
An Optimal Scheduling Algorithm for Stream
Based Parallel Video Processing

D. Turgay Altılar1 and Yakup Paker2

1 Dept. of Computer Engineering, İstanbul Technical University
Ayazag̃a Campus, Maslak, 34457, İstanbul Turkey

altilar@itu.edu.tr
2 Dept. of Computer Science, Queen Mary, University of London

Mile End Road, E1 4NS, London, United Kingdom
paker@dcs.qmul.ac.uk

Abstract. We present a new optimal scheduling algorithm called Peri-
odic Write-Read-Compute (PWRC) scheduling for stream based parallel
video processing. Although PWRC scheduling exploits the properties of
the video data, it is applicable to any type of periodic data over which
a data independent application is to run. The PWRC algorithm is de-
signed considering a bus based parallel architecture allowing point-to-
point communication between host and workers. The PWRC requires a
high level atomic write-read command for data transmission which can
be created in various ways. The analysis of the PWRC provides infor-
mation either to form a parallel video processing system or to predict
the overall performance of an existing system in order to meet real-time
requirements of video processing.

1 Introduction

A parallel video processing system can be thought as a real-time processing
system with periodic data input. We believe that scheduling for such a system
should exploit input-output characteristics in order to cope with real-time re-
quirements. Input data for such a real-time system naturally possess continuity
and periodicity features. In this paper, we dealt with data independent com-
putations over video streams, i.e., computation time is proportional with the
data size. Continuity and periodicity of input and output decoupled with data
independency of the application provide us with a base to define an optimal
scheduling algorithm.

The performance of a scheduling algorithm relies upon both the architectural
properties of the system such as I/O bandwidth, processor power, memory size,
and the properties of the application such as data dependency, data partitioning.
For example the need of consecutive frames makes a great difference in the design
of scheduling algorithms for video processing. In this paper, we dealt with only
stream based video processing algoritms. Initial results of such algorthms is
discussed in [3]. Scheduling for frame by frame processing were given in another

A. Yazici and C. Şener (Eds.): ISCIS 2003, LNCS 2869, pp. 731–738, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

732 D.T. Altılar and Y. Paker

paper[2]. However, our approach is the same for both: utilising both I/O channels
and processors while minimising the response time.

Given a number of cost models [1],[4],[5],[6],[7], and [8] the analysis of the
proposed schemes has been inspired from a recent paper of Lee and Hamdi [6]
comprising generic units and definitions for a cost model. Having the same cost
model parameters will also provide us with a common base to compare our
algorithm with theirs.

In this paper, we will show that for a given system and algorithm, a scheduling
method can be defined and the overall system performance can be predicted.
Since a scheduling scheme could be defined according to system architecture and
algorithm variables, parallel processing architecture variables such as processor
power and bus rate can also be calculated, for a given algorithm and a given
scheduling method.

The proposed scheduling algorithm relies upon an indivisible write-and-read
command to access continuous data storage medium. The considered parallel
processing environment has a write-and-read command, which can be imple-
mented as a high level atomic command. The algorithms mentioned in this paper
were designed, developed and analysed for a bus based parallel system having
a client-server model running Single Program Multiple Data (SPMD) type pro-
grams. The target architecture is a client-server based parallel system having a
point-to-point communication between the server and client processors. A typ-
ical hardware configuration comprises a server processor, a frame buffer and a
number of client processors connected via a high speed I/O bus and a signal bus.
Data transfer occurs over the high speed I/O bus to and from the frame buffer.
The frame buffer is the medium that a video stream is written via an input de-
vice such as video player or camera. Processed data is also written to the frame
buffer. No communication or data transfer exists between client processors. A
client is allowed to read/write data from/to the frame buffer under the control
of the server.

The rest of the paper is organised as follows: Section 2 introduces the cost
model with reference to Lee and Hamdi [6]. PWRC Scheduling is defined, dis-
cussed, analysed and performance comparisons are given in Section 3. Section 4
explains the use of the PWRC to decide system parameters of a parallel system
to be build. Paper ends with conclusions and further research.

2 A Scheduling Scheme

For a loosely coupled, client-server type programming environment, Lee and
Hamdi presented a performance prediction model for a parallel image processing
system running convolution in a recent paper [6]. The application they considered
is an image convolution program running over a network of workstations in a
”Host-Node” (client-server) manner. The number of workstations, n, in order to
achieve the minimum execution time and the approximate value of maximum
speed-up, S, for parallel execution are given as follows:

n =
M2γ

α/K + β
+ 1 S ≈ M2γ

2(α/K + β)
(1)

An Optimal Scheduling Algorithm 733

where M is the width of coefficient matrix to be used for convolution, γ is
computing time per pixel, α is latency time, β is data transmission time per byte
and K is data packet size.

For a given data of size of P bytes, the communication time is is defined
by Tcomm = �P/K�α + Pβ. The sub-image computation time is declared as
N 2M 2γ/n, where N 2 is the size of the image matrix.

Input/output time is longer than the processing time per processor. There-
fore, processors are likely to queue up for input/output which yield long idle
durations for processors. The scheme aims at the full utilisation of the I/O
channel without paying much attention to the utilisation of CPUs (Fig.1a). Al-
though the I/O channel (or host CPU dispatching the partitioned data) is being
kept busy throughout the process, the processors are not highly utilised (Fig.1a).
Even if execution time could be made equal to the sum of I/O durations of all of
the other processors, waiting for data between cycles introduces an idle duration
Tidle for a system with n client processors:

Tidle = (n − 1) x data read time per processor

This duration becomes very significant with finer granularity. This scheduling
scheme does not consider continuous and periodic nature of the video sequences.
Processing with a frame starts after the previous one. Waiting between frames
introduces idle durations for processors. The approach that we adopt is to min-
imise the idle duration of processors, if not to totally eliminate it.

Read CPU Idle Time Write

CPU #1

CPU #2

CPU #3

CPU #4

I/O
time

First cycle Second cycle

(a)

Read CPU Idle Time Write

CPU #1

CPU #2

CPU #3

CPU #4

I/O
time

First cycle Second cycle
Third cycle

Production cycle

(b)

Fig. 1. Processor and I/O channel uses for 4 processors for a)Lee&Hamdi b)PWRC

3 Periodic Write-Read-Compute Scheduling

The PWRC aims to increase the utilisation of the processors while keeping the
I/O channel fully occupied by exploiting the continuity and periodicity of the
input data. In order to keep a processor as busy as possible in such a parallel
system, a processor should receive the new data just after it sends (writes back)
processed data. An indivisible write-read mechanism could be implemented even
at high level programming. Since the processors are supplied with new data

734 D.T. Altılar and Y. Paker

as soon as it writes the previous result, the I/O channel will be released and
processing will start immediately. If the processing times for the processors are
overlapped with the I/O channel accesses of the other processors, full utilisation
of the processors and the I/O channel will be achieved. A timing diagram for 4
processors running under the proposed scheduling scheme is sketched in Fig.1b.
Except for the very first cycle of the processing, which is negligible considering
the whole process the I/O channel is kept fully utilised. Given the timing diagram
in Fig.1b , the utilisation of processing units are at their maximum and the I/O
channel is also fully utilised after the first cycle.

3.1 Performance of the PWRC Scheduling

We are going to consider two metrics to compare the performance of two schedul-
ing methods: cycle time and production time. The cycle time is dominated by
the total data transmission (read and write) time required by the client proces-
sors for processing systems since I/O is dominant. The production time is as
the same as the cycle time for Lee and Hamdi’s method (Fig.1a) However, in
PWRC, production time corresponds to lifetime of a frame in parallel process-
ing system(Fig.1b). Accepting that data transmission time per processing unit
is the same for every processor, cycle time, Tcycle, and computation time, Tc, for
n processors are defined as follows:

Tcycle = n(Tdr + Tdw) (2)

Tc = (n − 1)(Tdr + Tdw) (3)

where Tdr is data read and Tdw is data write time.
Considering the convolution application and given metrics in [6], it is assumed

that the application requires two separate data blocks: a base frame of size NxN
and a sub-frame of size MxM pixels. Transmission of surrounding pixels produce
data overhead of Od. Computing time is propotional to M2N2. Therefore, the
processing time for each CPU, Tc, can be given as follows:

Tc =
M2N2

n
γ (4)

Data read Tdr and data write Tdw durations are:

Tdr =
M2

K
α + M2β +

N2 + Od

nK
α +

N2 + Od

n
β (5)

Tdw =
N2

nK
α +

N2

n
β (6)

Substituting Eq.4, Eq.5 and Eq.6 in Eq.3 and solving for n, we obtain

n2(α + M2β) + n

((
N2 + Od

K
− 1

)
α +

(
2N2 + Od − M2)β

)

−
((

2N2 + Od

)(
α

K
+ β

)
+ M2N2γ

)
= 0 (7)

An Optimal Scheduling Algorithm 735

The roots of such a second degree equation can be given as follows:

n1,2 = −




(
2N2+Od

K − 1
)

α +
(
2N2 + Od − M2

)
β

2(α + M2β)




±

√√√√√



(
2N2+Od

K − 1
)

α + (2N2 + Od − M2) β

2(α + M2β)




2

+

(
(2N2 + Od)

(
α
K + β

)
+ M2N2γ

)
α + M2β

(8)

The positive valued of n shows the required number of processors. Although
the value of Od depends on the number of partitions, i.e. n, an iterative com-
putation for n and Od beginning with the upper bound of Od yields a solution.
The value of Od is at most 10-20% of the actual data size.

A numerical example is given below to compare the performance of the
PWRC algorithm with the one proposed in [6]. For a group of given typical
values for a convolution process; N = 1024pixels (of bytes, i.e., grey-level),
M = 11pixels, K = 1024bytes, α = 2ms, β = 2µs, and γ = 2µs, 63 pro-
cessors (partitions) are required for the best performance with respect to Lee
and Hamdi’s equation. However, we find that this figure dramatically falls to 32
processors (partitions) if PWRC is used under the same conditions.

4 Deciding System Hardware Architecture Parameters

On the other hand, it would be sufficient to send the coefficient matrix once
in the cases of video processing processes. If the coefficient matrix is sent once,
every factor related to the coefficient matrix size would be ignored. Assuming
that the upper values are close to the actual values and Od � N2 read and data
write time could be defined as follows:

Tdr =

(
N2

n

)
(

α

K
+ β) and Tdw =

(
N2

n

)
(

α

K
+ β)

Having the above equations, n can be computed as follows:

n =
1
2
M2 γ

(α
K

+ β)
+ 1 (9)

Eq.9 indicates the relation among the number of processors, the coefficient
matrix size and the system coefficients. Surprisingly, the number of processors be-
comes independent of the size of the image. Eq.9 also indicates that the minimum
execution times can be achieved by using half of the processors with PWRC. We
defined the system architectural constants under a single name ”Coefficient of
Architecture”, i.e., Ca and compute the speed-up value for a parallel system
having n processors as follows:

S =
1
2
M2Ca + 1 (10)

736 D.T. Altılar and Y. Paker

The speed-up value is also independent of the number of processors in the
system. However, both Eq.9 and Eq.10 includes hidden interdependences. Con-
sidering Fig.1b and having the same assumptions given above we can derive
Tcycle and compute it in another way:

Tcycle = Tdw + Tc + Tdr =
N2

n

(
2
(

α

K
+ β

)
+ M2γ

)
(11)

Since α, β, and K are communication related parameters, we defined ”Co-
efficient of Communication” ,i.e. Cc, by those parameters. Thus, the number of
processors became:

n =
N2

Tcycle

(
2
(

α

K
+ β

)
+ M2γ

)
=

N2

Tcycle
(Cc + M2γ) (12)

When Eq.12 is solved for Tcycle

Tcycle =
N2

n
(Cc + M2γ) (13)

If a processing system, with typical values N=1024 pixels (of bytes, i.e., grey-
level), M = 11pixels, K = 1024bytes, α = 2ms, β = 2µs, and γ = 2µs, runs
to achieve computation performance of Tcycle = 10seconds, 25 client processors
would be sufficient. For a video processing system with 32 client processors,
the above given application would run for a single frame in 8.1875 seconds, i.e.
Tcycle = 8.1875seconds. It is obvious that these values are far from the real-time
processing constraint of 40 ms per frame for PAL standard. Even an increase
in the number of processors would not allow this system to run in real time.
The bandwidth of the system for transferring data is not sufficient for the given
typical characteristic values. The time elapsed to transmit (read and write) the
frame by neglecting the overhead is defined as:

Ttransmission = N2Cc (14)

Ttransmission = 8seconds for the above example. Therefore, a more powerful
data transmission system is required to provide real-time processing. Actually
a parallel system connected via a high speed bus or a dedicated network would
provide the required system characteristics for a real-time processing system,
i.e., Ttransmission = 40ms. To design such a system, utilising both I/O channel
and processors, and running in real-time, one should calculate the number of
processors by Eq.12 for a given system and application parameters providing
Ttransmission = 40ms.

The number of processors required for real time video processing, i.e., achiev-
ing a processing rate of 25 frames/second, with respect to the system parameters
(Cc and γ) for different values of M2 and N2 are given in Fig.2a for M2 = 9 and
N2 = 288x360; Fig.2b for M2 = 25 and N2 = 288x360; and Fig.3 for M2 = 9
and N2 = 576x720.

Fig.4a and Fig.4b show the value of Cc with respect to real system parameters
of α, the latency time and β, data transmission time per byte. The comparison
of the two graphs shows that the impact of the latency time is dominant as well
as the packet size in determining the system communication parameter, Cc.

An Optimal Scheduling Algorithm 737

0

0
.8

1
.6

2
.4

3
.2 4

4
.8

5
.6

0

0.48

0.96
0

5

10

15

20

25

30

35

40

number
of

procs.

Cc (in µs)

Cp (in µs)

35-40

30-35

25-30

20-25

15-20

10-15

5-10

0-5

γ

(a)

0

0
.8

1
.6

2
.4

3
.2 4

4
.8

5
.6

0

0.48

0.96
0

10

20

30

40

50

60

70

80

90

number
of

procs.

Cc (in µs)

Cp (in µs)

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

(b)

γ

Fig. 2. Number of processors wrt Cc and γ for N2=288x360 a)M2=9 b)M2=25

0

0
.8

1
.6

2.
4

3.
2 4

4.
8

5.
6

0

0.48

0.96
0

20

40

60

80

100

120

140

160

number
of

procs.

Cc (in µs)

Cp (in µs)

140-160

120-140

100-120

80-100

60-80

40-60

20-40

0-20

 γ

Fig. 3. Number of processors wrt Cc and γ for N2=576x720 M2=9

0

6

12

18

24

30

36 0 60
0

12
00 18

00 24
00 30

00

0

1

2

3

4

5

6

Cc

(in µs)

β
(in µs)

α
(in µs)

5-6

4-5

3-4

2-3

1-2

0-1

(a)

0

6

12

18

24

30

36 0 60
0

12
00 18

00 24
00 30
00

0

0.5

1

1.5

2

2.5

3

3.5

Cc

(in µs)

β
(in µs)

α
(in µs)

3-3.5

2.5-3

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

(b)

Fig. 4. Cc wrt α and β for a)K=1024 bytes b)K=2048 bytes

738 D.T. Altılar and Y. Paker

5 Conclusion

A new and optimal scheduling algorithm called Periodic Write-Read- Compute
(PWRC) scheduling algorithm for real time video processing is defined and anal-
ysed. It requires a high level atomic write-read command. Since it is easy to
implement such an indivisible command in high level programming, it does not
introduce a new problem. The generic system architecture is based upon a client-
server model having point-to- point communication between the host and every
client processor. It has been shown that the proposed scheduling algorithm takes
the same time to process video sequence with half the number of processors re-
quired in [6].

Further analysis of the PWRC scheduling algorithm yields a number of equa-
tions expressing the dependencies of the system characteristics, a communication
constant, Cc, a processing constant γ, an architectural constanti, Ca and appli-
cation characteristics such as the size of the frame and width of the surrounding
pixel frame. It is shown that either a parallel video processing system can be built
up for a given type of application or the performance of an established parallel
processing system can be examined for applications with different characteristics
by the use of these equations.

References

1. Agrawal R, Jagadish H V, Partitioning Techniques for Large-Grained Parallelism,
IEEE Transactions on Computers, Vol.37, No.12, December,1988.

2. Altilar D T, Paker Y, Optimal Scheduling Algorithms for Communication Con-
strained Parallel Processing, Lecture Notes in Computer Science 2400, Euro-Par
2002, 27th – 30th August, Paderborn, Germany.

3. Altilar D T, Paker Y, An Optimal Scheduling Algorithm for Parallel Video Pro-
cessing, Proceedings of International Conference on Multimedia Computing and
Systems’98, Austin Texas USA, 245–258, July 1998.

4. Crandall P. E., Quinn M. J., A Partitioning Advisory System for Networked Data-
parallel Processing, Concurrency: Practice and Experience, 479–495, August 1995.

5. Culler D, Karp R, Patterson D, Sahay A, Schauser K, Santos E, Subramonian R
and Eicken T, LogP: Towards a realistic mode of parallel computation, Proceed-
ings of 4th ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, Vol.28, May 1993.

6. Lee C., Hamdi M., Parallel Image Processing Applications on a Network of Work-
stations, Parallel Computing, 21 (1995), 137–160.

7. Moritz C A, Frank M, LoGPC: Modeling Network Contention in Message-Passing
Programs, ACM Joint International Conference on Measurement and Modeling of
Computer Systems, ACM Sigmetrics/Performance 98, Wisconsin, June 1998.

8. Weissman J.B., Grimshaw A. S., A Framework for Partitioning Parallel Compu-
tations in Heterogeneous Environments, Concurrency: Practice and Experience,
Vol.7(5),455–478,August 1995.

	Introduction
	A Scheduling Scheme
	Periodic Write-Read-Compute Scheduling
	Performance of the PWRC Scheduling

	Deciding System Hardware Architecture Parameters
	Conclusion

