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Abstract. With the advent of digital TV and interactive multimedia
over broadband networks, the need for high performance computing for
broadcasting is stronger than ever. Processing a digital video sequence
requires considerable computing. One of the ways to cope with the de-
mands of video processing in real-time, we believe, is parallel processing.
Scheduling plays an important role in parallel processing especially for
video processing applications which are usually bounded by the data
bandwidth of the transmission medium. Although periodic real-time
scheduling algorithms have been under research for more than a decade,
scheduling for continuous data streams and impact of scheduling on com-
munication performance are still unexplored. In this paper we examine
periodic real-time scheduling assuming that the application is communi-
cation constrained where input and output data sizes are not equal.

1 Introduction

The parallel video processing scheduling system studied here assumes a real-time
processing with substantial amount of periodic data input and output. Input
data for such a real-time system consists of a number of video sequences that
naturally possess continuity and periodicity features. Continuity and periodicity
of the input leads one to define predictable and periodic scheduling schemes for
data independent algorithms. Performance of a scheduling scheme relies upon
both the system architecture and the application. Architectural and algorithmic
properties enable to define relations among the number of processors, required
1/0 time, and processing time. I/O bandwidth, processor power, and data trans-
mission time, could be considered as architectural properties. Properties of the
algorithm indicate the requirements of an application such as the need of con-
secutive frames for some computation. In this paper, two scheduling and data
partitioning schemes for parallel video processing system are defined by opti-
mising the utilisation of first I/O channels and then processors. Although it is
stated that the goal of high performance computing is to minimise the response
time rather than utilising processors or increasing throughput [1], we have con-
centrated both on utilisation side and response time. In the literature, there are
a number of cost models such as the ones defined in [1],[2],[3],[4],[5] and [6]. We
defined scheduling and data partitioning schemes that can work together. The
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parameters for defined schemes reflect the features of the chosen parallel system
architecture and algorithm class. The defined schemes could be used for finding
the optimal number of processors and partitions to work on for each scheduling
model. In an other way around, system requirements could also be computed for
a specific application, which enables us to build the parallel processing system.

The target parallel architecture is a client-server based system having a point-
to-point communication between the server and client processors, which are re-
quired to implement Single Program Multiple Data (SPMD) type of program-
ming. A typical hardware configuration comprises a server processor, a frame
buffer and a number of client processors connected via a high speed I/O bus
and signal bus. Video data transfer occurs over the high speed I/O bus between
clients and the frame buffer. The frame buffer is a specially developed memory to
save video streams. Since the frame buffer can provide only one connection at a
time, any access to the frame buffer should be under the control of an authority,
the server, to provide the mutual exclusion. The server is responsible to initialise
clients, to partition data, to sent data addresses to clients to read and write, and
to act as arbiter of the high speed I/O bus. No communication or data transfer
exists between client processors.

Digital video processing algorithms can be classified under two groups consid-
ering their dependency on the processing of the previous frames. If an algorithm
runs over consecutive frames independently we call it stream based processing [7]
which is not considered in this paper. If an algorithm requires the output from
the previous frame of a stream, the computation of a frame can proceed when
the previous frame is processed. We call this mode frame by frame processing. In
order to run a frame by frame computation in parallel, a frame can be split into
tiles to be distributed to client processors. These tiles are processed and then
collected by the server to re-compose the single processed frame.

Parallel Recursive (PR) and Parallel Interlaced (PI) scheduling algorithms
are suggested in this paper for parallel video processing applications that require
the output from the preceding frame to start with a new one. Video input/output
is periodic. A new frame appears for every 40 ms for a PAL sequence. Input and
output size are unequal for many of the video processing algorithms . Such as in
mixing two sequences outputs size is roughly one third of the input.

The rest of the paper is organised as follows: Section 2 introduces the mathe-
matical modelling and relevant definitions that are used in analysis of scheduling
models. Equal data partitioning scenarios are discussed and analysed in Section
3. Scheduling for unequal input and output are investigated and new algorithms
are proposed and analysed in Section 4. Section 5 compares all the introduced
methods via a case study. Paper ends with conclusions and further research.

2 Mathematical Modeling and Definitions

Read and write times can be best defined as a linear function of input data size
and bus characteristics. The linear functions include a constant value, p for read
and s for write, which identifies the cost of overhead. These constant costs are
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considered as initialisation costs due to the system (latency) and/or due to the
algorithm (data structure initialisations). Data transfer cost is proportional to
another constant ¢ for read and t for write. Computation time is accepted as
proportional to the data input size. r is computational cost per unit data. It is
important to note that ris not a complexity term. d; indicates the partition of the
data in percentage to sent i*" processor. Throughout the following derivations
only input data size is taken as a variable. Consistant with the existing literature
and cost models referred in the introduction, the developed a cost model includes
first degree equations for cost analysis although numeric solutions always exist
for higher degree equations. For the i* processor read R;, compute C; and write
W, times can be expressed as follows where the sum of all d; is 1;

R; = p+ qdi, C; = Tdi, W; = w + td; (1)

Sending data from frame buffer to client processors, processing in parallel and
receiving processed data from all of the available client processors constitutes
a cycle. Processing of a single frame finishes by the end of a cycle. Since our
intention is to overlap compute time of a processor with I/O times of the others,
starting point of the analysis is always an equation between read, compute and
write times. In order to make a comparative analysis the response time, Tty cie,
is essential. Also note that T}, provides a means to compute speed up.

3 Equal Data Partitioning

Partitioning data in equal sizes is the simplest and standard way of data parti-
tioning to provide load balancing. Data is partitioned into N equal sizes to be
dispatched to N processors. While processors compute their part of data, they
obviously leave the I/O bus free. Utilisation of the I/O Bus depends on these
idle durations. Whenever a processor starts computation another one starts a
read. This continues in the same manner for other processors until the very first
one finishes processing its data and becomes ready to write its output via the
I/O bus. One could envisage a scenario that the computation time of the first
processor is equal to the sum of the read time of others so that no I/O wait time
is lost for the first processor. Therefore, the maximum number of processors is
determined by the number of read time slots available for other processors within
computation time of the first processor. In order to ensure the bus becomes free
when the first processor completes computation, the compute time for the first
processor must be equal to or greater than the sum of all reads. Similarly for the
second processor’s computation time can be defined as the sum of read times
of the successor processors and the write time of the first one. If one continues
for the subsequent processors, it is easy to see that compute time for i** pro-
cessor must be greater than or equal to the sum of read times of the successor
processors and the sum of write times of the predecessor processors. Assuming
that N is the number of processors, to achieve the full utilisation of data bus
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computation time should equal to sum of communication times:

i—1 N
Ci=> Wi+ Y R, (2)
k=1 j=i+1
By substituting definitions of R, Wand C given in Eq.1 in Eq.2 and solving the
produced quadratic function the positive root can be found as follows:

N= (<p— RNy +4pr) J2p 3)

The lower bound of N is the optimal value for N for the utilisation of I/O bus.
Moreover, the cycle time (T,ycie), posing another constraint to be met in real
time video processing can be computed as the sum of all writes and reads, i.e.
Tcycle =2 (|_ij + q)

3.1 Equal Data Partitioning with Unequal I/O

However, when input and output data sizes (or cost factors) become different
equal partitioning can not provide the best solution. There can two cases of
unequal input and output data transfer: input data takes longer to transfer than
output or vice-versa.

Write time greater than read time. The first case is for a generic class of
the algorithms with larger output data size than input such as rendering a 3D
scene. Rendering synthetic images, the data size of 3D modelling parameters
(polygons) to construct the image is less than the rendered scene (pixels). If
processors receive equal amount of data they all produce output after a compu-
tation time which is almost the same for each of them. As writing output data
takes longer than reading input data, the successor processor waits the prede-
cessor to finish its writing back. Although the load balancing is perfect, i.e. each
processor spends the same amount of time for computation, I/O channel is not
fully utilised. In Fig.1a, Lo, L3, and L, indicate the time that processors spend
while waiting to write back to the frame buffer. We keep the same approach as
we analyse the equal input and output case: computation time should overlap
data transfer time (either read or write) of the other processors. It can be seen
in Fig.1a that computation time of the first processor can be made equal to the
read time of the rest of the processors. For the second processor however, the
derivation introduces a new period called L for the idle duration of the processor
as W; Ry (Note that all read times are equal as well as write times). Therefore
the difference between read and write time produces an idle duration for the suc-
cessor processor. The latency for the second processor is L2 = W1 — R2. The
sum of all idle durations for all client processors is Liotal = (N 2_N ) Ly/2 As
shown in Fig.1a, although I/O channel is fully utilised client processors are not.
Moreover, the cycle time is extended by the idle time of the last client processor
taken part in the computation. The overall parallel computation cycle time is:
Tcycle = N(R + W)
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Read time greater than write time. The second generic case (Fig.1b) occurs
when writing takes less time than reading data. Consider motion estimation of
MPEG video compression which reads a core block (called “macro block” in
MPEG terminology) of a by a pixels from the current frame to be matched with
neighbouring blocks of previous frame within a domain of (2b+ 1)(2b+ 1) pixels
centred on the macro block where b could be up to 164 [8]. However the output
is only a motion vector determining the direction of the macro block. The second
step of the derivation introduces a new duration called I for the idle duration
of the I/O bus. The difference between read and write time produces an idle
duration for the I/O bus which can be given as I=R-W. As a processor finishes
writing earlier than the start of writing of its successor there is no queuing effect.
The sum of idle durations of the I/O bus, it Iz, is proportional to the number
processors, It = (N —1)I, and Tyce becomes: Toyere = (2N —1)R+ W.

€ mememem Toyae  _______. > € Toyde ________. >
P1 R1| & |WI2 P1 R1| & I o |
P, R, C 213 P, IRzI C ILZI W, I
Ps | Rsl Cs _wgh Ps IR3I Cs L: W |
Pa : R4I Cs =W. i Pa IR4I Cs La W, _t)
(a) (b)

Fig. 1. Equal data partitioning with (a) write time greater than read time and (b)
read time greater than write time

4 Scheduling for Unequal I/0O

We have shown in Section 3 that equal data partitioning for equal load distri-
bution does not always utilise the I/O channel and/or the processors fully. The
following figures (Fig.2a, Fig.2b and Fig.2c) show the three possible solutions
based on two new partitioning approaches. The main objective is to maximise
I/O Bus utilisation since we assume applications are bounded by data trans-
fer. We also assume that the algorithm is data independent and data can be
partitioned and distributed in arbitrary sizes.

4.1 PR Scheduling and Data Partitioning

Parallel Recursive (PR) data partitioning and scheduling method exploits the
computation duration of a processor for its successor to proceed with its I/0.
As the successor processor starts computation, the next one can start its I/ 0.
This basic approach can be recursively applied until the compute time becomes
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not long enough for read-compute-write sequence of the successor processor.
Although utilisation of the I/O channel would be high, and cycle time would be
better than the equal data partitioning (PE) method, it suffers from the under
utilisation of processors. Recursive structure of the scheduling and partitioning
provides a repetitive pattern for all the processors. Since subsequent processors
exploit duration between read and write times of the first processor, cycle time
is determined by the first processor. The computation time of the first processor
which leaves I/O bus idle is used by the second one. The same relationship
exists between the second processor and the third one and so on. Although read
time is greater than write time in Fig.2a, the following equations are also valid
for the other two scenarios in which (i) write time is greater than read time
and (ii) write time and read time are equal. The first processor dominates the
cycle time. One can define compute time considering Fig 6 for N processors:
C; = Riy1 + Cip1 + Wiy Since the sum of all reads and writes is equal to
Teycte — Cn. Teycle can be derived as follows in terms of system constants:

Np+s)+g+t (p+s)r ()

1_( , )N g+t
qtr+t

Data partitions can be calculated as follows using the relation between two
consecutive data partitions:

Tcycle =

()

dN—TYL =

r 1—alV a—1 a—1

aN—m <N(p+s)+q+t br > aV-m -1
- +b
where a =r/(g+r+t)and b=—(p+3s)/(g+r+1)

The number of processors to maximise the utilisation of I/O channel is also a
question worth considering. The recursive structure of the model leaves smaller
task for a processor than its predecessor. After a number of successive iterative
steps the compute time of a processor will not be sufficient for its successor
for read and write as the overall working time becomes smaller for the successor
processors. This constraint poses a limit for the number of processors. In the case
of computing data partition size for an insufficient slot the computed data size
would be negative. N can be computed numerically via the following inequality:

Na¥(p+s)+q+t, br
t 6
1—a¥N >a71+q+ (6)

4.2 PI Scheduling and Data Partitioning

Parallel Interlaced (PI) scheduling and data partitioning method is another pro-
posed method to maximise the utilisation of the I/O bus. Unlike PR the basic
approach is for each processor to complete its read-compute-write cycle after
its predecessor but before its successor. This is the same approach that we use
to analyse equal input and output. The two other possible scenarios is anal-
ysed in this section. Fig.2a and Fig.2b show the possible solutions for unequal
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Fig. 2. Optimal data partitioning with (a) write time greater than read time and (b)
read time greater than write time

input/output. For the first case given in Fig.2b, since writing requires more
time than reading, computation time should increase with the processor num-
ber in order to accommodate longer writing times. Since read, compute, and
write times are proportional to data size, from Fig.2b we can say that ascending
read, compute and write times increases with the increasing index of processors
provides full utilisation of the I/O channel for an application with longer write
time than read. The second case is shown in Fig.2c where reading requires more
time than writing. Thus, computation time should decrease with the increase of
processor number in order to accommodate shorter writing times. A close look
at Fig.2c shows that with increased processor numbers the read compute and
write times are also increased. So long as the read time is longer than the write
time, the difference reduces the time for the successor processor to read and
compute. Although the difference between write time and read time provides an
additional time for the successor processor in one case (Fig.2b), and reduces the
time for the other case (Fig.2¢) the compute time and response time satisfy the
following equations for both of the cases:

i N
Tcycle = Cz + Z Ry + Z Wj (7)

k=1 j=i
Cit+Wi=Rip1+Cipa (8)

One can solve these equations for d,, as follows
_ _ t—qg+ N(s—p) s—p

dn _ £)" 1 N—n o 9
R A Fr s e O

Thus for a given number of processors N and systems and algorithmic con-
stants, data partitions can be computed. We dealt with a relation between two
consecutive data partitions and which allows us to derive recursively all the oth-
ers. However, since the aim is high utilisation of the I/O channel, data partitions
should also fulfil the constraints. These constraints derived from the relations
between compute time of one processors with read and write times of the others.
We are going to deal with two constraints, which could be considered as upper
and lower bounds. If these two constraints, one is about d1 and the other is
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about dy, are satisfied the in-between constraints will also be satisfied. The first
constraint, for the first processor, is that the sum of consecutive reads exclud-
ing the first one should be greater than or equal to the first compute time, C,
which is a function of di: d; > (p(IN — 1) +¢) /r + ¢q. The second constraint,
for the final processor, is that the sum of consecutive writes excluding the last
one should be greater than or equal to the last compute time, C, which is a
function of dy: di > (s(N — 1) +q) /r + s. If computed data partition size is
less than any of these two limits values, data transmission time will be less than
the compute time which yields poor utilisation of the I/O bus and increase in
cycle time.

5 Comparison of Data Partitioning Schemes

In order to compare the given three methods, PE, PR, and PI, data partitions
and cycle times for a single frame (T¢yce) have to be computed. This comparison
will indicate the shortest cycle time which is crucial for real-time video process-
ing. On the other hand, there are constraints to be satisfied in order to utilise the
I/O channel. Fig.3 and Fig.4 give a brief information about the data partitions
with constraints and cycle times. Since we are dealing with a colour PAL video
sequences of 576*720 pixels, 24 bit colour and 25 frames per second a single PAL
frame is approximately 1.2 Mbytes and has to be processed within 40 ms.

The algorithm considered in this example is mixing which requires three
video streams: two streams to mix and one alpha frame to define the layering.
Initialisation for reading which includes both algorithmic and systems delay is
assumed to be 3.00 ms. Initialisation duration for writing is assumed to be less
than reading and is 1.20 s, i.e., p=3.00 ms and s=1.20 ms. Assuming that the bus
is rated 1GBytes/sec and since three streams are required for input and one is
produced for output for mixing overall read and write times are R yerqi=3.6ms
and Woyeraun=1.2ms. Therefore ¢=3.60ms and ¢=1.20 ms. Given a CPU with a
clock rate of 300MHz, assume that the algorithm requires 30 cycles per pixel
- which can be found either by rehearsal runs on a single CPU or analysing
the machine code of the program - to compute ends with a total processing
time Woyerqn 120ms i.e, r=120 ms. Fig.3 and Fig.4 are produced for p=3.00
ms, ¢=3.60 ms, =120 ms, s=1.20 ms, and ¢=1.20 ms with regard to the given
analysis and derived equations. Partition percentages and cycle times per frame
for equal partitioning (PE) method is given in Table.1l. The first row of the
table indicates cycle times for different numbers of processors. Obviously the
best result is 43.00 ms for 6 processors. The last two lines of constraints for data
partitions are also satisfied for 6 processors. Therefore the best overall process
cycle can be declared as of 6 processors. Data partitions would be equal for
processors and each processors would receive approximately 17% of the input to
process. However overall processing time of 43ms does not satisfy the real-time
constraint of video processing for a PAL sequence of 25 frames per second. The
number of processors can be computed by Eq.3 as 6.3195. The lower bound of N
is equal to 6. Therefore 6 processors give the best solution for highly utilisation of
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Fig. 3. Data partitions and cycle times for PE and PR

I/0O channel. Rounding the number to its lower bound yields a deviation from the
optimal solution. Fig.3 shows the results for recursive partitioning (PR) method.
Best cycle time is found for 7 processors, i.e., 37.45 ms. As PR method is recursive
there is no constraint due to the data size except for the fact that partitions
should be positive percentages. For eight processors, the size of data partition
for the eight processor is computed to be less than zero. Therefore the maximum
number of processors for this case is 7. The results for interlaced partitioning is
shown in Fig.4. The best overall cycle time is 36.82ms for 8 processors. However
partitions given for 8 processors do not satisfy the constraints given in last two
rows of the table. The first column fulfilling the constraints is for 7 processors.
The overall cycle time is 36.85ms which also satisfies 40 ms maximum processing
time constraint. The cycle time values for the three methods are drawn in Fig.4.

Obviously PI has the best performance, where PR, comes the second and PE
the third. One can see the change of slopes of the curves at different values. The
point on which slope is zero indicates optimum number of processors to provide
the shortest cycle time if this value satisfies the constraints as well.

6 Conclusion and Further Research

In this paper, we proposed two optimal data partitioning and scheduling algo-
rithms, Parallel Recursive (PR) and Parallel Interlaced (PI), for real-time fram
by frame processing. We also provide analysis and simulation results to com-
pare these two with the conventional Parallel Equal (PE) method. We aimed
at highly utilisation of I/O bus or I/O channel under the assumptions of being
dealt with data bandwidth bounded applications having different input and out-
put data sizes. The proposed algorithms are developed considering some parallel
digital video processing applications representing a wide range of applications.
These algorithms apply on any data independent algorithm requiring substantial
amount of data to process where arbitrary data partitioning is available. In the
systems side, an optimal value for the number of processors can be computed
for given characteristics of both application and systems which is modeled with
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Fig. 4. Data partitions and cycle times for PI and comparison of cycle times

five parameters. Suggested algorithms were evaluated only on a bus based archi-
tecture with video based applications in this paper. Hierarchical structures such
as tree architectures, mathematical applications such as domain decomposition
are yet to be investigated using the same cost model and analysis method.
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