Parallel Digital Video Processing System Architectures and Applications on ADSP-
21160M SHARC DSP® DSP

D. Turgay Altilar, Silvano P. V. Barros, Yakup Paker
Queen Mary, University of London
Department of Computer Science
Mile End Road E1 4NS London-UK
{altilar,silvano, paker) @dcs.qmul.ac.uk

Abstract - This paper presents architectures for Parallel
Digital Video Processing Systems and discusses different
mappings suitable for DSP processors, in particular the
ADSP-21160M SHARC DSP. Our objective is to define
and implement low-cost, scalable and state-of-the-art
systems for real-time digital video processing models. In
this paper, systems hardware is considered extensively
but software issues left untouched unless it is directly
related to the hardware performance. The proposed ideas
and developed system are the results of video stream
processing projects conducted at Queen Mary, University
of London, for almost a decade. Since the data volume
involved in video processing is considerably large, data
movement to and from intelligent frame buffers has to be
optimised to atain good performance out of the
processing system. The architectures are generic in
nature. Although they have been developed for video
processing, any algorithm dealing with huge amounts of
periodic and continuous data can be prospective
applications for the architectures.

Index Terms - Digital video processing, real-time
processing, 1/0 intensive applications, frame buffer, dual
port memory.

L INTRODUCTION

Integrating the software and hardware technologies to
construct and to handle video streams for the broadcast
quality TV productions has been researched extensively
for the last decade. With the usc of high-speed
communication technology coupled with powerful
processors such as SHARC DSP ADSP-21160M, it is
possible to process broadcast quality video sequences in
real-time over a network. Digital video processing
embodies a wide span of applications such as signal
acquisition, production side signal processing,
transmission, receiver side signal processing and signal
presentation, most of which can be addressed by DSP
based processing systems. We have focused on the
production signal processing aspect, which is the most
demanding in terms of the computing power
requirements (Fig.1).

Since computing power to process video is considerable
high, one of the ways to cope with the demands in real-

SHARC? International DSP Conference 2001

Page 336

time, we believe, is combining parallel processing with
an intelligent frame buffer technology.

Comp graphics techniq such as rendering and
radiosity as well as majority of the digital video
processing applicaions such as mixing and
chromakeying are compute intensive processes. These
algorithms have been parallelised for various types of
computer architectures [1]. Most of these algorithms
suffer from the problems such as unbalanced load
distribution and under-utilisation of processors and [/0
channels {2].

Our architectural approach involves the use of computing
clusters based on shared address space multi-processors.
If greater computing power is required then a number of
these clusters may be connected using a dedicated
network to create a larger cluster, which satisfies the
scalability criteria.

The programming approach is Single Program Multiple
Data (SPMD) parallelism. The overall aim is to establish
a real-time digital video processing architecture. Data
distribution, load balancing, processor utilisation and fast
data transfer are the key concems to be addressed.

Digital video processing is known to be one of the most
input/output intensive applications. A one-second
duration PAL sequence of resolution 576x720 can be
represented digitally by approximately 30 MB.
Furthermore digital video processing does not only imply
processing individual frames of a single stream, as in the
case for some image deformation techniques or
chromakeying, but it also involves the processing of more
than one frame taken from different image streams
simultaneously. For example, mixing two frames by
using depth values requires four video streams to be
processed simultaneously, increasing the processing
requirements four fold to a total of 120 MB of data per
second.

The other two important characteristics of video data are
periodicity and continuity,. A PAL video stream
comprises 25 frames per second and a new frame
becomes available for processing every 40 ms. (For
NTSC the standard is 30 frames per second)

ISBN 0-916550-25-7

Queen Mary, University of London (QMUL) is
internationally recognised as one of the pioneering
centres for Parallel Computing and High Performance
Computing. QMUL has been involved in video
processing projects since 1992 funded by national and
international sources such as EPSCRC, RACE, ESPRIT
and ACTS [3]. MONALISA is a virual studio
application developed under the RACE, for which a

demonstration system was developed using 4 Motorola
96002 based processing boards [4,5,6] each consisting of
2 DSPs. AMPA (Advanced Multimedia Parallel
Accelerator) architecture has been designed under ACTS
and ESPRIT as a scalable multimedia processing
architecture, involving the use of multiple TMS320C80
DSP's [7].

Figure 1 Digital Video Processing

it L =
i—i|— fm a|l—
il o - =t
i—f B u

i i a]

Figure 2 Data flow in video processing

The architectures and techniques presented in this paper
have been developed and designed by taking into account
the experiences gained from the aforementioned projects.

Although both hardware and software issues need to be

addressed for the project, we present herein only the
hardware system architectures and closely related

SHARC?® International DSP Conference 2001

Page 337

scheduling and data distribution techniques. Scheduling
and data partitioning approaches have been presented in
previous publications {8,9] while software issues are the
subject of a separate publication yet to be published.

The rest of the paper is structured as follows. Section Il
introduces a generic video processing algorithm

ISBN 0-916550-25-7

classification, the use of the client-server programming
model and the flow of video data in the implementation
of SPMD class of programming. Section [T explains the
essential system architecture and proposes four mappings
on ADSP-21160M utilising different features of the chip.
The impact of the communication between the intelligent
frame buffer and 10P during video processing is and the
list of commands to be processed by the intelligent frame
buffer is given discussed in Section IV. Section V
discusses the use of I/O channels in processing and
different frame buffer management techniques. Section
VI proposes a three-buffer technique for the fastest
throughput for two processors sharing a memory. The
paper ends with a conclusions and further research
section.

I. SOFTWARE ARCHITECTURE AND VIDEO
DATA FLOW IN BRIEF

In video processing applications, processors fulfil two
main roles, i.e. server and client, which are required to
implement SPMD class programming model. A client is
allowed to read/write data from/to the frame buffer under
the authority of the server. In addition, the server is
responsible for partitioning the input data sets and
reconstructing the outputs after the processing has been
completed by the clients. A typical parallel video
processing data flow cycle is given for video-to-video
processing in Fig.2. Data flow starts with the reading of a
single frame by the server (step 1). The server partitions
data by determining pointers or reconstructing the tiles
(step 2). The server sends each client tiles (step 3) and
receives output from clients after processing (step 4). The
server finally reconstructs received data to produce a
single output (step 5) and writes back to frame buffer
(step 6).

The algorithm is data independent which has the benefit
of simplifying the data distributing and load balancing
task by the server during the tiling phase and the frame
reconstruction afterwards. This is because the tile
processing time is equal for every tile; hence, the order
and the periodicity between input and output tiles are
maintained in lock-step. Thus, processed tiles from
clients are returned in the same order that input tiles were
allocated to the clients. It is also assumed that
initialisation and data transfer costs are equal in every
communication session.

Considering the type of applications, the proposed
architecture will serve for:

e stream based computations in which a stream (or a

number of streams) is to be processed
continuously

SHARC® International DSP Conference 2001

Page 338

e frame based computations in which a stream (or a
number of streams) is to be processed frame by
frame

e algorithms that need feedback for forthcoming
steps

e algorithms that never need feedback from the
previous steps

® real-time or non-real-time applications

and considering the input and output data type

video stream to data (stream)
video stream to video stream
data (stream) to video stream
data (stream) to data (stream)

The number of input or output streams could be more
than one as in mixing.

HI. SYSTEMS ARCHITECTURE

The target paralle] architecture is based on the client-
server model having a point-to-point communication
between the host and client processors for control
purposes. The programming model is SPMD (Single
Program Multiple Data) in which the same process
(algorithm) runs on every client processor.

A typical hardware configuration for such a target
comprises a server processor, a frame buffer and a
number of client processors connected via a dedicated
high speed I/O bus and a signal bus (Fig.3). Data
transfers are made over the high speed I/O bus. The
frame buffer is the medium into which a video stream is
written by an input device such as video player or
camera. It is also the final destination for the processed
data written to by the clients. The written data will then
be transmitted to either a display or a high-speed disk for
future use.

Since the frame buffer can accommodate only one I/O
transaction at a time, any access to the frame buffer
should be under the control of the server for the given
architecture.

The server has the added responsibility for controlling the
overall application. It is the server’s responsibility to
initialise clients, to partition data, to send data addresses
to clients to read and write, and to act as general arbiter
of the high speed /O Bus.

Given the internal memory blocks, multiple internal bus
structure, integrated 1/O subsystem and link-port
architecture of the ADSP-21160M SHARC DSP
processor [10], shared memory, distributed memory and
hybrid memory architectures can be realised. As video

ISBN 0-916550-25-7

processing algorithms vary, four generic cluster-based
architectures were defined to fulfil differemt aspects of
video processing algorithms as follows:-

* Standard Video Processing Cluster (VIP-C)

* Video Processing Super Cluster (VIP-SC)

¢ Video Processing Linked Cluster (VIP-LC)

¢ Video Processing Cross Cluster (VIP-XC)

A detailed description of each of these architecture
classes follows (but commonality between the classes are
omitted from B, C and D).

A. Standard Video Processing Cluster (VIP-C)

The VIP-C architecture comprises six ADSP-21160M
SHARC DSP processors, a Dual-Port Shared Memory, an
/O processor and a host processor as shown in Fig.4. The
intelligent frame buffer shown in Fig.4 is not a part of the
cluster. The hardware structure of VIP-C is composed of
three of different elements:

* The host processor running the user interface
modules and the application programs;

® aprocessor pool of 6 ADSP-21160M's; and

* a frame buffer system to which at least one video
input such as camera, video player and one video
output such as video recorder, display are

These elements are linked to cach other over different
mediums such as link port connections, external port bus,
dedicated 1/0 and control connections. Video /O is done
via DI codecs for digital serial video signals according to
the CCIR 601/656 standards.

FIFO-buffered [/O processors (I10Ps) are used to connect
/O devices and clusters to the frame buffer, All transfers
to/from frame buffer is done under the supervision of the
host processor. (Actual transfer is controlled by an
address generator.).

The two main elements of VIP-C are the processor pool
and the frame buffer, The hardware charactenistics of
these elements are given in this section. These
specifications and features are common to the other three
classes of architectures whose descriptions follow and
will, therefore, not be repeated in later sections

attached.
e \
H H I[Standard Bus H Ir
Server Frame C‘l: e;m Elfr:t C}:im
High Speed 1/O Bus (for video

Figure 3 A paraliel video processing system

SHARC® International DSP Conference 2001

Page 339

ISBN 0-916550-25-7

Cluster #1 —
Lt £ :
z|E [<a
i3 I~

L4 5[N
. Nl 'é
. S
3| S
Cluster #n § Hi
""" ctrl. »
MASTER ik
: 1
INTELLIGE ol g
NT = ctrl |
FRAME
A
video ou video in

Figure 5 A Super Video Processing Cluster (SupVIP-C)

The Processor Pool

The processor pool is based on ADSP--21160M SHARC
DSP processors operating at a speed of 80 MHz (480
MFLOPS Peak, 320 MFLOPS sustained). Each ADSP-
21160M has a local dual-ported SRAM of 4 Mbit.
Embedded I/0 Processor provides 6 Link ports for inter-
DSP communication, 2 serial port for serial
communication and DMA controller. External port is
capable of addressing 16 GB (2 GB per processor). Six
ADSP-21160M processors connect to a common bus to
access an external dual-port memory. The external
memory is the video input source as well as video cutput
destination for processor pool. Control of pool processors
and data transfer between pool processors and the host is
done via link port connections. Serial lines are left
untouched since the control will be done via link-port
connections.

SHARC® International DSP Conference 2001

video in

video out

IO Processor

SHARED
MEMORY

link: port
sl-connections.)l

Figure 4 A Video Processing Cluster (VIP-C)

The Frame Buffer

The frame buffer system is used for video input/output.
Itis multitasking /O capabilities facilitate handling of
several independent video streams in real time up to a
total rate of 500 MB/s.

The memory bank has a capacity of 128 MB, which can
be expanded up to 4 GB dynamic RAM. One of the
ADSP-21160M can also take over the tasks done by both
1/0 processor and the host. This slight variation in the
configuration is possible since ADSP-21160 has an
embedded I/O unit. However in this case the controlling
DSP communicates with a computer on which a user
interface would run. If the user interface is not
complicated even serial ports can be used to drive a
terminal.

B. Video Processing Super Cluster (VIP-SC)

This class of architecture is essentially based on the use
of a number of VIP-C units. In order to create more
powerful clusters a modular and scalable architecture
(VIP-SC) is proposed in Fig 5. A number of VIP-C
clusters are used and the control of the intelligent frame
buffer is assigned to the master. The host processors of
each VIP-C maintains local control but communicate
with an overall master which maintains coordination

Page 340 ISBN 0-916550-25-7

among the different VIP-C clusters. This hierarchic order
of command (from master through local hosts to the
cluster processors) regulates super cluster wide processes
as a single SPMD process. The data transfer stans
between the intelligent frame buffer and external memory
of a cluster through 10P, Fast I/O Bus and cluster 10P.
The number of VIP-C clusters depends on the speed of
the Fast /O Bus. It is usual that such constraints stem
from the data transfer side of the process since the
bottleneck of parallel computing is data transmission
rather than computation for most of the video processing
algorithms. The Fast /O Bus should be fast enough to
feed clusters with video data so that processors within
each cluster should never become idle. The ratio of I/O
channel rates and the complexity of the computation
would determine the best number of clusters used in a
particular implementation. Further details describing such
an analysis can be seen in a recent paper [8].

ADSP-21 1600

Figure 6 A Video Processing Cluster (VIP-LC-R)

68 Video Processing Linked Cluster (VIP-L.C)

The VIP-LC architecture is based on a reduced number of
processors (Fig.6) with respect to the constraints of the
six link-port DSP design. There are two essential
differences between VIP-C and VIP-LC. The first one is
the use of ADSP-21160M's as I/O processors since an
embedded 1/0 processing unit exists in each ADSP-
21160M. In this case, ADSP-21160M should

SHARC® International DSP Conference 2001

communicate with the Intelligent Frame Buffer directly.
Section IV describes the system calls to be supported by
ADSP-21160M for use with this architecture. In this
configuration the input and output processors can
additionally perform pre- and post-processing activities
on the frame data if required. VIP-LC involves the use of
link-ports rather than an external memory. The internal
memory which is 4M bits and the link port speed which
is 80MB/s would accommodate most video processing
functions within the 40ms time constraint. Although not
shown in Fig.6 a very small size shared memory is used
for cluster-wide communication purposes.

Page 341

ADSE-20160M

Figure 7 A Video Processing Cluster (VIP-XC-R)

D. Video Processing Cross Cluster (VIP-XC)

In VIP-XC, two ADSP-21160M’s act as 1/O processors
(one input and one output) and also to pre- and post-
prosess frame data when required (Fig.7). The remaining
four ADSP-21160M's, access two separate shared
memory modules simultaneously but in pairs. Access to a
shared memory does not yield performance gain unless
processing and /O durations can be overlapped. An
enhancement is, therefore, proposed in Section VI for this
architecture to improve the performance. Although not
shown in Fig.7 a very small sizc shared memory is used
for cluster-wide communication.

ISBN 0-916550-25-7

among the different VIP-C clusters. This hierarchic order
of command (from master through local hosts to the
cluster processors) regulates super cluster wide processes
as a single SPMD process. The data transfer starts
between the intelligent frame buffer and external memory
of a cluster through 10P, Fast /O Bus and cluster IOP.
The number of VIP-C clusters depends on the speed of
the Fast VO Bus. It is usual that such constraints stem
from the data transfer side of the process since the
bottleneck of parallel computing is data transmission
rather than computation for most of the video processing
algorithms. The Fast /O Bus should be fast enough to
feed clusters with video data so that processors within
each cluster should never become idle. The ratio of I/O
channel rates and the complexity of the computation
would determine the best number of clusters used in a
particular implementation. Further details describing such
an analysis can be seen in a recent paper [8].

ADSH 211606

ADSP- 21 1600

viden out

Figure 6 A Video Processing Cluster (VIP-LC-R)

C. Video Processing Linked Cluster (VIP-LC)

The VIP-LC architecture is based on a reduced number of
processors (Fig.6) with respect to the constraints of the
six link-port DSP design. There are two essential
differences between VIP-C and VIP-LC. The first one is
the use of ADSP-21160M's as /O processors since an
embedded 1/O processing unit exists in each ADSP-
21160M. In this case, ADSP-2]1160M should

SHARC® International DSP Conference 2001

Page 341

communicate with the Intelligent Frame Buffer directly.
Section 1V describes the system calls to be supported by
ADSP-21160M for use with this architecture. In this
configuration the input and output processors can
additionally perform pre- and post-processing activities
on the frame data if required. VIP-LC involves the use of
link-ports rather than an external memory. The internal
memory which is 4M bits and the link port speed which
is 80MB/s would accommodate most video processing
functions within the 40ms time constraint. Although not
shown in Fig.6 a very small size shared memory is used
for cluster-wide communication purposes.

Figure 7 A Video Processing Cluster (VIP-XC-R)

D. Video Processing Cross Cluster (VIP-XC)

In VIP-XC, two ADSP-21160M’s act as 1/0O processors
(one input and one output) and also to pre- and post-
prosess frame data when required (Fig.7). The remaining
four ADSP-21160M's, access two separate shared
memory modules simultaneously but in pairs, Access 1o a
shared memory does not yicld performance gain unless
processing and /O durations can be overlapped. An
enhancement is, therefore, proposed in Section VI for this
architecture to improve the performance. Although not
shown in Fig.7 a very small size shared memory is used
for cluster-wide communication.

ISBN 0-916550-25-7

among the different VIP-C clusters. This hierarchic order
of command (from master through local hosts to the
cluster processors) regulates super cluster wide processes
as a single SPMD process. The data transfer starts
between the intelligent frame buffer and external memory
of a cluster through IOP, Fast I/0 Bus and cluster 10P.
The number of VIP-C clusters depends on the speed of
the Fast /O Bus. It is usual that such constraints stem
from the data transfer side of the process since the
bottleneck of parallel computing is data transmission
rather than computation for most of the video processing
algorithms. The Fast I/O Bus should be fast enough to
feed clusters with video data so that processors within
each cluster should never become idle. The ratio of 1/O
channel rates and the complexity of the computation
would determine the best number of clusters used in a
particular implementation. Further details describing such
an analysis can be seen in a recent paper [8}.

-
25

21160M

ADSH

ADSP-21160M

AIFSP-

video in video out

Figure 6 A Video Processing Cluster (VIP-LC-R}

C. Video Processing Linked Cluster (VIP-LC)

The VIP-LC architecture is based on a reduced number of
processors (Fig.6) with respect to the constraints of the
six link-port DSP design. There are two essential
differences between VIP-C and VIP-LC. The first one is
the use of ADSP-21160M's as /O processors since an
embedded IO processing unit exists in each ADSP-
21160M. In this case, ADSP-21160M should

SHARC?® International DSP Conference 2001

communicate with the Intelligent Frame Buffer directly.
Section IV describes the system calls to be supported by
ADSP-21160M for use with this architecture. In this
configuration the input and output processors can
additionally perform pre- and post-processing activities
on the frame data if required. VIP-LC involves the use of
link-ports rather than an external memory. The internal
memory which is 4M bits and the link port speed which
is 80MB/s would accommodate most video processing
functions within the 40ms time constraint. Although not
shown in Fig.6 a very small size shared memory is used
for cluster-wide communication purposes.

ADSP-21160M

2HIOM

ADSP-

1160M

videoin |

Figure 7 A Video Processing Cluster (VIP-XC-R)

D. Video Processing Cross Cluster (VIP-XC)

In VIP-XC, two ADSP-21160M's act as /O processors
(one input and one output) and also to pre- and post-
prosess frame data when required (Fig.7). The remaining
four ADSP-21160M's. access two separate shared
memory modules simultaneously but in pairs. Access to a
shared memory does not yield performance gain unless
processing and I/O durations can be overlapped. An
enhancement is, therefore, proposed in Section VI for this
architecture to improve the performance. Although not
shown in Fig.7 a very small size shared memory is used
for cluster-wide communication.

Page 341 ISBN 0-916550-25-7

IV. FRAME BUFFER-IOP COMMUNICATION

Performance of a digital video processing system is
highly dependent upon data /O management given the
substantial amount of data to be transferred between
various memory modules. In the proposed gencric
architectures, ADSP-21160M’s are accessing either
directly to the frame buffer or a shared memory.

Although write/read operations can be easily
implemented at higher levels of programming, a lower
level implementation will provide better performance.
The first enhancement for data access is a command
providing a write followed by a read as such a command
will serve to increase the utilisation of the processors.
The treatment of peroidicity and continuity of data source
as indivisable write-read operation provides a good base
for a performance improvement [8]. Therefore any
memory access requirement should be supported by a low
level indivisable write-read operation.

Considering data streams; more than one stream must be
handled. Streams must be identified. In our case names
are attached to streams to access them symbolically.
Streams can be accessible through smaller indexed units,
for this particular case the unit is a frame and the index is
a frame number.

Any memory access mechanism should, thus, provide the
following set of commands (system calls):
write-read(device_no, ch 1_no, r_fil

e r_frame_number, w_filecname, w_frame_number)

* read(device_no, channel_no, filename, frame
number)

e write(device_no, channel_no, filename, frame

number)

attach(device_no, channel_no, direction, filename,

specl, spec2, ...)

detach(device_no, channel_no, filename)

setspec(device_no, channel_no,

filename,

e o & 0

direction,

spec_code, spec_vall,...)

sync(device_no, channel_no, filename, channel id,
filename, synctype)

fastforward(device_no, channel_no, filename,
speedup)
rewind(device_no, [
speedup)
skip(device_no, channel_no, filename, ratio)
repeat(device_no, channel_no, filename, ratio)
setframe(device_no, channel_no, filename,
frame_number)
getframe(device_no, channel_no, filename)

h 1 no. fil

SHARC? International DSP Conference 2001

Page 342

write-read sets the device and channel for
communication and for given write and read files and
frame numbers a write operation is followed by a read
without any interruption

read and write are basic commands for reading and
writing, where a specific value of frame number should
imply continuous real-time reading rather than specific
frame numbers.

attach and detach commands attaches and detaches video
streams to 1/0 channels. Channel control is possible using
these commands. Cluster host or master could decide to
select directions, channels, and IOP’s independently.

setspec is to change/set specifications related 1o the
sequence. For example, frame size, video type (PAL.
NTCS, YUV, RGB, etc).

Figure 8 Standard frame buffer access protocol

sync command is for synchronising two video sequences
for processing. There are two ways to synchronise them,
with respect to time or with respect to frame.

skip command is to skip a frame from a sequence within
a given ratio (e.g. 3 in 5 frames). QoS (Quality Of
Service) issues will require such a command to reduce
the 170 and processing time.

repeat command is to duplicate the last frame in the
sequence.

Jasiforward and rewind is to skip a number of frames in

given direction. The number of frames is determined by
the speedup value desired.

ISBN 0-916550-25-7

Tosk et

—/

Figure 9 Dedicated frame buffer access protocol

sefframe is to make IOP read the sequence beginning
from a particular frame,

getframe is to determine the position of the last frame in
the sequence.

V. THE USE OF DEDICATED IO CHANNELS
AND FRAME BUFFER MANAGEMENT

Previous experiences has shown that dynamic allocation
of communication channel connection of client
processors to the frame buffer may not be fast enough to
cope with real-time constraints of digital video
processing due to the high cost of channel switching [12].
The cost of channel switching is not only due to hardware
switch propagation delay but also due to a hierarchy of
software communication starting from the request of data
form a particular processor producing an address and
settling down for DMA under the control of the host and
for larger clusters, the masters.

Therefore, the frame buffer management is one of the
most important issues that easily influence the -overall
performance of the architecture. The frame buffer acts as
a mounted single level directory (disk space), which
enables us to make memory allocation and memory
management on the principles of a disk management.
Any video sequence should be created (allocated) first
prior to its use. No pre-emption/swap space is available if
there is not enough space to create the specified file.
Processes can link this file through 1/0 Processors. It is
also possible to link to file via different IOPs, which
provides a good way of sharing a frame buffer.

Consider that there is some control software running on
the host (or on the master) controlling the processor pool.
This software consists of a few modules such as a pool
manager, a name server, and an object server just to name
the ones we are interested in for this case. The actual
accesses to the frame buffer are controlled by the name

SHARC® International DSP Conference 2001

Page 343

server, which manages the name table, availability and
access rights. This authorisation mechanism is essential
to prevent conflicting access requests from clusters.

Frame Buffer

Frame Bufter

Figure 12 Dedicated execution mode

The protocol for accessing frame buffer is as follows. A
process sends a message to pool manager to get/put data
from/to a file whose name is submitted literally. The pool
manager asks name server about the existence, (if it
exists) the physical address, and availability of the file.
After having the relevant information about the file, it
initialises the dedicated {/O Processor for the defined task
and sends an acknowledgement to the processor. Having
received the acknowledgement, the processor directly
read/write from/to the frame buffer and never leaves the
control until it finishes its transfer. At the end of the
transfer it sends a massage to pool manager to release the
dedicated I/0 Processor (Fig.8).

Tosk OWWVP'

Pool ’l&
Frame Buff Task 2= [Managée2y ()
, X
Task 4-=22 .
S,

o

wia e
Frame Buﬁé}J TOSK 6.
Task 022
Task) L Sch takes 1he Aot
tviaiopy) Taask 22 pluiilog

Frame Buffe Tosk 4exey,
Task s ooy D fobes tho int
- gon
s TG_Sk 18 Jwatting tof KoPH

Figure 11 Shared memory execution mode

Although this is a generic protocol for a parallel machine
non-shareable source management, tnitialisation and
communication itself, takes a long time. In order to
reduce this delay another dedication-based protocol was
implemented. In that protocol, a process is allocated the
use of an I/O Processor throughout its lifetime (Fig.9).
The protocol explained above takes place only once. And
process accesses frame buffer via the dedicated 1O
Processor without requesting or waiting for any grant
from pool manager. Accessing through only one process
running in the same cluster is the constraint of this
protocol. On top of these two protocols, various kinds of
video sequence access schemes were implemented.

ISBN 0-916550-25-7

Scheme |

Assume that there are eight VIP-C or VIP-LC
constituting a super cluster. The first protocol is used and
eight clusters access the frame buffer in turn. This is
called generic, parallel execution mode (Fig 10). All
requests are handled via queues.

Scheme 2

Assume that there are two VIP-XC constituting a ciuster.
Since every working processor pair will be served by /O
Processors individually we can think of four parallel tasks
running over eight ADSP-21160M's. The first protocol is
used and each working processor pair accesses the frame
buffer in turn. By making use of the shared memory, it is
possible to run processes dealing with the same frame on
the same board. This is called generic, shared memory
execution mode (Fig 11).

Scheme 3

viatopoTaask O > Pool

Frame Buffer Task 1 -« Manag
Task 2 e
Task 3 e
Task 4

Task 5-»
Task 6=
Task 7 %%

Task 0 -

B i

viaopo Task | -

Frame Buffer : R,

\

1D

j

g

\a

Frome Buffer

Hi &

takes the fest

Figure 10 Generic parallel execution mode

Assume that there are two VIP-C or VIP-LC constituting
a super cluster. The second protocol is used and two
processes access the frame buffer. This is called
dedicated simple execution mode (Fig.12). The number
of the clusters depends on the I/O rates of these
connections. It is assumed that I/O bus is fast enough to
drive two I/0 Processor virtually concurrently.

Scheme 4

This scheme was also developed for VIP-XC super
clusters in which the second protocol is used, and by
using shared memory, the number of processors in
scheme 3 was doubled. It is called dedicated, shared
memory execution mode The above four frame
management schemes indicate that the dedicated
approach is preferred in which channels are set once and
kept untouched throughout the process. The use of shared
memory increases the processing power. However,
introduction of a shared memory gave rise to new

SHARC® International DSP Conference 2001

problems. The solutions discussed are particular to the
two-processor architecture (Section VI). Equivalent
solutions may be derived for multi-processor systems
having more than two processors. If it is impossible to
set a dedicated channel, a FIFO buffering system is
essential to cover the probable latency. The I/O Processor
should be equipped with a reasonable size of the internal
FIFO buffer as shown in the architectures above.

TASK A TASK B
Ro |s
Po | s | Po
wﬁ
Ry | s
—
Rlslh®
wl
R

S
_/‘L /—

Figure 13 Usual flow of processors and

signalling
TASK TASKB TASK TASK B
A vy ; Ro | s
Py S, L])) PO
e
W s Ry Ry
>
ARls| A b}
Ry [s | W, e, P,
A
Rz S
—
(a) (b)

Page 344

Figure 14 Virtually concurrent processing scheme

VI. SHARED MEMORY ACCESS FOR THE
FASTEST THROUGHPUT

Consider an application that reads a frame from a frame

buffer, processes it using two DSPs having a shared
memory and writing the result back to frame buffer. This

ISBN 0-916550-25-7

is a standard process for the VIP-XC type architecture.
Assume that processing time is less-than or equal to the
1/0 time. The ultimate aim is to utilise both processors
and I/O channels.

The usual approach for two processors sharing a memory
is shown in Fig.13. Assume that Task A runs on
Processor A and Task B on Processor B. Each processor
processes different parts of the frame. A reads, then
signals B indicating that memory access is permissible.
B accesses the memory and signals A. At this point A
has completed processing and writes back into memory.
The processing continues in this fashion until the entire
frame has been processed. Fig.13 indicates that
inefficiency is possible as B can potentially remain idle
while A writes/reads to/from frame buffer.

In order to increase the utilisation of B, the following
scenario depicted in Fig.14a appears to offer an adequate
solution at first sight. A reads a frame, signals B, they
process together, B signals A, then B reads the second
frame, while it lets A to write first frame back to frame
buffer, and so forth. Although it seems that the utilisation
of B improves, considering the shared resource
(IOP/Frame buffer), they have to wait each other as
concurrent access to IOP/Frame buffer is not permissible.
(Note that depending on the architecture IOP and/or the
frame buffer become unsharable common resource.) As
shown in Fig.14b, the actual flow includes mutual
exclusion while accessing to the IOP/frame buffer. They
can process concurrently using their own memory banks
however I/Q is always virtually concurrent.

The actual solution to that problem is overlapping
processing and frame buffer accessing sessions of the
different processors. However, three buffers and a switch
mechanism are required to enables processors to access
any of the three buffers in turn depending on mutual
signals.

A solution with dependencies (signals and waits) is
proposed in Fig t5. Ignore the first four idle stages of
Task A. Similarly ignore the doammy process P-1 between
to consecutive readings of RO and R1 of Task B. (These
dummy slots - frame read time - are negligible
considering a stream of video.) Task A initially waits on
PO to be read by Task B. Whenever it finishes processing
frame #0, it waits on the Task B to process the same
portion. Task A writes back and send a signal to Task B
indicating that frame #0 is finished, therefore a new
frame (frame #4) can be read. At any time, there are three
frames accessible in this flow. Since read cycle of Task B
corresponds to a process cycle of Task A, and write cycle
of Process A corresponds to a process cycle of Task B.
After every two units of time, a new frame is produced. A

SHARC® International DSP Conference 2001

hardware solution for such an approach will definitely
improve the throughput.

TASK A TASKB
Ro
e
< Py
Ry
Po
Po R2
Wo Py
pl R’
Wy P2
L] Rs
W, N P
P 5 .Jf,,— =
L] Pe
‘/,v
. .
Pr ST Rusy
P
Wia L7 Py
e R
Wy A L™
——

Figure 15 Three buffer scheme

VII. CONCLUSION AND FURTHER RESEARCH

We have proposed several new architecture designs using
state-of-the-art approaches and based on the use of
ADSP-21160M clusters. Within these scenarios, we have
addressed three main problem areas, namely frame
buffer-IOP communication requirements, frame buffer
management and shared memory management. For each
of these areas, we have proposed enhancements and
solutions that would achieve the required level of
performance for a viable real-time multi-streamed video
processing system.

The SIMD architecture of the ADSP-21160M is not
directly exploited since our approach is based on course-
grained, loosely coupled SPMD processing. However
exploitation of the SIMD features of the processor should
be investigated further to achieve the best out of the
technology.

Page 345 ISBN 0-916550-25-7

The scalability issues relating to the proposed VIP-LC
and VIP-XC architectures have not been addressed
sufficiently. Further investigation is essential on this
aspect to cope with different video data sizes.

(1

[2]

3]

(4]

[5]

(6]

171

(8)

[9]

[10]

[

[(12]

VIII. REFERENCES

Whitman S., Hansen D.C., Crockett T.W., Recent
Developments in Parallel Rendering, IEEE
Computer Graphics and Applications, July 1994,
Singh JP. Gupta A, Levoy M., Parallel
Visualisation ~ Algorithms: Performance and
Architectural Implications, [EEE Computer, July
1994,

Gibbs S, Arapis C, Breiteneder C, Lalioti V,
Mostafawy S, Speier J, Virtual Studios: An
Overview, IEEE Multimedia, January-March
1998.

Blondé L, Buck M, Galli R, Niem W, Paker Y,
Schmidt W, Thomas G, A Virtual Studio for Live
Broadcasting: The Mona Lisa Project, 1EEE
Multimedia, Vol. 3 No. 2, Summer 1996.
Proceedings of the European Workshop on
Combined Real and Synthetic Image Processing
for Broadcast and Video Production, Paker Y. and
Wilbur S, (Eds.), Springer, November 1994,

Young E S, Schmidt W, Altilar D T, Paker Y,
Ampa Architecture Specification, Project
Deliverable 1, Nov 1996.

Alilar D T, Paker Y, An Optimal Scheduling
Algorithm for Parallel Video Processing,
Proceedings of International Conference on
Multimedia Computing and Systems'98, Austin
Texas USA, 245-258, July 1998,

Alhilar D T, Paker Y, Minimum Overhead Data
Partitioning Algorithms for Parallel Video
Processing, DDIl - Eleventh International
Conference on Domain Decomposition Methods,
The University of Greenwich, July 1998, ~
ADSP--21160 SHARC DSP DSP Hardware
Reference, Analog Devices, Mass. USA,
November 1999,

[ADSP--21160 SHARC DSP DSP Microcomputer
Data Sheet Revision 0, Analog Devices, Mass.
USA, 2001.

Alilar D T, Paker Y, Sahiner A.V., A Paralle!
Architecture for Video Processing, Proceedingsof
International Conference on High Performance
Computing and Networking (LNCS - 1225)
Vienna Austnia, April 1997,

SHARC? International DSP Conference 2001

Page 346

ISBN 0-916550-25-7

