamamen özeksiz, birleştirilmiş ve yaygın
bir ortama dönüşmektedir. Bu değişimi sağlayacak araştırma alanları hâlihazırda
ortaya çıkmaya başlamıştır. Bulut Federasyonları, Çoklu-Bulutlar, Sis Bilişim, Uç
Bilişim, Bulutçuklar ve Nano Veri Merkezleri bunların sadece bir kısmıdır.

Dağıtık Bulut adı verilen bu yeni yapıya geçişte en önemli sorunlar olarak farklı
Bulut sağlayıcı ve altyapıları için standartlaşma ve kaynak yönetimi olarak ortaya
çıkmaktadır. Bu tezin odak noktası bunlardan ikincisidir: Sınırlı hesaplama ve
ağ kaynaklarının özeksizleşmeye uyum sağlamak için verimli şekilde yönetilmesi.
Kaynak yönetimi kaynakların belirlenmesi, atanması, izlenmesi ve gelen isteklerin
kaynaklarla eşleştirilmesi gibi adımları içermektedir. Bu adımların tümüyle ilgili
çalışmalar yapılmış olmakla birlikte asıl katkı kaynak eşleme alanında verilmiştir.
Kısaca; sanal makineler, ağ bağlantıları ve veri tabanlarından oluşan Bulut
hizmetlerinin çok sağlayıcılı, coğrafi olarak dağıtık ve dinamik bir Bulut altyapısı
üzerindeki birimler ile eşleşmesi iyileştirilmiştir. İyileştirmenin amacı hizmet
kalitesini düşük maliyet ile artırmak olarak belirlenmiş, ağ gecikmeleri ve bant
genişliği ile depolama ve hesaplama maliyetleri çok amaçlı bir iyileştirmeye tabi
tutulmuştur.

Kaynak eşlemenin iyileştirilmesi iki aşamalı olarak yapılmaktadır. İlk aşamada
sanal makineler ve bunlar arasındaki ağ bağlantıları kaynaklar ile eştirilmekte
(topoloji eşleme), ikinci aşamada ise veri tabanındaki nesneler kopyalanıp kaynaklara
dağıtılmaktadır (kopyalama yönetimi). İki aşama Bulut hizmetlerinin saklama
ve işleme maliyetlerini düşürme ve hizmet kalitesini artırma konusunda birbirini
tamamlamaktadır. Hizmet kalitesi artışı; erişim gecikmelerin azaltılması ve hesaplama
süresinin kısaltılması gibi iyileştirmelerle mümkün olmaktadır.

Topoloji eşleme aşamasında sanal makineler ve bağımlılıklarından oluşan sanal
topoloji, Bulut altyapısı sağlayıcıları ve ağ bağlantılarından oluşan fiziksel topoloji
ile eşleştirilmektedir. Bunun için fiziksel topolojinin, sanal topoloji ile izomorfik olan
alt çizgeleri belirlenmekte, bunlardan kullanıcıya ortalama gecikmesi en düşük olanı
ile eşleme yapılmaktadır. Böylece hem kullanıcıya olan gecikme hem de bağımlı
sanal makineler komşu sağlayıcılarda bulunduğundan sanal makineler arasındaki
gecikmeler azaltılmış olmaktadır. Ek olarak, bant genişliği de verimli şekilde
kullanılmaktadır. Yeterli kaynaklara sahip bir alt çizge bulunmadığı durumda

xxv

ise sanal makineleri birbirine olabildiğince yakın sağlayıcılara yerleştiren sezgisel
bir yöntem kullanılmaktadır. Ayrıca bir veri merkezi içindeki kaynak atama
problemi de ele alınmıştır. Fiziksel makinelerdeki farklı kaynak türlerinin kullanım
oranlarının yaklaşık olarak eşit tutulmasının en verimli kaynak kullanımını sağladığı
gösterilmiştir.

Bu aşamadaki hipotez, topoloji eşleştirerek yapılan yerleştirmenin, açgözlü algorit-
malardan daha iyi sonuçlar vereceğidir. Hipotezin değerlendirilmesi amacıyla yaygın
olarak kullanılan Bulut benzetim yazılımı CloudSim geliştirilerek bir deney ortamı
kurulmuştur. Yapılan deneyler önerilen algoritmanın diğer yöntemlerde daha düşük
gecikmeye yol açtığını göstermektedir. Bu sayede gelen isteklerin yerleşim ve çalışma
süreleri kısalmakta ve sistemin toplam iş hacmi artmaktadır. Dolayısıyla, önerilen
yöntem hem kullanıcıya hem de sağlayıcıya yarar sağlamaktadır. Üstelik hizmet başına
ödenen ücret azalırken, sağlayıcının toplam gelirinde bir değişim olmamaktadır.

Kopyalama yönetimi aşamasının amacı ise veriye erişim süreleri ile veri saklama
ve taşıma maliyetlerini düşürmektir. Bulut hizmetlerinin veri tabanları analizlerin
ve tutarlılık kontrolünün kolaylığı gibi nedenlerle genellikle merkezi konumlarda
tutulmaktadır. Bu nedenle, sanal makinelerin coğrafi olarak farklı konumlarda
yürütülüp erişim sürelerinin kısalması sağlansa da, veri ihtiyacı yüksek olan
hizmetlerde beklenen yarar görülmeyebilir. Geleneksel olarak veri erişim sürelerinin
kısaltılması önbellek kullanımı ile sağlanmaktadır. Ancak dağıtık Bulut sistemlerinde
önbellek yönteminin iki önemli sakıncası bulunmaktadır. İlk olarak, çok sayıda ve
büyük boyutlu veri nesnelerini tüm uç birimlerde saklamak maliyeti artırmaktadır.
İkinci olarak, önbellekteki veri ancak bulunduğu konumda kullanılabilmekte, kullanım
oranı düşük olmaktadır. Kopyalama yöntemlerinde ise, her bir kopya çevresindeki
birden çok konumdan gelecek isteklere cevap verebildiğinden daha düşük maliyetli bir
çözümdür.

Önerilen yöntem, yöneylem araştırma alanından alınmış olan tesis konumu problemini
temel almaktadır. Tesis konumu problemi coğrafi olarak dağıtık müşteri taleplerini
en düşük maliyetle karşılayacak tesislerin sayısı ve yerlerini belirlemek ile ilgilenir.
Kopya yönetimi için uyarlandığında müşteri talepleri veri isteklerine, tesisler ise
kopyalara karşılık gelecektir. Böylece hem gecikmeleri hem de maliyeti azaltmayı
sağlayan bir amaç fonksiyonu tanımlanmıştır. Her bir depolama birimi yerel bir
eniyileyici olarak çalışmakta ve bu amaç fonksiyonunu küçültecek kopyalama, kopya
taşıma ve kopya silme kararları almaktadır. İyileştirme algoritması tekrarlı olarak
belirli zaman dilimlerinde çalışmaktadır. Böylece kopyalar merkezden uç birimlere
doğru adım adım ilerlememektedir.

Önbellek kullanımında önbellekte tutulan verilerin sadece bulundukları birim
tarafından bilinmeleri yeterlidir. Ancak, kopyalama yönteminin etkinliği diğer
yakın birimlerin de kopyadan haberdar olmasına ve yararlanmasına bağlıdır. Bu
nedenle, ikincil katkı olarak, bir kopya bulma yöntemi geliştirilmiştir. Birimlerin
tüm Bulut altyapısındaki kopyaların yerlerini bilmeleri önerilen yöntemin özeksiz
yapısına aykırıdır. Bu nedenle yeni bir kopya oluşturulduğunda ya da bir kopya
silindiğinde sadece gelecekte o veriye istekte bulunacağı tahmin edilen birimlerin
haberdar edilmesini sağlayacak bir mesajlaşma yöntemi önerilmiştir.

İkinci aşamadaki hipotez, önerilen kopyalama, kopya yerleştirme ve kopya bulma
yönteminin önbellek kullanımına göre hem daha düşük maliyetli hem de daha düşük
gecikmeli çözümler üretebileceğidir. Hipotez hem gerçek dünyadan alınmış İnternet

xxvi

erişim izleri hem de yapay olarak üretilmiş veriler ile değerlendirilmiştir. Sonuçlar
hipotezi doğrulamaktadır. Ayrıca yapay veriler ile yürütülen deneyler, yöntemin
faydasının üretilen istek konumları dağılımının varyansı ile orantılı olarak arttığını
göstermektedir. Varyans arttıkça, istekler belirli bölgelerde toplanmakta ve buralara
yerleştirilecek kopyaların etkinliği daha yüksek olmaktadır.

Bu tezde, önerilen kaynak eşleme yönteminin her iki aşamasının da başarımının
geleneksel yöntemlerden önemli derecede üstün olduğu gösterilmiştir. Dağıtık
ve birleştirilmiş Bulut sistemlerinin gerçekleşmesinde kaynakların verimli ve etkin
kullanımı önemli rol oynayacaktır. Bu tezde sunulan deneysel sonuçlar dağıtık Bulut
sistemlerinin gerçekleşmesi ve geleceği konusunda umut vericidir.

xxvii

xxviii

1. INTRODUCTION

Software delivered as services over the Internet, as well as the hardware and software

systems that make the delivery possible are referred as cloud computing [6]. In cloud

computing paradigm, computational resources such as CPU, memory, bandwidth and

storage are treated as utilities that can be scaled up and down on demand. These

resources are metered and billed per-usage. Cloud based service providers (SP) do not

need to over-provision resources or invest for abundant hardware initially to handle

unexpected peak demands. Cloud infrastructure providers (IP), on the other hand,

have the opportunity of reallocating idle resources to other clients.

Clouds can be made open to public use by providers (public cloud) or they can be

deployed and operated exclusively for an organization (private cloud). Additionally,

hybrid clouds support a private cloud but resort to public clouds when it is overutilized.

A visualization of the U.S. National Institute of Standards and Technology (NIST)

definition for the cloud [7] is presented in Figure 1.1.

Cloud computing services can be categorized into three models according to the

level of abstraction they provide. These are, in ascending order of abstraction: (1)

Infrastructure as a Service (IaaS) that provide virtual raw resources, (2) Platform as

Figure 1.1 : A visualization of NIST cloud definition [3].

1

Figure 1.2 : Cloud reference model [3].

a Service (PaaS) that provide virtual development environments, and (3) Software as

a Service (SaaS) that provide online applications on demand [8]. Details of these

service models are given as reference model in Figure 1.2. As the model demonstrates

a cloud based software service (cloud service for short) consists of multiple tiers for

presentation, computation, and storage. Presentation and computation tiers are usually

deployed as virtual machines (VMs) or containers while the storage tier is usually a

database.

1.1 Research Problem

One general research challenge in cloud computing is the efficient mapping of cloud

services to the processing and storage resources so that the cloud providers satisfy

quality of service (QoS) objectives while minimizing their operational cost [9]. Up to

85 percent of computing capacity remains idle in distributed computing environments

[10] and such under-utilization of resources is mainly due to poor optimization of

job placement, parallelization and scheduling. The following factors complicate the

problem of resource mapping for cloud services.

• The environment is highly dynamic. Resource utilization and prices, user demand,

and network conditions vary greatly over time.

2

• User demand is geographically distributed.

• Cloud infrastructure is geographically distributed.

• There are dependencies and data transfers among the components of the cloud

service (VMs and the database).

A smart resource mapping strategy is required to improve QoS by reducing network

latency in a cost-efficient way. Here, latency includes; (1) Latency between the user

and the cloud service, and (2) Latency between the cloud service components, while

the cost includes; (1) VM provisioning cost, (2) Data storage cost, and (3) Data transfer

(bandwidth) cost.

In this thesis, network latency is defined and measured between two directly connected

computing entities (cloud or edge data centers). It is the duration between a package is

sent by on entity and received by the other (one-way) and caused by propagation and

transmission delays. The time it takes to prepare the package at the source or to process

at the destination is not included. In the case of indirect (multi-hop) connections,

individual latency of each constituent are aggregated. Hence, the routing latency is

ignored. Given round-trip and processing time, above-defined latency can be estimated

as in Equation 1.1.

Latency≈ Roundtrip time−Processing Time
2

(1.1)

1.2 Hypothesis

Employing resource mapping algorithms that consider and utilize structural

characteristics of the distributed cloud services would increase the QoS experienced

by service users. Specifically;

1. Mapping the VMs of a cloud service to a subset of data centers that have the similar

network topology as these VMs would outperform greedy methods.

2. Mapping the data replicas of a cloud services by considering the level and the

location of their demand would outperform data caching.

3

VMnVM1 VM2
...

Service ModelEntity

Cloud based Service SaaS

Resource Mapper PaaS

Topology Mapper Replication Manager

• Replica Placement

• Replica Discovery

• Network Embedding

• Resource Allocation

DB

Cloud Infrastructure IaaS

DC1

DC2

DC4 DC5

DC3

Figure 1.3 : Architecture diagram of the suggested framework.

Such mappings in combination would yield QoS levels that is not possible to achieve

with traditional optimization strategies that are not optimized for cloud systems. In

addition, they would be more cost-efficient if pricing differences of infrastructure

providers, bandwidth and storage space consumption are considered.

1.3 Proposed Solution

A two phase solution for the cloud resource mapping problem is proposed in this thesis.

In the first phase (left side of Figure 1.3), VMs and their virtual topology is mapped to

the physical topology in an attempt to reduce latency and cost while improving QoS.

Both virtual network embedding and resource allocation are carried out in this phase.

The second phase (right side of Figure 1.3), on the other hand, optimizes the data

access latency and storage cost by means of replica placement and discovery.

These two phases are implemented as the two modules of a resource mapping

framework that runs in the PaaS service model as a middleware between the cloud

service and infrastructure. The framework is developed and evaluated not to optimize

a single service, but the complete demand for the cloud infrastructure collectively.

A simulation environment is also implemented as an extension to CloudSim which

4

supports Intercloud systems, virtual topologies and data dependencies. Extended

simulation environment is used to evaluate the performance of the suggested

framework as well as the baselines in a realistic way.

1.4 Contribution

Contribution in this Thesis can be categorized into four resource mapping algorithms

that are intended to work in different phases of cloud resource management as well

as the modeling and simulation of the inter-cloud environment. Each of these are

summarized in the following subsections.

1.4.1 Topology mapping algorithm

In order to address the network embedding part of the topology mapper phase, a graph

theoretical algorithm is suggested. The algorithm conducts an isomorphic subgraph

search for the requested VM topology over the substrate inter-cloud topology. When

the requested VMs are submitted to the matched nodes of the isomorphic subgraph,

the latencies between dependent VMs are minimized. A greedy heuristic approach is

executed when the subgraph search is not successful. Proposed algorithm is the first

attempt to employ subgraph isomorphism to find a injective match between virtual and

physical cloud or grid topologies. Moreover, the study is also the first to explicitly

evaluate network latency in the scope of the Virtual Machine Cluster Embedding

(VMCE) problem.

1.4.2 Minimum span heuristic

A heuristic approach is proposed for the resource allocation phase. The heuristic

makes online decisions to place VMs to physical machines (PMs) efficiently so that

more VMs can be accepted before a linear programming solution and accordingly VM

migrations are necessary. The main idea is to keep utilization rates of different cloud

resources (e.g. CPU, memory, storage, bandwidth) in roughly equal rates so that the

prospective exhaustion of one type of resource does not result in wastage of others.

Additionally, a mixed integer programming solution that minimizes the number of

VM migrations is provided.

5

1.4.3 Decentralized replica placement algorithm

For the replica management phase of the resource mapping framework, a decentralized

replica placement algorithm is proposed. The algorithm uses an objective function

derived from the facility location problem to make distributed decisions about

migration, duplication and removal of data replicas. It is possible to address the

trade-off between latency improvement and cost-efficiency by controling an input

parameter. To the best of our knowledge, this is the first completely decentralized

replica placement algorithm that work with only local information about the distributed

infrastructure.

1.4.4 Replica discovery heuristic

A table based low-overhead replica discovery heuristic is suggested to notify most

relevant nodes about nearby replica locations so that they submit their future request

to them and receive required data with low latency. Relevant nodes are identified by

means of temporal and geographical locality of requests. Distributed nodes keep track

of nearby data replicas in their known replica locations tables and update it when they

are notified about the creation or removal of a replica.

1.4.5 System modeling and simulation

The inter-cloud environment and the resource mapping problems are represented as a

realistic model. Proposed simulator that runs in this model, RalloCloud, is the first

simulator for inter-cloud systems.

1.5 Organization of the Thesis

Results of the literature review on topology mapping and replica placement are

presented in Chapter 2. Then, in Chapter 3, RalloCloud simulation framework as an

extension to CloudSim is proposed. Topology mapper and replica manager modules

of the proposed framework are elaborated in Chapters 4 and 5, respectively. Finally,

the thesis is concluded with future research directions in Chapter 6.

6

2. LITERATURE REVIEW

2.1 Preliminary Information

2.1.1 Graph and subgraph equivalence

Subgraph isomorphism and homeomorphism are used in topology mapping (Chapter

4) for finding cloud provider topologies that are similar to the VM topologies so that the

VMs are dispatched to the corresponding providers and the inter-latency is optimized.

Isomorphism exists between two graphs if a bijective function that pairs vertices of

one to the vertices of the other can be defined with edge preserving property. Edge

preserving property means that two adjacent vertices of one graph can be paired to two

vertices in the other if and only if they are adjacent as well. Instead, if a subdivision of

a graph is isomorphic to a subdivision of another graph, then these graphs are called

homeomorphic [11]. A subdivision of a graph can be generated by replacing an edge

with a new vertex which is adjacent to the endpoint vertices of the original edge with

two new edges.

Given two graphs, the objective of the subgraph isomorphism / homeomorphism

problems is to find a subgraph of the larger one that is isomorphic / homeomorphic

to the smaller. Both these problems are shown to be NP-complete [12] and can only

be solved by (1) starting from an empty matching, (2) extending the partial matching

by matching a non-matched pattern vertex to a non-matched target vertex, and (3)

backtracking if some edges are not matched. Last two steps are repeated until all

pattern vertices are matched (success) or all matchings are already explored (failure).

Several filtering methods are proposed in the literature in attempt to reduce the search

space. In one such filtering methods called the Local All Different (LAD) filtering [13],

a set S of pattern/target vertex couples (u,v) to be filtered and a set Du of possible

matches for each vertex of the pattern graph are kept. Initially, all Du sets contain all

vertices from the target graph and S contains all combinations. For each couple (u,v)

7

Algorithm 1: LAD Filtering [13].
Input : Set S of pattern/target vertex couples (u,v) to be filtered

Sets Du of possible matches for u
Output: Filtered sets Du or failure

1 while S 6= /0 do
2 Remove a couple of pattern/target vertices (u,v) from S
3 if there does not exist a matching of G(u,v) that covers ad j(u) then
4 Remove v from Du
5 if Du = /0 then
6 return failure

7 S← S∪{(u′,v′)|u′ ∈ ad j(u),v′ ∈ ad j(v)∩Du′}

8 return Du

from S, a bipartite graph G(u,v) = (V(u,v),E(u,v)) is built with the vertices and edges

defined in Equations 2.1 and 2.2.

V(u,v) = ad j(u)∪ad j(v) (2.1)

E(u,v) = {(u′,v′) ∈ ad j(u)×ad j(v)|v′ ∈ Du′} (2.2)

If there does not exist a matching in this bipartite graph that covers all neighbours of

the pattern vertex u (ad j(u)), then the matching (u,v) is impossible, thus v is removed

from the set of possible matches of u (Du). LAD filtering algorithm is presented in

Algorithm 1 as pseudo code [13].

2.1.2 Facility location problem

Facility Location Problem (FLP) is the main idea behind the replica placement

algorithm suggested in Chapter 5 to improve cost-efficiency. The problem concerns

with the placement of facilities in order to serve the demands of geographically

distributed customers with minimum cost [14]. Distance from the customers who will

be served by a facility and their demand defines the cost of opening the facility at a

certain location. Fixed costs may also be present. Differences in objective functions

and constraints lead to several variations of the problem. Here, only the discrete FLP

models are discussed for brevity. In such models, the facilities can be opened at

8

finite number of locations so the customer and possible facility locations as well as

the distances can be represented with a simple, weighted and undirected graph.

The simplest form of discrete FLP aims to find the location for a single facility which

minimizes the sum of distances from all customer locations. Three classes of FLP

problems are defined in [15], namely: median, covering and center problems. The

number of facilities to be located (k) is foreknown in median problems. Hence, the cost

function for each customer is defined as the demand of that customer (hi) multiplied by

its distance to the closest facility location (di j). Optimum solution is the locations of k

factories which minimize the sum of all costs as given in equation 2.3. Here, Boolean

variable Xi j is set if facility at j is the closest facility to the customer i.

Total Cost = ∑
i

∑
j

hi ·di j ·Xi j (2.3)

Covering problems introduce the fixed facility opening cost. The objective is to

minimize total cost by maintaining a predefined maximum acceptable service distance.

The number of facilities does not need to be provided beforehand in this variation. The

third class of FLP is referred as center problems in [15]. Here, the goal is to minimize

the maximum distance between a customer and the nearest facility given the number

of facilities to be located.

All three classes of problems are limited in the sense that they require priori knowledge

about either the number of facilities or maximum acceptable distance. A definition of

FLP without this limitation is presented in [16]. Equation 2.4 is the cost function using

the same notation as equation 2.3 with another Boolean variable Yj which indicates if

a facility is open at j. Moreover, f j which is the fixed cost of opening a facility at ji is

also incorporated. Here di j should be considered as service cost instead of distance.

Total Cost = ∑
j

f j ·Yj + ∑
i

∑
j

hi ·di j ·Xi j (2.4)

Further variations of FLP include models with limited facility capacities, limited

knowledge of parameters (e.g., demands and costs), multiple types of demand, multiple

types of facilities, and uncertainty of future parameters [14, 15].

2.1.3 Cloud interoperability

9

Cloud interoperability which is defined as the ability to dispatch VMs or data between

cloud providers, is required to realize distributed and federated cloud infrastructures.

It is one of the most important challenges for the adoption of cloud computing [17,18].

Establishing interoperability is also critical for both elimination of vendor lock-in.

Several promising approaches for interoperating clouds are already present in the

literature [19, 20].

Defining open standards is the most straightforward and effective approach for

interoperability. A comprehensive list of standardization efforts is presented in [21].

However, a universally accepted standard is not currently available, thus there are also

efforts to provide interoperability at the user-level. In Multi-Cloud model, clouds do

not directly communicate and the user is responsible for providing an adaptor for their

interoperation [22, 23]. A cloud broker who is responsible to negotiate with cloud

providers on behalf of the user, may also act as a cloud aggregator and provide a

unified interface to nonstandard vendor APIs [24, 25]. In addition to interoperability,

cloud brokers can also be employed to ensure QoS with reduced cost in federated

cloud [26].

2.1.4 Cloud benchmarking and monitoring

Quality of cloud resource management depends on efficient monitoring and

benchmarking of cloud providers. The reason is that the VM scheduling, allocation and

mapping algorithms require timely performance and utilization information to cope

with quickly changing conditions and to make optimum decisions [27]. Once these

measures are collected within a cloud data center, another problem is to disseminate

them across cloud brokers in a secure and efficient way so that the providers work in

consonance. A large number of studies and tools are introduced which monitor cloud

systems [27] and benchmark their services [28] as well as their performance [29].

2.2 Virtual Machine Cluster Embedding

A large number of studies have been conducted in the past years for the efficient

embedding of virtual topologies onto federated cloud infrastructures [22, 25, 30–38].

Moreover, similar embedding problems are previously studied in other systems than

cloud computing [39–45] or cloud systems without a federation [46–50]. Table 2.1

10

Table 2.1 : Summary of the literature on virtual machine embedding [1].

Cloud Federation Embedding Entity Simultaneous NW-Aware
TBM 3 3 3 VMs 3 3

[30] 3 3 3 VMs
[31] 3 3 3 VMs 3 3

[32] 3 3 3 Services 3

[33] 3 3 3 Tasks
[34] 3 3 3 VMs 3 3

[35] 3 3 3 VNs 3

[22] 3 3 3 VMs 3

[36] 3 3 3 VMs 3

[37] 3 3 3 VNs 3

[25] 3 3 3 VMs 3 3

[38] 3 3 3 VNs 3 3

[39] 3 VNs
[40] 3 VNs 3 3

[41] 3 VMs 3 3

[42] 3 VNs 3

[43] 3 3 VNs 3 3

[44] 3 3 VMs 3 3

[45] 3 3 VNs 3 3

[46] 3 3 VMs 3 3

[47] 3 3 VNs 3

[48] 3 3 Tasks 3 3

[49] 3 3 VNs 3

[50] 3 3 VNs 3

[51] 3 3 VMs 3 3

[52] 3 3 Jobs
[53] 3 3 WEs 3 3

summarizes some important properties of related studies. Description of each column

of the table is given below.

Cloud Whether the placement is made onto a cloud infrastructure with on-demand

self-service, broad network access, resource pooling, rapid elasticity, and measured

service according to the NIST definition [54].

Federation Whether the VMs or tasks are placed onto a federated, distributed and

networked infrastructure (e.g. Federated cloud, Multi-cloud, Inter-cloud, etc.).

Embedding Whether a network or VM cluster embedding is carried out such that two

graphs are matched. Otherwise, VMs or tasks are individually treated and placed.

11

Simultaneous Whether the algorithm maps nodes and links simultaneously.

Otherwise, there are two independent and/or sequential mapping phases of the the

algorithm.

Network-aware Whether the algorithm considers network factor during the

placement. This includes the improvement of latency, bandwidth utilization, hop

count, etc.

Entity The term used in the study to indicate entities that are placed (Virtual Machines

(VMs), Virtual Nodes (VNs), Services, Tasks, Jobs or Workflow Engines (WEs)).

Comments on a subset of the studies in Table 2.1 are provided for the sake of brevity.

Authors of the paper [39] propose a mixed integer programming (MIP) solution

with relaxed integer constraints for the network embedding problem. The approach

increases the coordination between node mapping and link mapping phases with the

aim of increasing acceptance rate and revenue.

The first use of subgraph isomorphism for embedding virtual topologies is in [40].

Later, [41] suggested mapping only the critical nodes via subgraph isomorphism and

the rest with heuristics to reduce complexity.

Studies introduced thus far are designed to embed virtual networks onto single-site

(local) substrate networks such as a data center. In that scenario, network latency

is usually low and bandwidth capacity is abundant. Thus, network factors are

not as critical as geographically distributed environments, e.g. federated cloud.

Additionally, geographical location of the user base emerges as an important factor

for the performance of clusters in the latter case.

In the other works that are discussed henceforth however, authors consider a similar

distributed resource allocation problem to the one in this thesis. An exact (integer

programing) solution to the network embedding problem is suggested in [43]. They

also prove that grouping incoming requests during a period and embedding them in

batches yield higher acceptance ratio and lower cost in comparison to the individual

handling of each request. Authors of the article [25] employ cloud brokers both to

optimize placement and to act as a uniform interface for developers. The method for

optimized placement is still integer programming. Even though integer programming

12

can produce optimal results in a centralized case, using a heuristic can reduce the

amount of overhead induced by solving large optimization problems as well as

allowing distributed solutions.

Another study [31] consider both data center selection and VM placement to the

physical resources of the selected data centers. Suggested 2-approximation algorithm

first finds a subgraph of the complete data center topology with the smallest diameter.

Then, VMs requested by the user are partitioned in such a way that each partition fits

to a data center in the subgraph and the inter-data center traffic is minimal.

Virtual topology graph is partitioned into connected components via a k-cut algorithm

in [38]. Then, a new graph, the nodes of which represent the connected components

and the edges of which aggregate the inter-component links, is generated. Later, the

generated graph is matched to an isomorphic subgraph of the physical topology and

the VMs in each partition is submitted to the cloud matched to that component. In this

study, mapping between the VMs of a cluster and clouds is not injective (one-to-one).

Since the focus is to balance load and reduce costs, several or even all VMs can be

mapped to the same cloud without partitioning if the cloud has enough idle capacity.

Hence the mapping would fail to gain the benefits of inter-cloud deployment. Similarly,

an iterated local search based graph partitioning and integer programming based

embedding is proposed in [35]. The objective function of the embedding minimizes

the cost and number of hops. Recently, the same authors suggested a semantic

based greedy node mapping algorithm for federated virtual infrastructures [37]. The

algorithm defines a upper limit for the number of hops between nodes to increase

QoS. However, actual latency incurred by the distribution are not evaluated in neither

of these studies. Other approximation techniques to solve the network embedding or

similar problems include artificial immune system [42] and Markov random walk [47].

2.3 Local Virtual Machine Mapping

Selection of physical machines in a single cloud data center to host virtual machines

while fulfilling the requirements and optimizing resource usage is a problem that can

be solved via optimization and approximation algorithms. Some examples include the

use of heuristics, linear programming, artificial intelligence, nature inspired computing

and game theory [55].

13

In [56], authors introduce the skewness metric to measure unevenness in the utilization

of various resources within a server. They aim to find a trade-off between overload

avoidance and green computing concepts. Using a set of threshold based heuristics

and a prediction algorithm they dynamically create a list of migrations that relieves

overloaded servers to ensure QoS and evacuates underloaded ones to exploit green

computing.

Following the technological improvements in the cloud systems, VM migration is

being used to increase utilization of the virtual machines on the cloud infrastructure.

[57] considers the different VM migration strategies adopted by the host machines that

have different load states by taking into account four different resource types. In a

more recent study [58], migration is performed regarding the queue model of the time

of application deployment requests from the clients. A centralized control management

mechanism has been defined to inform the client which server is available at a time.

2.4 Data Replica Mapping

Tables 2.2 and 2.3 summarize the literature on data replica placement. Among these,

comments are provided only on the most relevant approaches to the one in this thesis

for brevity. The studies are categorized on the basis of three binary classification rules

(i.e. Centralized/Decentralized, Complete/Partial Information, and Static/Dynamic).

In addition, information on their intended environment, network topology restriction

and optimization objectives are provided. More details on the columns of the tables

are given below.

Decentralized A check mark (3) indicates that the replica placement algorithm is

executed on multiple locations in parallel. Others determine placements centrally

from a single node.

Partial Information Centralized approaches always use complete demand and

topological information for the placement. However, some decentralized ones

require only local and / or partial information.

Dynamic Replication is dynamic if the number and location of the replicas and or the

network status change over time based on the experienced demand and/or cost. In

static replication, replicas are not migrated or deleted after their initial creation.

14

Environment Intended running environment of the algorithm can be one of the

following: Cloud, Content Delivery Network (CDN), Cloud-Based Content

Delivery Network (Cloud-CDN), Peer-to-Peer System (P2P), Data Grid, Web

(including Internet Services), or unrestricted/unspecified (N/A).

Topology If the network topology graph among the nodes is restricted for an approach

to work, that is indicated in this column. Alternatives are tree, complete graph,

multi-tier, and unrestricted (i.e. any graph).

Objectives This column lists the criteria which are aimed to be optimized via

replication. The following objectives are encountered in the literature review.

Proximity indicates the user access time to the replica. Optimizations of network

latency, response time, hop count, and distance are grouped under this

criterion.

Cost indicates the monetary cost of storing replicas. Methods that do not explicitly

consider monetary cost but aims to reduce/minimize the number of replicas

are also included.

Bandwidth indicates the network overhead and bandwidth utilization.

Availability indicates the fault tolerance and reliability of the system.

Load Balance indicates the avoidance of hotspots by spreading demand across

several nodes.

Another classifications of replica placement algorithms can be found in [59] and [60].

There also exists surveys on dynamic replica placement in data grids [61, 62] for the

interested reader.

Centralized methods lack scalability by definition and create a performance bottleneck

in replica placement. They are particularly infeasible for large-scale distributed

topologies such as the Internet and Cloud. However, the most of the literature in replica

placement is centralized approaches due to the extra complexity decentralization

brings. First, efficient synchronization of inputs (e.g. demands, latencies, costs)

and outputs (e.g. number and location of replicas) of the replication algorithm is

challenging especially in a dynamic environment. Second, local knowledge about the

environment obstruct optimality of the placement in comparison to global knowledge.

15

Thus, even some of the decentralized approaches assume global knowledge at each

location which causes scalability issues similar to centralized ones.

2.4.1 Centralized methods

Geographic placement of shared data of cloud services is investigated in [63].

Suggested technique places data to the weighted geographical center of their

consumers and then maps data to the closest data center by also considering load

balance. In [64], first the number of replicas is calculated based on the popularity,

recentness and customer-assigned importance of data, and later these replicas are

placed by minimizing a distance metric.

In [65], authors suggest a methodology to place data replicas to achieve dual objectives,

i.e. to increase security by placing complementary pieces to nonadjacent locations

and to reduce data access time by placing them centrally. They employ betweenness,

closeness and eccentricity centrality measures as well as graph coloring to achieve

these objectives. The algorithm always create a single replica of each data piece

irrespective of its popularity. The replica is placed to the node with the maximum

dependency to that data.

In addition to replica selection and placement, a request redirection strategy is also

proposed in [66]. The algorithm optimizes the cost of data storage and transfer for

distributing content to users over storage clouds. A MIP formulation and multiple

heuristic solutions are provided. Experimental comparison demonstrate the superiority

of online and dynamic heuristics in terms of cost and number of QoS violations.

A two-phase mapping of tasks to replicas and replicas to data centers is suggested

in [67]. Proposed genetic algorithm solution assumes that the number of replicas is

foreknown and aims to reduce cost and latency by decreasing the number and size of

data movements between data centers.

There also exists studies that depend on a specific type of graph topology on which the

replicas are distributed. Tree networks are considered in [68] with a specific emphasize

on read and write costs. Another tree topology based solution [69] aims to minimize

the number of QoS violations in terms of latency. Proposed algorithm exploits already

employed replication practice, which is intended for availability, by placing the data of

16

Ta
bl

e
2.

2
:S

um
m

ar
y

of
th

e
lit

er
at

ur
e

on
ce

nt
ra

liz
ed

re
pl

ic
a

pl
ac

em
en

t[
2]

.

D
ec

en
tr

al
iz

ed
Pa

rt
ia

lI
nf

or
m

at
io

n
D

yn
am

ic
E

nv
ir

on
m

en
t

To
po

lo
gy

O
bj

ec
tiv

es
[6

8]
W

eb
Tr

ee
Pr

ox
im

ity
[7

2]
C

D
N

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
[7

3]
N

/A
U

nr
es

tr
ic

te
d

Pr
ox

im
ity

[7
4]

D
at

a
G

ri
d

Tr
ee

Pr
ox

im
ity

,C
os

t,
L

oa
d

B
al

an
ce

[7
5]

N
/A

Tr
ee

Pr
ox

im
ity

[7
6]

N
/A

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
[6

5]
C

lo
ud

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
[7

7]
C

lo
ud

U
nr

es
tr

ic
te

d
B

an
dw

id
th

,L
oa

d
B

al
an

ce
[6

7]
C

lo
ud

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
,C

os
t

[7
8]

3
N

/A
U

nr
es

tr
ic

te
d

A
va

ila
bi

lit
y

[7
9]

3
D

at
a

G
ri

d
M

ul
ti-

Ti
er

Pr
ox

im
ity

,C
os

t,
B

an
dw

id
th

[8
0]

3
C

D
N

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
,C

os
t

[6
3]

3
C

lo
ud

U
nr

es
tr

ic
te

d
Pr

ox
.,

B
an

dw
id

th
,L

oa
d

B
al

an
ce

[8
1]

3
D

at
a

G
ri

d
M

ul
ti-

Ti
er

Pr
ox

im
ity

[6
4]

3
D

at
a

G
ri

d
U

nr
es

tr
ic

te
d

Pr
ox

.,
B

an
dw

id
th

,A
va

ila
bi

lit
y

[6
6]

3
C

lo
ud

-C
D

N
U

nr
es

tr
ic

te
d

Pr
ox

im
ity

,C
os

t
[8

2]
3

D
at

a
G

ri
d

Tr
ee

Pr
ox

.,
B

an
dw

id
th

,A
va

ila
bi

lit
y

[8
3]

3
D

at
a

G
ri

d
M

ul
ti-

Ti
er

Pr
ox

im
ity

,B
an

dw
id

th
[6

9]
3

C
lo

ud
Tr

ee
Pr

ox
im

ity
,A

va
ila

bi
lit

y
[8

4]
3

C
lo

ud
U

nr
es

tr
ic

te
d

B
an

dw
id

th
,L

oa
d

B
al

an
ce

[8
5]

3
C

lo
ud

-C
D

N
U

nr
es

tr
ic

te
d

C
os

t,
A

va
ila

bi
lit

y
[8

6]
3

C
lo

ud
(M

ob
ile

)
U

nr
es

tr
ic

te
d

Pr
ox

im
ity

,A
va

ila
bi

lit
y

17

applications with high QoS requirements on high-performance nodes. More recently,

the combination of replication and erasure coding mechanisms is suggested to leverage

availability in Multi-Clouds [70, 71].

Typically, centralized methods yield optimal or near-optimal placement of replicas

by making use of medians or centrality metrics. However, such methods have the

following drawbacks in comparison to distributed and decentralized methods [87].

• Collecting and transferring the complete system status (e.g. demand for each file,

storage cost, network information, etc.) causes a network overhead especially in

dynamic and large-scale systems.

• Similarly, distributing control data (e.g. replicated files and their locations) uses up

bandwidth and causes delay. This increases the response time of the algorithm.

• Optimization is computationally expensive and does not scale well with the number

of nodes.

• Algorithms are usually not iterative. Thus, the complete optimization must be

carried out from scratch even for minor changes in the system status.

• The central replica controller is a single point of failure.

• In the case of median-based algorithms, replica count should be given a priori.

2.4.2 Decentralized methods

One of the earliest attempts to dynamic replica placement is [88]. Authors propose a

dissemination tree to replicate and synchronize data. The aim is to place minimum

number of replicas on data access paths while respecting latency guarantees and

balancing load. In addition to replication, caching is also employed to that end.

A file replication algorithm which places the replicas on the so called traffic hubs on

the data access paths in a P2P system is proposed [89]. Assumption is that, proposed

replica placement will be more cost-efficient than creating replicas on every node of

the path and yield higher utilized replicas than client side caching. Traffic hubs are

determined as the nodes where multiple data access paths for a file coincides. The

algorithm is decentralized and self-adaptive in the sense that each node can decide

18

Ta
bl

e
2.

3
:S

um
m

ar
y

of
th

e
lit

er
at

ur
e

on
de

ce
nt

ra
liz

ed
re

pl
ic

a
pl

ac
em

en
t[

2]
.

D
ec

en
tr

al
iz

ed
Pa

rt
ia

lI
nf

or
m

at
io

n
D

yn
am

ic
E

nv
ir

on
m

en
t

To
po

lo
gy

O
bj

ec
tiv

es
[9

0]
3

C
lo

ud
-C

D
N

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
[9

1]
3

3
C

lo
ud

C
om

pl
et

e
Pr

ox
.,

C
os

t,
B

an
dw

id
th

,A
va

il.
[9

2]
3

3
D

at
a

G
ri

d
U

nr
es

tr
ic

te
d

Pr
ox

.,
C

os
t,

B
an

dw
id

th
,A

va
il.

[9
3]

3
3

P2
P

U
nr

es
tr

ic
te

d
C

os
t,

B
an

dw
id

th
,A

va
ila

bi
lit

y
[9

4]
3

3
W

eb
U

nr
es

tr
ic

te
d

Pr
ox

im
ity

,B
an

dw
id

th
[9

5]
3

3
N

/A
M

ul
ti-

Ti
er

Pr
ox

im
ity

,B
an

dw
id

th
[8

8]
3

3
3

W
eb

U
nr

es
tr

ic
te

d
Pr

ox
.,

C
os

t,
L

oa
d

B
.,

B
an

dw
id

th
[8

9]
3

3
3

P2
P

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
,C

os
t

[8
7]

3
3

3
W

eb
U

nr
es

tr
ic

te
d

Pr
ox

im
ity

,C
os

t
[9

6]
3

3
3

W
eb

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
,C

os
t

[2
]

3
3

3
C

lo
ud

U
nr

es
tr

ic
te

d
Pr

ox
im

ity
,C

os
t,

B
an

dw
id

th

19

whether to store replicas. They do so by analyzing the traffic running through them and

determining the most popular files. Although this is possible in the P2P file sharing

scenario, it would cause a privacy issue in the cloud environment.

Authors of article [95] suggest a distributed replica placement algorithm for systems

that consist of predefined replication groups (e.g. departments in a university). When

a data is requested, it can be fetched from other servers in the group that would result

in shorter access time than fetching from the origin server. However, the algorithm is

not applicable to Cloud or Edge Computing models where inherent replication groups

do not exist and the topology is immense as well as highly dynamic.

Data grid topology is partitioned into network regions in [92] and replication and

placement decisions are optimized at each region with a focus on network congestion

avoidance. Similarly, authors of the paper [90] suggest partitioning the cloud topology

graph and greedily deciding the number and location of replicas at each cluster.

The objective is to minimize the number hops between the content provider and its

users. Although the replica placement is conducted in a distributed manner in these

two approaches, complete topology information is still required for the centralized

partitioning phase.

One of the most similar data replication approaches to the one in this thesis is [91].

Authors propose an algorithm based on a game-theoretical model which is executed

at each node autonomously. The algorithm may replicate or migrate the data at the

node or remove it depending on the availability of the file, as well as communication

and monetary costs. The method mainly differ in the sense that each node is aware

of locations of other replicas as well as the rent price, demand, and bandwidth of all

other nodes. Moreover, their knowledge must be periodically updated which would

cause a performance bottleneck in the Edge computing scenario with hundreds, if not

thousands of nodes.

Primal-Dual based distributed approximation algorithms for the FLP are present in the

graph theory literature [97, 98] and their variations are recently applied to the problem

of Internet service placement [87, 96]. In the former, a small scale FLP is solved

iteratively for each group of nodes that are in close proximity (called an r-ball where

r is the maximum number of hops). The latter introduces a conditional betweenness

20

centrality metric and removes the restriction that the facility location is within the

r-ball. To that end, the most central nodes in the topology are calculated and the FLP

is solved on this selected subset of nodes at each iteration.

Contrary to these two approaches, the aim in this thesis is to eliminate any message

passing or broadcasting between non-adjacent nodes. Reporting the demand estimates,

centrality values or facility location decision over multiple hops is acceptable for a

single instance FLP case such as replicating an Internet Service. However, the number

of data objects and thus the number of FLP instances can easily reach thousands or

even millions which would cause an infeasible network overhead. Hence, any replica

placement algorithm which requires frequent communication between the nodes is

impractical for granular data objects.

21

22

3. SYSTEM MODEL

Although real-world test-beds are usually preferable over simulations, evaluation via

simulation is more appropriate for the specific case of distributed cloud due to the

following reasons.

• Since the standardization of distributed clouds is not finalized yet, adhering to a

certain standard in terms of inter-cloud communications could turn out to be a

misleading direction as the technology matures. This would put the generality of

the results at risk.

• A geographically distributed and federated cloud environment that is open to

scientific community is not available currently. Hence it would not be possible to

observe the widely distributed characteristics of a federated cloud on a real-world

infrastructure.

Therefore, a framework for modeling, simulating and evaluating resource mapping in

the distributed cloud environment is developed as a part of this thesis. RalloCloud [1] is

developed on top of the popular cloud simulation toolkit, CloudSim [99]. Experimental

evalutation of the algorithms proposed in Chapters 4 and 5 are conducted on the

RalloCloud framework. The rest of this chapter explains how cloud infrastructure,

VM clusters, data objects and resource mapping problems are modeled as well as

the performance criteria to evaluate mapping algorithms. CloudSim does not natively

support the introduced features.

3.1 Problem Modeling

3.1.1 Entities

Components of a real-world cloud service and cloud infrastructure need to be

modelled in the simulation framework so that the resource mapping can be simulated

realistically. Typically, a cloud service consists of several VMs, a topology and a

23

database, while the infrastructure consists of data centers and network connections.

The relations between the entities in RalloCloud which are visualized with a

entity-relationship model in Figure 3.1, are also taken from the real-world cloud

brokerage scenario.

A cloud data center (cloud for short) is defined with its resource capacities (CPU,

memory, storage) and its geographical location. Physical topology is the network

connections between clouds which include bandwidth capacity and latency. Each

cloud is attached to a cloud broker that is responsible for; (1) receiving user requests

in the form of VM clusters and allocating resources for them, and (2) receiving data

requests of those VMs and replicating data objects accordingly. It is possible for a

broker to dispatch VMs and replicas to other brokers. This federated environment

allows to model realistic cloud brokerage scenarios.

The user, requests a VM Cluster and a database for the cloud-based service. A

VM cluster, on the other hand, is composed of VMs, a virtual topology and the

geographical location of requesting user. Each VM is defined with its size and resource

requirements (CPU, memory, storage) while the virtual topology is the collection of

required bandwidths between VMs. A VM cluster starts executing when each VM in

that cluster is deployed to a cloud and it is terminated when each VM in that cluster

completes its execution.

Both the VM cluster and the cloud federation are represented with weighted undirected

graphs; GC = (VC,EC,AV
C ,A

E
C) and GF = (VF ,EF ,AV

F ,A
E
F), respectively. V is the set of

vertices and E is set of edges while AV is the attributes of the vertices and AE is the

attributes of the edges. Subscripts C and F as used to distinguish cluster and federation.

AV and AE consist of the attributes that are as explained above, for instance, AE
F defines

the bandwidth capacity and latency of each network connection in the federation.

Finally, the database of the cloud service is composed of data objects with varying

sizes. The database is stored in a certain cloud which provides storage as a service.

Replicas of the data objects can be created and stored in other clouds. VMs may

require multiple data objects during their execution depending on the behaviour of

their user base. Such requirements need to be answered from either the original data

object or one of its replicas.

24

Fi
gu

re
3.

1
:P

ar
tia

le
nt

ity
-r

el
at

io
ns

hi
p

m
od

el
of

R
al

lo
C

lo
ud

.

25

3.1.2 Topology mapping problem

One of the two problems considered in this thesis is to efficiently and optimally map

user VMs to distinct cloud providers. Embedding a user’s request of a VM cluster onto

the cloud federation involves mapping each vertex v ∈VC to exactly one vertex v′ ∈VF

and mapping each edge e ∈ EC to exactly one set of edges E ′ ⊆ EF . Three conditions

must hold for the two mappings to be considered a valid embedding:

1. Remaining resource capacities of all v′ and e′ ∈ E ′ are greater than or equal to the

sum of required resources by all v and e which are mapped to v′ and E ′.

2. For each e, mapped E ′ forms a path between the two distinct vertices v′1 and v′2 to

which endpoint vertices of e (v1,v2) are mapped.

3. If multiple vertices v1, · · · ,vn ∈VC are mapped to the same v′, then any e which has

both endpoint vertices in v1, · · · ,vn is mapped to E ′ =∅.

In the model, it is possible to map multiple VMs to a single cloud as long as the

resource capacity is enough. Similarly, a network connection can be utilized by

multiple data connections and multiple VM clusters can be embedded onto the cloud

federation.

3.1.3 Replica management problem

The first aspect of replica management is to find the optimum number and location of

replicas so that the latency and cost are minimized. FLP is adapted in order to obtain

a general objective function for these two conflicting goals. In replica placement, the

optimum number of replicas cannot be known a priori. Thus, the cost function in

equation 2.4 better fits the case. In addition, only the uncapacitated FLP is considered

since the allocation of cloud resources is already handled in the topology mapping.

FLP models with multiple products (i.e. multi-commodity FLP) aim to determine

facility locations which optimize distance to demands for all products. This is critical

for industrial cases where building a facility has a fixed cost and it is infeasible to

build a different facility for each product [14]. However, in the IaaS scenario, upfront

costs and commitments are eliminated and the customer only pays for the storage used.

Thus, it is not necessary to cluster multiple replicas in a provider and the location of

26

each replica can be optimized individually. Hence, a single-product FLP instance is

solved for each replica.

Facility opening cost (f j) in equation 2.4 translates to storage cost that would be

charged by the IaaS provider for the replica until the next iteration of the algorithm

(during the next epoch).

f j = unit_price j · replica_size · epoch (3.1)

Customer demand (hi) for a replica is proportional to the number of requests received

for that data during the previous epoch.

hi = num_requestsi · replica_size (3.2)

Finally, distance metric di j is chosen as the latency between a virtual machine and

the replica location. Since f j is a monetary unit, di j should also be converted to the

same unit so that two sides of the addition are commensurable. Thus, a unit conversion

factor, λ , is suggested to represent the expendable unit cost in exchange for a unit

decrease in latency per unit demand. Value of λ also determines the level of replica

expansion.

di j = latencyi j ·λ (3.3)

Final definition of the cost function for the adapted FLP is presented in equation 3.4.

Note that, replica_size is removed from the both sides of the addition since it is fixed

for each problem instance and has no effect on the minimization objective. Here Y j

indicates that a replica is stored at node j while Xi j indicates that the replica at node j

has the least latency to the VM.

Total Cost = ∑
j

unit_price j · epoch ·Yj + ∑
i

∑
j

num_requestsi · latencyi j ·λ ·Xi j

(3.4)

It is assumed that the precise knowledge of current demand for each data object and

storage prices of IaaS providers will be available. There also exists strategic FLP

27

variations which model the uncertainty in future demands and costs. They place

facilities as long-term investments which will be more vulnerable to such changes

because building a facility is a cost- and time-critical decision. Again, in the case

of cloud computing such constraints are no longer valid. By favour of pay-as-you-go

storage, replicas can be relocated momentarily for little or no cost. Service interruption

can be avoided by keeping the replica at the source node until it is migrated to the

destination.

The second aspect of replica management considered in this thesis is replica discovery.

As explained in detail in Chapter 5, it deals with the awareness of closest replicas by

cloud data centers. Without an effective replica discovery, request would be sent to

central storage even when nearby replicas are available.

3.1.4 Network modeling

Network connections in the cloud infrastructure are represented with the bandwidth

capacity and latency. Bandwidth is modeled a constraint that limits the amount of data

connection that can utilize a network connection. If two connected but not adjacent

(i.e. |E ′| > 1) entities communicate, then the bandwidth of all network connections

of the communication path are utilized the same amount which is equal to the size of

requested data connection. Latency, on the other hand, is not modeled as a constraint

but rather a factor that affects the performance of the cloud services and a performance

criteria. Three types of latency are considered in RalloCloud regarding the transfer of

VMs and data.

Deployment Latency determines the time it takes to deploy a VM after it is mapped

to a certain cloud and it is effective only in the initialization phase of the VM. It

is correlated to VM size (S) and the sum of the latencies (L) on the shortest path

(P) between a VM and the user it is submitted by. It is also inversely correlated to

the allocated bandwidth (B) on the path. Even if the selected cloud is in the same

location as the user, there is a minimum deployment latency (M) experienced due

to VM creation.

Deployment Latency = M+∑
i∈P

Li +
S
B

(3.5)

28

Communication Latency is between the communicating VMs that form a cluster

and, it is in effect after the deployment of VMs, contrary to deployment latency.

It has an impact on the execution time of the VM that is correlated to observed

latency and the size of transferred data (D) and inversely correlated to the allocated

bandwidth (B). Observed latency between two VMs is the sum of latencies (L) on

the path (P) to which their data connection is mapped. If two VMs are deployed

to the same cloud or there is no data connection, then the communication latency

between them is negligible.

Communication Latency = ∑
i∈P

Li +
D
B

(3.6)

Data Access Latency is a specific form of communication latency. It is always

between a VM and a copy of a data object. When the a user action or programmatic

decision necessitates a data object to be fetched to the VM, the object is requested

and a certain communication latency is experienced unless it is available locally.

Data access latency is calculated the same way as the communication latency

(Equation 3.6).

3.1.5 Cost modeling

RalloCloud supports a dynamic pricing policy called Trough Filling [100] for IaaS

providers in addition to the fixed pricing. The policy is based on yield management

strategy in economics, and aims to maximize revenue from a limited and perishable

resource. In this case, the price of a certain cloud resource (CPU, memory, storage

or bandwidth) varies directly with its utilization, that is, the less percentage of the

resource is utilized, the lower is the unit price of that resource. It should be noted that

utilization of a resource in a cloud affects its price only in that cloud, not in the whole

federation.

Unit cost of a VM is the sum of its reserved resources multiplied by their unit prices at

the time and location of its deployment. Similarly, unit cost of a network connection

is the reserved bandwidth multiplied by the unit bandwidth price and the unit cost of

replica storage is the replica size multiplied by the unit storage price. Then, total cost

of a cloud service is the sum of unit costs of its VMs, network connections and replicas,

multiplied by their utilization duration as shown in Equation 3.7.

29

Criteria

Temporal

Latency

Cloud-to-User Latency

Hop Count

Inter-Cloud Latency

Duration

Completion Time

Execution Time

Makespan

SLA Violations

Volumetrical
Throughput

Utilization Rate

Economical

Benefit-Cost Ratio

Resource Cost

Revenue

Distributional
Distribution Rate

Load Balance

Other
Acceptance/Rejection Rate

Fairness

Figure 3.2 : Hierarchical categorization of the performance criteria.

Total Service Cost = ∑
i∈VC

∑
j∈AV

C

resource_sizei j ·unit_pricei j ·durationi j

+ ∑
i∈EC

resource_sizei ·unit_pricei ·durationi (3.7)

+∑
i

replica_sizei ·unit_pricei ·durationi

3.2 Performance Criteria

RalloCloud framework contains a module for measuring performance criteria to

evaluate the quality of mappings and compare algorithms. In order to idenfy criteria

to include related literature is reviewed, several criteria are identified, some new ones

are suggested and all of them are categorized as given in Figure 3.2. To keep the

presentation concise and due to the fact that evaluation results of some criteria came

30

out similar, 9 criteria are chosen (marked in bold). The selection carefully includes at

least one criterion from each category. Definition of the selected criteria are provided

below.

Cloud-to-User Latency is measured between a VM cluster the user who initiates it. It

affects the deployment latency of the VM. Cloud-to-User Latency can be calculated

as is Equation 3.8 where p1 is the shortest path between the user and the cloud.

Cloud− to−User Latency() = ∑
i∈p1

Latency(i) (3.8)

Inter-Cloud Latency is measured either among the VMs that constitute a VM cluster

or between a VM and a replica location. It affects the communication and data

access latency of the VM. Inter-Cloud Latency can be calculated as is Equation 3.9

where p2 is the shortest path between the two nodes that contain the components.

Inter−Cloud Latency = ∑
i∈p2

Latency(i) (3.9)

Completion Time is the duration between the arrival of a request and its successfully

completion. It is normalized by the size of the task executed in million instructions.

Completion time is affected by deployment, communication, and data access

latency as well as pending time. Pending time is measured when the cluster cannot

be deployed immediately because there is no available cloud at that time.

Completion Time =
Tcomplete−Tarrive

Task size
(3.10)

Execution Time is the duration between the deployment of a VM cluster and its

completion. Also normalized by task size, it is affected by communication and

data access latency but not the deployment latency or pending time.

Execution Time =
Tcomplete−Tbegin

Task size
(3.11)

Throughput is measured as the millions instructions processed in the whole

federation per second (MIPS). It can be calculated as is Equation 3.12 where S

is the set of all tasks executed.

T hroughput =
∑i∈S Size(i)

maxi∈S(Tcomplete(i))
(3.12)

31

Benefit-Cost Ratio is used evaluate the efficiency of algorithms to address the

trade-off between data access latency and data storage/transfer cost. It is calculated

as latency improvement rate divided by cost increase rate as shown in Equation

3.13.

Bene f it−Cost Ratio =
Rate o f Latency Improvement

Rate o f Cost Increase
(3.13)

Resource Cost is the total cost of CPU, memory, storage and bandwidth for a cloud

service during its execution time. Calculation of the total cost is described is Section

3.1.5.

Distribution Rate is the extent that the VMs of a service are placed to separate clouds.

It is measured as the ratio of number of distinct clouds employed for VMs to the

number of VMs in the cluster.

Distribution Rate =
|Clouds|
|V Ms|

(3.14)

Rejection Rate is the percentage of VMs that are submitted to a cloud but failed to

be deployed due to lack of resources. Such a case may occur if the embedding

or matching algorithm is unaware of cloud providers’ utilization or if multiple

instances of the algorithm submits VMs concurrently to the same cloud. Depending

on the algorithm, rejected VMs may be dispatched to other cloud providers or

queued.

Re jection Rate =
|Re jected V Ms|

|Accepted V Ms|+ |Re jected V Ms|
(3.15)

32

4. TOPOLOGY MAPPING

4.1 Problem Definition

Magnitude of the digital data being generated and the speed at which it is aggregating

in cloud is enormous. Even the largest IaaS providers may run into a difficulty in

scalability in the not so distant future because of this enormous increase in cloud

service usage. Moreover, cloud users are geographically distributed and they access

the data from all around the world making it increasingly hard to provide a globally

consistent QoS. Federated cloud [101,102] is motivated by such dangers and obstacles.

It is defined as the mechanisms, policies and technologies to coordinate and unite cloud

data centers even if they are managed by different vendors. Cloud providers voluntarily

collaborate in the federated cloud scenario as distinct from multi-cloud where multiple

independent clouds are utilized by a service uninformedly [103].

Federated clouds allow vendors to easily dispatch load to the other members of

the federation, delivering the infinite scalability promise of cloud computing [101].

This improves the QoS by giving cloud vendors the ability to cope with demand

peaks as well as to provide complete geographical coverage. Moreover, such an

interoperability at the infrastructure level sets cloud users free of vendor lock-in as

well as allowing private data center owners to easily hybridize their infrastructure.

Finally and more importantly for this thesis, with federated cloud it is possible to scale

VM clusters across multiple vendor clouds [102]. It is a common practice to isolate

different components of a service (e.g. storage, application logic, user interface) using

distinct VMs that communicate among themselves. Here, a VM cluster is a group

of collaborating VMs that constitute a ‘cloud service’. Ability to deploy cooperating

VMs on different clouds provides the following advantages from the point of a cloud

based service provider (and an IaaS user).

Availability and Disaster Recovery The effect of a failure or low QoS in a cloud

vendor can be easily compensated with minimal damage to the overall service.

33

Geographical Coverage Geographically distributed user base of the service can be

covered with a high QoS.

Vendor Lock-in Avoidance VMs can be migrated easily and quickly between

vendors in case of any dissatisfaction.

Cost Reduction Different pricing policies of the vendors can be exploited to reduce

infrastructure cost.

However, distributed placement of VMs onto a federated cloud infrastructure also

presents new problems that need to be addressed. One of the most significant of

these problems is to develop an efficient mapper between the physical topology and

the user requests in the form of virtual topologies [37]. A virtual topology defines the

bandwidth requirements for data flows between VMs in the same cluster. A service

provider characterizes the amount of data that will be transferred between each VM

pair in terms of bandwidth. On the other hand, physical topology defines the available

dedicated network connections between cloud providers as well as their bandwidth

capacities and latencies. Direct dedicated connections may not exist between all cloud

provider pairs in the federation and not all VM pairs in a cluster need to communicate,

thus neither of the topologies are complete graphs in general. When adjacent VMs are

mapped to nonadjacent clouds, the connection has to be multi-hop, thus latency and

bandwidth utilization increases.

Figure 4.1 visualizes the mapping and deployment of a single VM cluster of three VMs

onto a federation of 5 cloud providers (CPs). Here, physical topology is represented

with white circles (clouds) and thick lines (inter-cloud network connections) while

virtual topology is represented with black circles (VMs) and double lines (data flows).

According to the requested virtual topology, data transfer will occur between pairs

VM1 – VM2 and VM2 – VM3 but not VM1 – VM3. Figure 4.1(a) demonstrates an

example mapping between VMs and clouds shown with dashed arrows. Although,

different mappings can be generated by optimization algorithms with different

objective functions, the mapping relation must satisfy the function property (each VM

must be mapped to exactly one cloud). In Figure 4.1(b) VMs are dispatched to clouds

according to the mapping in Figure 4.1(a) and deployed there. During the execution,

data transfer between VM2 and VM3 will be direct, while it will be through CP3 for

34

CP4

CP1

CP5

CP2

CP3

VM1 VM3VM2

(a) Mapping

CP4

CP1

CP5

CP2VM1

VM2VM3

CP3

(b) Deployment

Figure 4.1 : VM cluster embedding [4].

VM1 and VM2. In a real world scenario with non-trivial number of VM clusters,

multiple VMs belonging to different clusters would be hosted at each cloud.

VM cluster embedding (VMCE) problem deals with finding a mapping between

inter-connected VMs and clouds, as exemplified by Figure 4.1(a). The problem is not

trivial due to presence of multiple constraints and objectives [36]. First of all, clouds

have limited and heterogeneous capacities in terms of CPU, memory and storage.

Similarly, network connections have varied latencies and bandwidth capacities. VMs

of different sizes should be placed on clouds respecting such limits and making an

efficient use of the resources to increase utilization. A similar problem is referred as

Virtual Network Embedding (VNE) in the literature [37,42,104]. Definition of VMCE

in this thesis diverges from VNE as it also involves constraints and requirements for

nodes (clouds and VMs) in addition to the edges (network).

Network plays a key role in the performance of distributed cloud services. Hence,

communicating VMs should be placed on clouds that have low latency inter se so that

thedata transfer would be fast and the QoS would be high. Another factor is the latency

between the user base and selected clouds. In the case of provisional applications

such as scientific calculations or MapReduce [105] jobs, high latency also extends the

execution time and accordingly increases resource costs. Better latency optimization

is vital for distributed, soft real-time services and applications (e.g. video streaming,

35

online gaming) to be executed on federated cloud. Cloud computing may find a new

area of application in real-time software provided that the network related challenges

are overcome [106].

A novel VMCE algorithm for federated cloud, Topology Based Mapping (TBM) [4],

is proposed in this chapter. TBM employs a graph theoretical approach in combination

with greedy heuristics in order to reduce network latency and optimize bandwidth

utilization. TBM algorithm mainly focuses on the bandwidth and latency that are

(1) within the VM cluster, and (2) between the VM cluster and the intermediate cloud

user who submits it (e.g. a cloud-based service provider or a scientist running a high

performance job). Moreover, evaluation of the TBM algorithm as well as baseline

heuristics in terms of latency, execution time, throughput, cost, rejection rate, etc. is

performed and the results are provided.

4.2 Use Case Scenario

Consider a small cloud-based text translation service. The service is deployed on a

two-tier architecture where first tier contains the natural language processing (NLP)

algorithms and the user interface while the second tier is for persistence of user account

information and texts. The service provider wishes to replicate the first tier and host the

replica VMs in two different providers in order to achieve the following two benefits:

1) overall latency will be decreased since the users of the service will be served by the

closest replica, and 2) the service will continue its execution in case of a failure in one

of the replicas and the failed replica can be recovered later (possibly in another cloud)

with minimal loss of data.

Replication of the second tier is handled in the Chapter 5 of the thesis, so it would

be considered as a single centralized storage for now. However, as the second tier

has different resource requirements (see Table 4.1) than the first one, it may be

economically beneficial to host it in a separate cloud provider where the storage pricing

is more convenient. Moreover, placing the storage to a middle ground between the

VMs in terms of latency will provide similar QoS for the users of the both of them.

Consequently, a cluster of three VMs need to be deployed in three different clouds for

the service. Resource requirements of these VMs are provided in Table 4.1. Here, VM1

and VM3 are for the replicas of the first tier and VM2 is for the second tier. Resource

36

Table 4.1 : Resource requirements of the VMs for the text translation service.

VM CPU Cores Memory Storage Bandwidth
VM1 8 30 GB 2 x 80 GB SSD 1000 Mbps out

500 Mbps to VM2 (Dedicated)
VM2 4 30.5 GB 3 x 2 TB HDD 500 Mbps to VM1 (Dedicated)

500 Mbps to VM3 (Dedicated)
VM3 8 30 GB 2 x 80 GB SSD 1000 Mbps out

500 Mbps to VM2 (Dedicated)

capacities of VMs in this scenario are taken from Amazon Web Services [107] EC2

dedicated instances m3.2xlarge and d2.xlarge.

The service needs 500 Mbps dedicated bandwidth between VM1 and VM2 as well as

between VM2 and VM3 as shown in the bandwidth column of Table 4.1. There is no

requirement for bandwidth between VM1 and VM3. Thus, the virtual topology of the

VM cluster is as given in Figure 4.1(a). In addition, being the interface of the service,

VM1 and VM3 requires 1000 Mbps bandwidth-out each for the user interaction. For

simplicity, let us also assume that all five cloud providers in Figure 4.1(a) have enough

available resources to accept any of these VMs. The assumption is for this example

only and not valid in the actual algorithm.

An arbitrary mapping between VMs and clouds would result in high latency data

connections between VM1 and VM2 or between VM2 and VM3. For instance,

consider the mapping in Figure 4.1(b), there is no direct and dedicated network

connection between CP1 and CP5 so the latency between VM1 and VM2 is high. This

would decrease the QoS for the users who are served by VM1 because of the delay

perceived when accessing the storage. Moreover, it will increase the execution time of

the NLP algorithms and thus the cost of infrastructure. From the cloud providers (CP3)

point of view, such a mapping is a waste of bandwidth capacity which could have been

leased to another customer.

The TMB algorithm, on the other hand, would decrease the latency between VM1 and

VM2 by mapping VM1 to CP3 instead of CP1. Because the subgraph consisting of

CP3, CP4, CP5 and their inter-connections is isomorphic to the topology graph of the

requested VM cluster as denoted by the bijective function f in Equation 4.1.

f = (VM1 7→ CP3,VM2 7→ CP5,VM3 7→ CP4) (4.1)

37

Naturally, the algorithm considers several other factors and conditions than this trivial

example in mapping three VMs to clouds. These are elaborated in the following

sections. Motivations of the TBM algorithm, some of which are demonstrated in this

use case, are as follows:

• Reducing the average inter-cloud latency by placing communicating VMs to

locations that are connected with dedicated network connections.

• Reducing the average cloud-to-user latency by prioritising subgraphs with low

latency to user.

• Improving the QoS and decreasing the execution time as a result of low latency

communication.

• Decreasing the resource cost for the service provider and increasing the throughput

(and the profit) for the cloud provider.

• Finding effective, “good enough" mappings via heuristics when the optimal solution

(isomorphic subgraph) is not available.

4.3 Proposed Solution

Efficient utilization of the network infrastructure is crucial for the VMCE problem

due to the following reasons: 1) network latency affects execution time and cost, and

2) availability of bandwidth affects the acceptance rate of new requests. Moreover,

both these factors also contribute to overall utilization, throughput and revenue of the

federation. Hence, the main factors that TBM algorithm is built to optimize are latency

and bandwidth. It is observed that decreasing latency and efficient use of bandwidth

are neither conflicting, nor completely parallel objectives.

The main idea behind the TBM is to map a VM cluster request to a subset of clouds in

the federation that has the same (or at least similar) network topology as the request.

To achieve this, TBM algorithm searches for subgraphs of GF that are isomorphic to

GC. If such a subgraph does not exist or if the mapping is not valid, it deducts to a

heuristic approach to find a homeomorphic subgraph instead. Each cloud broker in

the federation runs the algorithm locally for each incoming VM cluster request and

dispatches VMs to the other clouds according to the matching. In order to gain the

38

Fetch the next
VM Cluster

Search for
isomorphic
subgraphs

Select the
subgraph with the
least delay to user

Submit VMs to
mapped Clouds

Try to deploy
VM(s) and data
connections

Are all VMs deployed?

Are there any valid subgraphs?

Yes

Yes

Are there any deployed VMs in the cluster?

No

No

Submit to the next
closest cloud to
deployed VMs

Submit to the next
closest cloud to

user

YesNo

Fetch the next
VM from the
cluster

Figure 4.2 : UML activity diagram of the TBM algorithm [4].

benefits of the distributed VM placement that are explained in Section 4.1, TBM tries

to map each VM to a different cloud.

Figure 4.2 demonstrates the flow of the algorithm where the main scenario is

represented with hollow rectangles and alternative heuristic part with the shaded ones.

In addition, a high level pseudo code is given in Algorithm 2. Here, lines 1 to 6 are the

main scenario and 7 to 14 are the heuristic part.

Inputs to the TBM algorithm are listed below.

1. Overall utilization and capacity of each resource in each cloud data center.

39

Algorithm 2: Pseudo code of the TBM algorithm.
Input : List Q of queued clusters requests GC = (VC,EC,AV

C ,A
E
C)

Topology GF = (VF ,EF ,AV
F ,A

E
F) of the federation

Location l of the user
Output: Mapping M between VMs and clouds

1 foreach cluster request GC ∈ Q do
2 subgraphs[]← SearchIsomorphicSubgraph(GF , GC)
3 if size(subgraphs[])>0 then
4 chosenSubgraph← argminx(AvgLatency(subgraph[x], l))
5 foreach virtual machine V M ∈VC do
6 M[V M]← corresponding node in chosenSubgraph

7 else
8 foreach virtual machine V M ∈VC do
9 deployedVMs[]← deployed(GC)

10 if size(deployedVMs[])>0 then
11 chosenNode← argminx(AvgLatency(VF [x], deployedVMs[]))

12 else
13 chosenNode← argminx(AvgLatency(VF [x], l))

14 M[V M]← chosenNode

2. Bandwidth utilization and capacity as well as average latency of each network

connection between cloud data centers.

3. Resource requirements of each VM in the requested clusters.

4. Bandwidth requirement between each VM pair.

5. Location of the cloud user

4.3.1 Subgraph isomorphism based mapping

The first step of the algorithm is to fetch the VM cluster request and start an isomorphic

subgraph search on the federation topology. If the search ends up with exactly one valid

mapping, VMs are submitted to their matched clouds. If there are multiple candidates,

however, alternatives are sorted by average cloud-to-user latency and the VMs are

submitted to the subgraph with the least average latency. Algorithm is completed if all

VMs are successfully deployed to the mapped clouds.

Local All Different (LAD) filtering procedure [13] (explained in Subsection 2.1.1) is

implemented for the efficient discovery of isomorphic subgraphs. It helps to reduce

40

the search space for subgraph matching by detecting and pruning branches that do not

contain solutions. Given a pair of nodes (np,nt) from the pattern and target graphs,

LAD filtering builds a bipartite graph where the two sets are the neighbours of np and

nt . Two nodes from each set are adjacent if the matching of these two nodes are not

previously pruned. On that graph, it checks whether a bipartite matching exists such

that all neighbours of np are covered. If there does not exist such a matching, then

np and nt are incompatible and all the branches that match them are pruned from the

search tree.

The dominant part of the TBM algorithm in terms of time complexity is the isomorphic

subgraph search. Thus, the complexity of TBM is equal to the complexity of the

method used for this search. In the case of LAD filtering, time complexity is O(|Np| ·

|Nt | ·d4). Here |Np| and |Nt | are the number of nodes in the pattern and target graphs,

respectively while d is the greater of the maximal degrees of these two graphs [13].

Although, the complexity can cause a performance bottleneck for large number of

nodes, the number of clouds is not expected to exceed few hundreds and each cloud

application is expected to be contain at most dozens of VMs in this thesis’s usage

scenario. Our experimental result in subsection 4.4.3.5 demonstrate that the algorithm

finishes within seconds for realistic configurations.

4.3.2 Heuristic mapping

TBM fails to deploy VM cluster to an isomorphic subgraph in two exceptional cases

in the main mapping scenario:

No mapping: There does not exist any isomorphic subgraphs of clouds that are

valid. In a valid mapping all subgraph nodes (clouds) must hold enough available

resources for the VM assigned to them.

Partial deployment: There exists at least one valid subgraph but some of the VMs

are rejected by the clouds they are mapped to. Since the algorithm has multiple

instances running in each broker, two or more brokers may concurrently decide

to submit VMs to the same cloud provider. If the cloud does not hold enough

available resources to deploy all these VMs, it rejects the VMs arriving after its full

utilization. Consequently, not all VMs of the cluster can be deployed.

41

TBM switches to the heuristic mode in both cases and tries to find a homeomorphic

graph with low latency. In this mode, non-deployed VMs of the cluster are handled

separately. Heuristic fetches an arbitrary VM from the cluster and checks whether

there exists any other VM in the same cluster that is successfully deployed to a cloud.

If that is the case, the fetched VM is submitted to an available cloud that would result

in least average inter-cloud latency. However, if all VMs of the cluster are yet to be

deployed, then the VM is submitted to the cloud with the least cloud-to-user latency.

To illustrate the heuristic mapping part of the TBM, let us consider that a cluster with

3 VMs. If no mappings can be found for the requested topology, these 3 VMs will be

matched to the clouds separately. The VM that is considered in the first place will be

submitted to an available cloud with the least latency to the user. The next one will

be submitted to an available cloud with the least latency to the first VM and finally

the third VM will be submitted to an available cloud with the least average latency to

the other two VMs. Since available clouds may be multiple hops away, the subgraph

of the federation topology to which the VMs are mapped would not necessarily be

isomorphic to the requested VM topology but they would be homeomorphic.

4.3.3 Within cloud mapping

Fundamentally, the problem of optimally mapping VMs to physical machines (PMs)

in single cloud data center can be formulated as an NP-hard multidimensional bin

packing problem and solved via optimization techniques such as linear programming

[9]. However, it would be computationally expensive to run the optimization algorithm

at each VM request especially for more than a few PMs. Moreover, optimization would

incur large number of VM migrations. Suggested solution is to distribute VMs to PMs

using an intelligent heuristic until the point that a migration is inevitable (i.e. when no

PM has enough capacity to accept the incoming VM). After this point, an optimization

technique can be employed to rearrange the VMs.

A high level pseudo code of the two-part solution is given in Algorithm 3. In part I

(lines 4 to 12), migrations are not allowed, and each arriving VM is assigned to the

PM determined by an heuristic of evenness. Goal of this part is to keep the utilization

of four resources in a VM approximately even. Overall utilization of the resources are

maximized by increasing the resource evenness of all VMs [56].

42

Algorithm 3: Pseudo code for the VM placement strategy
Input : Set V VMs to be assigned

Sets P of available PMs
Output: Mapping M[] of VMs to PMs

1 rejected← false
2 while rejected = false do
3 receive next VM v ∈V
4 assignable← false
5 foreach PM p ∈ P do
6 if p has enough capacity for v then
7 assignable← true
8 M[v]← p
9 U [p]← evennessHeuristic(p,U)

10 M[v]← /0

11 if assignable = true then
12 M[v]← argmaxx(U [x])

13 else
14 Optimize MIP formulation
15 if optimization succeeds then
16 M[v]←MIP output

17 else rejected← true

As an example, if all CPU intensive VMs are assigned to the same PM, its CPU

capacity will be fully utilized while other resources are still under-utilized. Due to the

lack of idle CPU capacity, no new VM can be assigned to the PM, resulting in waste

of idle memory, bandwidth and storage capacities as well as low overall utilization. If

different types of VMs are combined effectively on a PM instead, utilization of all four

resources will increase at roughly equal rate and it will be able to host more VMs.

To decide which PM is the best for a given VM, it is transiently considered to be

assigned to the PMs that has enough remaining capacity one by one and evenness is

calculated. Then, the VM is actually assigned to the PM with the best evenness value

(line 12). At one point of the part I, incoming VM’s resource request will not fit into the

remaining capacity of any PM (the VM is not directly assignable and condition in line

11 is not satisfied). This saturation point is not necessarily the optimal VM placement

since the heuristic is not aware of the future demands and only approximates to an

optimal solution. That means, however, rejected VM can still be assigned to a PM

if some other VMs are relocated. Hence the part II of the algorithm which is the

optimization, starts at this point.

43

Part II (lines 13 to 16) runs a MIP formulation solver to optimize placement. It migrates

some of the VMs and tries to make room for the new ones. If part II succeeds to assign

the VM (line 16), part I of the algorithm continues to receive new VMs; otherwise, it

is certain that there is no placement that can assign received VMs to the PMs and the

algorithm terminates (line 17).

Part II of the algorithm deals with a NP-hard problem, so for the time complexity

analysis only part I is considered. Time complexity of part I is O(n)×T (m) where n

is the number of PMs, m is the number of resources and T (m) is the time complexity

of unevenness calculation. T (m) can be O(m2) for some heuristics, however the

number of resources is usually a small constant number, thus unevenness is calculated

in constant time. Consequently, part I of the algorithm takes linear time.

4.3.3.1 MIP formulation

To determine an optimal VM placement scheme, a Mixed Integer Programming (MIP)

formulation is optimized. The number of migrations is minimized when determining

the place (PM) of each VM from the pool of PMs. In achieving this, for each solution

the place of each VM is compared to its former place and the number of VMs that

don’t change their place is maximized.

When using MIP, it is required to build formulae that represents the constraints of the

system and an objective function to be optimized during the process. In constructing

such formulae variables that represent the overall properties of the system shall be

used. Below, the variables that are used in the model and their meanings are explained.

• #PMs: Number of PMs present in the cloud environment.

• #VMs: Number of VMs to be placed upon the present PMs.

• oldAsgn: A boolean matrix that holds the present assignment of each VM on a PM.

• newAsgn: A boolean matrix that holds the resulting assignment by MIP.

• resNeed: An integer matrix that holds the amount of resource needed by each VM

for the four different type of resources mentioned before.

• resAv: An integer matrix that holds available resources for each PM and each

resource.

44

The objective function given in Equation 4.2 is maximized. In the equation i index

is used to select among PMs and j index is used to select among VMs. Since a VM

is either assigned or not to a PM, boolean variables are used. The sum of old and

new VM–PM assignment products which produce a value of 1 if the assignment didn’t

change and 0 if a migration is present are maximized.

#PMs

∑
i=1

#V Ms

∑
j=1

(newAsgn[i][j]×oldAsgn[i][j]) (4.2)

A number of constraints are also applied in order to drive the MIP to produce valid

results. In Equation 4.3 it is guaranteed that each VM is assigned to exactly one PM.

Additionally in Equation 4.4 resource needs of each VM that is assigned to a specific

PM, are summed up to be less than the available resource assigned to the PM so that

no PM is overloaded.

#PMs∧
i=1

(
#V Ms

∑
j=1

newAsgn[i][j] = 1

)
(4.3)

#PMs∧
i=1

#Res∧
j=1

((
#V Ms

∑
k=1

newAsgn[i][k]× resNeed[j][k]

)
≤ resAv[i][j]

)
(4.4)

4.3.3.2 Evenness heuristic

Standard deviation (SD) is a natural choice to find the unevenness of data points since

it shows the amount of dispersion from the average. SD of the resource utilization on

a VM v can be calculated as follows.

SD(p) =

√
m

∑
i=1

(ri− r̄)2 (4.5)

Here, ri denotes the utilization of the ith resource, while r̄ is the average utilization

of all resources of p. m is the number of resources. For the trivial case of only four

instances, a simpler heuristic may be used. Since the focus is more on outliers than

inliers, difference between the maximum and minimum utilization rates (span or SP)

can be a good candidate for an evenness heuristic.

SP(p) = max
i∈[1,m]

(ri)− min
i∈[1,m]

(ri) (4.6)

45

NORDUNET KTH

PNSC PNSC­2

CESNETGARR

DFN

HEANET

SWITCH

REDIRIS

FCCN

I2CAT ICCS GRNET

NIIF

Figure 4.3 : Physical infrastructure topology [5].

4.4 Evaluation

4.4.1 Experimental setup

The simulations are carried out on the RalloCloud framework explained in Chapter

3. VM cluster topologies and sizes may vary greatly in cloud systems [103]. In

complicated cases, number of VMs can easily reach to factors of ten. On the other

hand, if a medium size web application is considered, it may consist of a few VMs

for persistence layer, user interface, etc. Even smaller applications may need only one

VM. Without loss of generality, VM clusters are generated with VM count based on a

Poisson distribution with a mean of three. Data connection topology of the generated

clusters are chosen uniformly at random among; complete, linear, circular and star.

Federation topology, on the other hand, is taken from a real-world example: an

experimental networked cloud infrastructure proposed in [5]. Implemented version

of the topology (Figure 4.3) includes 14 point of presences across Europe and up to 4

virtualization servers (physical machines) at each location. There is also another node

(NORDUNET) which is included to the topology but does not contain a data center.

46

The architecture follows the IaaS paradigm and the cloud capacities are heterogeneous

in proportion to the number of virtualization servers at each point of presence.

Four simulation variables and their effect on the embedding quality are evaluated.

Although RalloCloud and TBM support CPU, memory and storage resources, VM size

is represented with only memory requirement of VMs for simplicity. It determines

the number of VMs that can be deployed to a single cloud. Within cloud resource

allocation and the minimum span heuristic is evaluated separately. In the simulation,

64x of memory is assigned to each virtualization server and 1x to 8x of memory to each

VM. Then, bandwidth size of data connections between VMs is up to 8y and each

network connection has a bandwidth capacity of 80y. Another simulation variable,

I/O data length is the amount of data that is transferred between communicating VMs

in a cluster. It is between 1z and 8z where the length of all data processed in a VM

is 10z. That means up to 80% of the processed data may be communicated between

VMs.

To illustrate the difference between the bandwidth size and I/O data length, the former

specifies required bandwidth allocation for each communicating VM pair while the

latter specifies the size of the data that will be transferred on that allocated bandwidth.

As the bandwidth size decreases and the data length increases, data transfer duration

will extend. Another difference is in that the bandwidth size affects the subgraph search

while I/O data length only affects VM’s runtime performance.

Cloud locations are assumed to be user bases with varying VM cluster demand

according to the human population density at that location. The demand is measured

as the number of requests received from a user base. The most demanding user base

requests 16 to 128 VM clusters of varying sizes during the simulation period of 50

hours. Arrival times of the requests are selected uniformly at random within the range

of [0,50) hours.

At each evaluation, only one of these four parameters varies while others are assigned

their default values. Ranges and default values of simulation variables is given in Table

4.2. The variables in the experiments are defined as relative factors. For instance, in

order to indicate that the VM requests generated during the simulations may contain
1

64 to 1
8 of a fixed cloud data center memory, VM memory range is indicated as [x,8x]

47

Table 4.2 : Ranges and default values of simulation variables.

Simulation Variable Range Default Value
VM memory size [x,8x] 4x

Inter-VM bandwidth size [y,8y] 4y
VM cluster demand per broker [16,128] 64

I/O data length [z,8z] 4z

and data center memory as 64x. Same convention holds for other variables except VM

cluster demand which is an absolute value. The simulation is run 30 times for each

combination of variables. Upper limits of the ranges (i.e. 8x, 8y, 8z and 128) are

selected for the following two reasons.

1. Higher values correspond to unrealistic cases such as a cloud data center that can

only host a few VMs.

2. Simulations result in halt because overall cloud capacity runs short to answer

demand.

Finally, the unit prices of resources are taken from Amazon Web Services. At the time

of the evaluation, the price of a 50 Mbps AWS Direct Connect Port is $0.03 per hour

and the on-demand price of an EC2 instance with a 1 GB memory (t2.micro) is $0.013

per hour. These rates increase in proportion to the port speed and memory size.

4.4.2 Baseline heuristics

TBM algorithm is evaluated against the following four VMCE heuristics that have

separate node and link mapping stages. Heuristics mainly differ for their node mapping

strategies while link mapping simply attempts to utilize the network connections on the

shortest path between communicating VMs. Linear programming techniques which

are widely discussed in the literature are not included since they are not feasible for

the cases of more than a few nodes.

Random (RAN) Mapping Brokers submit VMs to random known available clouds.

Round-Robin (RBN) Mapping Each broker has an arbitrarily ordered list of known

clouds and it probes them in a circular fashion.

48

1 2 3 4 5 6 7 8

1

1.5

2

2.5

VM Size (x)

In
te

r-
C

lo
ud

L
at

en
cy

(s
ec

)

TBM
LLF
LUF
RBN
RAN

Figure 4.4 : Inter-cloud latency with varying VM size.

Least-Utilized-First (LUF) Mapping In order to exploit dynamic pricing strategy of

the clouds and to balance their load, LUF mapping always submits a VM to the

least utilized cloud which would have the lowest unit resource cost.

Least-Latency-First (LLF) Mapping LLF mapping is the same as RBN mapping

except the list of clouds is sorted in ascending order of cloud-to-user latency instead

of an arbitrary order. Assuming clouds that are close to the user in terms of latency

would also be close to each other, objective is to reduce latency and increase VM

performance.

4.4.3 Results and discussion

Selected results out of 32 performance criteria – evaluation parameter combinations

are discussed in this section.

4.4.3.1 Inter-cloud latency

Figure 4.4 demonstrates the evaluation results with increasing size of VM. TBM has

by far the least inter-cloud latency. Since RAN, RBN and LUF do not consider latency

at all, they have the highest latency while LLF is around the middle ground. This

indicates that inter-cloud latency assumption of LLF is correct to some extent, but not

enough to reach TBM. As expected, latency increases as the VMs gets bigger. This is

due to the increase in the rejection rate of the latency-optimized mappings.

An interesting result occurs when the variable parameter is the bandwidth (Figure

4.5). TBM performs around the same while the baseline methods seem to yield lower

49

1 2 3 4 5 6 7 8

1

1.5

2

2.5

Bandwidth Size (y)

In
te

r-
C

lo
ud

L
at

en
cy

(s
ec

)

TBM
LLF
LUF
RBN
RAN

Figure 4.5 : Inter-cloud latency with varying bandwidth size.

1 2 3 4 5 6 7 8

100

150

200

250

300

Bandwidth Size (x)

D
ep

lo
ym

en
tL

at
en

cy
(s

ec
)

TBM
LLF
LUF
RBN
RAN

Figure 4.6 : Cloud-to-user latency with varying bandwidth size.

latencies as the bandwidth request increases. The reason behind this is the scarcity

of bandwidth in the federation. When users request more bandwidth, utilization of

network connections increases. As a result, link mappings with multiple hops are likely

to be rejected. After several rounds of trial and error, even randomized heuristics come

up with closely located VMs.

4.4.3.2 Cloud-to-user latency

All parameters yield similar results to the Figure 4.4 for the average cloud-to-user

latency, hence only bandwidth size results are presented in Figure 4.6. Understandably,

as the requests gets larger, possibility of deploying them close to their user decreases,

thus latency increases. Although LLF makes decisions solely based on cloud-to-user

latency, TBM performs slightly better even in average cloud-to-user latency criterion.

This is due to the fact that LLF ignores efficient utilization of bandwidth capacity so

50

1 2 3 4 5 6 7 8

100

200

300

400

VM Size (x)

C
om

pl
et

io
n

Ti
m

e
(h

r)

TBM
LLF
LUF
RBN
RAN

Figure 4.7 : Completion time with varying VM size.

1 2 3 4 5 6 7 8

50

100

150

200

I/O data length (z)

E
xe

cu
tio

n
Ti

m
e

(h
r)

TBM
LLF
LUF
RBN
RAN

Figure 4.8 : Execution time with varying I/O data length.

the clouds with less latency cannot be utilized even when they have enough computing

resources.

Cloud-to-user latency results indicate that, optimizing a single performance criterion

and ignoring others in VMCE causes sub-optimal performance even for that criterion

because the criteria are dependent to others. Multi-objective approaches such as TBM

are more suitable for the problem.

4.4.3.3 Completion time and throughput

Impact of the TBM’s latency reduction can be observed on the execution and

completion times of the VM clusters as well as overall system throughput. Figure

4.7 show the average completion times according to the VM size. Execution time

results with variable size are omitted as they are directly proportional to inter-cloud

latency (Figure 4.4) while completion time also includes deployment latency and

51

16 32 48 64 80 96 112 128

50

100

150

200

250

VM cluster demand

T
hr

ou
gh

pu
t(

10
×

M
IP

S)
TBM
LLF
LUF
RBN
RAN

Figure 4.9 : Throughput with varying demand.

pending time. TBM reduces execution time up to 26% and deployment time up to

34% in comparison to the best performing heuristic (LLF). Additionally, Figure 4.8

demonstrates the average VM execution time with variable I/O data length. Again,

TBM is clearly the best performer.

Overall throughput of the system increases until a threshold (around 64 in x axis)

as demand increases (shown in Figure 4.9). However, brokers start to fail finding

valid mappings and most new requests get rejected after that threshold. Although

this is unlikely in a real life scenario, demand is kept increasing to test robustness

of the algorithms. In that case, a deadlock may occur since some VMs of clusters are

deployed and other VMs are waiting for resources utilized by the VMs of other clusters

(a special case of dining philosophers problem). Missing data points and decreasing

throughput in Figure 4.9 is due to such deadlocks. It is obvious that TBM algorithm

can better utilize the resources of the system and it is more robust to demand peaks. A

deadlock resolution technique is outside the scope of this thesis.

As seen in Figure 4.10, the rate of rejected VM gets higher for increasing load while

lowest rate is achieved by TBM in all cases. Here, it should be noted that a rejection

in RalloCloud is not permanent and simply means that the current available resources

at the matched cloud does not allow to deploy the VM thus it should be dispatched to

another provider. Likewise the throughput result discussed above, roughly the right

half of the chart corresponds to unrealistically heavy workload which is useful to

evaluate robustness of the algorithms. Under realistic workload, rejection rate of the

TBM algorithm is under 30%.

52

1 2 3 4 5 6 7 8
20

40

60

80

100

VM Size (x)

R
ej

ec
tio

n
R

at
e

(%
)

TBM
LLF
LUF
RBN
RAN

Figure 4.10 : Rejection rate with varying VM size.

1 2 3 4 5 6 7 8

2

4

6

8

·104

I/O data length (z)

C
os

t(
C

ur
re

nc
y)

TBM
LLF
LUF
RBN
RAN

Figure 4.11 : Cost with varying I/O data length.

4.4.3.4 Cost

As explained in Section 3.1.5, total cost of a VM cluster is directly proportional to its

execution time under the same unit price. Hence, change of costs in Figure 4.11 are

quite similar to execution times in Figure 4.8. Although, LUF always maps VMs to

the clouds with least unit costs, that does not result in lower overall cost than TBM or

LLF. Because LUF does not take latency and bandwidth into consideration, its lengthy

execution time becomes the determinant for cost. Similar to the case of suboptimal

cloud-to-user latency performance of LLF, cost performance of LUF indicates that

TBM is superior to heuristics that focus and optimize a single criterion due to its broad

perspective of the whole aspects of the problem. It also shows that VMCE problem

necessitates a multi-objective method to be solved effectively.

53

0 50 100 150 200 250 300 350 400 450 500

0

10

20

30

40

50

Number of clouds

Ti
m

e
(s

ec
on

ds
)

Figure 4.12 : Runtime performance with varying federation size.

4.4.3.5 Runtime performance

Finally, Figure 4.12 demonstrates the runtime performance of the TBM algorithm

in larger federations. Four VM clusters with different topologies of five VMs are

requested from each randomly generated federation. Federated cloud topologies are

generated using the Watts—Strogatz model [108] with increasing number of vertices.

Results are obtained on a workstation with Intel Xeon E5 CPU and 16 GB memory.

Results indicate that the algorithm can find a mapping and submit VMs to the

corresponding clouds within a second for federations consisting of up to 70 clouds.

Even in the extreme case of 500 clouds forming a federation, the algorithm can answer

requests under a minute. Such a federation size can currently be quite unrealistic,

however the experiments are conducted to identify the limits of the algorithm.

4.4.4 Resource Utilization

Utilization of resources within a single cloud data center are investigated to evaluate

the algorithm and the evenness heuristic proposed in Section 4.3.3. The experiment

aims to compare the power of heuristics to assign maximum number of VMs before a

migration is necessary. Another aim is to assess the optimality of their placements. A

good heuristic should place VMs in a way that migrations become compulsory as late

and few as possible since migrations may cause temporary downtimes for VMs.

For each PM configuration, Table 4.3 contain average number of VMs assigned by 5

strategies, maximum number of VMs to fully utilize PMs and the rate of improvement

54

Ta
bl

e
4.

3
:A

ve
ra

ge
nu

m
be

ro
fV

M
s

as
si

gn
ed

.

PM
C

ap
ac

ity
(x

)
10

0
15

0
20

0
25

0
30

0
20

0
20

0
20

0
20

0
20

0
PM

C
ou

nt
8

8
8

8
8

4
6

8
10

12
R

R
42

,0
67

,2
92

,7
11

8,
4

14
4,

3
46

,0
69

,3
92

,7
11

6,
2

13
9,

7
SP

m
in

46
,2

73
,2

10
0,

2
12

7,
2

15
4,

3
48

,7
74

,4
10

0,
2

12
6,

2
15

2,
3

SP
de

c
46

,0
72

,6
99

,3
12

6,
0

15
3,

2
48

,4
73

,8
99

,3
12

4,
9

15
0,

7
SD

m
in

46
,2

73
,2

10
0,

2
12

7,
3

15
4,

3
48

,7
74

,4
10

0,
2

12
6,

2
15

2,
3

SD
de

c
45

,8
72

,3
98

,9
12

5,
5

15
2,

1
48

,2
73

,4
98

,9
12

4,
4

15
0,

1
M

ax
im

um
53

,3
80

,0
10

6,
7

13
3,

3
16

0,
0

53
,3

80
,0

10
6,

7
13

3,
3

16
0,

0
Im

pr
ov

em
en

t
10

,0
%

8,
9%

8,
1%

7,
5%

6,
9%

6,
1%

7,
4%

8,
1%

8,
6%

9,
0%

55

Table 4.4 : Average migration and perfect placement counts.

Strategy Migration Count Perfect Placement Count
RR 8,4 26

SDmin 5,5 108
SPmin 5,6 100

by the best performing strategy in comparison to the greedy round-robin baseline (RR).

Subscripts min and dec stand for the minimum and most decreasing variants of the

strategies, respectively. Decreasing variant can be obtained by calculating unevenness

twice, i.e. before and after tentatively assigning the VM. In that case, actual assignment

is made to the PM whose unevenness decreases the most, instead of the one whose

unevenness becomes the minimum in the minimum variant.

It is evident that intelligent heuristics always perform better than the greedy

assignment. In all 100 configurations, all strategies manage to assign more VMs than

the round-robin. The worst improvement rate is 4,3% (3 PMs with 300x capacity

per resource) while the best one is 12,1% (12 PMs with 75x capacity per resource).

Utilization rate of round-robin is between 73,8% and 90,2% while utilization rate

of the heuristics is between 80,5% and 96,4%. Improvement rate gets better as the

number of PMs increase (as seen in the right half of the final row in Table 4.3) but their

capacities decrease (as seen left half of the same row). With high capacities and small

number of PMs, randomness of resource requests tend to cover imperfect assignments

while with low capacities and large number of PMs, decisions are more critical and

should be made with more care.

Table 4.4 gives the average number of migrations introduced by the optimization after

each three strategies (RR and two best performers of first experiment SPmin and SDmin)

utilized the resources and stopped assigning more VMs. The table also contains the

number of cases (among 1.000 executions) where heuristics made a perfect placement

so that an optimization was not required. Results demonstrate that placements made

by the heuristics are closer to optimum since the MIP optimization after the SDmin and

SPmin strategies required respectively 34,5% and 33,3% less migrations than the MIP

optimization after RR. They also made perfect placements in 10,8% and 10,0% of

executions (MIP optimization doesn’t migrate any VM) while the coincidental perfect

placements are made by RR in only 2,6% of cases. Intelligent heuristics make better

56

placements that can be optimized with significantly less migrations. As a result,

they allow VMs to run with less suspension as well as decreasing the need for an

optimization algorithm. Span heuristic yielded roughly the same results as standard

deviation and is preferable due to its simplicity.

57

58

5. REPLICATION MANAGEMENT

5.1 Problem Definition

The point of computation in cloud computing systems has begun spanning towards the

terminal nodes of the network infrastructure in the last few years due to the availability

of more powerful and smarter end devices. This expanse in the computational power

triggered a diverse terminology including Fog Computing [109], Nano Data Centers

[110], and Cloudlets [111]. Even though these concepts have their own differences

and merits, their objective can be summarized roughly to disseminate tasks among

a broader span of the distributed nodes in the cloud infrastructure instead of a small

group of interconnected servers. Such approaches are referred as Edge Computing in

this thesis.

Bringing the computation power to the edge of the network reduces latency and

enables code offloading to the cloud. However, many services need to access data

that is traditionally stored centrally. Thus, data access latency can be a bottleneck

and override the benefits of Edge Computing especially for data-intensive services.

In addition to the VM placement suggested in Chapter 4, continuous increase in the

volume of data absorbed, circulated and processed in cloud systems also necessitate

smart data distribution approaches. In this chapter, the focus is the dissemination of

data in a distributed cloud computing system with a large number of nodes that are

accessible for computational purposes. A decentralized approach to decide on the

replication and placement of data originating from a central server towards the end

devices in the cloud network is proposed. A cloud specific trade-off between the cost

and latency is suggested as the main criteria in shaping an expansion parameter to

determine the extent that the data is pushed towards the edge entities.

Client side caching is traditionally used in distributed systems to reduce data access

latency. Similar to web caches, cloud caches are close to the clients and provide

requested data locally in the case of cache hit or retrieve requested data remotely from

59

a

c

b d cs

Figure 5.1 : An example Cloud topology to illustrate replication and caching [2].

the central storage in the case of cache miss [112]. However, caching results in low

utilization of data copies since a cache can serve only the clients where it is stored.

Replication, on the other hand, has the potential to provide a more cost-effective

solution when the replicas are placed on critical network nodes and serve requests

from multiple nearby locations. In that sense, replication can exploit the geographical

locality of requests in addition to their temporal locality.

Figure 5.1 illustrates the problem with a trivial example. Assume that the edge entities

a, b, and c are frequently requesting a data object. In the case of caching, all tree

entities must store the data object to avoid fetching it from the central storage (cs) at

each request with high latency. However, with smart replication, a single copy of the

object can be placed on the storage node d which has low latency connection to a, b,

and c, thus reducing cost and maintaining similar latency to local access.

Data replication is employed with several different objectives, e.g. increase avail-

ability, security, fault tolerance or reduce response time and bandwidth consumption.

It is also effective in distributing the central storage load and improve scalability

[61]. In this thesis, the focus is the performance benefits of replication with specific

consideration of proximity of replicas to the clients to reduce latency and bandwidth

consumption. The aim is to answer the following questions to minimize average

replica-to-client distance in a bandwidth- and cost-effective way.

• Which data objects to replicate?

• When to create or destroy a replica?

• How many replicas for each object to create?

• Where to store each replica?

• How to redirect requests to closest replica?

60

Although replicating all objects to all storage nodes provides optimum proximity

and latency, it is quite wasteful since the demand for each object varies and can be

regional [113]. Moreover, in the cloud paradigm, a service provider (SaaS or PaaS)

does not typically own the storage infrastructure but leases it from an IaaS provider on a

pay-per-use basis. Thus, optimization of replica count and locations by considering the

popularity of data objects is crucial to reduce cost [66]. Smart placement techniques

can be especially effective in a Multi-Cloud scenario due to the availability of large

number of geographically distributed storage options and the possibility to exploit

pricing discrepancies across regions and providers [113].

Data accesses by geographically distributed users exhibit various patterns which can

be summarized in three categories; temporal locality, spatial locality, and geographical

locality [114]. Temporal and spatial locality are well-studied and addressed problems,

however geographical locality, which is the focus of this thesis, recently gained more

significance due to the increase in the magnitude of data being stored and processed in

large-scale distributed systems. The locality classification is described below.

Temporal Locality A data object that is accessed by a user is likely to be accessed

again by the same user. Caching systems exploit temporal locality to answer

requests locally after the first request [115].

Spatial Locality A data object that is close or relevant to the previously accessed

objects by a user is likely to be accessed by that user. When continuous blocks of

data are stored instead of individual objects, caching can also make use of spatial

locality with the assumption that the sequentially stored data objects are relevant

to each other. There exists approaches (e.g. [116]) where relevant data objects are

predicted using the past reference record and prefetched for local access.

Geographical Locality A common phenomenon in geographically distributed

systems is that data objects that are accessed by a user is likely to be accessed by

other nearby users. Although geographical locality is present in most distributed

systems, for extreme cases one may consider a traffic jam where drivers in a

certain area are demanding map/traffic data more intensely compared to a sparsely

populated area. This kind of intensifying data demands can be very dynamic and

hard to predict in practice. Another example might be a social event such as a sports

61

[0
,0

.5
)

[0
.5
,1

)

[1
,1

.5
)

[1
.5
,2

)

[2
,2

.5
)

[2
.5
,3

)

[3
,3

.5
)

[3
.5
,4

)

[4
,4

.5
)

[4
.5
,5

)

[5
,5

.5
)

[5
.5
,6

)

[6
,6

.5
)

[6
.5
,7

)

[7
,7

.5
)

[7
.5
,8

)

[8
,8

.5
)

[8
.5
,9

)

[9
,9

.5
)

[9
.5
,1

0
)

[1
0
,1

0
.5
)

[1
0
.5
,1

1
)

[1
1
,1

1
.5
)

[1
1
.5
,1

2
)

[1
2
,1

2
.5
)

[1
2
.5
,1

3
)

[1
3
,1

3
.5
)

[1
3
.5
,1

4
)

[1
4
,1

4
.5
)

[1
4
.5
,1

5
)

[1
5
,1

5
.5
)

[1
5
.5
,1

6
)

[1
6
,1

6
.5
)

[1
6
.5
,1

7
)

[1
7
,1

7
.5
)

[1
7
.5
,1

8
)

[1
8
,1

8
.5
)

[1
8
.5
,1

9
)

[1
9
,1

9
.5
)

[1
9
.5
,2

0
)

0

2

4

6

·104

Distance (1, 000× km)

N
um

be
r

of
R

eq
ue

st
Pa

ir
s

Figure 5.2 : Histogram of distances between data request pairs.

game or concert where the users continuously request similar data such as the video

stream of a specific moment in the event. Geographical locality can also be almost

permanent as it is in the scenario where mostly the residents of a town access its

online public services or visitors access tourist guides.

The CAIDA Anonymized Internet Traces 2015 Dataset [117] is examined for a period

of one-hour in order to demonstrate the extent of geographical and temporal locality in

global Internet requests. A histogram of origin distances of requests for a single data

object is shown in Figure 5.2. According to the analysis, more than 20% of the requests

are originating from 1000 km distance to each other. When the diameter is increased

to 2000 km, it covers nearly 30% of the requests. Similar results are obtained by others

for the interactions between Facebook users in [94].

Caching cannot benefit from geographical locality because the users are unable to

access the caches of other nearby users, in fact, they are unaware of them. Hence,

a smart strategy for data replication and replica discovery is needed to reduce storage

cost while maintaining similar or better data access time to caching.

5.2 Proposed Solution

Contribution of this thesis in terms of replica management is two-fold. First, a

completely decentralized, dynamic, and online algorithm is proposed for the placement

of data replicas across IaaS providers in an Edge Computing scenario. Second, a

low-overhead messaging methodology is proposed to notify edge entities about nearby

replicas so that they can submit their future data requests to them [2].

62

Replica Placement Algorithm Decentralized Replica Placement (D-ReP) algorithm

is proposed where storage nodes that host replicas act as local optimizers by

analyzing the experienced demand on the replicas. They evaluate the cost of

storing replicas as well as expected latency improvement to make a migration or

duplication decision to one of the neighbours. Their verdict may also be removing

the local replica. Such decisions are made to maximize an objective function

based on the Facility Location Problem (FLP) explained in subsections 2.1.2 and

3.1.3. The algorithm also allows user to control the trade-off between cost-

and latency-optimization using an input parameter. Experimental results on real

workload traces demonstrate significant improvements in replica access latency as

well as network overhead and storage cost. Additional experiments on synthetically

generated workload prove that the improvements are not limited to a single case.

Messaging Methodology Edge entities should be aware of the closest replica when

they request a data object so that the promised benefits of the D-ReP algorithm are

gained. However, complete awareness is only possible with centralized control or

by broadcasting replica locations periodically. Here instead, a replica discovery

approach is suggested where only the most relevant nodes are notified of the replica

creations or removals.

5.2.1 Requirements and assumptions

The main requirement for the D-ReP algorithm is to place replicas across storage nodes

(Cloud based storage providers and edge entities) in a way that the cost function given

in equation 3.1.5 is minimized. There are also a number of nonfunctional requirements

involved in the scenario.

First, the algorithm must be distributed and completely decentralized. As explained in

Chapter 2, centralized algorithms are not suitable for the Edge computing scenario

due to the large number of nodes and replicas. Collecting global topological and

demand information in a centralized node and executing the complete optimization

algorithm does not scale well with the node count [96, 97]. Communication between

the nodes regarding the replica placement should also be kept to a minimum to

avoid additional overhead. Second, Multi-Cloud and Edge Computing environments

are highly dynamic. Edge users continuously enter and leave the network topology

63

through connections with various latencies. Demand from each node and for each

data object as well as the storage prices can also vary greatly over time. Thus, the

number and locations of the replicas should be dynamic. Finally, the algorithm should

be online since it is not possible to know future requests and environment.

Inputs to the D-ReP algorithm remain limited to the following items by

taking abovementioned decentralization and low network overhead constraints into

consideration. Each algorithm instance executing in a node is only aware of that

node and its immediate neighbours in the network topology graph. It is assumed that

the below listed information can be collected using standard monitoring tools (e.g.

Skitter), DNS queries or routing tables.

• Number of requests for each replica that is stored in that node

• The neighbour node that each request is received through

• Perceived latency to each neighbour node

• Unit price of storage in each neighbour node

Another assumption is read-only data, similar to the other work on content distribution

networks [64, 81, 114] so that data consistency is not an issue. Since Cloud and

Edge Computing scenarios have the same data consistency requirements as traditional

distributed systems and distributed data consistency is a well-studied area [118], it

is left out of the scope. To apply the D-ReP algorithm to systems with frequent

data updates, an independent consistency service can be utilized. In this case, any

primary copy based distributed protocol can be implemented, e.g. Viewstamped

Replication, Paxos or Zab. Most of other replica placement studies in the literature

do not address the data consistency problem neither with similar justifications as

here [59, 64, 79, 81, 83, 91, 110, 114].

5.2.2 D-ReP algorithm

Two versions of the algorithm (i.e. source and edge) are triggered in equally spaced

epochs and iteratively push replicas from the source node (central storage) towards the

requesting edge nodes. A group of nodes in close proximity that repeatedly demand

64

same data objects cause creation and migration of replicas towards them. The replicas

are discarded or migrated to other locations when the demand fades.

The source version of the algorithm runs in the central storage node and can only

create replicas of data objects in the neighbours of that node. The edge version, on the

other hand, runs at each node where at least one replica is stored (i.e. in active node).

A tiny VM for the execution of the algorithm is provisioned from the cloud provider

when some storage space is leased for the first replica. The VM can turn itself off

when no replicas are left or terminate after a period of inactivity. Edge version may

decide to duplicate or migrate the replica to the neighbours, remove it, or do nothing.

All decisions in both versions are the result of the comparison between the expected

latency benefit and monetary cost. The epochs in different nodes does not need to be

synchronized.

5.2.2.1 Source version

A replica of the data object k is created in the neighbour n of the central storage node

c if the expected latency improvement is worth the storage cost of the replica. In other

words, objective function in equation 3.1.5 should decrease after the replication. The

following is the condition for the operation of creating a new replica.

num_requestsknc · latencync ·λ > unit_pricen · epoch (5.1)

Here num_requestsknc is the total number of requests for k received through n by c in

the most recent epoch(s). If the condition does not hold for any of the neighbours, no

replica is created for that data object in the current iteration.

5.2.2.2 Edge version

A replica can duplicate itself to a neighbour n of its current host node h if the expected

additional latency benefit of the new replica is greater than its storage cost. The

condition below is the same as the new replica creation condition in the source version

(Inequality 5.1) except c is replaced with h.

num_requestsknh · latencynh ·λ > unit_pricen · epoch (5.2)

65

Inequality 5.2

Duplicate Inequality 5.3

Migrate Inequality 5.4

Remove No Operation

True False

True False

True False

Figure 5.3 : Decision tree for the edge version of the D-ReP algorithm.

The migration condition in inequality 5.3 is evaluated if the duplication condition does

not hold for a neighbour. Here, N is the set of all neighbours of h. The latency of the

request received through n will decrease by the latency between n and h (latencynh).

Latency of the requests from all other neighbours is assumed to increase by the same

amount since they will be answered through h. Actually, these neighbours may have

lower latency connections to n and they may bypass h. However, the algorithm at h

would not be aware of such connections since it has only local topology information

for the sake of decentralization.

(
num_reqsknh−∑

i∈N
i6=n

num_reqskih

)
· latencynh ·λ >

(
unit_pricen−unit_priceh

)
·epoch

(5.3)

A replica may get underutilized due to the creation of new replicas or changes in

demand. In such cases, it should be discarded to avoid unnecessary storage cost. When

the utilization of a replica in the last epoch drop below a certain percentage (α) of its

expected utilization at creation, it is removed. The percentage, α , is defined in the

range (0,1] and chosen as 0.5 in the evaluation.

∑
i∈N

num_requestskih < original_num_requestsh ·α (5.4)

The decision tree that is evaluated at each active node for each replica and neighbour is

presented in Figure 5.3. As the tree demonstrates, duplication operation has the highest

precedence while removal has the lowest.

The user-provided parameter λ can be tweaked by the service provider to control the

level of cost and latency. Greater λ values result in more aggressive expansion of

66

replicas across the network, thus lower latency values in exchange for higher storage

cost. The algorithm can also be extended to support more precise latency guarantees.

To that end, the end-to-end latency of each request should also be collected and

considered in creation, duplication, migration, and removal conditions.

5.2.3 Replica discovery

In replica-blind services, nodes that request data are unaware of the replica locations

and they always submit their request to the central storage. If there exist a node with

the replica of the requested data on the path, it answers the request [80]. Replica-blind

services are typically implemented in domain-specific, single-tenant distributed

systems such as CDNs. However, in a multi-tenant system such as the cloud,

servers cannot analyze the requests flowing through them, hence replica-awareness

is mandatory. Replica-aware services also make it possible to answer requests by the

nearby replica locations that are not on the path to the storage.

A messaging system for replica discovery that complements the D-ReP algorithm is

proposed. The messaging system is free of broadcast messages and central control in

accordance with the decentralized design of the algorithm. The objective of messaging

is to notify a node about a replica only if the node is expected to request it in the near

future. The expectancy is inferred from both temporal and geographical locality of

requests as explained below.

Each active node keeps a Known Replica Locations (KRL) table. The table stores

the replica id, replica node, and latency to the replica node. It may contain several

locations for each replica and is updated in the following occasions.

• When a replica is migrated or duplicated from n1 to n2, the new host n2 notifies

all nodes that requested the replica from n1 in the most recent epoch(s) to exploit

temporal locality. The list of such nodes is transferred from n1 to n2 together with

the creation command and the replica data.

• n2 also notifies its neighbours at both creation and removal of the replica to exploit

geographical locality.

Latency to the replica node is approximated as the latency experienced in the

notification message from n2 and it is updated when a request is answered by n2.

67

Local replica exists

Answer locally KRL contains the replica ID

Request from
the closest replica

Request from
the central storage

True False

True False

Figure 5.4 : Decision tree to answer a data request at an edge node.

Figure 5.4 demonstrates the decision tree that is evaluated whenever a user request a

data object at its local edge node. If a replica of the data is present at that node, then

the request is answered with very low latency. If the replica is not stored locally but

the node is aware of one or more replicas for that data, a request is submitted to the

one with the least latency. Otherwise, it is requested from the central storage with the

highest latency. Replicas with higher latency than the central storage are ignored.

5.3 Evaluation

5.3.1 Experimental setup

In order to evaluate the D-ReP algorithm and the baseline methods realistically, The

CAIDA Anonymized Internet Traces 2015 Dataset [117] is used. The dataset contains

anonymized passive traffic traces from CAIDA’s ‘equinix-chicago’ high-speed

monitor. Specifically, IPv4 packets data from February 19, 2015 between 13:00-14:00

(UTC) which contains more than 2.3 Billion records are used. In addition, GeoLite2 IP

geolocation database1 is used to map source IPv4 addresses to geographical locations.

Moreover, the results are generalized using synthetic workloads based on uniform,

exponential, normal, Chi-squared, and Pareto distributions of request locations in order

to model various levels and types of geographical locality.

The network topology graph is generated using the BRITE tool [119] with the

Barabási–Albert scale-free network generation model which is known to accurately

represent human-made systems [120]. The topology contains 1000 nodes, 2994 edges

and a heavy-tailed distribution of bandwidth in the range of 10 to 1024 mbps. For

fairness, the location of the central storage in all three alternatives is selected as

the node with the greatest closeness centrality in the topology graph. Amazon Web

1http://www.maxmind.com/

68

http://www.maxmind.com/

Table 5.1 : Ranges and default values of simulation variables.

Simulation Variable Range Default Value(s)
Epoch Length (min) [1,20] 3,10

λ [0.01,0.20] 0.10,0.16
Cache Capacity [10,200] 30

Services S3 prices2 are chosen to calculate the storage and transfer costs for the data

objects and replicas.

For the caching system which is implemented as a baseline, the number of replicas that

can be stored at each cache is limited. When the cache capacity is full, least recently

used (LRU) cache replacement strategy is used. Simulation variables are the epoch

length, λ and cache capacity. The ranges and default values of variables are given

in Table 5.1. For each experiment, one of these varies while the others are assigned

their default values. The range limits are chosen by ensuring the best performance

of the D-ReP and caching algorithms as well as considering practical constraints.

Specifically, unrealistically short and long epochs, or too small cache capacities are

not used even if the algorithms perform well, since they would have no real-world

application.

5.3.2 Evaluation with real workload traces

5.3.2.1 Latency and cost

Latency improvement rate is used to measure the extent that a replication or caching

solution decreases average access latency to replicas with respect to no-replication

solution. In Figure 5.5, latency improvement of the algorithm with varying λ values is

presented. Since λ is only effective for D-ReP, latency improvement of caching is fixed

at 25.60%. As the λ value increases, D-ReP gets able to afford more replicas especially

at outer locations. Hence, the average latency to the replicas decreases steadily to the

levels comparable to caching and beyond.

Increasing epoch duration (e), as shown in Figure 5.6, also improves latency to some

extent. However, the increase is not as steady and converges after around the epoch

duration of 7 minutes. Longer epochs have the advantage of aggregating more data

2https://aws.amazon.com/s3/pricing/

69

https://aws.amazon.com/s3/pricing/

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

0

10

20

30

Lambda (λ)

L
at

en
cy

Im
pr

ov
em

en
t(

%
)

Caching
D-ReP (e = 3)
D-ReP (e = 10)

Figure 5.5 : Latency improvement rate with variable λ .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

20

30

Epoch Duration (min)

L
at

en
cy

Im
pr

ov
em

en
t(

%
)

Caching
D-ReP (λ = 0.10)
D-ReP (λ = 0.16)

Figure 5.6 : Latency improvement rate with variable epoch duration.

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.

2

0

10

20

Lambda (λ)

A
dd

iti
on

al
C

os
t(

%
)

Caching
D-ReP (e = 3)

D-ReP (e = 10)

Figure 5.7 : Cost increase rate with variable λ .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

Epoch Duration (min)

A
dd

iti
on

al
C

os
t(

%
)

Caching
D-ReP (λ = 0.10)
D-ReP (λ = 0.16)

Figure 5.8 : Cost increase rate with variable epoch duration.

70

to make sense in replication decision, but they harm the reactivity of the algorithm to

relatively small changes in demand.

Another measurement is the rate of increase in replica storage cost that each method

causes on top of the central storage cost. Figures 5.7 and 5.8 clearly demonstrate that

D-ReP incurs significantly lower cost than caching in all cases expect very high λ

values (≥ 0.16) and very long epoch durations (≥ 15 mins).

Absolute cost and latency values of the no-replication solution are required to better

interpret the relative improvement rates in Figures 5.5 to 5.8. Average data access

latency is 1.82s, while data storage and transfer cost per request is $0.24. Hence, a

latency improvement rate of 30% corresponds to a 0.55s gain in time which is quite

significant as the number of data objects requested by a user in a single session can

easily reach tens if not hundreds.

5.3.2.2 Benefit-cost ratio

Benefit-Cost Ratio (BCR) indicator summarizes the overall value for money of a

proposal and is useful to decide between options when the most profitable is not

obvious. Greater BCR values are favourable and generally, proposals with a BCR less

than 1 are rejected. Here, it is used to evaluate the efficiency of algorithms to address

the trade-off between data access latency and data storage/transfer cost. and calculated

as latency improvement rate divided by cost increase rate (as shown in equation 5.5).

BCR =
Rate o f Latency Improvement

Rate o f Cost Increase
(5.5)

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

2

4

6

Lambda (λ)

B
en

efi
t-

C
os

tR
at

io

Caching
D-ReP (e = 3)

D-ReP (e = 10)

Figure 5.9 : Benefit-cost ratio with variable λ .

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

2

3

4

Epoch Duration (min)

B
en

efi
t-

C
os

tR
at

io
Caching

D-ReP (λ = 0.10)
D-ReP (λ = 0.16)

Figure 5.10 : Benefit-cost ratio with variable epoch duration.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

1

2

3

Cache Capacity (Number of Replicas)

B
en

efi
t-

C
os

tR
at

io

Caching D-ReP (e = 3 λ = 0.10) D-ReP (e = 10 λ = 0.16)

Figure 5.11 : Benefit-cost ratio with variable cache capacity.

D-ReP is more cost-efficient in all λ values, as shown in Figure 5.9, with 1.93 times

greater BCR than caching on average. Considering this result with Figures 5.5 and

5.7 reveals that λ can be used to control the desired level of latency in a cost-efficient

way. First data point of ‘D-ReP (e = 3)’ is not displayed in this chart as the BCR value

is unrealistically high (18.87) because the denominator (additional cost) approaches

zero. Figure 5.10, on the other hand, shows that longer epoch durations can be less

efficient than caching. Although, latency improvement converges in Figure 5.6, cost

continues to increase steeply in Figure 5.8. Thus, epoch duration does not come out as

an appropriate way of controlling latency.

Although, a fixed BCR is presented for caching in Figures 5.9 and 5.10, efficiency

of caching also varies by cache capacity. Larger capacity means higher possibility of

cache hits and thus lower average latency. Figure 5.11, shows that the BCR of caching

is significantly lower than D-ReP in most cases. It is only comparable in very small

cache capacities where the latency improvement is limited. These results indicate that

caching can only be effective to reduce latency in a small amount with very low cost.

72

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.

2

0

20

40

Lambda (λ)

N
et

w
or

k
U

til
.R

ed
.(

%
)

Caching (cap.= 30)
Caching (cap.= 100)

D-ReP (e = 3)
D-ReP (e = 10)

Figure 5.12 : Network utilization reduction with variable λ .

It is an expensive and inefficient method to achieve significant latency improvements

(e.g. more than 20%).

5.3.2.3 Network overhead

Both D-ReP algorithm and caching also reduce overall network utilization since some

requests are answered from nearby locations and utilize less connections. Figure

5.12 demonstrates the reduction in network utilization relative to the single storage

(no-replication) solution. Results are comparable for most λ values.

Being a replica-aware solution, D-ReP algorithm requires a replica discovery strategy

as described in Section 5.2.3. Notification messages for replica discovery cause a

network overhead in addition to the regular data requests and responses. A strategy

that avoids broadcasting and central control of replica locations is proposed so that the

network overhead is minimized. However, replica discovery is not optimal due to this

constraint. That is, some nodes may send their requests to replica locations that are

erroneously in their KRL table but actually have been removed. This synchronization

failure may also incur a network overhead and deteriorate the performance of the

D-ReP algorithm. Table 5.2 presents the percentage of notification messages among all

messages, percentage of failed requests among all requests, and percentage of latency

caused by these failed requests. The results indicate that all of these are negligible.

Table 5.2 : Percentages of network overhead factors.

Percentage of Notification Messages 2.63%
Percentage of Failed Requests 819 ppm

Percentage of Latency Due to Failure 1,108 ppm

73

0 5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

250

Time (min)

C
ou

nt
Creations Removals Duplications Migrations Replicas

Figure 5.13 : Number of replicas and completed operations in time.

5.3.2.4 Convergence

The change of the number of replicas present in the system in time is also evaluated

in addition to the performance indicators. Figure 5.13 presents the replica count in

one-minute intervals as well as the occurrence of each of four operations. The results

show that the number of creations and removals are more or less the same and the

replica count converges around 200 replicas. Although, the number of migration and

duplication operations are relatively smaller than creations, these are the main factors

of the D-ReP algorithm that allow replicas to move closer to the requesters.

5.3.3 Evaluation with synthetic data

With the purpose of generalizing the results and conclusions in Section 5.3.2 using the

CAIDA Internet Traces, synthetic user demands are also generated. Various probability

distributions are used to determine the locations of the request so that various levels

and forms of geographical locality are experimented. Using a random distribution,

each data request is mapped to a 1000×1000 grid, same size as the network topology

explained in Section 5.3.1. Then, the requests are mapped to the network node that is

closest to them.

74

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0)

[1
00
,1

25
)

[1
25
,1

50
)

[1
50

,1
75
)

[1
75

,2
00
)

[2
00
,2

25
)

[2
25
,2

50
)

[2
50
,2

75
)

[2
75

,3
00
)

[3
00

,3
25

)

[3
25
,3

50
)

[3
50
,3

75
)

[3
75
,4

00
)

[4
00

,4
25
)

[4
25
,4

50
)

[4
50
,4

75
)

[4
75
,5

00
)

[5
00

,5
25
)

[5
25

,5
50

)

[5
50
,5

75
)

[5
75
,6

00
)

[6
00
,6

25
)

[6
25

,6
50
)

[6
50
,6

75
)

[6
75
,7

00
)

[7
00
,7

25
)

[7
25

,7
50
)

[7
50

,7
75

)

[7
75
,8

00
)

[8
00
,8

25
)

[8
25
,8

50
)

[8
50

,8
75
)

[8
75
,9

00
)

[9
00
,9

25
)

[9
25
,9

50
)

[9
50

,9
75
)

[9
75

,1
,0

00
)

0

500

1,000

Generated Grid Coordinates

N
um

be
ro

fR
eq

ue
st

Pa
ir

s

Uniform Distribution
Exponential Distribution

Figure 5.14 : Data request locations with uniform and exponential distributions.

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0)

[1
00
,1

25
)

[1
25
,1

50
)

[1
50

,1
75
)

[1
75

,2
00
)

[2
00
,2

25
)

[2
25
,2

50
)

[2
50
,2

75
)

[2
75

,3
00
)

[3
00

,3
25

)

[3
25
,3

50
)

[3
50
,3

75
)

[3
75
,4

00
)

[4
00

,4
25
)

[4
25
,4

50
)

[4
50
,4

75
)

[4
75
,5

00
)

[5
00

,5
25
)

[5
25

,5
50

)

[5
50
,5

75
)

[5
75
,6

00
)

[6
00
,6

25
)

[6
25

,6
50
)

[6
50
,6

75
)

[6
75
,7

00
)

[7
00
,7

25
)

[7
25

,7
50
)

[7
50

,7
75

)

[7
75
,8

00
)

[8
00
,8

25
)

[8
25
,8

50
)

[8
50

,8
75
)

[8
75
,9

00
)

[9
00
,9

25
)

[9
25
,9

50
)

[9
50

,9
75
)

[9
75

,1
,0

00
)

0

1,000

2,000

Generated Grid Coordinates

N
um

be
ro

fR
eq

ue
st

Pa
ir

s

Normal Distribution (σ = 50)
Normal Distribution (σ = 100)
Normal Distribution (σ = 150)

Figure 5.15 : Data request locations with normal distribution.

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0)

[1
00
,1

25
)

[1
25
,1

50
)

[1
50

,1
75
)

[1
75

,2
00
)

[2
00
,2

25
)

[2
25
,2

50
)

[2
50
,2

75
)

[2
75

,3
00
)

[3
00

,3
25

)

[3
25
,3

50
)

[3
50
,3

75
)

[3
75
,4

00
)

[4
00

,4
25
)

[4
25
,4

50
)

[4
50
,4

75
)

[4
75
,5

00
)

[5
00

,5
25
)

[5
25

,5
50

)

[5
50
,5

75
)

[5
75
,6

00
)

[6
00
,6

25
)

[6
25

,6
50
)

[6
50
,6

75
)

[6
75
,7

00
)

[7
00
,7

25
)

[7
25

,7
50
)

[7
50

,7
75

)

[7
75
,8

00
)

[8
00
,8

25
)

[8
25
,8

50
)

[8
50

,8
75
)

[8
75
,9

00
)

[9
00
,9

25
)

[9
25
,9

50
)

[9
50

,9
75
)

[9
75

,1
,0

00
)

0

2,000

4,000

Generated Grid Coordinates

N
um

be
ro

fR
eq

ue
st

Pa
ir

s

Chi-Squared Distribution (degree o f f reedom = 1)
Chi-Squared Distribution (degree o f f reedom = 2)
Chi-Squared Distribution (degree o f f reedom = 3)

Figure 5.16 : Data request locations with Chi-squared distribution.

75

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0)

[1
00
,1

25
)

[1
25
,1

50
)

[1
50

,1
75
)

[1
75

,2
00
)

[2
00
,2

25
)

[2
25
,2

50
)

[2
50
,2

75
)

[2
75

,3
00
)

[3
00

,3
25

)

[3
25
,3

50
)

[3
50
,3

75
)

[3
75
,4

00
)

[4
00

,4
25
)

[4
25
,4

50
)

[4
50
,4

75
)

[4
75
,5

00
)

[5
00

,5
25
)

[5
25

,5
50

)

[5
50
,5

75
)

[5
75
,6

00
)

[6
00
,6

25
)

[6
25

,6
50
)

[6
50
,6

75
)

[6
75
,7

00
)

[7
00
,7

25
)

[7
25

,7
50
)

[7
50

,7
75

)

[7
75
,8

00
)

[8
00
,8

25
)

[8
25
,8

50
)

[8
50

,8
75
)

[8
75
,9

00
)

[9
00
,9

25
)

[9
25
,9

50
)

[9
50

,9
75
)

[9
75

,1
,0

00
)

0

1,000

2,000

Generated Grid Coordinates

N
um

be
ro

fR
eq

ue
st

Pa
ir

s
Pareto Distribution (scale = 1, shape = 3)
Pareto Distribution (scale = 1, shape = 4)
Pareto Distribution (scale = 1, shape = 5)

Figure 5.17 : Data request locations with Pareto distribution.

5.3.3.1 Probability distributions of the request locations

D-ReP algorithm is simulated in several cases in which data request locations follow

a uniform (Figure 5.14), exponential (Figure 5.14), normal (Figure 5.15), Chi-squared

(Figure 5.16), and Pareto distribution (Figure 5.17). For the last 3 distributions

multiple parameter values are also used to reach a total 11 different distributions. Note

that, although the Figures 5.14 to 5.17 demonstrate one-dimensional distributions,

multivariate versions are used in the experiments for the location in two axes. The

number of requests is 100,000 for each distribution.

5.3.3.2 Results and discussion

The results in Figure 5.18 demonstrate that D-ReP yields latency improvements in

each and every case. However, the rate of improvement depends on the geographical

distribution of the requests. Normal distribution with a standard deviation of 50

produces the best latency improvement while uniform distribution is the worst. BCR

results in Figure 5.19 are also similar in terms of relative performance order of the

distributions.

The results are not unexpected because uniform distribution induces no geographical

locality in data requests. D-ReP specifically makes use of geographical locality and

thus has little or no impact for uniform distribution. However, as the non-uniformity

increases, outcome improves. To demonstrate the effect of uniformity, Figure 5.20 is

presented where the variance of the probability density function (PDF) of a distribution

is mapped to the BCR achieved with that distribution. There is a strong correlation

76

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

2

4

6

8

10

12

14

16

18

Lambda (λ)

L
at

en
cy

Im
pr

ov
em

en
t(

%
)

Normal (50) Pareto (3) Chi (1) Uniform
Normal (100) Pareto (4) Chi (2) Exponential
Normal (150) Pareto (5) Chi (3)

Figure 5.18 : Latency improvement rate with variable λ .

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

0.5

1

1.5

2

2.5

3

3.5

Lambda (λ)

B
en

efi
t-

C
os

tR
at

io

Normal (50) Pareto (3) Chi (1) Uniform
Normal (100) Pareto (4) Chi (2) Exponential
Normal (150) Pareto (5) Chi (3)

Figure 5.19 : Benefit-cost ratio with variable λ .

77

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·105

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Variance (σ2)

B
en

efi
t-

C
os

tR
at

io

Figure 5.20 : Variance of the distributions and the BCR (λ = 0.1).

between these two variables with a coefficient of 0.78. It can be concluded from these

results that D-ReP algorithm is most effective in cases where the PDF variance of the

location distribution is high, or in other words, geographical locations of request are

densely clustered in certain areas. This is usually the case in real workloads.

78

6. CONCLUSIONS AND RECOMMENDATIONS

Cloud needs to transform into a completely decentralized, federated and ubiquitous

environment similar to the historical transformation of the Internet to be able to handle

the changes in its usage scenario. During this transformation, distributed management

of resources emerges as a significant obstacle. This includes the discovery, allocation,

and monitoring of resources. In this thesis, optimized management of limited

computing and network resources to adapt to the decentralization is proposed.

Specifically, cloud services that consist of several virtual machines, dedicated network

connections and databases are mapped to a multi-provider, geographically distributed

and dynamic cloud infrastructure. The objective of the resource mapping is to improve

QoS in a cost-effective way. To that end; network latency and bandwidth as well as the

cost of storage and computation are subjected to a multi-objective optimization.

6.1 Contribution

Resource mapping is carried out in two phases. In the first phase, VMs and their

inter-dependencies are mapped to the distributed cloud infrastructure. In the second

phase, the data objects in the storage layer are replicated and mapped to the same

infrastructure. These two phases, complement each other in the reduction of storage

and processing costs as well as the improvement of QoS. Detailed experiments under

real-world as well as synthetic workloads prove that the hypotheses of the both phases

are true. The hypotheses given in section 1.2 were as follows.

1. Mapping the VMs of a cloud service to a subset of data centers that have the similar

network topology as these VMs would outperform greedy methods.

2. Mapping the data replicas of a cloud services by considering the level and the

location of their demand would outperform data caching.

Main contributions in the thesis are (1) realistic modeling and simulation of the

resource mapping in the Inter-Cloud environment, (2) TBM and Minimum Span

79

algorithms for VM mapping, and (3) D-ReP algorithm and KRL technique for data

replication and mapping.

6.1.1 On problem modeling

Resource modeling and allocation problems get more complicated when a distributed

scenario such as inter-cloud is considered instead of a single data center. Inter-cloud

(or Cloud Federation) is a distributed model for cloud computing where coordinated

cloud providers share their resources and dispatch workload to each other. The most

significant benefits of the model to the provider are better scalability, geographical

coverage, and resilience.

Resource mapping problem is modeled as a concrete framework where interworking

of cloud providers and virtual machines as well as scaling workload across multiple

clouds are supported. In addition to classical resource allocation parameters,

the framework also models network related issues such as latency and bandwidth

constraints, thus provides easy migration, high QoS for geo-distributed demand, and

the possibility to exploit vendor pricing policies. It also allows realistic simulation

of the resource mapping algorithms and provides useful criteria to compare them.

Proposed framework is the first simulator for distributed cloud systems including

multi-cloud, federated cloud and edge computing.

6.1.2 On virtual machine placement

Network topology should be taken into consideration in order to realize the

abovementioned benefits of inter-cloud. Thus, a novel virtual machine cluster

embedding algorithm called Topology Based Mapping (TBM) is proposed. It aims

to find an efficient mapping between the physical Inter-Cloud topology and user

demands in the form of virtual topologies. Consequently, performance degradation

due to network latency is minimized and doesn’t override the benefits of multi-cloud

deployment. TBM employs a graph theoretical approach (i.e., subgraph isomorphism)

in combination with greedy heuristics to achieve its goals.

The main objectives of the algorithm are to reduce network delay and optimize

bandwidth utilization. Comprehensive evaluation demonstrated the efficiency of the

resulting resource allocation as it achieved better job execution time (makespan),

80

throughput, rejection rate, average network delay and average resource cost in

comparison to the outputs of the baseline methods under various experimental

configurations. Experimental evaluation prove the hypothesis that the structural

information about a cloud service is beneficial for an effective resource mapping

which improves QoS at low cost. Specifically, topology based mapping can decrease

the latency between VMs by 64%, completion time by 54%, and cost by 36% in

comparison to greedy algorithms. It can also increase the system throughput by

70%. TBM algorithm is the first attempt to map virtual topologies to their isomorphic

subgraphs in the physical Cloud or Grid topologies.

6.1.3 On replica placement

As the volume and velocity of data in the cloud is increasing, the geographical

distribution of where it is produced, processed and consumed is also gaining more

significance. It is getting less feasible to move data to a distant data center for

processing and move output again to the consumer location. Several promising

approaches including Cloudlets and Edge Computing are instead suggesting to bring

processing entities to the edge of the cloud network to reduce latency. This is especially

useful in code offloading for mobile cloud applications.

One issue in this scenario regarding resource management is the latency between the

processing entity and the data. Although the above-mentioned approaches reduce the

latency between the user and the processing entity, the data required for the cloud

application is usually stored in a centralized provider. It is not feasible to replicate

entire data in large number of geo-distributed locations due to economical factors. In

addition, edge nodes (e.g., cloudlets, nano data centers) have limited storage capacity

in comparison to cloud infrastructure. Hence replication of individual data objects

on multiple locations based on the magnitude and location of user demand as well as

storage pricing is proposed in attempt to reduce data access latency.

Optimal selection of the number and location of the replicas is a challenging problem

due to the varying/mobile nature of user demand and the trade-off between cost

(number of caches) and latency. Moreover, knowledge of the complete topology

including capacities, latencies and prices in such a fine-granular infrastructure is not

realistic. Thus, a distributed and context-aware replica management is suggested.

81

Decentralized replica placement can either yield the same latency improvement with

14% less additional cost than caching or improve latency by 26% more with the same

additional cost, depending on the chosen value of the trade-off control parameter. It is

the first completely decentralized replica placement algorithm that can work with only

partial local knowledge.

6.2 Future Work and Limitations

Distributed and federated clouds are still in their infancy. Significant future work is

required to realize the infinite scalability promise of the cloud computing. Moreover,

resource mapping framework suggested in this thesis is also open to improvement. The

following list of topics are identified to recommend future research directions.

• Suggested resource mapping framework would fully serve its purpose when

the unification of geographically distributed cloud providers becomes prevalent.

The most important issue regarding the unification is the standardization of the

application programming interfaces by IaaS providers. This standardization will

not only allow Federated Clouds but will also leverage Multi-Clouds with simpler

broker implementations.

• Both topology mapping and replication management algorithms provide best-effort

latency improvement and cost reduction. Although they outperform existing

alternatives, certain cloud services may require real-time performance and cost

guaranties. Hence the algorithms can be extended with such capabilities.

• Another area that is open to improvement is the self-awareness of cloud services.

Services should be able to monitor their tasks in IPs, translate low-level metrics

to QoS metrics, and proactively act to increase their performance and limit their

spending. Actions may include migration as well as horizontal or vertical scaling.

• Proposed resource mapping framework does not pay regard to load balance and

fairness across cloud providers. These considerations may be required for the

business logic of the cloud unification.

• Fault tolerance and availability are not considered. Although replication already

provides such benefits, they can be formally modelled and evaluated.

82

• Read-only or rarely changing data is assumed so data consistency is left out of the

scope. To extend the algorithms for dynamic data sources, an external primary copy

based data consistency mechanism can be implemented.

6.3 Implementation Issues

In practical implementation of the proposed algorithms, host locations and motivation

of the involved parties should be taken into consideration. One scenario can be that a

PaaS provider can act as a matchmaker between the user and the cloud vendors. In this

case, the PaaS provider should provision small-size VMs in all included data centers

and edge nodes to execute the resource mapping algorithms. In return, the provider

can charge the user not more than the expected cost benefit of the algorithms. One

exception in this scenario is the resource allocation (minimum span algorithm), which

must be executed in the data center hypervisor and directly benefits the cloud vendor

with the increased utilization of available resources.

The second scenario is where cloud vendors voluntarily execute all algorithms in the

hypervisor of each node. Conditions may be included to the multilateral federation

agreements since the increased throughput and efficiently utilized resources would

benefit all parties. Another motivation for the smaller vendors can be demand from the

users who prefer large multi-location vendors such as Amazon, Google, or Microsoft

because of the inter-cloud deployment ability they would offer.

6.4 Impact

Findings in this thesis are beneficial for the adoption and upcoming transformation

of cloud computing. Better service quality and lower costs would attract more

users to cloud services. Better utilization of cloud and network resources as well

as increased throughput would also benefit infrastructure providers. In addition to

the abovementioned novel aspects of the algorithms, the thesis study is also the first

attempt to address resource mapping for both computation and storage elements of a

virtual service as a single optimization problem.

This study is aimed to be a small step towards the vision of the cloud computing to

make computation the fifth public utility (after water, electricity, gas, and telephony)

83

which is easily accessible to everyone. This endeavour would also have a social

impact towards the democratization of technology with more affordable, user-friendly

software services as well as increased participation of users to the development of such

services.

84

REFERENCES

[1] Aral, A., (2015), RalloCloud, https://github.com/atary/
RalloCloud.

[2] Aral, A. and Ovatman, T. (2016). A Decentralized Replica Placement Algorithm
for Edge Computing, IEEE Transactions on Parallel and Distributed
Systems, under review as of 19.09.2016.

[3] Sosinsky, B. (2010). Cloud Computing Bible, John Wiley & Sons.

[4] Aral, A. and Ovatman, T. (2016). Network-Aware Embedding of Virtual Machine
Clusters onto Federated Cloud Infrastructure, Journal of Systems and
Software, 120, 89–104.

[5] Campanella, M. and Farina, F. (2014). The FEDERICA infrastructure and
experience, Computer Networks, 61, 176–183.

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010).
A view of cloud computing, Commun. ACM, 53(4), 50–58.

[7] Mell, P. and Grance, T. (2011). The NIST definition of cloud computing (draft),
NIST special publication, 800(145), 7.

[8] Buyya, R., Broberg, J. and Goscinski, A.M. (2011). Cloud computing: Principles
and paradigms, volume 87, Wiley.

[9] Zhang, Q., Cheng, L. and Boutaba, R. (2010). Cloud Computing: State-of-the-art
and Research Challenges, Journal of Internet Services and Applications,
1(1), 7–18.

[10] Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor,
C. and Monje, A. (2013). On the Optimal Allocation of Virtual Resources
in Cloud Computing Networks, IEEE Transactions on Computers, 62(6),
1060–1071.

[11] McKay, B.D. (1981). Practical graph isomorphism, Department of Computer
Science, Vanderbilt University Tennessee, US.

[12] Garey, M.R. and Johnson, D.S. (2002). Computers and intractability, volume 29,
wh freeman New York.

[13] Solnon, C. (2010). Alldifferent-based filtering for subgraph isomorphism,
Artificial Intelligence, 174(12), 850–864.

85

https://github.com/atary/RalloCloud
https://github.com/atary/RalloCloud

[14] Melo, M.T., Nickel, S. and Saldanha-Da-Gama, F. (2009). Facility Location and
Supply Chain Management – A Review, European Journal of Operational
Research, 196(2), 401–412.

[15] Owen, S.H. and Daskin, M.S. (1998). Strategic Facility Location: A Review,
European Journal of Operational Research, 111(3), 423–447.

[16] Guha, S. and Khuller, S. (1999). Greedy Strikes Back: Improved Facility
Location Algorithms, Journal of Algorithms, 31(1), 228–248.

[17] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. (2009). Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility, Future Generation Computer
Systems, 25(6), 599–616.

[18] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I. et al. (2010). A View of
Cloud Computing, Communications of the ACM, 53(4), 50–58.

[19] Sotiriadis, S., Bessis, N., Kuonen, P. and Antonopoulos, N. (2013). The
inter-cloud meta-scheduling (ICMS) framework, Proceedings of the IEEE
27th International Conference on Advanced Information Networking and
Applications (AINA), IEEE, pp.64–73.

[20] Erdil, D.C. (2013). Autonomic cloud resource sharing for intercloud federations,
Future Generation Computer Systems, 29(7), 1700–1708.

[21] Lewis, G.A. (2013). Role of Standards in Cloud-Computing Interoperability,
Proceedings of the 46th Hawaii International Conference on System
Sciences (HICSS), IEEE, pp.1652–1661.

[22] Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S. and Llorente,
I.M. (2013). Scheduling strategies for optimal service deployment across
multiple clouds, Future Generation Computer Systems, 29(6), 1431–1441.

[23] Ferry, N., Rossini, A., Chauvel, F., Morin, B. and Solberg, A. (2013). Towards
model-driven provisioning, deployment, monitoring, and adaptation
of multi-cloud systems, Proceedings of the IEEE Sixth International
Conference on Cloud Computing (CLOUD), IEEE, pp.887–894.

[24] Barker, A., Varghese, B. and Thai, L. (2015). Cloud Services Brokerage: A
Survey and Research Roadmap, Proceedings of the IEEE 8th International
Conference on Cloud Computing, IEEE, pp.1029–1032.

[25] Tordsson, J., Montero, R.S., Moreno-Vozmediano, R. and Llorente, I.M.
(2012). Cloud brokering mechanisms for optimized placement of
virtual machines across multiple providers, Future Generation Computer
Systems, 28(2), 358–367.

[26] Cucinotta, T., Lugones, D., Cherubini, D. and Oberle, K. (2014). Brokering
SLAs for End-to-End QoS in Cloud Computing., Proceedings of the
4th International Conference on Cloud Computing and Services Science
(CLOSER), pp.610–615.

86

[27] Aceto, G., Botta, A., De Donato, W. and Pescapè, A. (2013). Cloud monitoring:
A survey, Computer Networks, 57(9), 2093–2115.

[28] Iosup, A., Prodan, R. and Epema, D., (2014). Iaas cloud benchmark-
ing: approaches, challenges, and experience, Cloud Computing for
Data-Intensive Applications, Springer, pp.83–104.

[29] Varghese, B., Akgun, O., Miguel, I., Thai, L. and Barker, A. (2014).
Cloud benchmarking for performance, Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International Conference on, IEEE,
pp.535–540.

[30] Alhazmi, K., Abu Sharkh, M., Ban, D. and Shami, A. (2014). A map of
the clouds: virtual network mapping in cloud computing data centers,
Proceedings of the 27th IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), IEEE, pp.1–6.

[31] Alicherry, M. and Lakshman, T. (2012). Network aware resource allocation
in distributed clouds, Proceedings of the 31st Annual IEEE Interna-
tional Conference on Computer Communications (INFOCOM), IEEE,
pp.963–971.

[32] Altmann, J. and Kashef, M.M. (2014). Cost model based service placement in
federated hybrid clouds, Future Generation Computer Systems, 41, 79–90.

[33] De Falco, I., Scafuri, U. and Tarantino, E. (2014). Two new fast heuristics
for mapping parallel applications on cloud computing, Future Generation
Computer Systems, 37, 1–13.

[34] Konstanteli, K., Cucinotta, T., Psychas, K. and Varvarigou, T.A. (2014). Elastic
admission control for federated cloud services, IEEE Transactions on
Cloud Computing, 2(3), 348–361.

[35] Leivadeas, A., Papagianni, C. and Papavassiliou, S. (2013). Efficient resource
mapping framework over networked clouds via iterated local search-based
request partitioning, IEEE Transactions on Parallel and Distributed
Systems, 24(6), 1077–1086.

[36] Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor,
C. and Monje, A. (2013). On the optimal allocation of virtual resources
in cloud computing networks, IEEE Transactions on Computers, 62(6),
1060–1071.

[37] Pittaras, C., Papagianni, C., Leivadeas, A., Grosso, P., van der Ham, J. and
Papavassiliou, S. (2015). Resource discovery and allocation for federated
virtualized infrastructures, Future Generation Computer Systems, 42,
55–63.

[38] Xin, Y., Baldine, I., Mandal, A., Heermann, C., Chase, J. and Yumerefendi, A.
(2011). Embedding virtual topologies in networked clouds, Proceedings of
the 6th International Conference on Future Internet Technologies, ACM,
pp.26–29.

87

[39] Chowdhury, M., Rahman, M.R. and Boutaba, R. (2012). Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,
IEEE/ACM Transactions on Networking (TON), 20(1), 206–219.

[40] Lischka, J. and Karl, H. (2009). A virtual network mapping algorithm based on
subgraph isomorphism detection, Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures, ACM, pp.81–88.

[41] Wei, X., Li, H., Yang, K. and Zou, L. (2014). Topology-aware Partial Virtual
Cluster Mapping Algorithm on Shared Distributed Infrastructures, IEEE
Transactions on Parallel and Distributed Systems, 25(10), 2721–2730.

[42] Zhang, Z., Su, S., Lin, Y., Cheng, X., Shuang, K. and Xu, P. (2015).
Adaptive multi-objective artificial immune system based virtual network
embedding, Journal of Network and Computer Applications, 53, 140–155.

[43] Houidi, I., Louati, W., Ameur, W.B. and Zeghlache, D. (2011). Virtual network
provisioning across multiple substrate networks, Computer Networks,
55(4), 1011–1023.

[44] Konstanteli, K., Cucinotta, T. and Varvarigou, T. (2010). Optimum allocation
of distributed service workflows with probabilistic real-time guarantees,
Service Oriented Computing and Applications, 4(4), 229–243.

[45] Zaheer, F.E., Xiao, J. and Boutaba, R. (2010). Multi-provider service negotiation
and contracting in network virtualization, IEEE/IFIP Network Operations
and Management Symposium (NOMS), IEEE, pp.471–478.

[46] Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D. and Silvera,
E. (2012). A stable network-aware vm placement for cloud systems,
Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), IEEE, pp.498–506.

[47] Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo, Y. and Wang, J. (2011).
Virtual network embedding through topology-aware node ranking, ACM
SIGCOMM Computer Communication Review, 41(2), 38–47.

[48] LaCurts, K., Deng, S., Goyal, A. and Balakrishnan, H. (2013). Choreo:
Network-aware task placement for cloud applications, Proceedings of the
Internet Measurement Conference (IMC), ACM, pp.191–204.

[49] Li, X., Wang, H., Ding, B., Li, X. and Feng, D. (2014). Resource allocation
with multi-factor node ranking in data center networks, Future Generation
Computer Systems, 32, 1–12.

[50] Sun, G., Yu, H., Anand, V. and Li, L. (2013). A cost efficient framework
and algorithm for embedding dynamic virtual network requests, Future
Generation Computer Systems, 29(5), 1265–1277.

[51] Alicherry, M. and Lakshman, T. (2013). Optimizing data access latencies in
cloud systems by intelligent virtual machine placement, Proceedings
of the 32nd Annual IEEE International Conference on Computer
Communications (INFOCOM), IEEE, pp.647–655.

88

[52] Moschakis, I.A. and Karatza, H.D. (2015). Multi-criteria scheduling of
Bag-of-Tasks applications on heterogeneous interlinked clouds with
simulated annealing, Journal of Systems and Software, 101, 1–14.

[53] Thai, L., Barker, A., Varghese, B., Akgun, O. and Miguel, I. (2014).
Optimal deployment of geographically distributed workflow engines on
the cloud, Proceedings of the IEEE 6th International Conference on Cloud
Computing Technology and Science (CloudCom), IEEE, pp.811–816.

[54] Mell, P. and Grance, T. (2011). The NIST definition of cloud computing,
Technical Report, Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology Gaithersburg.

[55] Endo, P., de Almeida Palhares, A., Pereira, N., Goncalves, G., Sadok, D.,
Kelner, J., Melander, B. and Mangs, J.E. (2011). Resource allocation
for distributed cloud: concepts and research challenges, IEEE Network,
25(4), 42–46.

[56] Xiao, Z., Song, W. and Chen, Q. (2013). Dynamic Resource Allocation Using
Virtual Machines for Cloud Computing Environment, IEEE Transactions
on Parallel and Distributed Systems, 24(6), 1107–1117.

[57] Yang, K., Gu, J., Zhao, T. and Sun, G. (2011). An Optimized Control Strategy
for Load Balancing Based on Live Migration of Virtual Machine, Sixth
Annual Chinagrid Conference (ChinaGrid), pp.141–146.

[58] Wang, Y., Chen, S. and Pedram, M. (2013). Service Level Agreement-Based
Joint Application Environment Assignment and Resource Allocation in
Cloud Computing Systems, Green Technologies Conference, 2013 IEEE,
pp.167–174.

[59] Karlsson, M. and Karamanolis, C. (2004). Choosing replica placement heuristics
for wide-area systems, Proceedings of the 24th International Conference
on Distributed Computing Systems, IEEE, pp.350–359.

[60] Ma, J., Liu, W. and Glatard, T. (2013). A classification of file placement
and replication methods on grids, Future Generation Computer Systems,
29(6), 1395–1406.

[61] Amjad, T., Sher, M. and Daud, A. (2012). A survey of dynamic replication
strategies for improving data availability in data grids, Future Generation
Computer Systems, 28(2), 337–349.

[62] Grace, R.K. and Manimegalai, R. (2014). Dynamic replica placement and
selection strategies in data grids—a comprehensive survey, Journal of
Parallel and Distributed Computing, 74(2), 2099–2108.

[63] Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A. and Bhogan, H.
(2010). Volley: Automated Data Placement for Geo-Distributed Cloud
Services., NSDI, volume 10, pp.28–0.

89

[64] Andronikou, V., Mamouras, K., Tserpes, K., Kyriazis, D. and Varvarigou,
T. (2012). Dynamic QoS-aware data replication in grid environments
based on data “importance”, Future Generation Computer Systems, 28(3),
544–553.

[65] Ali, M., Bilal, K., Khan, S., Veeravalli, B., Li, K. and Zomaya, A. (2015).
DROPS: Division and Replication of Data in the Cloud for Optimal
Performance and Security, IEEE Transactions on Cloud Computing.

[66] Chen, F., Guo, K., Lin, J. and La Porta, T. (2012). Intra-cloud lightning: Build-
ing CDNs in the cloud, Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), IEEE, pp.433–441.

[67] Lizhen, L.C., Zhang, J., Yue, L., Shi, Y., Li, H. and Yuan, D. (2015). A
Genetic Algorithm Based Data Replica Placement Strategy for Scientific
Applications in Clouds, IEEE Transactions on Services Computing.

[68] Kalpakis, K., Dasgupta, K. and Wolfson, O. (2001). Optimal placement of
replicas in trees with read, write, and storage costs, IEEE Transactions
on Parallel and Distributed Systems, 12(6), 628–637.

[69] Lin, J.W., Chen, C.H. and Chang, J.M. (2013). QoS-aware data replication
for data-intensive applications in cloud computing systems, IEEE
Transactions on Cloud Computing, 1(1), 101–115.

[70] Zhang, Q., Li, S., Li, Z., Xing, Y., Yang, Z. and Dai, Y. (2015). CHARM: A
Cost-Efficient Multi-Cloud Data Hosting Scheme with High Availability,
IEEE Transactions on Cloud Computing, 3(3), 372–386.

[71] Wu, S., Li, K.C., Mao, B. and Liao, M. (2016). DAC: Improving
storage availability with Deduplication-Assisted Cloud-of-Clouds, Future
Generation Computer Systems.

[72] Qiu, L., Padmanabhan, V.N. and Voelker, G.M. (2001). On the placement of
web server replicas, Proceedings of the Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM),
volume 3, IEEE, pp.1587–1596.

[73] Szymaniak, M., Pierre, G. and Van Steen, M. (2005). Latency-driven replica
placement, The 2005 Symposium on Applications and the Internet, IEEE,
pp.399–405.

[74] Liu, P. and Wu, J.J. (2006). Optimal replica placement strategy for hierarchical
data grid systems, Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), volume 1, IEEE, pp.417–420.

[75] Benoit, A., Rehn-Sonigo, V. and Robert, Y. (2008). Replica placement and access
policies in tree networks, IEEE Transactions on Parallel and Distributed
Systems, 19(12), 1614–1627.

[76] Rochman, Y., Levy, H. and Brosh, E. (2013). Resource placement and
assignment in distributed network topologies, Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
IEEE, pp.1914–1922.

90

[77] Deng, K., Ren, K., Zhu, M. and Song, J. (2015). A Data and Task Co-scheduling
Algorithm for Scientific Cloud Workflows, IEEE Transactions on Cloud
Computing.

[78] Douceur, J.R. and Wattenhofer, R.P. (2001). Competitive hill-climbing strategies
for replica placement in a distributed file system, International Symposium
on Distributed Computing, Springer, pp.48–62.

[79] Tang, M., Lee, B.S., Yeo, C.K. and Tang, X. (2005). Dynamic replication
algorithms for the multi-tier data grid, Future Generation Computer
Systems, 21(5), 775–790.

[80] Tang, X. and Xu, J. (2005). QoS-aware replica placement for content distribution,
IEEE Transactions on Parallel and Distributed Systems, 16(10), 921–932.

[81] Khanli, L.M., Isazadeh, A. and Shishavan, T.N. (2011). PHFS: A dynamic
replication method, to decrease access latency in the multi-tier data grid,
Future Generation Computer Systems, 27(3), 233–244.

[82] Lee, M.C., Leu, F.Y. and Chen, Y.p. (2012). PFRF: An adaptive data replication
algorithm based on star-topology data grids, Future Generation Computer
Systems, 28(7), 1045–1057.

[83] Saadat, N. and Rahmani, A.M. (2012). PDDRA: A new pre-fetching based
dynamic data replication algorithm in data grids, Future Generation
Computer Systems, 28(4), 666–681.

[84] Fan, X., Ma, X., Liu, J. and Li, D. (2014). Dependency-aware data locality for
MapReduce, IEEE 7th International Conference on Cloud Computing,
IEEE, pp.408–415.

[85] Hu, M., Luo, J., Wang, Y. and Veeravalli, B. (2014). Practical resource
provisioning and caching with dynamic resilience for cloud-based content
distribution networks, IEEE Transactions on Parallel and Distributed
Systems, 25(8), 2169–2179.

[86] Chen, C.A., Won, M., Stoleru, R. and Xie, G.G. (2015). Energy-efficient
fault-tolerant data storage and processing in mobile cloud, IEEE
Transactions on cloud computing, 3(1), 28–41.

[87] Pantazopoulos, P., Karaliopoulos, M. and Stavrakakis, I. (2014). Distributed
placement of autonomic internet services, IEEE Transactions on Parallel
and Distributed Systems, 25(7), 1702–1712.

[88] Chen, Y., Katz, R.H. and Kubiatowicz, J.D. (2002). Dynamic replica placement
for scalable content delivery, International Workshop on Peer-to-Peer
Systems, Springer, pp.306–318.

[89] Shen, H. (2010). An efficient and adaptive decentralized file replication algorithm
in P2P file sharing systems, IEEE Transactions on Parallel and Distributed
Systems, 21(6), 827–840.

91

[90] Papagianni, C., Leivadeas, A. and Papavassiliou, S. (2013). A cloud-oriented
content delivery network paradigm: Modeling and assessment, IEEE
Transactions on Dependable and Secure Computing, 10(5), 287–300.

[91] Bonvin, N., Papaioannou, T.G. and Aberer, K. (2010). A self-organized,
fault-tolerant and scalable replication scheme for cloud storage, Proceed-
ings of the 1st ACM symposium on Cloud computing, ACM, pp.205–216.

[92] Sashi, K. and Thanamani, A.S. (2011). Dynamic replication in a data grid using
a Modified BHR Region Based Algorithm, Future Generation Computer
Systems, 27(2), 202–210.

[93] Liao, X., Jin, H. and Yu, L. (2012). A novel data replication mechanism in P2P
VoD system, Future Generation Computer Systems, 28(6), 930–939.

[94] Liu, G., Shen, H. and Chandler, H. (2013). Selective data replication for online
social networks with distributed datacenters, 21st IEEE International
Conference on Network Protocols (ICNP), IEEE, pp.1–10.

[95] Zaman, S. and Grosu, D. (2011). A distributed algorithm for the replica placement
problem, IEEE Transactions on Parallel and Distributed Systems, 22(9),
1455–1468.

[96] Smaragdakis, G., Laoutaris, N., Oikonomou, K., Stavrakakis, I. and
Bestavros, A. (2014). Distributed server migration for scalable Internet
service deployment, IEEE/ACM Transactions on Networking, 22(3),
917–930.

[97] Moscibroda, T. and Wattenhofer, R. (2005). Facility location: distributed
approximation, Proceedings of the 24th ACM symposium on Principles
of distributed computing, ACM, pp.108–117.

[98] Pandit, S. and Pemmaraju, S. (2009). Return of the primal-dual: distributed
metric facilitylocation, Proceedings of the 28th ACM symposium on
Principles of distributed computing, ACM, pp.180–189.

[99] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya,
R. (2011). CloudSim: A Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms, Software: Practice and Experience, 41(1), 23–50.

[100] Greenberg, A., Hamilton, J., Maltz, D.A. and Patel, P. (2008). The cost of
a cloud: research problems in data center networks, ACM SIGCOMM
computer communication review, 39(1), 68–73.

[101] Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M.,
Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J. et al. (2009). The
reservoir model and architecture for open federated cloud computing, IBM
Journal of Research and Development, 53(4), 4–1.

[102] Buyya, R., Ranjan, R. and Calheiros, R.N., (2010). Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services, Algorithms and architectures for parallel processing, Springer,
pp.13–31.

92

[103] Grozev, N. and Buyya, R. (2014). Inter-Cloud architectures and application
brokering: taxonomy and survey, Software: Practice and Experience,
44(3), 369–390.

[104] Fischer, A., Botero, J.F., Till Beck, M., De Meer, H. and Hesselbach, X.
(2013). Virtual network embedding: A survey, IEEE Communications
Surveys & Tutorials, 15(4), 1888–1906.

[105] Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on
large clusters, Communications of the ACM, 51(1), 107–113.

[106] García-Valls, M., Cucinotta, T. and Lu, C. (2014). Challenges in real-time
virtualization and predictable cloud computing, Journal of Systems
Architecture, 60(9), 726–740.

[107] Amazon Web Services, https://aws.amazon.com/, retrieval date:
15.02.2016.

[108] Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of small-world
networks, Nature, 393(6684), 440–442.

[109] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012). Fog computing and its
role in the internet of things, Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, ACM, pp.13–16.

[110] Valancius, V., Laoutaris, N., Massoulié, L., Diot, C. and Rodriguez, P.
(2009). Greening the internet with nano data centers, Proceedings of the
5th international conference on Emerging networking experiments and
technologies, ACM, pp.37–48.

[111] Satyanarayanan, M., Bahl, P., Caceres, R. and Davies, N. (2009). The case
for vm-based cloudlets in mobile computing, IEEE pervasive Computing,
8(4), 14–23.

[112] Banditwattanawong, T., Masdisornchote, M. and Uthayopas, P. (2016).
Multi-provider cloud computing network infrastructure optimization,
Future Generation Computer Systems, 55, 116–128.

[113] Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E. and Madhyastha,
H.V. (2013). Spanstore: Cost-effective geo-replicated storage spanning
multiple cloud services, Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ACM, pp.292–308.

[114] Ranganathan, K. and Foster, I. (2001). Identifying dynamic replication
strategies for a high-performance data grid, Grid Computing—GRID 2001,
75–86.

[115] Jin, S. and Bestavros, A. (2001). GreedyDual* Web caching algorithm:
exploiting the two sources of temporal locality in Web request streams,
Computer Communications, 24(2), 174–183.

[116] Liao, J., Trahay, F., Xiao, G., Li, L. and Ishikawa, Y. (2015). Performing
Initiative Data Prefetching in Distributed File Systems for Cloud
Computing, IEEE Transactions on Cloud Computing.

93

https://aws.amazon.com/

[117] The CAIDA UCSD Anonymized Internet Traces 2015 - [2015-02-19],
http://www.caida.org/data/passive/passive_2015_
dataset.xml, retrieval date: 07.01.2016.

[118] Tanenbaum, A.S. and Van Steen, M. (2007). Distributed systems, Prentice-Hall.

[119] Medina, A., Lakhina, A., Matta, I. and Byers, J. (2001). BRITE: An approach
to universal topology generation, Proceedings of the Ninth International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, IEEE, pp.346–353.

[120] Barabási, A.L. and Albert, R. (1999). Emergence of scaling in random
networks, Science, 286(5439), 509–512.

94

http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml

CURRICULUM VITAE

Name Surname: Atakan Aral

Place and Date of Birth: Istanbul, 1986

E-Mail: aralat@itu.edu.tr

EDUCATION:

• B.Sc.: 2009, Istanbul Technical University, Computer Engineering

• M.Sc.: 2011, Politecnico di Milano, Computer Science and Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2016–. . . Postdoctoral Researcher at Vienna University of Technology, Institute of
Informatics

• 2011–2016 Research Assistant at Istanbul Technical University, Faculty of
Computer and Informatics Engineering

• 2012–2016 The Scientific and Technological Research Council of Turkey
(TUBITAK) Graduate Scholarship

• 2016 IEEE International Conference on Cloud Engineering (IC2E) Travel Grant

• 2014 NETAS Ph.D. Project Incentive Award

• 2012–2013 Informatics Association of Turkey Leaders of Technology Graduate
Scholarship

• 2005–2009 Istanbul Technical University ARI Highest Success Awards

• 2005–2009 Prime Ministry of Turkey Premiership Scholarship

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Aral, A., Ovatman, T., 2017?. A Decentralized Replica Placement Algorithm for
Edge Computing, IEEE Transactions on Parallel and Distributed Systems, (Under
revision).

• Aral, A., Ovatman, T., 2016. Network-Aware Embedding of Virtual Machine
Clusters onto Federated Cloud Infrastructure, The Journal of Systems and Software,
120, 89–104.

95

• Aral, A., 2016. Network-Aware Resource Allocation in Distributed Clouds, In
Doctoral Symposium of the IEEE International Conference on Cloud Engineering,
IC2E 2016.

• Aral, A., Ovatman, T., 2015. Subgraph Matching for Resource Allocation in
the Federated Cloud Environment, In Proceedings of the IEEE International
Conference on Cloud Computing, IEEE CLOUD 2015.

• Aral, A., Ovatman, T., 2014. Improving Resource Utilization in Cloud
Environments Using Application Placement Heuristics, In Proceedings of 4th
International Conference on Cloud Computing and Services Science, CLOSER
2014.

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Ovatman, T., Aral, A., Polat, D., Unver, A.O., 2014. An Overview of Model
Checking Practices on Verification of PLC Software, Journal of Software and
Systems Modeling, 15 (4), 937-–960

• Aral, A., Ovatman, T., 2013. Utilization of Method Graphs to Measure Cohesion in
Object Oriented Software, In Proceedings of the 7th IEEE International Workshop
on Quality Oriented Reuse of Software, QUORS 2013.

• Aral, A., Akin, I.Z., Brambilla, M., 2012. Mobile Multi-domain Search over
Structured Web Data, Search Computing - Broadening Web Search, Springer LNCS
7538.

96

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	SYMBOLS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET (SUMMARY IN TURKISH)
	1. INTRODUCTION
	Research Problem
	Hypothesis
	Proposed Solution
	Contribution
	Topology mapping algorithm
	Minimum span heuristic
	Decentralized replica placement algorithm
	Replica discovery heuristic
	System modeling and simulation

	Organization of the Thesis

	2. LITERATURE REVIEW
	Preliminary Information
	Graph and subgraph equivalence
	Facility location problem
	Cloud interoperability
	Cloud benchmarking and monitoring

	Virtual Machine Cluster Embedding
	Local Virtual Machine Mapping
	Data Replica Mapping
	Centralized methods
	Decentralized methods

	3. SYSTEM MODEL
	Problem Modeling
	Entities
	Topology mapping problem
	Replica management problem
	Network modeling
	Cost modeling

	Performance Criteria

	4. TOPOLOGY MAPPING
	Problem Definition
	Use Case Scenario
	Proposed Solution
	Subgraph isomorphism based mapping
	Heuristic mapping
	Within cloud mapping
	MIP formulation
	Evenness heuristic

	Evaluation
	Experimental setup
	Baseline heuristics
	Results and discussion
	Inter-cloud latency
	Cloud-to-user latency
	Completion time and throughput
	Cost
	Runtime performance

	Resource Utilization

	5. REPLICATION MANAGEMENT
	Problem Definition
	Proposed Solution
	Requirements and assumptions
	D-ReP algorithm
	Source version
	Edge version

	Replica discovery

	Evaluation
	Experimental setup
	Evaluation with real workload traces
	Latency and cost
	Benefit-cost ratio
	Network overhead
	Convergence

	Evaluation with synthetic data
	Probability distributions of the request locations
	Results and discussion

	6. CONCLUSIONS AND RECOMMENDATIONS
	Contribution
	On problem modeling
	On virtual machine placement
	On replica placement

	Future Work and Limitations
	Implementation Issues
	Impact

	REFERENCES
	CURRICULUM VITAE

