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Abstract 

 
Path planning is the art of deciding which route to 

take, based on and expressed in terms of the current 
internal representation of the terrain. Path finding also 
involves the execution of this theoretical route, by 
translating the plan from the internal representation in 
terms of physical movement in the environment.  

During combat, transfers of military units in the 
shortest period and with least damage are vitally 
important. In this study, navigation planning problems, 
described in semi-dynamic and fully-dynamic 
scenarios, have been solved using evolutionary 
algorithm approach. 3-D graph is used to mode the 
environment. In the first scenario, graph node and 
edge deletion and cost update operations are applied 
and the impact of the different parameters of genetic 
algorithm on the solution has been investigated. In the 
second scenario, in an environment with possibility of 
combat, the aim is to find the most secure shortest path 
by employing genetic algorithm approach dynamically, 
in case any combat information arrives during the 
transfer of units. 
 
1. Introduction 
 

During combat, transfers of military units in the 
shortest period and with least damage are vitally 
important. In this study, path planning problem is 
considered for flight planning and navigation planning. 
Navigation planning problems, described in different 
scenarios, have been solved using evolutionary 
algorithm approach. The aim is to prepare the path for 
the flight plan and guide the pilot of the air vehicle by 
online execution of the flight plan.   

Prior to departure, each commercial aircraft must 
have a flight plan from its origin to its destination 
[1,2]. Flight plan is a flight path followed by pilot prior 
to departure. Flight plans include basic information 

such as departure and arrival waypoints, estimated time 
to arrive to the next point, alternate airports, flight 
type, waypoints and fuel information. It describes the 
route, the altitudes, and the speeds which the plane is 
expected to fly for the trip, and it affects fuel 
consumption, safety, speed, arrival time, and passenger 
comfort. In most countries, flight plans are required for 
flights under instrument flight rules, they are optional 
unless crossing national borders, however they are 
highly recommended, especially when flying over 
inhospitable areas, such as water, as they provide a 
way of alerting rescuers if the flight is overdue. The 
flight plan includes air vehicle motion modeling 
fundamentals that are important parts of a tactical 
environment simulation software. Pilot may prepare 
flight plans by choosing from pre-defined mark points 
and play a simulation scenario.   

Navigation and routing problems are very general 
problems. They can be used for vehicle routing in 
traffic, in military applications, in robotics, for 
determining the route between two points in urban 
transportation [3,4,5]. or for routing data packets in a 
network. In recent years, the optimization became 
more important due to the possibility of solving many 
large combinatorial optimization problems and multi-
objective engineering problems. In this paper, the 
dynamic path planning problem is solved with 
evolutionary methods, for compensating the existing 
deficiencies of the other approaches. 
 
2. Evolutionary computing 
 

Evolutionary algorithms are inspired by Darwin's 
theory about evolution. Solution to a problem solved 
by genetic algorithms is evolved. Algorithm is started 
with a set of solutions called population. Solutions 
from one population are taken and used to form a new 
population. This is motivated by a hope, that the new 
population will be better than the old one. Solutions 

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.27

542

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.27

542

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.27

534



which are selected to form offspring are selected 
according to their fitness values. The more suitable 
they are, the more chances they have to reproduce. 
This is repeated until some condition. Stopping criteria 
may be number of iterations, or individual similarity or 
other criteria [6].  

There are many versions of genetic algorithms, one 
differing from another in some detail. In a nutshell, all 
genetic algorithms have two basic steps: during the 
selection step, a decision is made as to who in the 
population is allowed to produce offspring, and during 
the replacement step another decision is made as to 
which of the members from one generation are forced 
to perish  in order to make room for an offspring to 
compete [7,8]. The random makeup of the initial 
population has a large effect on the likelihood that 
evolutionary programming will find a successful 
program. The main flow of a genetic algorithm is 
shown in Figure 1. 

 
 

 
3. Navigation and guidance calculations  
 

Shortest distance between two points is a straight 
line. However anyone attempting to fly from Los 
Angeles to New York on the straight line connecting 
them would have to dig a very substantial tunnel first. 
The shortest distance, following the earth's surface lies 
vertically above the aforementioned straight line route. 
This route can be constructed by slicing the earth in 
half with an imaginary plane. This plane cuts the earth 
in a circular arc connecting the two points, called a 
great circle. Only planes through the center of the earth 
give rise to great circles. Any plane will cut a sphere in 
a circle, but the resulting little circles are not the 
shortest distance between the points they connect. A 
little thought will show that lines of longitude 

(meridians) are great circles, but lines of latitude, with 
the exception of the equator, are not. 

Natural questions are to seek the great circle 
distance between two specified points and true course 
at points along the route. The required spherical 
trigonometric formulae are greatly simplified if angles 
and distances are measured in the appropriate natural 
units, which are both radians! A radian, by definition, 
is the angle subtended by a circular arc of unit length 
and unit radius. Since the length of a complete circular 
arc of unit radius is 2*pi, the conversion is 360 degrees 
equals 2*pi radians. The nautical mile is currently 
defined to be 1852 meters - which to be consistent with 
its historical definition implies the earth's radius to be 
1.852 * (180*60/pi) = 6366.71 km, which indeed lies 
between the currently accepted ( WGS84) equatorial 
and polar radii of 6378.137 and 6356.752 km, 
respectively. Other choices of the earth's radius in this 
range are consistent with the spherical approximation 
and may for some specialized purposes be preferred. 

The general functions used for navigation planning 
are distance, bearing, position and intersection point 
calculations. In order to calculate the great circle 
distance and bearing angle between two waypoints the 
following equations are used;  
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a - origin  b - destination  
D = angular distance along path  
C = true bearing from the origin to the destination 
measured from north. 
D = acos (sin(lata)·sin(latb)+cos(lata)·cos(latb)·cos(lonb - 
lona)) 
C = acos ([sin(latb) - sin(lata)·cos(D)] / [cos(lata)·sin(D)])   

Given a start point, initial bearing, and distance, in 
order to calculate the destination point coordinates, the 
following formula is used; 
lat = asin(sin(lat1)*cos(D)+cos(lat1)*sin(D)*cos(C)) 
f1 = sin(C)*sin(D)*cos(lat1) 
f2 = cos(D)-sin(lat1)*sin(lat) 
lon=mod(lon1-atan2(f1,f2)+pi,2*pi)-pi 

In order to find the intersection of two great circles 
defined by the arcs from pt1 to pt2 and from pt3 to pt4, 
normalization vector and unit vectors are used.  
e ={ex,ey,ez}={cos(lat)*cos(lon), -cos(lat)*sin(lon), sin(lat)} 

Figure 1 The flow of a basic genetic algorithm 
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lat=atan2(ez, sqrt(ex^2 + ey^2)) lon=atan2(-ey, ex) 
P(e1,e2) =(e1 X e2)/||e1 X e2|| 
{e1y *e2z -e2y *e1z, e1z *e2x -e2z *e1x, e1x *e2y -e1y 
*e2x}  
||e|| =sqrt(ex^2 + ey^2 + ez^2) 
e1Xe2={sin(lat1-lat2)*sin((lon1+lon2)/2)*cos((lon1lon2)/2)- 
sin(lat1+lat2) *cos((lon1+lon2)/2) *sin((lon1-lon2)/2) , 
sin(lat1-lat2) *cos((lon1+lon2)/2) *cos((lon1-lon2)/2) + 
sin(lat1+lat2) *sin((lon1+lon2)/2) *sin((lon1-lon2)/2) , 
cos(lat1)*cos(lat2)*sin(lon1-lon2)} 
ea= (e1 X e2)/ ||e1 X e2|| , eb=(e3 x e4)/||e3 X e4||  
invert ea X eb.  
two candidate intersections  (lat,lon), (-lat,lon+pi). 

For the simulations of the proposed algorithm, 
matlab and simulink are used. Flight plan and air 
navigation process of the air vehicles from a departure 
waypoint to a descent waypoint is simulated. The 
simulation environment used to verify the navigation 
algorithms is shown in Figure 2. The simulator 
represents a simulation of the aircraft in open-loop 
flight. That is, all aircraft control inputs are set to fixed 
values, independent of the aircraft states. The lateral 
dynamics of the aircraft is stabilized by adding a wing 
leveler. This is implemented using proportional and 
integral feedback from bank angle to ailerons.   

 
 
 
Some navigation algorithms are used for the 

guidance of air vehicles. The flight plan execution 
command calculations used to guide for lateral and 
vertical navigation are shown below;    
Dist=distance(fromWP,toWP) 
Bearing1=bearing(fromWp,toWP) 

Bearing2=bearing(toWP,toPlusOneWP) 
deltaY=asin(sin(Dist)*sin(Bearing1-Bearing2))  
deltaX=heading_angle-Bearing2 
tmp1=deltaY*gravity acc/ground_speed 
bank=atan(tmp1-deltaX)*(ground_speed/gravity acc) 
track=atan(groundspeed_earth/groundspeed_north) 
alt_dif=(altitude-altitudeToWP) 
tmp2=alt_dif* gravity acc/verticalSpeed 
tmp3=sqrt(alt_dif2+Dist2) 
pitch_com=(tmp3-tmp2)*(verticalSpeed/gravityacc) 
tmp4=0.5*FreeAirTemp-sqrt(altitude) 
tmp5=17*sqrt(trueAirSpeed)+7*(gross_weight) 
fuel_flow_rate=tmp4+tmp5-150 
 
4. Planning flight route 
 

Genetic algorithms imitate the evolutionary process 
in order to solve the optimization problems. Instead of 
developing one solution candidate, genetic algorithms 
form a set of individuals. The set, which contains 
probable solution candidates, is defined as population 
in genetic algorithm terminology. Population occurs 
from arrays called vector, chromosome or individual. 
The each element of an individual is called gene. 
Variable length chromosomes are used in dynamic path 
planning systems in order to cover the whole search 
space [9]. In evolutionary programming method, 
individuals in the population are determined by the 
operators of the evolutionary algorithm. In the 
problems like path planning, the permutation 
representation is used and the operators differ from the 
operators of the basic genetic algorithm [10]. The most 
important parameters of the genetic algorithm are 
crossover rate, mutation rate and the number of 
individuals in a population. In order to declare 
crossover and mutation rates, different values are 
tested and by this way the most appropriate values are 
found for these parameters. Chromosome number in 
the population is determined according to the nodes of 
the graph topology.  

In the proposed heuristic approach, in order to 
represent the routes, variable-length chromosomes are 
used. Chromosomes are encoded by permutation 
encoding method. Each gene of a chromosome 
represents a node in the graph, and all genes show the 
whole path in the graph. The quality of the individuals 
are determined by the fitness function. A general 
fitness function is developed in order to meet all the 
constraints. Chromosomes are arranged in decreasing 
order according to the fitness values. In order to 
increase the quality of the population, a selection 
operator, that rise the chance of the better fit 
individuals, is used in the proposed algorithm. 
Selection operator, forces to search the solution in the 

Figure 2 The simulation envirınment 
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determined locations of the search space. In the 
proposed algorithm, in order to save the better-fit 
individuals for the next generation, and in order to 
avoid from statistical errors caused by sampling, the 
roulette wheel selection technique is used for selection. 
According to the roulette wheel selection, the fitness 
values of all individuals are added. The selection 
probability of an individual is found by dividing the 
fitness value to the overall value. In the crossover 
phase, the genes after the crossover site are exchanged 
between parent chromosomes. Probable crossover sites 
are the regions where the genes of the parent 
chromosomes are identical. If the parents have no 
identical gene pair, the crossover operator can’t be 
applied. If there are more than one identical gene pairs, 
one of the pairs is chosen randomly. Crossover may 
generate infeasible chromosomes that violate the loop 
constraint and may form individual chromosomes with 
cycles. It must be noted that none of the chromosomes 
of the initial population or after the mutation is 
infeasible because when once a node is chosen, it is 
excluded from the candidate nodes forming the rest of 
the path. Algorithm makes a post-processing operation 
and removes the cycles from the individual. The 
sample crossover and repair operations are shown in 
the Figure 3.   

 
 
 

Mutation operator increases the variation in the 
population, and avoids attach local optima by changing 
the genes of the potential chromosome. In the route 
planning problem, a random gene change may generate 
an infeasible chromosome, so two-point mutation is 
applied and the genes in the region between the 
mutation points are modified with a different route. A 
sample mutation operation is shown in the Figure 4. 

 

 
     

 
Proposed genetic algorithm continues to operate the 

reproduction phase until the stopping criteria satisfied. 
The stopping criteria chosen for this kind of problem is 
individual similarity.  

The runtime performance and the complexity of the 
proposed algorithm is compared with deterministic 
methods. When segment insertion/deletion/cost update 
operations occur, the proposed algorithm doesn’t start 
calculations from scratch, and it converges to the 
solution in a shorter time than Dijkstra. Figure 5 shows 
the performance of the proposed algorithm at each 
dynamic change. The results support the view that 
evolutionary algorithms are an effective, robust search 
procedure for NP complete problems in the sense that, 
although they may not outperform highly tuned, 
problem-specific algorithms, Evolutionary algorithms 
can be easily applied to a broad range of NP-complete 
problems with performance characteristics no worse 
than the theoretical lower bound of an N3 speedup. 

 
 
 
The most recent dynamic path planning solution 

techniques are Ramalingam and Reps [11], Franciosa 
et al. [12], and Frigioni et al. [13]. The solution by 
Franciosa et al. can be used only for semi-dynamic 
case. The Ramalingam and Reps’ solution was found is 
successful concerning run-time, Frigioni et al.’s is 
better when the number of segments to be updated had 
to be minimized. The existing fully dynamic 
algorithms process unit changes to topology one 
modification at a time, but when there are several such 
operations occurring in the environment 
simultaneously, the algorithms are quite inefficient. 
The problems are worse in large topologies which have 

Figure 3 Crossover and repair operators 

Figure 4. Mutation operator 

Figure 5. Run-Time Performance 
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a large number of nodes and edges, where a large 
number of topology modifications occur continuously 
at all times. In such cases, the existing algorithms may 
fail to determine the shortest path information in a time 
critical manner. The proposed algorithm may respond 
to the concurrent weight updates in a shorter time for 
dynamic environments. Figure 7 shows the higher 
performance of the proposed algorithm especially for 
strongly connected graphs. When the number of nodes 
increases, the computation time difference between the 
Dijkstra algorithm and the proposed algorithm in 
dynamic scheme also increases. As evolutionary 
algorithms are stochastic and heuristic methods, the 
computation time statistics of the genetic algorithm are 
the averages of 30 simulations.   
 
5. Conclusion 
 

Deterministic algorithms like Floyd, Dijkstra or 
heuristic methods like neural network and A-Star may 
be used for the solution of navigation planning 
problem in static schemes. Dynamic path planning 
algorithms like Frigioni, Franciosa, Ramalingam Reps 
may be used in dynamic environments but they are 
constrained by some limitations. When several 
concurrent changes occur in the environment 
simultaneously, these algorithms are quite inefficient. 
When the segment costs and conditions change 
stochastically and continuously, these algorithms fail 
to converge the actual underlying average solution. 
Also the algorithm should work with uncertain graphs.  

The proposed algorithm doesn’t use a graph matrix, 
owing to the reproduction loop, selection mechanism 
and the fitness function, the algorithm finds results in a 
shorter computation time compared with the analytical 
algorithms. The proposed algorithm provides advanced 
search speed, quality and flexibility in dynamic 
schemes. In addition to the flight planning algorithm, a 
flight execution algorithm is developed to guide the 
pilot follow the mission plan. The execution algorithm 
provides flight commands like pitch, bearing, track and 
bank angles, desired ground speed to arrive next point 
on time. 
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