An Optimal Scheduling Algorithm for Parallel Video Processing

D Turgay ALTILAR
Queen Mary and Westfield College
Department of Computer Science
Mile End Road E1 4NS London -UK
turgay @dcs.qmw.ac.uk

Abstract

We present an optimal scheduling algorithm called
Peripdic Write-Read-Compute (PWRC) scheduling for
warallel video processing. PWRC scheduling exploits
‘ontinuity and periodicity of the video data. Therefore, it is
witable for any rype of periodic data over which daia
ndependent application is ta run. The rarget architecture
s a client-server based system having a poini-to-point
ommunication berween the host any worker processors
vhere SPMD 1ype of programming is assumed. PWRC
‘equires a high level atomic write-read command for data
ransmission. The analysis of the cost model provides
nformation either to form a parallel video processing
mvironment or 1o predict the overall performance of an
wisting sysiem. Meeting real-time requirements of video
wrocessing under PWRC scheduling is discussed as well.

[. Introduction

A parallel video processing scheduling system can be
:onsidered as a real-time processing system with periodic
fata input. Input data for such a real-time system consists
f a number of video sequences that naturally possess
sontinuity and periodicity features. By making use of these
‘eatures predictable and periodic scheduling schemes can
e defined for data independent computation. The
serformance of a scheduling scheme relies upon both the
sjystem architecture and the application. Architectural
yroperties such as I/O bandwidth, processor power, and
lata transmission rate, and preperties of the algorithm such
15 data partitioning (overlapped or non-overlapped), the
1ced of consecutive frames to be processed form the basis
0 define relations among number of processors, required
VO ume, and processing time. In this paper. an optimal
scheduling scheme for parallel video processing system is
efined by taking the utilisation of both I/O channels and
processors into consideration. Although it is stated that the
goal of high performance computing is to minimise the
response time rather than utilising processors or increasing

)-8186-8557-3/38 $10.00 © 1998 IEEE

245

Yakup PAKER
Queen Mary and Westfield College
Department of Computer Science
Mile End Road E1 4NS London -UK
paker@dcs.gqmw.ac.uk

systems throughput [1], we concentrated on wtilisation as
well as the response time. In the literature, there are a
number of cost models [1][2]{3]. The analysis of the new
scheme proposed in this paper has been inspired by a
recent paper of Lee and Hamdi [3] since it comprises
generic units and definitions for a cost model. Having the
same cost model parameters will also provide us z
common platform to compare our algorithm with theirs.
Since a scheduling scheme could be defined with some
system architecture and algorithm variables, one could
define scheduling algorithm prior to the establishment of
the paralle] processing environment and build the parallel
processing machine up by making use of this information.
By thinking the other way around, it is also possible to
predict the overall performance of a given system.

2. Scheduling for client-server based systems

Parallel video processing has two facets: processing and
/0. Since our concern is to define a scheduling aigorithm
to utilise both I/O and processing power of a sysiem, the
characteristics of an application are important as well as
the hardware/sofiware characteristics. We assume that
there is a parallel processing machine attached to a data
storage such as frame buffer or video disk, running with a
client-server model. There is a host processor responsible
for reading data from a video storage, partitioning and
distributing the frame, collecting and re-composing the
output frame, and writing back to video storage. There arc
n worker processors running in SPMD (Single Program
Multiple Data) model. There is no communication among
worker processors. Workers have point-to-point host-
connection, which can be defined in terms of data transfer
rate, latency and packet size. Processor power is defined
as computation time per pixel.

The parallel video processor is assumed to be cquipped
with a high Jevel atomic write-read command which could
be easily realised within high level software for a client-
server based architecture, A host computer ensures that a
data write operation request from a worker processor is
immediately followed by a data read operation.

A number of video processing algorithms require 1two
frames of different sizes 1o be computed. Applications like
motion cstimation [4).{5], edge detection [6]. require
surrounding pixels in addition to the base frame. In this
paper we are interested in algorithms with both of the
above propertics. The host processor (s responsible for
producing overlapped partitions from the raw video data.

2.1. A Scheduling Scheme

By defining a scheduling algorithm we arc aiming at
producing a number of relationships among system
architecture and application parameters.

With the above given architectural requirements, Lec
and Hamdi presented a performance prediction model for
parallel image processing system running convolution in
{3). They produced two equations in this paper. The
number of workstations (7) to achieve minimum execution
tme for convolution type algorithms is:

3
M7y
N = —
alK+ p

and the maximum possible speed-up for parallel execution
of image processing algonthm is approximated by:

+1 4]

2
Wi S @

Aal K+)
where M is the width of coefficient matrix, y is
computation time per pixel, a is the latency time, B is the
data transmission time and K is the packet size 10 be
transmitted through the transmission medium.

They assumed that this program runs over a network of
workstations in a "Host-Node" (client-server) manner. The
paraliel execution time is broken up into four terms; T,: the
host setup time, Ty: the communication time for scnding all
sub-images (matrices) and coefficient matrix, T.: the
average computation ume on a single workstation, Ty: the
communication time for receiving the partial results. Thus,
Tiw= Tat Te+ Te+T4 and if the computation time is too small
with respect to communication time Ty'= T,+Ty+n*T,.
Assuming that Ty, 1s the lower bound execution tme for
parallel processing, they derived further equations using
T instead of T,,,. Communication time consists of two
components, which are «, the latency time, and B,
transmission time per byte. Therefore, for a given daia of
size P, the communication time is a+P. Since data is sent
in packets, acwal communication lime is defined by
Teomn= [P/K 1 0+PB. As the computation is basically a
matrix multiplication, the sub-image computation time is
declared as N’Mlyln. where N7 is the size of image matrix,
M® is the size of coefficient matrix and y is the
computation time per pixel.

{ Second cycle

! First cycle

CPU M1

CPU #2

CPU #3

CPU #4

! Lo i
i 4+ 19 H] [
VO Ch = —f—t =ttt
time e
—>
3 crv 3 vo 3 idie

Figure 1. Processor and I/O channel usage
for four processors.

Although the VO channel is kept busy throughout the
process, the utilisation of the processors is not so good as
secn in Fig.l. Even if the execution time could be made
cqual to the /O duration of all other processors, waiting
for data between cycles introduce an idle duration Ty, that
is the sum of alt other processors’ data read time.

The PWRC scheduling scheme makes use of continuity
and periodicity characteristics of a video stream 10 increase
the utilisation of processors while keeping the /O channel
fully occupicd so that the overall application would run
with less number of processors than the value computed by
Eq.1.

First Second Third
L eyele eycle cycle
CPUM e p——"
i1 R REE
cruazi | IEEN BER
H 1 (I [I |
H [

[L)]

CPUS e T iy
i [1o

3 | '] [
} M [} I [

CPU e il

] |

VOCh, |

-

& -

v

Figure 2. The new scheduling scheme
providing theoretically maximum processing
unit and /O channel utilisation.

246

To keep processors as busy as pussible, they should be
served with new data just after recciving processed data,
which we call indivisible write-read mechanism. This
ensurcs that processors will be busy while a processor is
using the /O channel. A timing diagram for 4 pracessors
running under the proposed scheduling scheme is sketched
in Fig.2. Itis seen that /O channel is fully utilised.

A process running on a CPU takes its turn by writing
output which is immediately followed by a data read which
is then proceeded by a computation stage. Exceptionally,
in the first cycle, single void write sessions take place for
the sake of sycnchronisation. Given the timing diagram,
one can derive the relationship among computing time,
data read time, data write time, and the number of the
processors. Taking the second cycle in Fig.2. as an
example, it is seen that the computation time for the 4"
processor corresponds to the sum of other three processor's
/O time. In general, compute time, T, can be defined as:

Te=(n-1)(Tg+ Tou) (3)

where T, is data read and Ty, 15 data write time.

We assume that the application requires two separate
data blocks: a base frame of size NxN and a sub-frame of
size MxM pixels. Due to the algorithm, we also assume
that, the base frame is accompanied with a surrounding
frame of widih M. Transmission of surrounding pixels
produces a overhead of Oy, The algorithm consists of data
independent operations, thus compute time is propotional
with M?N”. For a paralle] processing system comprising n
CPUs, T, Ty, and Ty, can be given as:

MAN? : :
Z= A ={N—.‘ as+ X g

n nkK n

Ty

H 2 3
[M_ aomipa] 0] f N240, 4
K nK n

where K is the data packet size, a is the latency time, B is
data transmission time per byte, y is the processing time
per pixel, N” is the size of the frame in pixels, Oy total data
overhead due to boundary conditions.

Substituting the given three equations for T, Ty, and
Tew in Eq.3 a second degree equation of n is derived. The
two roots of the function is given as follows:

[E”'T’ot-l}n(m‘.o,-u’b]

Qa+M’ By

Pl

[[ELJOL—I\’:o(ZN‘oO,—M'yJ i Lﬁito’l%;ﬁ}‘”:h’l]

@+ M'fg) e M

"~

247

Two roots are functions of Oy, K, N, M, &, B,and y. The
positive valued root gives the value of n, the number of
processor required. Although the value of Oy depends on
the number of partitions, i.e. n, an iterative computation for
n and O, beginning with upper bound of O, yields a
solution. The value of Oy is at most 10-20% of the actual
data size. Computation of the overhead, Oy and its
minimisation is investigated in a further paper.

A numerical example is given as follows to compare
the performance of the PWRC algorithm with the one
proposed in [3]. For a group of typical values of a
convolution process; N=1024 pixel (of bytes, ic., grey-
level), M=11 pixel, K=1024byte, «=2ms, f=2us, and
y=2us. 63 processor (partition) is required for best
performance according 10 Lee and Hamdi's equation.
However, it dramatically falls to 32 processors (partition)
for our scheduling algorithm,

If the coefficient matrix is sent once every factor related
1o the coefficient matrix size can be ignored since it
happens once at the beginning of the application, it would
take negligible ume considering the overall processing
time. Therefore. there would not be any contribution of
data transfer time due to M. Assuming that the upper
values are close 1o the actual values, one can derive the
following through the same substitutions:

n=(M y/2(awK+B))+1 (@)

Constants reflecting system architecture specifications
could be defined as "Coefficient of Architecture”, 1.c., Cy.

n= (M Cy/2)+1 (5)

As T, is processing time of the computation for a single
processor and T, is processing time for a paralict system
comprising n processors, the speed-up S, can be computed
as follows:

S=T /T, =T/(n(Ty+Ty)) =M Ca/2 (6)

4. Deciding System Architecture Parameters

For real-time video processing, cycle time, which
should be less than 40ms, is the constraint which must be
met. Constdering Fig.2, a way of defining cycle time is:

Toie =Ty + T, +T, @

[(ZN:+O,,)[%+/3)+M’N:7])

Since Egq.8 includes both system parameters and
application parameters. a system architecture can be
defined for a defined application in the light of this

equation, As cycle time is a standard in video processing
environment, we can derive Eq.8 for n. Thus;

n =N (2 WK+B)+ y M) Teyre ®

n =N (CoAyM) /T 0 (10)

where C, is the communication constant of the system

Considering the Eq.10, there is a linear relationship
between system constants and application constants.
However, processing constant has a greater impact on the
number of processors than system communication constant
as it has M~ as a multiplier.

If a distributed system, with typical vaiues of N=1024
pixel (of bytes, i.e., grey-level), M=11 pixel, K=1024byte,
o=2ms, [=2ps, and y=2us, is running to achieve
computation performance of Tgue = 10 seconds, 25
worker processors would be sufficient, For a distributed
video processing system with 32 worker processors, above
given application would run over a single frame in 8.1875
seconds, i.c. Ty = 8.1875 seconds.

This result does not satisfy rcal-time processing
constraint of 40ms per frame for PAL. Even an incrcase in
the number of processor would not allow his system 10 run
in real time. The bandwidth of the system to transfer data
is not sufficient for the given typical characterislic values.
The time elapsed to transmit (read and write) the frame by
neglecting the overhead is defined as:

Tovansmission = 2N((0 /K)+ 3)

AS T runmission 1S 8 seconds for the values given above,
real-time processing requirements can not be fulfitled by
this particular system. However, a parallel system
connected via a high-speed bus or a dedicated network can
meet real-time processing constraint of T ,uumisrion< 40 Ms.

Fig 3. The number of processors wrt C. and
v for M?=9, N? =288x360

248

To design a system, utilising both /O channel and
processors, and running in real-time, the number of
processors can be computed by Eq.10 for the given system
and application parameters with T ;anmirsion< 40 5.

The number of processors required for real time video
processing, i.e., achieving a processing rate of 25
frames/second, with respect to the system parameters (C,
and) for M*=9, N* =288x360 is given in Fig.3

5. Conclusion and Further Research

In this paper, we are proposing an optimal scheduling
algorithm called Periodic Write-Read-Compute (PWRC)
scheduling algorithm, for real-time video processing. The
basic processing algorithm requires two sub-frames of
different sizes. The generic system architecture is based on
client-server modet running SPMD type of programs. A
high level atomic write-read command is the only ad hoc
requirement to realise the PWRC scheduling algorithm. It
is proven that the PWRC algorithm takes the same time to
process video sequence with the half of the number of
processor required in Lee’s algorithm. A number of
relations among system characteristics and application
characteristics have been provided by the further analysis
of PWRC scheduling algorithm. It is shown that either a
parallel video processing system can be built for a given
type of application or the performance of an established
parallel processing system can be examined for
applications with different characteristics by the use of
these relations. The aigorithm is currently being extended
to cover other types of applications encountered mainly in
video encoding and decoding.

6. References

[1]. Crandall P. E., Quinn M. J.. A Partitioning Advisory
System for Networked Data-parallel Processing,
Concurrency: Practice and Experience, Vol.7(5),479-
495,August 1995.

Wetssman J.B., Grimshaw A. S., A Framework for
Partitioning Parallel Computations in Heterogeneous
Environments, Concurrency: Practice and
Experience, Vol.7(5),455-478,August 1995.

Lee C., Hamdi M., Parallel Image Processing
Applications on a Network of Workstations, Parallel
Computing, 21 (1995), 137-160.

[2]

[3)

[4] Weiping L., Chapter 3.2: Motion and Texture
Coding, Circuits and Systems in the Information Age.
(5] ISOMEC JTC1/SC29/WG11, MPEG 4 Video VM

Version 7.0, MPEGY97/N 1642, Bristol, April 1997.
Weems C.C., Brown C., Webb J.A., Poggio T,
Kender J.R., Paralle]l Processing in the DARPA
Strategic Computing Vision Program, IEEE Exper,
23-38, October 1991.

