

ŞahinSim: A Flight Simulator for End-Game Simulations

Özer Özaydın, D. Turgay Altılar
Department of Computer Science

ITU Informatics Institute
Maslak, Istanbul, 34457, Turkey

ozaydinoz@itu.edu.tr altilar@cs.itu.edu.tr

Keywords: flight simulator, visual simulation, end-game
simulation

Abstract
 In this paper, a new flight simulation framework,
ŞahinSim is introduced. ŞahinSim is part of an on going
academic project on proportional navigation guided missiles
and aircrafts' practical evasive maneuvers against these
missiles. ŞahinSim provides an easy to use and flexible 3D
visual simulation environment, as well as an interface to an
accurate flight dynamics model to this project. Open source
projects JSBSim, SimGear, OGRE, SDL and OIS are used
within ŞahinSim. Although ŞahinSim is intended to be used
for end-game simulations such as air-to-air combat
scenarios, it can be extended to be used for also other
aerospace related issues.

1. INTRODUCTION
 ŞahinSim is a flight simulation framework designed for
use in research or academic environments. Aerospace
researchers can benefit from ŞahinSim while studying
aerospace studies such as aircraft models, tracking
algorithms and auto pilot-control applications. ŞahinSim
provides users a flight dynamics model, a fairly nice 3D
graphical user interface and an easy to use input interface.
Without dealing with lots of programming code, a user can
concentrate on his own research topic while saving time and
effort.
 Written in C++ language, ŞahinSim can run on any
Linux distribution that includes the dependency packages
needed by the flight dynamics model (FDM) and the
graphical engine. The FDM and the graphical engine are
also written in C++ so that the FDM and graphic libraries
can be natively used without requiring any conversion
interface which generally causes performance degradation.
Moreover, C++ is a widely used-well known programming
language which achieves both flexibility and performance
requirements of a flight simulation program.
 In this project, five open source projects have been
integrated; these are JSBSim, SimGear, OGRE, SDL and
OIS. The flight dynamics engine is JSBSim [1]. SimGear is

used with JSBSim to provide some geometric calculation
functions and a convenient logging interface [2]. The
graphics engine is OGRE and both OIS and SDL are used
for keyboard and joystick input interface [3-5]. A diagram
of the mentioned projects in ŞahinSim is shown in (Figure
1).

Figure 1. Projects in ŞahinSim

 In the next section, related work and motivation are
explained. The third section has details about the three main
components of ŞahinSim. The fourth section gives
information about the implementation details of the
application. Two ways of implementing an end-game
application is explained in section five, and the last section
concludes the paper.

2. RELATED WORK AND MOTIVATION
 ŞahinSim has been developed as the second generation
visual end-game simulator to another on going project that
investigates evasive maneuvers of an aircraft against
proportional navigation missiles [6]. The first generation
simulator, named VEGAS (Visual End-Game Simulation)
was implemented as a complementary work to visualize the
end-game between a missile and an aircraft. Akdag and
Altilar worked on modeling an agile aircraft capable of
moving high-g maneuvers and performing different evasive
maneuvers [6]. Moran and Altilar implemented a missile
model using proportional navigation techniques to track
previously implemented aircraft model [7]. They used three
degree of freedom (3-DoF) flight dynamics equations for

both missile and aircraft models. The models were
embedded in source code so that after changing any model
the code had to be recompiled. Models could not be
controlled via user inputs from keyboard or joystick;
VEGAS could only run for predetermined scenarios which
literally indicate that the simulation could run only in batch
mode. For visualization, OpenGL was used with immediate
mode commands to draw missile and aircraft objects, which
caused performance degradation while running the
simulation.
 Compared to VEGAS, ŞahinSim uses a 6-DoF flight
dynamics model. Unlike the embedded FDM in VEGAS,
the flight dynamics parameters are configured by using
configuration files so that no recompilation is required when
FDM is edited. ŞahinSim also provides an easy use
keyboard and joystick interface to fly airborne objects. The
graphics engine provides better visuals and it even performs
better than VEGAS.
 At the beginning of this project, rather than writing a
new simulation environment, we considered using existing
flight simulators or simulation frameworks such as
FlightGear and OpenEaagles [8-9]. Flightgear is an open
source, multi-platform flight simulator that is designed for
gaming and training purposes as well as academic use. After
some investigation on Flightgear’s code and documents, we
realised that Flightgear was designed for only civilian
flights. It required a lot of work to turn Flightgear into a
combat simulator or to just modify it for using in our
project, so we did not use Flightgear. OpenEaagles was
another option. It is a comprehensive simulation framework
to build simulation applications and it could be used as the
framework to build an end game application but we did not
use OpenEaagles because of the complexity of the
framework. Both projects could be used in our solution but
both required too much effort to achieve what we wanted,
consequently we decided to build our own simulation
environment. ŞahinSim is specially designed for end-game
simulations; it only provides the most important capabilities
while keeping the source code simple.

3. COMPONENTS OF ŞAHINSIM
 Having designed in a modular fashion, ŞahinSim
consists of three main components; the flight dynamics
model, the graphical engine and the input interface. In this
section, the components and their usage in ŞahinSim are
explained.

3.1. Flight Dynamics Model
 JSBSim is the flight dynamics model of ŞahinSim.
JSBSim is an open source project under LGPL license,
freely available for proprietary and public use. It’s written in
C++ and can be compiled by almost any C++ compiler. In
1996, JSBSim was conceived as a batch simulation tool for
modeling flight dynamics and flight control. It was designed

for use in aircraft design and control courses. Later, the
author Berndt started to work in FlightGear project, which is
a comprehensive flight simulator, and JSBSim integrated
with FlightGear in 1999. Today JSBSim is the default flight
dynamics model in FlightGear [10].
 JSBSim provides ŞahinSim a mathematical model for
rigid aircraft equations of motion. Aerodynamics of the
aircraft is modeled using a component buildup method. All
forces and moments on the aircraft are calculated by
summing up all contributions to each force and moment
axis. After calculating all the forces and moments, JSBSim
returns next state of the aircraft in discrete time steps [11].
 Propulsion system of an aircraft is also modeled in
JSBSim. In order to provide a realistic perception of the
propulsion system from pilots’ point of view, several engine
types such as piston, turbine, rocket and electric are defined.
Although the models are not precise engineering models,
they provide relatively accurate forces and moments on the
aircraft [11].
 Aerodynamic characteristics, propulsion system,
control and automatic control systems (explained later) are
described in configuration files which are written in XML
format. Any change of the properties can be tried in the
simulation without any code change and without
recompiling the code.
 ŞahinSim uses the libraries generated by JSBSim and it
is compiled with the interfaces of JSBSim. Basically
ŞahinSim sends the control inputs to JSBSim; JSBSim
calculates the next state of the aircrafts and sends back the
results to ŞahinSim. As ŞahinSim is an end-game
simulation, it generally lasts around a minute or two. The
result of the simulation is either a hit or miss of the missile.
The simulation doesn't have to deal with takeoff and landing
stages of a flight course. Consequently physical landing gear
model of JSBSim is not used in ŞahinSim, all references
and functions of the landing gear model are removed from
JSBSim interface. Aircrafts start in the air and never
expected to land with landing gears.

3.1.1. Flight Control and Autopilot Models
 In modern aircrafts, either military or commercial ones,
the aircraft is controlled through an electronic flight control
system. Commands given by the pilot are processed in the
control system (i.e., flight computer) and actual control
commands to actuate the mechanical control system are
produced by the flight computer. By using JSBSim, flight
control and autopilot systems can be defined. Just like a real
control system, the control system can be designed by
connecting chains of control components each other. Some
control components that are modeled in JSBSim are; filter
(lag, lead-lag, second order, integrator, etc.), switch, gain
and summer control blocks. Each component runs in the
order of definition and calculates the output regarding its
type.

 Autopilot systems can also be defined by using the
same control components available for a flight computer in
JSBSim [12]. The main purpose of the flight computer is to
actuate necessary parts(e.g., elevator, aileron, rudder) of the
aircraft in order to perform the desired move (e.g., turn,
dive). On the other hand, autopilot systems are generally
designed to perform specific actions such as keeping the
altitude, keeping the heading or automatically heading
towards a specified angle or even landing the aircraft
automatically. Automatic pilots can also be implemented as
a part of the main flight control system dependi
design intend.

3.1.2. Scripted Flights
 JSBSim can be used as a flight dynamics library or it
can be run in batch mode. When run in batch mode, JSBSim
controls the aircraft in the way that it is defined in a
configuration script. Scripting allows user
when any defined condition occurs. In a scripted flight
“action” means setting a property of the aircraft (e.g., setting
wing leveler autopilot switch on/off, moving the flight stick,
adjusting the throttle, etc.). Any property can be s
fixed number or set to an output of a function which is
defined in the script. Conditions can depend on any property
of the aircraft. Test operations "==", "!=",">",">=", "<" and
"<=" can be used in conditions, also logical operators
“AND” and “OR” can be used with nested condition checks.
Simply, a scripted flight can be thought as an autonomous
robot flying the aircraft by following the predefined
movements in its program. The robot can start the engine at
a time, advance the throttle, pull the flight stick when the
aircraft reaches at a defined speed, head the aircraft to a
location when the aircraft reaches a defined altitude and fly
the aircraft to a location. Scripted flights provide exactly the
same responses and actions repetitively are
aircraft performance tests and control systems development
[11].

3.2. Graphics System
 The graphics engine OGRE provides a flexible, easy to
use and fast graphical interface which runs on top of
OpenGL graphics library [3,13]. Every texture and
model can be changed in the simulation without compiling
the simulation code. In order to visually observe the details
of the simulation ŞahinSim provides a fairly nice graphical
interface (Figure 2).
 The active aircraft is centered in the screen and t
default camera is just at the back of the
of the screen, there is the tracking radar, at left
is the FPS information panel. At the bottom of the screen
there is the overall radar and at top-right of the screen there
is the flight information panel. Graphical interface can be
easily modified using OGRE's configuration files.

ems can also be defined by using the
same control components available for a flight computer in
JSBSim [12]. The main purpose of the flight computer is to
actuate necessary parts(e.g., elevator, aileron, rudder) of the

red move (e.g., turn,
dive). On the other hand, autopilot systems are generally
designed to perform specific actions such as keeping the
altitude, keeping the heading or automatically heading
towards a specified angle or even landing the aircraft

Automatic pilots can also be implemented as
a part of the main flight control system depending on the

JSBSim can be used as a flight dynamics library or it
can be run in batch mode. When run in batch mode, JSBSim
controls the aircraft in the way that it is defined in a
configuration script. Scripting allows users to define actions

. In a scripted flight
“action” means setting a property of the aircraft (e.g., setting
wing leveler autopilot switch on/off, moving the flight stick,
adjusting the throttle, etc.). Any property can be set to a
fixed number or set to an output of a function which is
defined in the script. Conditions can depend on any property

. Test operations "==", "!=",">",">=", "<" and
"<=" can be used in conditions, also logical operators

“OR” can be used with nested condition checks.
Simply, a scripted flight can be thought as an autonomous
robot flying the aircraft by following the predefined
movements in its program. The robot can start the engine at

he flight stick when the
aircraft reaches at a defined speed, head the aircraft to a
location when the aircraft reaches a defined altitude and fly
the aircraft to a location. Scripted flights provide exactly the
same responses and actions repetitively are very useful in
aircraft performance tests and control systems development

The graphics engine OGRE provides a flexible, easy to
use and fast graphical interface which runs on top of
OpenGL graphics library [3,13]. Every texture and 3D
model can be changed in the simulation without compiling
the simulation code. In order to visually observe the details

ahinSim provides a fairly nice graphical

is centered in the screen and the
default camera is just at the back of the aircraft. At top-left
of the screen, there is the tracking radar, at left-bottom there
is the FPS information panel. At the bottom of the screen

right of the screen there
flight information panel. Graphical interface can be

easily modified using OGRE's configuration files.

 Panels are just for basic usage and can be extended
easily. Panel positions, panel backgrounds and even the text
font in the panels can be modified

Figure 2. A capture of ŞahinSim

compile the application. Currently there are four panels
used.

3.2.1. Tracking Radar
 As its name indicates this radar is designed for tracking
a specified target. It can be used in dog
well as in regular escorting missions and end
simulations. Without need to actually see the target, pilot
can estimate the position of the target in three dimensions
by just looking at this two dimensional radar (Figure 3)

Figure 3. Tracking Radar

 There are two needles in the radar. In order to track the
target from behind, the pilot should keep the needles on
their fixed origins, red needle on the
line and blue needle on the vertical
needle indicates the vertical position of the target. The
length of the needle varies regarding the altitude difference
between the aircraft and its target in a predefined range
(longer needle means closer)

Panels are just for basic usage and can be extended
easily. Panel positions, panel backgrounds and even the text
font in the panels can be modified without any need to

ŞahinSim

compile the application. Currently there are four panels

king Radar
As its name indicates this radar is designed for tracking

a specified target. It can be used in dog-fight scenarios as
well as in regular escorting missions and end-game
simulations. Without need to actually see the target, pilot

he position of the target in three dimensions
g at this two dimensional radar (Figure 3).

There are two needles in the radar. In order to track the
target from behind, the pilot should keep the needles on

fixed origins, red needle on the horizontal fixed black
vertical fixed black line. The red

needle indicates the vertical position of the target. The
length of the needle varies regarding the altitude difference

and its target in a predefined range
er needle means closer). The blue needle indicates the

horizontal position of the target. Its length varies regarding
the distance between the aircraft and the target on
which is parallel to simulation surface.

3.2.2. Overall Radar
 This radar shows all aircraft instances in range of the
active aircraft. The radar orientation is fixed and top of the
radar is always aligned with the heading of the
instances on the radar panel orientates around the
shown in (Figure 4).

Figure 4. Overall radar

 The range is calculated in three dimensions by using
Euclidean distance.

3.2.3. Flight Information Panel
 The panel shows some essential flig
simulation and the aircraft (Figure 5).

Figure 5. Flight Information Panel

3.2.4. Cameras
 There are two camera types implemented in
By default, camera is attached to the first
the configuration file. User can cycle through the cameras
and through the aircrafts. Camera positions are saved for
each camera and each aircraft so that when user selects the
previous camera while cycling through the cameras, the
camera doesn’t reset its orientation
orientation is restored. Every camera is positioned at the
back of its aircraft and parallel to surface of the simulation
environment by default.
 The first camera is a free-cam that can be positioned
around the aircraft. The camera is always directed to the

horizontal position of the target. Its length varies regarding
and the target on the plane

instances in range of the
. The radar orientation is fixed and top of the

radar is always aligned with the heading of the aircraft. All
on the radar panel orientates around the aircraft as

The range is calculated in three dimensions by using

essential flight data about the

There are two camera types implemented in ŞahinSim.
By default, camera is attached to the first aircraft defined in

. User can cycle through the cameras
s. Camera positions are saved for

so that when user selects the
previous camera while cycling through the cameras, the
camera doesn’t reset its orientation, instead previous
orientation is restored. Every camera is positioned at the

and parallel to surface of the simulation

cam that can be positioned
amera is always directed to the

center of the aircraft model and always parallel to the
surface. Movement axis of the camera can be thought as a
sphere which has the aircraft
the camera, joystick hat can be used. T
fixed-yaw camera which is always at the back of the
aircraft. The camera’s yaw angle always follows the
aircraft’s yaw angle. The orientation of the camera is
automatically updated regarding

3.2.5. Replay Engine
 Another feature of ŞahinSim is its replay engine. The
replay engine can be used to examine every movement
details of the aircrafts for each simulation tick. If replay
mode is enabled in the configuration file, the simulation can
be paused at any time. After that, simulation enters into
replay mode. In replay mode, simulation time can be
controlled for forward and backward replays. Speed of the
replay mode can also be adjusted.
 For every simulation tick, every object’s location,
orientation, radar information, tracking radar information (if
enabled) and flight panel information are saved;
information can be investigated in replay mode. When user
quits the replay mode, the simulation time advances to the
time the simulation is paused an
running.

3.3. Input System
 Input system of ŞahinSim enables an interactive
simulation environment. In some scenarios the simulation
may require to run in batch mode but for some other cases
instead of automatically controlling the si
from a keyboard or a joystick may be required.
uses both OIS (Object Oriented Input System) and SDL
(Simple Directmedia Layer) input systems as its input
system to provide both interactive and batch mode
simulation.
 OIS is a cross platform, simple and robust solution for
using all kinds of input devices such as
joystick, etc. [4]. OIS is written in C++ and natively used by
ŞahinSim for just keyboard events. OIS was intended to be
used for also joystick events but it did not recognize the
joystick that is used in ŞahinSim, consequently for joystick
events SDL is preferred. SDL is also a cross platform library
which provides low level access to not only input devices
but also audio, 3D hardware via OpenGL and
framebuffer. SDL is written in C but it works natively with
C++ [5]. Although it provides comprehensive interfaces to
these media devices, ŞahinSim only uses the interface for
the joysticks. Currently user can control any aircraft
instance in the simulation from the keyboard or the joystick.
Replay engine and cameras can be controlled by using the
joystick.

model and always parallel to the
surface. Movement axis of the camera can be thought as a

aircraft in its center. In order to move
the camera, joystick hat can be used. The second camera is a

yaw camera which is always at the back of the
. The camera’s yaw angle always follows the
’s yaw angle. The orientation of the camera is

automatically updated regarding aircraft’s orientation.

lay Engine
ŞahinSim is its replay engine. The

replay engine can be used to examine every movement
s for each simulation tick. If replay

is enabled in the configuration file, the simulation can
at any time. After that, simulation enters into

replay mode. In replay mode, simulation time can be
controlled for forward and backward replays. Speed of the
replay mode can also be adjusted.

For every simulation tick, every object’s location,
, radar information, tracking radar information (if

enabled) and flight panel information are saved; this
information can be investigated in replay mode. When user
quits the replay mode, the simulation time advances to the
time the simulation is paused and the simulation keeps on

ŞahinSim enables an interactive
simulation environment. In some scenarios the simulation
may require to run in batch mode but for some other cases
instead of automatically controlling the simulation, inputs
from a keyboard or a joystick may be required. ŞahinSim
uses both OIS (Object Oriented Input System) and SDL
(Simple Directmedia Layer) input systems as its input
system to provide both interactive and batch mode

s platform, simple and robust solution for
using all kinds of input devices such as mouse, keyboard,

etc. [4]. OIS is written in C++ and natively used by
ahinSim for just keyboard events. OIS was intended to be

nts but it did not recognize the
ŞahinSim, consequently for joystick

events SDL is preferred. SDL is also a cross platform library
which provides low level access to not only input devices
but also audio, 3D hardware via OpenGL and 2D
framebuffer. SDL is written in C but it works natively with
C++ [5]. Although it provides comprehensive interfaces to

ŞahinSim only uses the interface for
the joysticks. Currently user can control any aircraft

ation from the keyboard or the joystick.
eplay engine and cameras can be controlled by using the

4. IMPLEMENTATION DETAILS
 From a high level view, ŞahinSim consists of five
components (i.e., set of classes) (Figure 6)
manager (SimMan) is the main component which creates,
initializes and controls all other components. Input
component is an interface to keyboard and joystick. It polls
keyboard and joystick states at each iteration and keeps the
state information internally. Input component has both SDL
and OIS class instances which are used for polling the actual
hardware. Graphics component creates the visual interface,
loads the 3D environment, information-
models. It is the interface to the graphical engine, OG
Radar component has position information of all objects in
the environment. It is actually an internal class but
represented separately to differentiate the component roles.

Figure 6. ŞahinSim components

 Objects component covers all simulation ob
environment. These objects are users of the input, graphics
and radar components. Depending on the implementation,
objects may use any of the simulation components; using all
components is not mandatory. It is also intended to make
each component as independent as possible so that any
component can be edited easily without changing others.

4.1. Objects in ŞahinSim
 In C++ terms, all object instances are derived from an
abstract class named SimObject. SimMan calls all object
instances' functions by using their down casted pointers to
SimObject class type. SimObject can be regarded as the
interface to ŞahinSim. Any kind of simulation objects can
be created, initialized and run through this interface.
 Currently all aircraft instances are derived objects from
SimObject and aircraft class name is JSBSimPlane
7). JSBSimPlane object also uses other interfaces and other
class instances to fully use the ŞahinSim simulation
environment. Additionally, JSBSimPlane is derived from
HUDUser and XMLReader classes and it has Model and
FDMJSBsim class instances. HUDUser class is used for
updating the head-up displays(HUD) of the aircraft.
XMLReader class is used for decoding the XML
configuration options. Model class is an interface to the
graphical engine and hold 3D model information about the

ŞahinSim consists of five

(Figure 6). Simulation
imMan) is the main component which creates,

initializes and controls all other components. Input
component is an interface to keyboard and joystick. It polls
keyboard and joystick states at each iteration and keeps the

omponent has both SDL
and OIS class instances which are used for polling the actual
hardware. Graphics component creates the visual interface,

-radar panels and 3D
models. It is the interface to the graphical engine, OGRE.
Radar component has position information of all objects in
the environment. It is actually an internal class but
represented separately to differentiate the component roles.

Objects component covers all simulation objects in the
environment. These objects are users of the input, graphics
and radar components. Depending on the implementation,
objects may use any of the simulation components; using all
components is not mandatory. It is also intended to make

ent as independent as possible so that any
component can be edited easily without changing others.

In C++ terms, all object instances are derived from an
abstract class named SimObject. SimMan calls all object
instances' functions by using their down casted pointers to
SimObject class type. SimObject can be regarded as the

ahinSim. Any kind of simulation objects can
be created, initialized and run through this interface.

Currently all aircraft instances are derived objects from
SimObject and aircraft class name is JSBSimPlane (Figure

her interfaces and other
ŞahinSim simulation

environment. Additionally, JSBSimPlane is derived from
classes and it has Model and

JSBsim class instances. HUDUser class is used for
p displays(HUD) of the aircraft.

XMLReader class is used for decoding the XML
configuration options. Model class is an interface to the
graphical engine and hold 3D model information about the

object. Finally, JSBSimPlane has an FDM
instance to use the JSBSim flight dynamics model.
 Different aircraft or missile objects can be implemented
by using the model defined above. Regarding the
requirements of a particular simulation scenario,
objects can be derived from other additional classes or may
contain new classes. Main Ş
affected by these particular changes.

Figure 7. Some ŞahinSim classes

4.2. ŞahinSim Configuration
 Simulation environment and
using a configuration file in XML format. Without losing
time to configure the simulation from source code,
ŞahinSim can easily be configured through its configuration
file, sahin_conf.xml. The simulation configuration and
aircraft configurations must be in context of main XML
element named “sahin_conf”. Currently th
configuration elements within this context; those XML
elements are named environment and
“environment” element must be unique
aircraft instances can be defined
elements.
 The “environment” XML element
configuring simulation environment options.
the simulation environment (in geodetic co
simulation duration, simulation frame rate
configurable simulation environ
 Each aircraft instance is configured by using
XML element. ŞahinSim parses the simulation
configuration XML file and c
every “aircraft” element. Each
number starting from zero in the order they are parsed.
 Initial location, orientation, and speed of the
be changed by just editing the relevant lines. Without losing
time on compiling, the simulation can be run with different
initial configurations immediately. Moreover, by just
changing the related configuration parameter
aircraft can be used under the
use of aircraft configuration is very handy and makes
to run the simulation with different models or different
conditions.

. Finally, JSBSimPlane has an FDMJSBSim class
use the JSBSim flight dynamics model.

Different aircraft or missile objects can be implemented
by using the model defined above. Regarding the
requirements of a particular simulation scenario, ŞahinSim
objects can be derived from other additional classes or may
contain new classes. Main ŞahinSim structure will not be
affected by these particular changes.

ahinSim classes

ahinSim Configuration
Simulation environment and aircrafts can be configured

using a configuration file in XML format. Without losing
nfigure the simulation from source code,

ahinSim can easily be configured through its configuration
file, sahin_conf.xml. The simulation configuration and

configurations must be in context of main XML
element named “sahin_conf”. Currently there are two main
configuration elements within this context; those XML
elements are named environment and aircraft. The

element must be unique, however multiple
instances can be defined by using multiple “aircraft”

XML element is used for
configuring simulation environment options. The center of
the simulation environment (in geodetic coordinates),

tion frame rate are some of the
configurable simulation environment parameters.

instance is configured by using “aircraft”
ŞahinSim parses the simulation

configuration XML file and creates an aircraft instance for
element. Each aircraft is given a unique

number starting from zero in the order they are parsed.
Initial location, orientation, and speed of the aircraft can

the relevant lines. Without losing
time on compiling, the simulation can be run with different
initial configurations immediately. Moreover, by just

related configuration parameters, any desired
er the same initial conditions. The

configuration is very handy and makes it easy
the simulation with different models or different

4.3. Initialization
 Initialization steps of ŞahinSim are briefly illustrated in
(Figure 8). SimMan class first parses the ŞahinSim
configuration file and fills an internal configuration
structure. After reading the configuration, considering
simulation resource requirements, it creates the classes
related to resource interfaces. First resource is the SDL
library which is used for the joystick device. This
initialization is mandatory before actually creating the
joystick class and before initializing the graphical engine
OGRE. If SDL is initialized successfully, next step is
initializing the graphical engine. An empty user interface
without the SimObjects is created at this step. The sky,
terrain are loaded and lighting of the environment is
configured. The last resource is the input interface. At this
stage SDL joystick and OIS keyboard classes are created
and initialized. After initializing the resources, all
SimObjects are created and initialized regarding the
configuration elements defined in the XML file. SimMan
actually creates the SimObject instances and calls the init
functions of the objects by passing the related XML element
to each instance. SimObjects are responsible for initializing
themselves.

Figure 8. ŞahinSim initialization steps

4.4. Main Simulation Loop
 Following the initialization stage, simulation enters an
infinite while loop and runs until the stop time is reached or
any escape condition defined in the code(e.g., user pressed
'escape' key, missile hit the target, etc..) occurs. Functions
that are called in main simulation loop are in (Figure 9).
 In each iteration, at the beginning of each loop, a timer
to be used for frame regulation is reset. This timer is
checked at the end of the loop and if the loop is finished
before the expected time, simulation sleeps to synchronize
to the required frame rate. After resetting the time, keyboard
and joystick states are polled by the input object. Just after
polling the input interfaces, simulation checks if any escape
condition is occurred. Upon the occurrence of any escape

condition, the cleanup method is called to terminate the
simulation safely.

Figure 9. Main simulation loop

 The simulation has two running modes; one is active
mode and the other is paused mode. If the simulation is in
the active mode, all SimObject instances' run and move
methods are called. Basically run methods are used for
calculating the next state of the object (i.e., orientation,
location, speed, etc.) and move methods are used for
moving the objects in the 3D environment (at this stage
objects are not drawn, only state information in OGRE
engine is updated) . After calling these methods, simulation
tick counter is incremented.
 If the simulation is running in the paused mode,
ReplayEngine's run method is used to view the state of the
simulation at a time frame. In each iteration, if replay mode
is enabled, each SimObjects' state information is recorded in
ReplayEngine class. The main simulation loop ends with the
frame regulating function.

5. IMPLEMENTATION OF AN END-GAME

APPLICATION IN ŞAHINSIM
 There are two approaches to implement an end-game
application in ŞahinSim. The first approach is embedding an
existing missile or aircraft model code into ŞahinSim. In
this approach, all model classes are derived from SimObject

abstract class and they implement all interface
SimObject class. Since the code is embedded into
missile and aircraft classes are created by SimMan class
manually (i.e., not from configuration file). Actually this is
not the expected use of ŞahinSim because it will only
benefit from the graphical and the input interfaces.
 Second approach is using JSBSim models and
ŞahinSim. Aircraft and missile models are defined i
JSBSim model definition format. For the airc
there already exist some aircraft definitions in JSBSim
format in FlightGear and JSBSim repositories. The missile
model probably has to be implemented initially, since there
are no ready to use models found yet. JSBSim scripts can
also be used with this approach in order to try different
types of aircraft models performing same maneuvers at the
same time. This approach requires more effort at the
beginning; however it will have the advantages of usin
ŞahinSim which will save time during experiments.
 As and end-game application, a similar scenario to
VEGAS is implemented in ŞahinSim by using the second
approach defined above. In VEGAS, a missile tries to hit an
aircraft while the aircraft tries to ev
performing evasive maneuvers. Initial location, speed,
heading, and some other parameters of the missile and the
aircraft are changed and the simulation is run again to
investigate both performance of the missile's guidance
algorithm and aircraft's evasive maneuver algorithms. It is
intended to implement the same scenario with VEGAS but
the missile model is still being work on so that another
aircraft model is used to chase the targeted aircraft manually
(Figure 10).

Figure 10. An aircraft chasing another one

 The aircrafts start in the air with initial location and
speed such that the escaping aircraft is in front of the
chasing aircraft. Both aircrafts are JSBSim aircrafts; the one
in the front is controlled by a JSBSim script an
predefined maneuvers where the one in the back is

abstract class and they implement all interface methods of
SimObject class. Since the code is embedded into ŞahinSim,
missile and aircraft classes are created by SimMan class

(i.e., not from configuration file). Actually this is
ahinSim because it will only

benefit from the graphical and the input interfaces.
Second approach is using JSBSim models and

ahinSim. Aircraft and missile models are defined in
JSBSim model definition format. For the aircraft model,

some aircraft definitions in JSBSim
format in FlightGear and JSBSim repositories. The missile
model probably has to be implemented initially, since there

ls found yet. JSBSim scripts can
also be used with this approach in order to try different
types of aircraft models performing same maneuvers at the
same time. This approach requires more effort at the

however it will have the advantages of using
ahinSim which will save time during experiments.

game application, a similar scenario to
ahinSim by using the second

approach defined above. In VEGAS, a missile tries to hit an
aircraft while the aircraft tries to evade the missile by
performing evasive maneuvers. Initial location, speed,
heading, and some other parameters of the missile and the
aircraft are changed and the simulation is run again to
investigate both performance of the missile's guidance

aircraft's evasive maneuver algorithms. It is
intended to implement the same scenario with VEGAS but
the missile model is still being work on so that another
aircraft model is used to chase the targeted aircraft manually

aircraft chasing another one

The aircrafts start in the air with initial location and
speed such that the escaping aircraft is in front of the
chasing aircraft. Both aircrafts are JSBSim aircrafts; the one
in the front is controlled by a JSBSim script and performs
predefined maneuvers where the one in the back is

controlled by either joystick or keyboard manually trying to
chase the other. When the missile model is ready in JSBSim
format, the chasing aircraft model will be replaced by the
missile model.

6. CONCLUSION AND FUTUR
 ŞahinSim is an end-game simulation environment
providing a 3D graphical interface, an input interface and an
interface to a popular flight dynamics model. Multiple
instances of manual or script controlled, JSBSim or user
created airborne objects can run in the same environment. It
is easy to understand simple
architecture of the code, and the generic design of
allows it to be extended
requirements.
 ŞahinSim application presented in this paper can be
used in the missile-aircraft engagement scenarios
were simulated using VEGAS application [6,7]. However,
there are some areas that will be improved to pro
generic simulation environment. Network support is one of
these areas. In a user controlled combat scenario, every user
can control objects with a number of joysticks but it won't
be feasible because only one camera will be active at a time
in this version of ŞahinSim. In that case only one user can
actually see his object and control it on the screen. A
network interface will be defined to allow multiple users
share the same simulation environment. Another
improvement area is collision detection.
implementation leaves collision awareness to objects in the
environment. Every object must check that if it collides with
another object itself. An overall collision detection
technique which checks collisions out of object
implementations will be introduced.

References
[1] JSBSim: http://jsbsim.sourceforge.net/
[2] SimGear: http://www.simgear.org/
[3] OGRE: http://www.ogre3d
[4] OIS: http://sourceforge.net/projects/wgois
[5] SDL: http://www.libsdl.org/
[6] Akdag, R., Altilar, D.T., “A Comparative Study on
Practical Evasive Maneuvers against Proportional
Navigation Missiles”, AIAA Guidance, Navigation and
Control Conference, San Francisco, CA, 2005.
[7] Moran, I., Altilar, D.T., “Three Plane Approach for 3D
True Proportional Navigation”, AIAA Guidance,
Navigation, and Control Conference, San Francisco, CA,
2005.
[8] FlightGear: http://www.flightgear.org/
[9] OpenEaagles: http://www.openeaagles.org/
[10] Berndt, J.S., “JSBSim: An Open Source Fli
Dynamics Model in C++", AIAA Guidance, Navigation,
and Control Conference, Providence, Rhode Island, 2004.

controlled by either joystick or keyboard manually trying to
chase the other. When the missile model is ready in JSBSim
format, the chasing aircraft model will be replaced by the

CONCLUSION AND FUTUR E WORK
game simulation environment

providing a 3D graphical interface, an input interface and an
flight dynamics model. Multiple

anual or script controlled, JSBSim or user-
created airborne objects can run in the same environment. It
is easy to understand simple and straightforward
architecture of the code, and the generic design of ŞahinSim

to be extended while considering specific

ahinSim application presented in this paper can be
aircraft engagement scenarios which

simulated using VEGAS application [6,7]. However,
there are some areas that will be improved to provide a more
generic simulation environment. Network support is one of
these areas. In a user controlled combat scenario, every user
can control objects with a number of joysticks but it won't
be feasible because only one camera will be active at a time

ahinSim. In that case only one user can
actually see his object and control it on the screen. A
network interface will be defined to allow multiple users
share the same simulation environment. Another
improvement area is collision detection. Current
implementation leaves collision awareness to objects in the
environment. Every object must check that if it collides with
another object itself. An overall collision detection
technique which checks collisions out of object

introduced.

http://jsbsim.sourceforge.net/
http://www.simgear.org/

http://www.ogre3d.org/
http://sourceforge.net/projects/wgois
http://www.libsdl.org/

“A Comparative Study on
vers against Proportional

AIAA Guidance, Navigation and
Control Conference, San Francisco, CA, 2005.
[7] Moran, I., Altilar, D.T., “Three Plane Approach for 3D
True Proportional Navigation”, AIAA Guidance,

nference, San Francisco, CA,

http://www.flightgear.org/
http://www.openeaagles.org/

[10] Berndt, J.S., “JSBSim: An Open Source Flight
Dynamics Model in C++", AIAA Guidance, Navigation,

Control Conference, Providence, Rhode Island, 2004.

[11] Berndt, J.S., JSBSim Reference Manual,
http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf
[12] Berndt, J.S., “Automatic Flight in JSBSim”, JSBSim
Project Technical Report
http://jsbsim.sourceforge.net/AutomaticFlightInJSBSim.pdf
[13] OpenGL: http://www.opengl.org/

