SahinSim: A Flight Simulator for End-Game Simulations

Ozer Ozaydin, D. Turgay Altilar
Department of Computer Science
ITU Informatics Institute
Maslak, Istanbul, 34457, Turkey
ozaydinoz@itu.edu.traltilar@cs.itu.edu.tr

Keywords: flight simulator, visual simulation, end-game used with JSBSim to provide some geometric calmriat

simulation functions and a convenient logging interface [2heT
graphics engine is OGRE and both OIS and SDL aeel us
Abstract for keyboard and joystick input interface [3-5].ddagram

In this paper, a new flight simulation framework, of the mentioned projects $ahinSim is shown in (Figure
SahinSim is introducedSahinSim is part of an on going 1).
academic project on proportional navigation guidessiles
and aircrafts' practical evasive maneuvers agatinese

missiles.SahinSim provides an easy to use and flexible 3D SahinSim

visual simulation environment, as well as an irgegfto an

accurate flight dynamics model to this project. @geurce N

projects JSBSim, SimGear, OGRE, SDL and OIS ard use |5BSim | |SimGear| |oGRE| |0IS/sDL

within SahinSim. AlthougtSahinSim is intended to be used
for end-game simulations such as air-to-air combat | | | |
scenarios, it can be extended to be used for alker o
aerospace related issues. LINUX

1. INTRODUCTION Figure 1. Projects irSahinSim

SahinSim is a flight simulation framework designed f
use in research or academic environments. Aerospace In the next section, related work and motivatioe a
researchers can benefit froahinSim while studying explained. The third section has details aboutlihee main
aerospace studies such as aircraft models, trackingpbmponents of SahinSim. The fourth section gives
algorithms and auto pilot-control application$ahinSim information about the implementation details of the
provides users a flight dynamics model, a fairlgenBD application. Two ways of implementing an end-game
graphical user interface and an easy to use ingatface. application is explained in section five, and thstlIsection
Without dealing with lots of programming code, &usan concludes the paper.
concentrate on his own research topic while satimg and
effort. 2. RELATED WORK AND MOTIVATION

Written in C++ language$ahinSim can run on any SahinSim has been developed as the second generation
Linux distribution that includes the dependencykaaes visual end-game simulator to another on going pidjleat
needed by the flight dynamics model (FDM) and theinvestigates evasive maneuvers of an aircraft again
graphical engine. The FDM and the graphical engire proportional navigation missiles [6]. The first geation
also written in C++ so that the FDM and graphigdifes simulator, named VEGAS (Visual End-Game Simulation)
can be natively used without requiring any conwersi was implemented as a complementary work to visedlie
interface which generally causes performance degiad end-game between a missile and an aircraft. Akdad) a
Moreover, C++ is a widely used-well known programgni Altilar worked on modeling an agile aircraft capaldbf
language which achieves both flexibility and pemiance moving high-g maneuvers and performing differerdseve
requirements of a flight simulation program. maneuvers [6]. Moran and Altilar implemented a rfgss

In this project, five open source projects havenbe model using proportional navigation techniques tack
integrated; these are JSBSim, SimGear, OGRE, SRL arpreviously implemented aircraft model [7]. They dishree
OIS. The flight dynamics engine is JSBSim [1]. SieaGis degree of freedom (3-DoF) flight dynamics equatidois

both missile and aircraft models. The models werdor use in aircraft design and control courses.et,athe
embedded in source code so that after changingrerdel author Berndt started to work in FlightGear projedtich is
the code had to be recompiled. Models could not ba comprehensive flight simulator, and JSBSim iratag
controlled via user inputs from keyboard or joyistic with FlightGear in 1999. Today JSBSim is the defélight
VEGAS could only run for predetermined scenarioscwh dynamics model in FlightGear [10].
literally indicate that the simulation could runlpim batch JSBSim providesahinSim a mathematical model for
mode. For visualization, OpenGL was used with imiated rigid aircraft equations of motion. Aerodynamics thfe
mode commands to draw missile and aircraft objedtsch aircraft is modeled using a component buildup methdl
caused performance degradation while running théorces and moments on the aircraft are calculatgd b
simulation. summing up all contributions to each force and mmame
Compared to VEGASSahinSim uses a 6-DoF flight axis. After calculating all the forces and momedSBSim
dynamics model. Unlike the embedded FDM in VEGAS, returns next state of the aircraft in discrete tsteps [11].
the flight dynamics parameters are configured bingis Propulsion system of an aircraft is also modeled i
configuration files so that no recompilation isuggd when JSBSim. In order to provide a realistic perceptanthe
FDM is edited. SahinSim also provides an easy usepropulsion system from pilots’ point of view, seakengine
keyboard and joystick interface to fly airborneetts. The types such as piston, turbine, rocket and eleatéadefined.
graphics engine provides better visuals and it geforms Although the models are not precise engineering etsod

better than VEGAS. they provide relatively accurate forces and momentshe
At the beginning of this project, rather than wgt a aircraft [11].
new simulation environment, we considered usingtig Aerodynamic characteristics, propulsion system,

flight simulators or simulation frameworks such ascontrol and automatic control systems (explainedr)aare
FlightGear and OpenEaagles [8-9]. Flightgear isopen described in configuration files which are written XML
source, multi-platform flight simulator that is dgsed for format. Any change of the properties can be triedhe
gaming and training purposes as well as academicAfter simulation without any code change and without
some investigation on Flightgear's code and docusyeme recompiling the code.
realised that Flightgear was designed for only lieini SahinSim uses the libraries generated by JSBSinitand
flights. It required a lot of work to turn Flightgeinto a is compiled with the interfaces of JSBSim. Basicall
combat simulator or to just modify it for using mur SahinSim sends the control inputs to JSBSim; JSBSim
project, so we did not use Flightgear. OpenEaaglas calculates the next state of the aircrafts and sé=ak the
another option. It is a comprehensive simulatiamfework results to SahinSim. As SahinSim is an end-game
to build simulation applications and it could bsed as the simulation, it generally lasts around a minute wo.t The
framework to build an end game application but wkrtbt result of the simulation is either a hit or missttoé missile.
use OpenEaagles because of the complexity of th€he simulation doesn't have to deal with takeotf Eamding
framework. Both projects could be used in our solubut stages of a flight course. Consequently physicalitay gear
both required too much effort to achieve what wented, model of JSBSim is not used BahinSim, all references
consequently we decided to build our own simulationand functions of the landing gear model are remdvesch
environment.SahinSim is specially designed for end-gameJSBSim interface. Aircrafts start in the air andvere
simulations; it only provides the most importanpahilities expected to land with landing gears.
while keeping the source code simple.
3.1.1. Flight Control and Autopilot Models

3. COMPONENTS OF SAHINSIM In modern aircrafts, either military or commeraisies,

Having designed in a modular fashio§ahinSim the aircraft is controlled through an electronight control
consists of three main components; the flight dyicam system. Commands given by the pilot are processebe
model, the graphical engine and the input interféiwehis control system (i.e., flight computer) and actuaintcol
section, the components and their usag&ahinSim are commands to actuate the mechanical control systeam a

explained. produced by the flight computer. By using JSBSifight
control and autopilot systems can be defined. likest real
3.1. Flight Dynamics Model control system, the control system can be desigmed

JSBSim is the flight dynamics model §ahinSim. connecting chains of control components each otheme
JSBSim is an open source project under LGPL licenseontrol components that are modeled in JSBSim féter,
freely available for proprietary and public usés Written in -~ (lag, lead-lag, second order, integrator, etc.)itchw gain
C++ and can be compiled by almost any C++ compiter. and summer control blocks. Each component runshén t
1996, JSBSim was conceived as a batch simulatieinféo ~ order of definition and calculates the output regay its
modeling flight dynamics and flight control. It wdssigned type.

Autopilot sysems can also be defined by using
same control components available for a flight cotapin
JSBSim [12]. The main purpose of the flight compuseto
actuate necessary parts(e.g., elevator, aileralder) of the
aircraft in order to perform the desél move (e.g., tur
dive). On the other hand, autopilot systems areciggly
designed to perform specific actions such as kegflie
altitude, keeping the heading or automatically ez
towards a specified angle or even landing the air
automatically. Automatic pilots can also be implementec
a part of the main flight control system deping on the
design intend.

3.1.2. Scripted Flights

JSBSim can be used as a flight dynamics librarijt
can be run in batch mode. When run in batch mdaBSIm
controls the aircraft in the way that it is defingd a
configuration script. Scripting allows us to define actions
when any defined condition occurtn a scripted fligh
“action” means setting a property of the aircrafy(, setting
wing leveler autopilot switch on/off, moving theégtt stick,
adjusting the throttle, etc.). Any property can det to a
fixed number or set to an output of a function wahis
defined in the script. Conditions can depend on@operty
of the aircraft Test operations "==", "I=",">"">=""<" an
"<=" can be used in conditions, also logical opmrs
“AND” and “OR” can be used with nested condition che:
Simply, a scripted flight can be thought as an momeous
robot flying the aircraft by following the predeéd
movements in its program. The robot can start tiggne al
a time, advance the throttle, puliet flight stick when th
aircraft reaches at a defined speed, head theafiiter a
location when the aircraft reaches a defined aétand fly
the aircraft to a location. Scripted flights prowidxactly the
same responses and actions repetitivelyvery useful in
aircraft performance tests and control systems|dpugent
[11].

3.2. Graphics System

The graphics engine OGRE provides a flexible, ¢a:
use and fast graphical interface which runs on b
OpenGL graphics library [3,13]. Every texture a3D
model can be changed in the simulation without dbngp
the simulation code. In order to visually observe tetails
of the simulatiorSahinSim provides a fairly nice graphic
interface (Figure 2).

The active aircrafis centered in the screen arhe
default camera is just at the back of aircraft. At top-left
of the screen, there is the tracking radar, a-bottom there
is the FPS information panel. At the bottom of Hueeer
there is the overall radar and at tioght of the screen the
is theflight information panel. Graphical interface caa
easily modified using OGRE's configuration fi

Panels are just for basic usage and can be ext
easily. Panel positions, panel backgrounds and theiext
font in the panels can be modif without any need to

Figure 2. A capture oSahinSin

compile the application. Currently there are fowmnegls
used.

3.2.1. Tracking Radar

As its name indicates this radar is designed frking
a specified target. It can be used in -fight scenarios as
well as in regular escorting missions and -game
simulations. Without need to actually see the targiot
can estimatehie position of the target in three dimensi
by just lookirg at this two dimensional radar (Figure.

l

Figure 3. Tracking Radar

There are two needles in the radar. In order tcktthe
target from behind, the pilot should keep the nesdin
their fixed origins, red needle on tthorizontal fixed black
line and blue needle on tlvertica fixed black line. The red
needle indicates the vertical position of the targehe
length of the needle varies regarding the altitdiffierence
between the aircrafand its target in a predefined ra
(longer needle means clos. The blue needle indicates the

horizontal position of the target. Its length variegarding
the distance between the aircrafid the target othe plane
which is parallel to simulation surface.

3.2.2. Overall Radar

This radar shows all aircraiihstances in range of tl
active aircraft The radar orientation is fixed and top of
radar is always aligned with the heading of aircraft. All
instancesn the radar panel orientates aroundaircraft as
shown in (Figure 4).

Figure 4. Overall radar

The range is calculated in three dimensions byg
Euclidean distance.

3.2.3. Flight Information Panel
The panel shows sonmessential fliht data about the
simulation and the aircraft (Figure 5).
airib: 0 Time: 797
Speed: 466, 26 kts
X ¥
11029, 45 1281. 42
Heading Pitch
15. 64 -31. 22

Altitude
5684, 27
Roll
52,24

Throttle: 58
Rudder Elevator Af

-0. 54 -0. 04

Figure 5. Flight Information Panel

3.2.4. Cameras

There are two camera types implemente§ahinSim.
By default, camera is attached to the faircraft defined in
the configuration file User can cycle through the came
and through the aircraft Camera positions are saved
each camera and each aircsdtthat when user selects
previous camera while cycling through the cameths,
camera doesn’t reset its orienta, instead previous
orientation is restored. Every camera is positioaédhe
back of its aircrafand parallel to surface of the simulat
environment by default.

The first camera is a fremm that can be position
around the aircraft. Theamera is always directed to t

center of the aircrafimodel and always parallel to t
surface. Movement axis of the camera can be thoagtd
sphere which has thercrafi in its center. In order to move
the camera, joystick hat can be usehe second camera is a
fixed-yaw camera which is always at the back of
aircraft The camera’'s yaw angle always follows
aircrafts yaw angle. The orientation of the camere
automatically updated regardiaircraft’'s orientation.

3.2.5. Replay Engine

Another feature ofahinSim is its replay engine. T
replay engine can be used to examine every move
details of the aircradt for each simulation tick. If reple
modeis enabled in the configuration file, the simulatican
be pausedat any time. After that, simulation enters i
replay mode. In replay mode, simulation time can
controlled for forward and backward replays. Speéthe
replay mode can also be adjus

For every simulation tick, every object's locati
orientation radar information, tracking radar information
enabled) and flight panel information are savethis
information can be investigated in replay mode. eWhsel
quits the replay mode, the simulation time advartoethe
time the simulation is pausedd the simulation keeps on
running.

3.3. Input System

Input system of SahinSim enables an interacti
simulation environment. In some scenarios the siton

may require to run in batch mode but for some otfaeses
instead of automatically controlling themulation, inputs
from a keyboard or a joystick may be requir8dhinSim
uses both OIS (Object Oriented Input System) and

(Simple Directmedia Layer) input systems as itsutr
system to provide both interactive and batch
simulation.

OIS is a cros platform, simple and robust solution
using all kinds of input devices such mouse, keyboard,
joystick, etc. [4]. OIS is written in C++ and natively used
SahinSim for just keyboard events. OIS was intentede
used for also joystick ewmés but it did not recognize ti
joystick that is used i§ahinSim, consequently for joystit
events SDL is preferred. SDL is also a cross platfiibrary
which provides low level access to not only inpetides
but also audio, 3D hardware via OpenGL 2D
framebuffer. SDL is written in C but it works nagly with
C++ [5]. Although it provides comprehensive inteda to
these media device§ahinSim only uses the interface -
the joysticks. Currently user can control any aift
instance in the simation from the keyboard or the joystic
Replay engine and cameras can be controlled by ubi
joystick.

4. IMPLEMENTATION DETAILS

From a high level viewSahinSim consists of fiv
components (i.e., set of classg$jigure 6. Simulation
manager (BnMan) is the main component which crea
initializes and controls all other components. Ir
component is an interface to keyboard and joysticgolls
keyboard and joystick states at each iteration ka@gps the
state information internally. Inpubmponent has both SC
and OIS class instances which are used for pdlliegactua
hardware. Graphics component creates the visualfaue,
loads the 3D environment, informatioadar panels and 3D
models. It is the interface to the graphical engi@ERE.
Radar component has position information of alleots in
the environment. It is actually an internal clasat
represented separately to differentiate the compuaées

Input
I

Radar [SimManager

Objects

— Graphics

Figure 6. SahinSim components

Objects component covers all simulatiorjects in the
environment. These objects are users of the irgraphics
and radar components. Depending on the implement;
objects may use any of the simulation componersisiguall
components is not mandatory. It is also intendednake
each compoent as independent as possible so that
component can be edited easily without changingrs

4.1. Objects in SahinSim

In C++ terms, all object instances are derived ftam
abstract class named SimObject. SimMan calls gkab
instances' functions by using their down castedhtpos to
SimObject class type. SimObject can be regardetha
interfaceto SahinSim. Any kind of simulation objects c
be created, initialized and run through this irdee

Currently all aircraft instances are derived olgdcom
SimObject and aircraft class name is JSBSimF (Figure
7). JSBSimPlane object also usesentinterfaces and oth
class instances to fully use th&ahinSim simulatior
environment. Additionally, JSBSimPlane is derivadnf
HUDUser and XMLReadeclasses and it has Model a
FDMJSBsim class instances. HUDUser class is usel
updating the headpu displays(HUD) of the aircrat
XMLReader class is used for decoding the X
configuration options. Model class is an interfdoethe
graphical engine and hold 3D model information dkibe

object Finally, JSBSimPlane has an FIJSBSim class
instance tause the JSBSim flight dynamics mor

Different aircraft or missile objects can be imptarted
by using the model defined above. Regarding
requirements of a particular simulation scenagahinSim
objects can be derived from other additional clagsemay
contain new classes. MaBahirSim structure will not be
affected by these patrticular chani

Model FDMJSBSIm
HUDUser | , JSBSimPlane XMLReader
]
SIimCbject

Figure 7. SomeSahinSim classt

4.2. SahinSim Configuration

Simulation environment araircrafts can be configured
using a configuration file in XML format. Withoubsing
time to cafigure the simulation from source coi
SahinSim can easily be configured through its camfigjon
file, sahin_conf.xml. The simulation configuratioand
aircraft configurations must be in context of main X
element named “sahin_conf”. Currentlyere are two main
configuration elements within this context; thoséVIX
elements are named environment araircraft. The
“environment” element must be uniq, however multiple
aircraftinstances can be defir by using multiple “aircraft”
elements.

The “environment” XML element is used for
configuring simulation environment optiorThe center of
the simulation environment (in geodetic ordinates),
simulation duration, simuteon frame rat are some of the
configurable simulation envirment parameters.

Each aircrafinstance is configured by usir“aircraft”
XML element. SahinSim parses the simulati
configuration XML file and reates an aircraft instance for
every “aircraft” element. Eactaircraft is given a unique
number starting from zero in the order they ares@d.

Initial location, orientation, and speed of aircraft can
be changed by just editirige relevant lines. Without losir
time on compiling, the simulation can be run wiiffedtent
initial configurations immediately. Moreover, by sp
changing theelated configuration parames, any desired
aircraft can be used uadthesame initial conditions. The
use of aircraftonfiguration is very handy and malit easy
to run the simulation with different models or differe
conditions.

4.3. |Initialization
Initialization steps ofahinSim are briefly illustrated in
(Figure 8). SimMan class first parses tig@hinSim

configuration file and fills an internal configuia
structure. After reading the configuration, consialg
simulation resource requirements, it creates thassels
related to resource interfaces. First resourcehés $DL
library which is used for the joystick device. This
initialization is mandatory before actually cregtirthe
joystick class and before initializing the graphiemgine
OGRE. If SDL is initialized successfully, next step
initializing the graphical engine. An empty useteifiace
without the SimObjects is created at this step. Sk,
terrain are loaded and lighting of the environmést
configured. The last resource is the input intexfast this
stage SDL joystick and OIS keyboard classes aratenle
and initialized. After initializing the resourcesall
SimObjects are created and initialized regarding th
configuration elements defined in the XML file. 3itan
actually creates the SimObject instances and tadisinit
functions of the objects by passing the related X@ltment
to each instance. SimObjects are responsible ftialining
themselves.

read configuration

[
initialize S0OL

initialize render
engine
initialize
input
|

initialize objects

Figure 8. SahinSim initialization steps

4.4. Main Simulation Loop

Following the initialization stage, simulation erg an
infinite while loop and runs until the stop timereached or
any escape condition defined in the code(e.g., peessed
'‘escape’ key, missile hit the target, etc..) occhtmctions
that are called in main simulation loop are in (F&9).

In each iteration, at the beginning of each laogimer
to be used for frame regulation is reset. This tirse
checked at the end of the loop and if the loopirissiied
before the expected time, simulation sleeps to laymize
to the required frame rate. After resetting thestikeyboard
and joystick states are polled by the input obj@ast after
polling the input interfaces, simulation checksiify escape
condition is occurred. Upon the occurrence of asgape

condition, the cleanup method is called to tern@ntite
simulation safely.

reset timer
and handle
input events

run replay
engine

run and move objects
increment simulation tick

run graphics engine

record
simulation
info

’—1

regulate frame rate |

[
Figure 9. Main simulation loop

replay enabled
Efe sim not
paused?

The simulation has two running modes; one is activ
mode and the other is paused mode. If the simulasidn
the active mode, all SimObject instances' run ara/em
methods are called. Basically run methods are udsed
calculating the next state of the object (i.e.entation,
location, speed, etc.) and move methods are used fo
moving the objects in the 3D environment (at thisge
objects are not drawn, only state information in RE>
engine is updated) . After calling these methoitsukation
tick counter is incremented.

If the simulation is running in the paused mode,
ReplayEngine's run method is used to view the sibtbe
simulation at a time frame. In each iteration.gplay mode
is enabled, each SimObjects' state informatiorésnded in
ReplayEngine class. The main simulation loop enitls thie
frame regulating function.

5. IMPLEMENTATION OF AN END-GAME

APPLICATION IN SAHINSIM

There are two approaches to implement an end-game
application inSahinSim. The first approach is embedding an
existing missile or aircraft model code inf@hinSim. In

this approach, all model classes are derived fronOBject

abstract class and they implement all interfmethods of
SimObiject class. Since the code is embeddedSiabinSim,
missile and aircraft classes are created by Simklass
manually(i.e., not from configuration file). Actually this
not the expected use dfahinSim because it will onl
benefit from the graphical and the input interfa

Second approach is using JSBSim models
SahinSim. Aircraft and missile models are definen
JSBSim model definition format. For the &aft model,
there already exissome aircraft definitions in JSBSi
format in FlightGear and JSBSim repositories. Thissite
model probably has to be implemented initially,csirthere
are no ready to use mdddound yet. JSBSim scripts ¢
also be used with this approach in order to tryedént
types of aircraft models performing same maneugaeithe
same time. This approach requires more effort &
beginning; however it will have the advantages of g
SahinSim which will save time during experime

As and endyame application, a similar scenario
VEGAS is implemented ir$ahinSim by using the seco
approach defined above. In VEGAS, a missile triekit an
aircraft while the aircraft tries to ade the missile by
performing evasive maneuvers. Initial location, exfy
heading, and some other parameters of the missdette
aircraft are changed and the simulation is run ragai
investigate both performance of the missile's guig
algorithm andaircraft's evasive maneuver algorithms. |
intended to implement the same scenario with VEGAE
the missile model is still being work on so thaboter
aircraft model is used to chase the targeted dincranually
(Figure 10).

Figure 10. An aircraft chasing another c

The aircrafts start in the air with initial locaticand
speed such that the escaping aircraft is in fronthe
chasing aircraft. Both aircrafts are JSBSim aitstehe one
in the front is controlled by a JSBSim scripid performs
predefined maneuvers where the one in the bac

controlled by either joystick or keyboard manudflying to
chase the other. When the missile model is readgBISim
format, the chasing aircraft model will be repladedthe
missile model.

6. CONCLUSION AND FUTUR E WORK

SahinSim is an endame simulation environme
providing a 3D graphical interface, an input inéed and al
interface to a populaflight dynamics model. Multipl
instances of mnual or script controlled, JSBSim or -
created airborne objects can run in the same emmieat. It
is easy to understand simpleand straightforward
architecture of the code, and the generic desigiabinSim
allows it to be extende while considering specific
requirements.

SahinSim application presented in this paper cai
used in the missileircraft engagement scenariwhich
were simulated using VEGAS application [6,7]. Howev
there are some areas that will be improved tvide a more
generic simulation environment. Network supporbiie of
these areas. In a user controlled combat scerevoy use
can control objects with a number of joysticks huwon't
be feasible because only one camera will be aetivgetime
in this version ofSahinSim. In that case only one user
actually see his object and control it on the gtre&
network interface will be defined to allow multiplesers
share the same simulation environment. Anag
improvement area is collision detectionCurrent
implementation leaves collision awareness to objacthe
environment. Every object must check that if iflidels with
another object itself. An overall collision detect
technique which checks collisions out of obj
implementations will béntroducec

References

[1] JSBSim:http://jsbsim.sourceforge.n

[2] SimGear:http://www.simgear.ort

[3] OGRE:http://www.ogre3.org/

[4] OIS: http://sourceforge.net/projects/wg

[5] SDL: http://www.libsdl.org

[6] Akdag, R., Altilar, D.T.,A Comparative Study o
Practical Evasive Man®ers against Proportion
Navigation Missiles” AIAA Guidance, Navigation an
Control Conference, San Francisco, CA, 2

[7] Moran, I., Altilar, D.T., “Three Plane Approadar 3D
True Proportional Navigation”, AIAA Guidanc
Navigation, and Control Gderence, San Francisco, C
2005.

[8] FlightGear:http://www.flightgear.orc

[9] OpenEaaglesttp://www.openeaagles.o

[10] Berndt, J.S., “JSBSim: An Open Sourceght
Dynamics Model in C++", AIAA Guidance, Navigatic
andControl Conference, Providence, Rhode Island, :

[11] Berndt, J.S., JSBSim Reference Manual,
http://jsbsim.sourceforge.net/JSBSimReferenceMapdal
[12] Berndt, J.S., “Automatic Flight in JSBSim”,BSim
Project Technical Report
http://jsbsim.sourceforge.net/AutomaticFlightinJ $B $df
[13] OpenGL:http://www.opengl.org/

