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Sequence patterns are frequently employed in many expert system applications in a wide range of
domains from bioinformatics to smart homes and stock market analysis. Regular sequence patterns fail
to express whether two consecutive items in a pattern are occurring right after each other in all pattern
occurrences in an item database or not. Such a differentiation may be important for many intelligent sys-
tem applications, for instance, to better address business questions like ‘‘should two frequently-bought-
together items be located right next to each other on a retail store shelf, or is it ok to place them at some
distance as long as they are in the same aisle?”. In this paper, we propose a novel type of sequence pat-
tern, called ‘‘positional sequence patterns”, and illustrate its application on a special expert system, i.e.,
the query planner/optimizer of a database management system. Positional sequence patterns allow to
accommodate extra information regarding whether a frequent ordered item pair always occurs next to
each other without any gap in between in all pattern occurrences. Since positional sequence patterns
are not considered by the existing sequence pattern mining algorithms, we also propose an algorithm
to mine them. Next, we integrate the positional sequence patterns into the selectivity estimation compo-
nent of the query optimizer as an expert system application. More specifically, in the knowledgebase of
the query optimizer, a histogram-like structure of positional sequence patterns are created and stored.
Then, during query optimization time, these histograms are utilized to infer the selectivity of flexible text
queries that are enabled by the SQL LIKE operator. In particular, the proposed selectivity estimation
method employs redundant pattern elimination based on pattern information content during histogram
construction, and a partitioning-based matching scheme. The experimental results on a real dataset from
DBLP show that the proposed approach outperforms the state of the art by around 20% improvement in
error rates.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Frequently occurring orders of items and events, called sequence
patterns, are of interest for many expert and intelligent system
applications (Fournier-Viger et al., 2017; Pokou et al., 2016;
Schweizer et al., 2015). There exists a number of sequence mining
algorithms (Le et al., 2017; Pei et al., 2004; Pasquier, Bastide,
Taouil, & Lakhal, 1999; Wang, Han, & Pei, 2003; Wang & Han,
2004; Yan, Han, & Afshar, 2003; Zaki and Hsiao, 2000). Some of
these works generate all possible patterns, while others eliminate
‘‘redundant patterns”, and generate only so-called ‘‘closed
sequence patterns”. However, the generated regular sequence pat-
terns do not differentiate between whether two consecutive items
in a pattern are always occurring right after each other with no
other items in between or not. As an example, a given character
sequence pattern ‘‘A B C” may mean that in the corresponding
database, ‘‘A” and ‘‘B” may always occur together as ‘‘AB” with
no other characters in between, or there may be a long and varying
sequence of other characters between ‘‘A” and ‘‘B” in different
occurrences of the pattern. Such a differentiation may be impor-
tant for some expert and intelligent system applications. As an
example expert system application, in this paper, we consider
the query optimizer of a database management system. In a data-
base management system, the query optimizer is responsible for
generating the most efficient query execution plan by considering
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Table 1
Non-matching query statistics for each minsup value.

Minsup 1% 1.5% 2%

Query Group 1st group 2nd group 1st group 2nd group 1st group 2nd group

Number of non-matching queries 42 25 49 25 52 30
Average row count for non-matching queries 4288 9978 5657 8448 5645 10,801
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different access paths, join orders, join methods, etc. In this con-
text, the query optimizer may itself be considered as an expert sys-
tem with a knowledgebase that stores different query
transformation rules as well as various forms of database statistics.
Using this knowledgebase, the query optimizer employs its built-in
intelligence capabilities to automatically construct the execution
plan with the lowest computing requirements. A critical task of
the optimizer while deciding on the most optimal query plan is
to estimate the selectivity of each predicate in a query. The selec-
tivity of a predicate p indicates the fraction of database rows that
would be retained after applying p as a filter on the rows. The opti-
mizer estimates a predicate’s selectivity usually based on statistics
gathered from the database and stored in its knowledgebase (i.e.,
the database catalog) before query time (i.e., offline). With
number-typed data, the query optimizers usually come up with
sufficiently accurate predictions owing to vast past research. On
the other hand, for predicates on text-based data, it is still a chal-
lenge for query optimizers to come up with reliably accurate selec-
tivity estimates. The main reason for this disparity is that
predicates on text-based data often contain flexible patterns that
maymatch a wide array of rows. In contrast, predicates on numeric
data are strict and well-formed. The particular need for flexible
predicates on text data results from the fact that textual data is fre-
quently not clean with many misspellings and typographical
errors. Especially with the explosion of internet resources, the
‘‘dirtiness” of textual data is even more evident. Furthermore,
due to the nature of the text data, shared character sequences
(e.g., prefixes, suffixes, etc.) often determine a particular class of
data rows that database users may often be interested in. SQL pro-
vides the LIKE operator to allow formulating wildcard predicates
on text data. For instance, the predicate, name LIKE ‘Luck%’, returns
all the names that start with ‘Luck’. Accurately predicting the selec-
tivity of such flexible predicates on text data is still an open
research problem.

There are several works (Jagadish, Ng, & Srivastava, 1999;
Jagadish, Kapitskaia, Ng, & Srivastava, 2000; Krishnan, Vitter, &
Iyer, 1996; Lee, Ng, & Shim, 2009, Aytimur & Çakmak, 2018) in
the literature which study the selectivity estimation of the wild-
card predicates. The majority of past studies often assume that
the predicates are in the form of %w% where w represents several
characters, and they perform poorly (Lee et al., 2009) for more gen-
eric queries that are in the form of %s1%s2%. . .%sn% where si repre-
sents one or more characters. Besides, the main characteristic of
these techniques is that they process all or a large set of row ids
in the database during selectivity prediction. Processing such large
data for each query during optimization time (i.e., online) suffers
from memory and execution time overhead.

We recently proposed an algorithm, called SPH, to predict the
selectivity of LIKE query predicates (Aytimur & Çakmak, 2018)
using regular sequence patterns. In SPH approach, first, frequent
sequence patterns are computed from the database before query
time. Then, a histogram structure is built out of the discovered pat-
terns. In order to estimate the selectivity of a given LIKE predicate,
the precomputed histogram is exploited during query optimization
time. While SPH works reasonably well in many settings, it often
overestimates the selectivity of LIKE predicates that are in the form
of %s1s2% s3%s4s5%. . .%sn%where each si represents a single character.
We give an example.
Example:. Let ‘‘%A%B%C%D%A%” be a sequence pattern stored in a
histogram with frequency 10. If LIKE predicate p is ‘‘%AB%C%DA%”,
then SPH estimates the number of rows in the result set of this
query as 10 based on the above histogram endpoint pattern.
However, the true frequency of such a predicate may often be
significantly less than 10.

We observe three factors that contribute to the overestimation
in SPH as follows:

(i) The employed patterns are too generic, whichmakes SPH fail
to differentiate the consecutively placed characters from
those that are not strictly consecutive and may have some
other characters between them.

(ii) Histogram endpoints are often occupied by patterns that
have high frequency and are almost completely subsuming
one another with little difference in the information that
they provide. This greatly narrows down the coverage and
diversity of SPH histograms, and leads to the elimination
of many other potentially useful patterns from consideration
as endpoints during histogram construction.

(iii) SPH attempts to fully match a query predicate pattern to his-
togram endpoints, and ignores partial matches. This pre-
vents SPH from taking advantage of the constructed
histogram, and contributes to its overestimation.

In order to address the above issues, in this paper, we propose
and employ positional sequence patterns in the query optimizer of
a database management system for selectivity estimation. The pro-
posed positional sequence patterns discriminate uninterruptedly
appearing character pairs from those that may have other charac-
ters appearing between them. Next, since positional sequence pat-
terns are not supported by the existing sequence pattern mining
algorithms (Le et al., 2017; Pei et al., 2004; Pasquier, Bastide,
Taouil, & Lakhal, 1999; Wang, Han, & Pei, 2003; Wang & Han,
2004; Yan, Han, & Afshar, 2003; Zaki and Hsiao, 2000), we also pro-
pose an algorithm to mine positional sequence patterns of the
form, %a1%a2%. . .%an% where each ai represents one or more charac-
ters. Note that in a regular sequence pattern form, each ai repre-
sents a single character. Similar to SPH, we build histograms out
of the computed patterns, and these histograms are later used to
estimate the selectivity of flexible LIKE string predicates. However,
we eliminate redundant patterns that decrease the diversity and
coverage of the constructed histogram. Besides, we integrate a par-
tial matching framework during selectivity estimation. We call the
proposed approach in this paper P-SPH (P for positional sequence
patterns).

We use the DBLP dataset in order to extensively evaluate our
methods. Our results show that P-SPH decreases the error rate of
selectivity estimations up to 20% in comparison to the state of
the art.

Contributions: Our primary contributions in this paper are as
follows:

� We propose a novel type of sequence pattern (i.e., positional
sequence pattern) that carries more information than the stan-
dard sequence patterns which do not specify whether there is
any character between two consecutive items in the sequence
or not. That is, if two characters always appear at consecutive
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positions in all appearances of a pattern, such information is
also marked in the new type of patterns as well. Such a differ-
entiation may be important for many expert and intelligent sys-
tem applications, for instance, to better address business
questions like ‘‘should two frequently-bought-together items
be located right next to each other on a retail store shelf, or is
it ok to place them at some distance as long as they are in the
same aisle?”.

� We propose an algorithm to compute this new pattern type by
extending a standard sequence pattern mining algorithm.

� The proposed positional sequence patterns may be employed by
expert and intelligent systems in various domains. As an exam-
ple expert system application, we demonstrate the utility of the
positional sequence patterns in the query optimizer of a data-
base management system for the task of estimating the selec-
tivity of flexible string predicates.

� For efficiency and scalability purposes, the query optimizer’s
knowledgebase stores only a small subset of mined positional
sequence patterns. In order to improve the coverage of selected
positional sequence pattern subset, we introduce information
content-based elimination of some patterns that highly overlap
with already selected histogram endpoint patterns.

� During selectivity estimation based on the histograms stored in
the optimizer’s knowledgebase, we propose a slider-based par-
tial pattern matching scheme to improve the accuracy of opti-
mizer’s selectivity predictions.

� We assess the proposed approach comparatively in different
aspects on real datasets, and show that it outperforms the state
of the art approaches, and provides better accuracy in terms of
the prediction accuracy and online memory usage.

The rest of this paper is organized as follows. In Section 2, we
discuss the related work. Section 3 describes the computation of
positional sequence patterns. In Section 4, we present histogram
construction out of positional sequence patterns. Section 5
describes the selectivity estimation algorithm. In Section 6, we pre-
sent a detailed experimental evaluation of the proposed methods,
and Section 7 concludes with pointers for future research.
2. Related work

2.1. Sequence pattern mining

Sequence pattern mining was first proposed in by Agrawal &
Srikant (1995). Since then, a number of algorithms have been pro-
posed to compute sequential patterns in a dataset. SPADE (Zaki,
2001), PrefixSpan (Pei et al., 2004), and SPAM (Ayres, Gehrke,
Yiu, & Flannick, 2002) are some of the well-known sequence min-
ing approaches. SPADE is based on vertical id-list database format,
and uses a lattice-theoretic approach to decompose the original
search space into smaller spaces. PrefixSpan employs a horizontal
format, and uses the pattern-growth method. SPAM adopts a verti-
cal bitmap representation, and mines the longest sequential pat-
terns. Recently, VMSP (Viger, Wu, Gomariz, and Tseng, 2014) is
proposed. VMSP is based on vertical id-list format, and mines not
all sequential patterns, but only the ‘‘maximal” sequential patterns.
Wang and Han (2004) propose BIDE, and similarly, rather than
mining all frequent sequences, it mines only ‘‘closed” patterns.
2.2. Selectivity estimation for wildcard predicates

The selectivity estimation of wildcard predicates has been stud-
ied extensively in previous studies. Jin and Li (2005) propose an
algorithm, called SEPIA. They employ a kind of frequency table in
order to keep some summary data. To et al. (2013) propose infor-
mation entropy-based histograms in order to estimate the selectiv-
ity of a LIKE predicate. They develop three algorithms (ME, MSE,
and MB) that estimate the selectivity by using information
entropy-based histograms. Jagadish et al. (1998) exploit optimal
histograms to estimate the selectivity. They propose an algorithm
which finds the optimal bucket boundaries. Poosala et al. (1996)
offer equi-width and equi-height histogram structures.
Muralikrishna and DeWitt (1988) propose an algorithm to build
multi-dimensional histograms to estimate the selectivity of
multi-dimensional queries. Lin et al. (2017) claim that previous
histogram-based selectivity estimation approaches may negatively
affect the performance of the queries because of the periodical data
scans, and they get stuck with the curse of dimension. Hence, to
overcome the above issues, they propose a new method that
employs Ward’s minimum variance method. The Ward method
finds k-nearest ‘‘query feedback records” (QFR) for a new predicate,
and a self-tuning histogram is constructed based on the k-nearest
QFRs. Raju and Murthy (2017) also use a histogram structure to
estimate the selectivity of a query. Instead of the classical his-
togram construction, they propose an adaptive way of histogram
construction. In particular, histogram bucket contents are cus-
tomized according to the predicate values that appear in executed
queries.

Krishnan et al. (1996) employ suffix trees in order to structure
the textual data, and estimate the selectivity of the substrings in
a wildcard predicate. They propose an algorithm called KVI, and
it assumes the independence of substrings. The suffix tree
approach is used in many other studies as well. Jagadish et al.
(1999) propose MO algorithm in order to overcome the accuracy
problem due to KVI’s independence assumption. The MO algorithm
is based on the Markov assumption. Chaudhuri et al. (2004)
observe that MO often underestimates selectivities, and they intro-
duce a new algorithm called CRT which is based on the Short Iden-
tifying Substring (SIS) assumption. Li et al. (2015) claim that KVI
and MO algorithms experience underestimation and overestima-
tion problems. They analyze the main issues which lead to both
underestimation and over estimation cases, and then propose
two new algorithms, EKVI and EMO, which are extended versions
of the KVI and MO algorithms respectively. Lee et al. (2009) exploit
both suffix tree structure and MO as tools in their approach, and
propose two new algorithms, MOF and LBS. They use the edit dis-
tance in order to find all base substrings of a given query predicate
pattern. They estimate the selectivity by using minimal base sub-
strings and information stored in an N-gram table. MOF is essen-
tially an extended version of the authors’ an earlier work (Lee
et al., 2007). MOF is further extended into LBS, which assigns a sig-
nature to each minimal base substring, and keeps them in an N-
gram table with their database frequencies. As for the minimal
base substrings which are not stored in the N-gram table, LBS
employs MO and suffix trees to estimate the frequency. Moreover,
Kim et al. (2010) exploit a similar approach for selectivity estima-
tion. Their method is based on inverted-gram indices. They employ
signatures that are generated by random permutation for each
substring. Both techniques proposed by Lee et al. (2009) and Kim
et al. (2010) rely on similar techniques, and their reported results
are almost the same. Besides, Mazeika et al. (2007) propose VSol
to estimate the selectivity of the approximate string queries. They
use edit distance and q-grams for estimation. In order to access the
q-grams, and estimate the selectivity of a query, they use a hash
index. VSol’s approach is very similar to LBS (Lee et al., 2009).

Recently, Aytimur and Çakmak (2018) propose a novel
approach, called SPH. SPH first mines all frequent closed sequence
patterns by using an existing sequence mining algorithm (Wang
and Han, 2004). Then, it builds a histogram structure from mined
patterns. Histograms store the sequence patterns as their endpoint
values, and their corresponding frequencies as endpoint counts.
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During the selectivity estimation, all buckets of the histogram are
visited, and based on the nature of matching between the his-
togram bucket endpoints and the predicate, it returns an estimated
selectivity value. SPH is currently the state-of-the-art approach to
estimate the selectivities of LIKE query predicates.

This study improves over SPH in the following aspects: (i)
instead of regular sequence patterns, we propose and employ a
new type of sequence pattern (i.e., positional sequence pattern)
which accommodates strictly consecutive character pairs as part
of the pattern, (ii) during histogram construction, rather than using
all computed patterns blindly, we carefully filter patterns that suf-
ficiently differ from others based on information-theoretic mea-
sures, (iii) during selectivity estimation phase, SPH considers
only full pattern matching, while our approach in this work also
features partial pattern matching in its selectivity estimation step
with a slider-based search.

2.3. Selectivity estimation for other types of query predicates

Gupta and Garg (2016) study the problem of the selectivity esti-
mation for range queries. To this end, they employ micro-clusters
and cosine coefficients. More specifically, the proposed technique
keeps data summary and its density distributions on micro-
clusters. The technique performs well for balanced, moderately
skewed, and highly skewed data distributions. Shin (2018) pro-
poses a new approach that computes the exact selectivity during
the optimization phase. In particular, the approach runs an extra
aggregate query to compute the selectivity of a predicate in the
query optimization period. The proposed method deals well with
complex predicates. Yang et al. (2019) develop sampling-based
techniques to solve the problem of selectivity estimation on set
containment. The main aim of their study is to estimate the cardi-
nality of the containment search. A random sampling-based and a
list-based approach are proposed to solve the problem.

2.4. Approximate string matching

Finding mismatched parts between an input pattern and a tar-
get string is another issue in the string matching problem. Chen
and Wu (2018) propose an indexing mechanism that finds all
matches of a pattern in a string with up-to k mismatches.
Kociumaka et al. (2019) also utilize a similar k-mismatches
approach to find the longest common substring between given
two strings. Hasan et al. (2019) employ two deep learning-based
approaches to estimate the cardinality of point and range queries.
In the first approach, they model the selectivity estimation as a
density estimation problem. In the second technique, they esti-
mate the selectivity of unknown queries from a training set where
selectivities of queries known. Also, they provide a perspective on
the challenges of adapting deep learning to relational data.

2.5. Adaptations to special-purpose databases

Approximate string matching is also popular in spatial data-
bases. As an example, Yao et al. (2010) employ MHR tree to effi-
ciently answer approximate string-matching queries in large
spatial databases. Their technique is based on the min-wise signa-
ture and the linear hashing technique, which are also exploited in
LBS approach.

Moreover, with the rapid progress in high-throughput sequenc-
ing technologies, genomics repositories stand out as another form
of massive text-based databases (Chaitanya, 2019). Due to their
increasing size and the need for complicated queries, genomics
databases may greatly benefit from highly-specialized query pro-
cessing methods and index structures (Jalili et al., 2018, Layer
et al., 2018, Papadopoulos et al., 2016). Such methods usually
adopt non-relational (i.e., key-value store) model. The proposed
method, in this paper, on the other hand, is intended to support
query processing in a relational setting. Nevertheless, genome
researchers may still take advantage of the proposed positional
sequence patterns to discover motifs (Bailey et al., 2015) that fre-
quently appear in particular genomic regions of interest. To this
end, one first needs to compile a set of possibly interesting geno-
mic regions. Then, positional sequence pattern mining may be
run on this dataset to discover the interesting motifs. As an exam-
ple, a genomics researcher may create a dataset that includes 1000
basepair upstream region of each known gene on a genome of an
organism. Then, the extracted positional patterns may point out
candidate transcriptions factor binding sites, as well those genes
that share common transcription factors. Positional sequence pat-
terns may provide a finer grained view of frequent motifs than reg-
ular sequence patterns. That is, between two highly conserved
regions in a motif, there may be a region with a high rate of muta-
tions. Positional sequence patterns would allow differentiating
between such highly conserved and less conserved regions in
motifs, while regular sequence patterns may not directly accom-
modate them.

2.6. Process mining

Besides, the proposed method in this study may be adapted into
the process mining field (van der Aalst et al., 2007). The primary
aim of process mining is to discover, monitor, and improve the real
processes by extracting knowledge from event logs. Conformance
checking takes an event log and Petri net, and diagnoses the differ-
ences between the observed and modeled behavior (Carmona
et al., 2018). More specifically, conformance checking techniques
take a process model and an event log as inputs and return a set
of differences between the behaviors captured in the process
model and event log. Rozinat and Van der Aalst (2008) employ
an incremental method to conform a process model to an event
log. It is the first comprehensive analysis on conformance checking.
The authors employ fitness and appropriateness in conformance
analysis. (Gómez López, Borrego Núñez, Carmona, & Martínez
Gasca, 2016) define the alignment problem between a process
model and event log as a constraint satisfaction problem. They
demonstrate that encoding the alignment problem as a constraint
problem has various advantages over other conformance analysis
approaches in the literature. Solvers can comfortably handle a
large number of instances in order to obtain a valid output. More-
over, Carmona (2019) provides an overview of how process discov-
ery and conformance checking problems can be solved in a
distributed manner. The author focuses on different ways to parti-
tion event logs and models.

The volume of event data and the event log data generation fre-
quency have rapidly increased. Event logs may contain billions of
events. Moreover, processes mining is a continuous task, as pro-
cesses in a system frequently change. Finding the best alignment
may require solving many optimization problems or repeated
state-space explorations. Hence, conformance checking can be
time-consuming and inefficient under the above conditions. Our
proposed method may be combined with the conformance check-
ing techniques. More specifically, instead of using all event logs in
every step of the conformance checking, a summary structure can
be built offline, and then, a conformance checking task can be run
on that summary structure to validate the process model with the
event log of the same process. P-SPH employs a custom histogram
as a summary structure which is built on the top of the frequent
positional sequence patterns. Similarly, all frequent patterns in
an event log may be mined, and then, a histogram structure may
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be built on the mined frequent patterns. Then, the conformance
checking task may compare the process with the frequent event
log in the histogram. A combination of P-SPH and conformance
checking techniques may reduce the running time requirements
considerably without compromising on the accuracy.

3. Positional sequence patterns

Sequence mining, in general, aims to find the statistically rele-
vant sequence patterns in a given database. Since its introduction
in the 90 s, it has been used in a wide range of expert system appli-
cations such as analyzing the DNA and RNA sequences to figure out
coding regions, discovering customer shopping behaviors, analyz-
ing telephone calling patterns in call centers, and finding user click
patterns in web clickstreams. Standard (regular) sequence pat-
terns, and the problem of mining such patterns may be formally
defined as follows.

Definition 1 ((Proper Sequence Containment):). Given two
sequences S = s1s2. . .sn and Q = q1q2. . .qk where each si
(1 � i � n) and qj (1 � j � k) are characters from an alphabet,
and i, j indicate the position of characters in S and Q, respectively,
let Q[i] denote the character at position i in Q. Then, S is properly
contained in Q, if there exists a set of n positions, p1 < p2 < . . . < pn,
such that;

8 si; sj
� � 2 S and i < j ! Q pi½ � ¼ si and Q pj

� � ¼ sj and j� i 6 pj � pi

Example:. Consider S = ABD. S is properly contained in Q1 = ACBCD.
However, S is not properly contained in Q2 = ACDCB.
Definition 2 ((Regular Sequence Pattern):). Given a sequence data-
base D and a frequency threshold minsup, a sequence P is called a
regular sequence pattern, if the number of rows that properly con-
tain P in D is equal to or greater than minsup.
Definition 3 ((Regular Sequence Pattern Mining Problem):). Given a
sequence database D and a frequency threshold minsup, the Regu-
lar Sequence Pattern Mining Problem is to compute the set of all
regular sequence patterns.
Example:. Consider a sequence database shown in Fig. 1 that has
four rows of sequences with letters from the following alphabet,
R ¼ fA;B;C;D;Eg. Assume that the minimum support threshold
is 3. Then, the complete set of regular sequence patterns and their
corresponding frequencies are as follows {A:4, AB:4, AC:4, ACB:4,
ACBE:3, ACE:4, B:4, BA:3, BAB:3, BAE:3, BC:3, BCB:3, BCE:3, BE:4,
C:4, CC:3, CCB:3, CCE:3}

In this paper, we introduce a new type of sequence patterns,
called positional sequence patterns. The difference between regular
sequence patterns and positional sequence patterns is that the lat-
ter distinguishes item pairs that always appear next to each other
in the same order in all the occurrences of the pattern from those
Fig. 1. An example sequence database.
that may have other items between them in some or all occur-
rences of the pattern. Therefore, positional sequence patterns are
more specific and carry more information than regular sequence
patterns. We give an example.

Example:. Consider a regular sequence pattern R = ACCB. In SQL
LIKE syntax, this pattern may be expressed as A%C%C%B. That is,
between any characters in R, there may be zero or more other
characters in the actual occurrences of the pattern. Now, consider a
positional sequence pattern in SQL LIKE syntax, P = AC%CB. P
carries the extra information that A is always followed by C with
no other characters in between in all occurrences of P. In addition,
in at least one occurrence of P, there is another character between
the double C characters at the middle. Similarly, the last part of the
pattern suggests that there is no character between C and B in all
occurrences of P.

We next formally define positional sequence patterns in a sim-
ilar manner that the regular sequence patterns are defined above.

Definition 4 ((Positional Sequence):). Given an alphabet R, a
sequence S = s1s2. . .sn is called a positional sequence, if 8si 2
S ? si 2 R[ {‘%’} where i in si indicates the position of a particular
character in the sequence (1 � i � n).
Definition 5 ((Positional Sequence Containment):). Given a posi-
tional sequence S = s1s2. . .sn and regular sequence Q = q1q2. . .qk,
let Q[i], where 1 � i � n, denote the character at position i in Q,
and the slicing operator S[i:j] specify the subsequence s = sisi+1. . .s-
j-1sj of S. Then, S is positionally contained in Q if there exists a set of
n positions, p1 < p2 < . . . < pn, such that;

8 si; sj
� � 2 S; si–0%0; sj–0%0 and i < j

! Q pi½ � ¼ si and Q pj

� � ¼ sj and j� i 6 pj � pi if 0%0 2 S iþ 1 : m� 1½ �
Q pi½ � ¼ si and Q pj

� � ¼ sj and j� i ¼ pj � pi if 0%0 R S iþ 1 : m� 1½ �

(

Example:. Consider S = A%BD. S is positionally contained in Q1 =
ACBD. However, S is not positionally contained in Q2 = ACBAD.
Definition 6 ((Positional Sequence Pattern):). Given a sequence
database D, a frequency threshold minsup, a positional sequence
P is called a positional sequence pattern, if the number of rows that
positionally contain P in D is equal to or greater than minsup.
Definition 7 ((Positional Sequence Pattern Mining Problem):). Given
a sequence database D, and a frequency threshold minsup, Posi-
tional Sequence Pattern Mining Problem is to compute the set of
all positional sequence patterns.
Example:. Consider the sequence database shown in Fig. 1.
Assume that the minimum support threshold is 3. Then, the com-
plete set of positional sequence patterns (in SQL LIKE predicate
syntax) and their corresponding frequencies are as follows {AC:3,
AC%B:3, AC%E:3, A:4, A%B:4, A%C:4, A%C%BE:3, A%C%B:4, A%C%
E:4, B:4, B%A:3, B%A%B:3, B%A%E:3, B%C:3, B%C%B:3, B%C%E:3, B%
E:4, C:4, C%C:3, C%C%B:3, C%C%E:3} where the patterns in bold
are new additions to the list of patterns that are obtained with
regular sequence pattern mining as shown in the previous
example.

We next discuss the computation of positional sequence
patterns.
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3.1. Mining positional sequence patterns

There is already a number of available techniques (Pasquier
et al., 1999; Wang, Han, & Pei, 2003; Yan, Han, & Afshar, 2003;
Zaki and Hsiao, 2000) proposed in the literature to compute regular
sequence patterns. Since positional sequence patterns are a super-
set of regular sequence patterns, rather than designing a new algo-
rithm, we choose to extend one of the existing regular sequence
mining methods to compute positional sequence patterns. Among
many others, in this work, we choose to extend BIDE (Wang & Han,
2004) for three reasons: (i) it eliminates the candidate mainte-
nance step of standard pattern mining methods; hence, its memory
and running time requirements are lower, (ii) rather than mining
all possible patterns, it skips ‘redundant’ patterns, and mines only
a subset of all patterns (i.e., ‘closed’ patterns) which are not con-
tained in other patterns, and (iii) its source code is publicly avail-
able to the researchers; thus, it can be readily modified for
extensions.
We next summarize how BIDE works. Then, we present our
extensions on it in order to mine positional sequence patterns.
BIDE focuses on a special class of patterns, called ‘closed’ patterns.
Algorithm 1 and 2 summarize the working principles of BIDE. We
first provide a definition of ‘closed’ pattern.

Definition 8 ((Regular Closed Sequence Pattern):). Assume that Sa
and Sb are two regular sequence patterns. If Sb properly contains Sa,
then Sb is called a supersequence of Sa. If a sequence pattern has no
supersequence with the same frequency, then it is called a regular
closed sequence pattern.
Example. Consider the following sequence patterns and their fre-
quencies: Sa = ABC (freq: 5), Sb = ABBC (freq: 5), Sc = ABB (freq: 6).
Here, Sa is not a regular closed pattern, since Sb is a supersequence
of Sa, and it has the same frequency. On the other hand, although Sb
is also a supersequence of Sc, Sc is still a regular closed pattern, as
its frequency is higher than Sb.
Definition 9 ((First instance of a prefix sequence):). Given an input
sequence t and a prefix sequence s, if t contains s, the subsequence
from the beginning of t to the end of the first appearance of s is
called the first instance of prefix sequence in t. As an example,
the first instance of prefix sequence CD in sequence ABCDAB is
ABCD.
Definition 10 ((Projected sequence of a prefix sequence):). The pro-
jected sequence of a prefix sequence is the remaining part of the
input sequence t, after removing the first instance of the prefix
sequence p from t. As an example, the projected sequence of prefix
sequence CD in sequence ABCDAD is AD.
Definition 11 ((Projected database of a prefix sequence):). The pro-
jected database of a prefix sequence t in a database D is the com-
plete set of the projected sequences of t in D.

Given a sequence database, BIDE first scans the entire database
to find all frequent sequences that have length 1 in line 1. It then
builds the projected database for each frequent length-1 sequence
in lines 3 to 4. Next, it calls BackScan to check whether frequent 1-
sequence can be pruned or not in line 6, and if not, it computes the



Fig. 2. A high-level overview of BIDE steps for length-1 patterns.

Fig. 3. The new workflow in step 3 of the extended algorithm.

M. Aytimur, A. Cakmak / Expert Systems with Applications 165 (2021) 113762 7
number of backward-extension items in line 7, and calls the sub-
routine bide in line 8. In line 10, it finds all locally frequent items
for a prefix and computes the number of forward-extension items
in line 11. If no forward-extension and backward extension are
possible, it marks the prefix as a frequent closed sequence in lines
12 and 13. It then extends the prefix to get a new prefix, and finds
pseudo projected database for the new prefix in lines 15 and 16.
Next, it applies BackScan check from line 17 to line 19 and calls
subroutine bide in line 20. Fig. 2 summarizes the workflow of BIDE
for the frequent length-1 sequences (the produced patterns are
presented in SQL LIKE syntax).

3.1.1. Extensions for positional sequence pattern computation
In order to mine positional sequence patterns, we extend step 3

in Fig. 2 and line 10 in algorithm 1. In step 3, all locally frequent
items are computed for a prefix sequence in the corresponding
projected database. That is, BIDE goes over all sequences in a pro-
jected database, and counts whether an item of interest exists in
the projected sequence or not. Our extension divides this step into
two parts. In the first part, locally frequent items are computed in
the same way as in BIDE. In the second part, we compute the
locally frequent sequences where there is no item between the last
item of the prefix sequence and the local item. Fig. 3 illustrates the
Fig. 4. Positional pattern-based histogram construction with bucket count 5.
new workflow in step 3 of the extended algorithm for the database
provided in Fig. 1 (the produced patterns are presented in SQL LIKE
syntax).

In Fig. 3, there are two groups of locally frequent items for pre-
fix A. The first group includes all regular locally frequent items as
before. The second group includes only locally frequent items
which do not have any characters between the last character of
the prefix (frequent closed sequence) and the first character of
the projected sequences for that prefix. When prefix A is extended
with these locally frequent items, the new prefix sequences are {A%
B:4, A%C:4, A%E:4, AC:3} where the last sequence is obtained from
the second group of locally frequent items.

Note that a locally frequent item may appear in both groups 1
and 2. In such cases, after verifying that their frequencies are over
the minimum support threshold, we grow the prefix sequence as
follows:

� If both frequencies are equal, extend the prefix sequence with
only the local item from the second group (closure check).

� Otherwise, extend the prefix sequence with both local items.

The above first bullet-point enforces the ‘‘closed pattern” prop-
erty. That is, since the patterns that are extended with locally fre-
quent items from the second group are more specific than their
counterparts in group 1, the former ones are preferred over the lat-
ter to make sure that the computed patterns are closed.
3.2. Histogram construction

Out of the mined positional sequence patterns, a histogram is
built in a similar way as in SPH (Aytimur & Çakmak, 2018) with
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some extensions. We first briefly explain the histogram building
steps, and then present our extensions to eliminate redundant
endpoints.

In order to build a histogram, first, all patterns are lexicograph-
ically sorted. The capacity of each bucket is determined by dividing
the total frequencies of the patterns by the number of buckets. In
the next step, bucket endpoints are determined. To this end, the
sorted pattern list is traversed starting from the first one while
keeping a running sum S of pattern frequencies. Whenever S � n
* C, where n is the currently built bucket’s number with initial
value 1, and C is the bucket capacity, that particular pattern is
set as the current bucket’s endpoint, and n is updated as n = floor
(S/C) + 1. Then, this process is repeated until all the histogram end-
points are determined. We give an example below.

Example. Consider the set of positional sequence patterns that are
mined with minimum support threshold 3 from the database in
Fig. 1, i.e., {A%C%BE:3, AC%B:3, AC%E:3, A%C%B:4, A%C%E:4, B%A%
B:3, B%A%E:3, B%C%B:3, B%C%E:3, B%E:4, C%C%B:3, C%C%E:3}.
Assume that the specified bucket count is 5. Since the total pattern
frequency is 39, the capacity for each bucket is 7. Fig. 4 shows the
histogram constructed by employing the above-summarized
approach.
Fig. 5. Slider-based partitioning of query predicate string S.
3.2.1. Eliminating redundant endpoints
We observe that many endpoint patterns in the constructed his-

tograms are highly similar with a small difference in their frequen-
cies. Such patterns occupy space in scarcely available histogram
endpoints, while not providing much extra coverage in terms of
matching a diverse set of LIKE query predicates. We give an
example.

Example. Consider two positional frequent sequences, A%C%BE and
AC%B, with the same frequency. Almost all query predicate patterns
that match the second pattern also match to the first pattern.
Therefore, it would be redundant to keep both patterns in the
histogram. Instead, the first pattern may be kept, as it differentiates
between awider spectrum of possible query predicate patterns, and
the second pattern may be discarded from the histogram.

As an extension to SPH (Aytimur & Çakmak, 2018), we eliminate
such patterns based on pattern containment and information-
theoretic filtering as formally defined next.

Definition 12 ((Pattern Containment):). Given a positional
sequence pattern P, let Striped(P) denote a sequence which
contains all non-wildcard characters of P in the same relative
order as in P. Then, a positional sequence pattern Q is contained in
another positional sequence pattern S, if Striped(Q) is properly
contained in Striped(S).

In order to eliminate the adverse effects of the redundant pat-
tern issue, one may consider eliminating a pattern if it is contained
in at least one other pattern. However, such an approach may lead
to major estimation errors, as the ‘‘information” contained in these
patterns may differ significantly. Hence, we propose to compute
the information content (Cover & Thomas, 2012) of patterns, and
eliminate a pattern p, if the information content difference
between p and another pattern that contains p is ‘‘ignorably” small.

Definition 13 ((Information Content of a Pattern):). Given a posi-
tional sequence pattern R and a database D, let freq(R) denote the
number of rows that contain R in D, and |D| denote the number of
rows in D. Then, the information content of R, IC(R), is computed as
follows:

IC Rð Þ ¼ �loglogP Rð Þ
where P Rð Þ denotes the probability of R, and computed as

P Rð Þ ¼ freqðRÞ
jDj .

Definition 14 ((Redundant Pattern):). Given a positional sequence
pattern set S computed over a database, a pattern P 2 S is
considered as redundant, if there exists another pattern R 2 S and
R – S such that (i) R contains S, and (ii) ICðRÞ � ICðSÞ < d where d is
a small threshold.

In the above definition, the information content difference
threshold, d, is determined experimentally as explained in the
empirical evaluation section. Before histogram computation, we
eliminate redundant patterns. Then, the remaining patterns are
considered during histogram construction. Once a pattern-based
histogram is built offline during database statistics gathering time,
it is stored in the query optimizer’s knowledgebase (i.e., database
dictionary/catalog) to be later used during query optimization time
for selectivity estimation.

4. LIKE predicate selectivity estimation with Pattern-based
histograms

We estimate the selectivity of LIKE query predicates based on
the constructed histogram in a similar way to SPH (Aytimur & Ç
akmak, 2018) with some extensions. At a high level, the selectivity
of a LIKE predicate pattern p is estimated according to the type of
the match between predicate p and histogram endpoints as sum-
marized below. Note that the order is important, i.e., an exact
match is preferred over an encapsulated match, if both are
applicable.

o p exactly matches a histogram endpoint b. [Exact match
case]
o selectivity ¼ ½the endpoint frequency of b�=½the database

size�
o p is contained in a set B of histogram bucket endpoints.

[Encapsulated match case]
o selectivity ¼ ½the minimum endpoint frequency

in B�=½the database size�

where set B includes bucket endpoint values and their correspond-
ing frequencies for buckets in the histogram that encapsulate p,
and minimum endpoint frequency is the minimum endpoint fre-
quency value in B.

o otherwise: [No match case]
o selectivity ¼ ½t % of the minimum support threshold�=½the

database size�

where SPH determines t experimentally as 10%, and we use the
same setting.

In the above approach, due to the limited number of histogram
endpoints, many queries fall into ‘‘no match case” in which an
average selectivity is assigned independent of the query predicate.
On the other hand, it is often the case that some parts of the query
predicate may match the histogram endpoints, which may provide



Fig. 7. Histogram constructed from regular sequence patterns.

Fig. 8. Histogram constructed from positional sequence patterns.
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better estimation boundaries. Hence, in addition to the above
matching approaches of SPH, we introduce a partitioning-based
matching strategy that is employed when exact or encapsulated
matching attempts fail as summarized next.

4.1. Partitioning-based matching

The idea behind partition-based matching is stated by the fol-
lowing Lemma.

Lemma ((Substring Selectivity):). Given a LIKE query predicate
string S of length n, assume that S is divided into two pieces,
S1..i and Si+1. . .n, at position i. Then, SelectivityðSÞ �
Min½Selectivity S1::ið Þ; SelectivityðSiþ1::nÞ�.

The proof of the above lemma is straightforward and intuitive.
Therefore, we omit formal proof here for brevity. We perform the
partition-based matching by introducing a slider, initially posi-
tioned at the first character in a given query predicate string S.
Then, we advance the slider position one-by-one until it reaches
to the last character in S (Fig. 5). At each slider position, we attempt
to compute the selectivity estimates of S1..i and Si+1. . .n with exact or
encapsulated match options. Next, the computed partition selec-
tivities are compared to the minimum of the previously computed
selectivities of partitions for the earlier positions of the slider. If
any of the selectivities computed for the current position of the sli-
der is smaller than the currently known minimum selectivity
among all previous partitions, then we update the minimum selec-
tivity accordingly. Once the slider reaches position n, the minimum
selectivity estimate computed over all slider positions is assigned
as the selectivity estimate for S.

Partition length-based filtering: We observe that bluntly
employing the above approach may sometimes lead to highly over-
estimated selectivity predictions. This happens in the following
cases: a very short partition (e.g., one character) of a query string
may have an exact or encapsulated match in the histogram with
many high-frequency endpoints, and the remaining partitions
may not have any match. Hence, the selectivity of that very short
partition is used as the selectivity estimate (as it is the ‘‘minimum”
among all partitions). However, since there is a large length differ-
ence between the original query predicate string and its short par-
tition(s), their selectivities usually differ quite a bit as well. In order
to alleviate this side-effect of partitioning, we eliminate partitions
of length smaller than n� e from consideration, where n is the
length of the query predicate string, and e is an experimentally
determined threshold value. In the experimental evaluation sec-
tion, we study the effect of e, and accordingly, determine its opti-
mal value.

The partitioning-based matching is placed after the encapsu-
lated match case in the above list of attempted matches. That is,
if the exact and encapsulated match is not possible, then the
partitioning-based match is explored. If slider-based partitioning
does not yield any selectivity estimate either (i.e., none of the par-
Fig. 6. An example sequence database D.
titions qualifies for an exact or encapsulated match), then ‘no
match case’ is employed as before. We next give an example that
comprehensively illustrates the effect of new histograms and
partition-based matching on the selectivity estimation process.

Example. Consider the database D in Fig. 6 that contains 8 rows.
Assume that the minimum support threshold is 2, and the allowed
number of buckets in a histogram is 4. 12 regular sequence
patterns and 18 positional sequence patterns are computed from
D. Fig. 7 shows the resulting histogram constructed from regular
sequence patterns, and Fig. 8 shows the histogram constructed
from positional sequence patterns. Note that the histogram built
from positional sequence patterns (Fig. 8) is more specific than the
one constructed from regular patterns (Fig. 7). As an example, the
endpoint pattern for bucket 2 in Fig. 7 has two forms in the other
histogram in Fig. 8. We next demonstrate the selectivity compu-
tation for the above-discussed four match cases with both
histograms.

Exact match case: Assume that a LIKE query predicate p = AC%CB
is given. SPH (Aytimur & Çakmak, 2018) would declare an exact
match to the second bucket of the histogram in Fig. 7, and compute
the selectivity as 0.75 (i.e., 6/8 where 6 is the corresponding bucket
endpoint frequency, and 8 is the number of rows in the database).
Similarly, P-SPH would declare an exact match to the second bucket
of the histogram in Fig. 8, and compute the selectivity as 0.375 (i.e.,
3/8 where 3 is the corresponding bucket endpoint frequency, and 8
is the number of rows in the database). The true selectivity for p is
0.375.

Encapsulated match case: Assume that a LIKE query predicate
p = %C%C% is given. No exact match is possible in either of the his-
tograms. However, there is an encapsulated match with the second
bucket of the histogram in Fig. 7. Since it only matches with a sin-
gle bucket, SPH’s selectivity estimate is 0.75 (i.e., 6/8). As for the
histogram in Fig. 8, there are encapsulated matches with buckets
1, 3, and 4, where the maximum endpoint frequency is 6. Thus,
the selectivity estimate of P-SPH is 0.75 (i.e., 6/8) as well. The true
selectivity for p is 0.875 (i.e., 7/8).

Partitioned encapsulated match case: Assume that a LIKE query
predicate p = Z%CB is given. No exact or encapsulated match is pos-
sible in any of the histograms. SPH will employ the no match case,
and estimate the selectivity as 0.025 (i.e., 0.2/8) (0.2 is t% of min
support threshold where SPH uses an experimentally determined
value 10 for t). P-SPH takes advantage of a partitioning-based
match in this case. According to Fig. 8, a partitioned match is pos-
sible between p and the first, second, and fourth endpoint values.
Out of these, since the second bucket endpoint provides the small-
est estimate, the selectivity is 0.375 (3/8). The true selectivity for p
is 0.25 (2/8).
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No match case: Assume that a LIKE query predicate p = D%A%D%E
is given. In this case, none of the above match types (including
partition-based match) is possible in either histogram. Therefore,
no match case route is taken, and the selectivity is estimated as
0.025 (i.e., 0.2/8). The true selectivity for p is 0.
5. Experimental results

This section presents our experimental results to evaluate the
proposed P-SPH algorithm. All of our experiments were performed
on a DELL R720 machine with 2 � XEON E-5-2620v2 2.10 GHz CPU
and 80 GB of RAM.

5.1. Dataset

We perform various experiments using a real dataset from
DBLP. The dataset is the same as the one used in SPH (Aytimur &
Çakmak, 2018) and contains 800,000 full author names. The
lengths of full author names vary between 18 and 60 with an aver-
age of 22.5.

5.2. Test query set

We evaluate the performance of P-SPH using the same query
workload as described in SPH (Aytimur & Çakmak, 2018). More
specifically, the query workload includes three different groups
of queries, and each group has 100 queries, except that the nega-
tive query set contains 24 queries. The way that these query sets
are generated is described in SPH paper (Aytimur & Çakmak,
2018), but we also include a brief summary here as well.

d Queries in the first group are in the form of %w% and %w1%w2%
where wi is a word that has a length between 5 and 12. In order
to generate this group of queries, one or two words with a
length between 5 and 12 are chosen. Then, a random number
(from 0 to 2) of underscore characters (i.e., ‘‘_”) are inserted at
random positions in a word. In SQL LIKE syntax, the underscore
character represents a wildcard that matches any single charac-
ter. This group of query predicates has minimum, average, and
maximum lengths of 5, 6.7, and 17, respectively. The average
selectivity is 4.77%.

d To construct the second group of the queries, a random row, R,
from the database is chosen, and a random number, k, between
3 and the length of this selected row is drawn. Then, k charac-
ters are removed from R, and a random number (from 2 to 8)
of ‘‘%” signs are inserted at random positions in R. That is, the
generated queries are in the form of %s1%s2%. . ... . . %sn% where
si represents one or more characters. The average, minimum,
and maximum lengths for the query predicates in this set are
8.4, 3, and 16, respectively. The average selectivity is 2.67%.

d The negative query set includes queries which do not match any
rows in the database. The generation of the negative queries is
Fig. 9. The number of regular and positional seq
almost the same as the second group of queries. The only differ-
ence is that a smaller number (from 1 to 3) of ‘‘%” symbols are
randomly inserted in R to decrease the likelihood that the gen-
erated query predicate matches any rows in the database. Out
of 100 generated queries, 24 of them are truly negative queries
with 0 matching rows. Hence, this set, in its final form, contains
24 queries.

5.3. Evaluation metrics

We employ two metrics to test the accuracy of selectivity esti-
mation as proposed in KVI study (Krishnan et al., 1996). The first
metric is the relative error which is employed for the positive
query sets. The relative error is defined as |ftrue – fest|/ftrue, where
ftrue is the actual true selectivity of the query, and fest is the esti-
mated selectivity. Since the third group queries (negative query
set) has the actual selectivity of 0, the relative error metric is not
applicable here (i.e., due to the division by 0 error). Instead, the ab-
solute errormetric is used in this group. Absolute error is defined as
|fest – ftrue|. We use the same metrics in order to evaluate our tech-
nique and compare it with the state of the art SPH (Aytimur & Ç
akmak, 2018). Moreover, in SPH, the authors exclude those queries
that have the actual frequency of 10 or less. Similarly, we also
exclude such queries in this work as well.

5.4. Results

In this section, we evaluate different aspects of our approach in
terms of estimation accuracy, query time, space overhead, and
compare it to the state of the art.

5.4.1. The effect of the minsup threshold
The minimum support threshold, during frequent sequence

mining, directly affects the number of patterns in the result set.
This section evaluates the effect of the minimum support threshold
on the computed pattern count and accuracy. Fig. 9 shows the
number of regular and positional sequence patterns for different
minimum support values.

Observation 1: The total number of patterns (positional or reg-
ular) decreases dramatically, as the minimum support threshold
increases.

The total number and the rate of increase for positional patterns
are slightly higher than that of the regular patterns. The reason for
this difference is that the positional sequence pattern set includes
all regular sequence patterns as well as some additional patterns.
For instance, consider two patterns and their frequencies: A%B%A
%D%A%B: 5 and A%B%A%D%AB: 3. The regular sequence pattern set
includes only the first one, while the positional sequence pattern
set includes both patterns.

As per the above observation, since the minimum support
threshold greatly affects the total number of patterns, it is critical
to increase the minimum support threshold to the extent that it
uence patterns for different minsup values.



Fig. 12. Average relative error for different values of.e

Fig. 10. The change of accuracy with different minsup values.

Fig. 11. Relative error for different numbers of buckets for P-SPH with minsup 1.5%
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does not harm the selectivity estimation accuracy considerably.
Next, we investigate how high the minimum support threshold
could be while keeping the selectivity estimation accuracy
decrease tolerable. Fig. 10 shows the change of accuracy with dif-
ferent minimum support threshold values (bucket count: 2048).

Observation 2: The average accuracy gets the highest value
when the minimum threshold is 1.5%.

The accuracy of estimation decreases in general, as the mini-
mum support threshold increases. The reason is that as the minsup
threshold gets larger, the mined patterns get shorter. Hence, the
ratio of queries that can be answered with exact or encapsulated
match decreases, and P-SPH more often uses partitioning-based
and no-match cases, which are more error-prone. There is one
exception to this expected behavior. That is, the second group
queries experiences a decrease in error rate when the minsup
threshold increases from 1% to 1.5%. The reason is that for the first
group of queries, the number of non-matching queries increases as
the minsup value increases; hence, the error rate increases as well.
On the other hand, for the second group of queries, the number of
non-matching queries stays the same when minsup changes from
1% to 1.5%. What is more, the average actual row count for non-
matching queries decreases. Therefore, the error rate decreases
for the 2nd group queries when minsup increases from 1% to
1.5%. Detailed statistics for each minsup value are presented in
Table 1. Based on the above observation, unless noted otherwise,
we use 1.5% as the minimum support threshold for the remaining
experiments.
5.4.2. The effect of the number of buckets
The number of buckets in a histogram is an important setting,

as more number of buckets means more endpoint values, and
may increase the selectivity estimation accuracy. However, lower
numbers of buckets require less search time and less memory
space. Hence, there is a trade-off between estimation accuracy
and higher resource consumption. In this experiment, we investi-
gate the relationship between the selectivity estimation accuracy
and the number of buckets. Fig. 11 plots the relative estimation
error for different numbers of buckets.

Observation 3: As the number of buckets increases, the average
relative error decreases until the number of buckets reaches 2048.
After that point, no meaningful accuracy improvement is observed.

The above observation shows that there is no need to use more
than 2048 buckets to increase selectivity estimation accuracy.
Hence, unless noted otherwise, we use 2048 buckets in the remain-
ing experiments.

5.4.3. The effect of partitioning
In this section, we evaluate the contribution of partitioning-

based matching. First, we determine the optimal value for the
threshold e that provides the best accuracy. Fig. 12 shows the
change of accuracy for different values of e (bucket count: 2048,
minsup: 1.5%).

Observation 4: The lowest relative error is obtained when e is 1,
i.e., partitions which are shorter than jlengthofquerypredicatej � 1
are not considered during partitioning-based selectivity estimation.



Fig. 13. Relative error for different minimum support thresholds values with and without partitioning.

Fig. 14. Selectivity estimation time with and without partitioning.
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The relative error increases when the allowed partition lengths
get shorter. This is because short partitions are very generic, and
their selectivity may be a lot higher than that of the original pred-
icate. Hence, the relative error increases.

Next, we present selectivity estimation accuracies with and
without partitioning-based matching. Fig. 13 shows the average
relative error for different minimum support threshold values with
and without partitioning (bucket count: 2048, e = 1).

Observation 5: Partitioning-based matching decreases the rela-
tive selectivity estimation error up to 16%.

When partitioning-based match is not available, long query
predicate strings do not match any endpoint of the histogram,
although there are matching rows in the database. On the other
hand, partitioned query predicate strings allow such queries to
partially match histogram endpoint values, and provides better
estimation accuracy.

Finally, we evaluate the impact of partitioning-based matching
on query processing time. Fig. 14 shows the average selectivity
estimation time with and without partitioning (bucket count:
2048, minsup: 1.5%).

Observation 6: Partitioning-based matching increases the aver-
age running time around 3 times.

The increase in query processing time due to partitioning-based
matching is expected, as it adds an extra step of computation dur-
ing the selectivity estimation. Although the selectivity estimation
time relatively increases significantly, the total estimation time is
still at the level of milliseconds. Thus, the improved accuracy as
shown in Fig. 13 justifies this estimation time compromise.
Fig. 15. The change of relative estimation error with diffe
5.4.4. The effect of redundant pattern elimination
In this section, we evaluate the effect of redundant pattern

elimination. We first experimentally identify the best value for
the information content difference threshold, d, described in Sec-
tion 3.3.1. Fig. 15 shows the change of relative estimation error
with different information content difference threshold values
where the horizontal axis values are multiplied by 105 to improve
the readability (bucket count: 2048, minsup: 1.5%).

Observation 7: The lowest relative error is obtained when the
information content difference threshold for redundant pattern
elimination is �0.00216.

Based on the above observation, for all the experiments in this
paper, we set the information content difference threshold for
redundant pattern elimination as �0.00216.

Next, we present the impact of redundant pattern elimination
on the selectivity estimation accuracy. Fig. 16 shows the average
relative error for different minimum support threshold values with
and without redundant pattern elimination (bucket count: 2048,
e = 1).

Observation 8: Redundant pattern elimination decreases the
relative error up-to 7%.

Redundant pattern elimination does not harm the estimation
accuracy, i.e., it either improves the accuracy or performs nearly
the same as the case without redundant pattern elimination.
This is expected, as redundant patterns occupy some of the very
limited histogram bucket endpoints, and removing them opens
up space for more distinctive patterns to be included in a
histogram.
rent information content difference threshold values.



Fig. 18. Average relative error comparison for different minimum support thresholds values.

Fig. 17. Build time with and without redundant pattern elimination.

Fig. 16. Average relative error with and without redundant pattern elimination.
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Finally, we evaluate the impact of redundant pattern elimina-
tion on histogram construction time. Fig. 17 shows the change of
histogram construction time with and without redundant pattern
elimination (bucket count: 2048).

Observation 9: Redundant pattern elimination significantly
increases the histogram construction time.

Although the above observation points to some considerable
overhead in histogram construction time, the bottleneck in the
statistics gathering pipeline is the pattern mining stage, which is
responsible for more than 99% of the total spent time as shown
in the next section. Therefore, the above increase in histogram con-
struction time is invisible in practice.

5.4.5. Comparison with the state of the art
In this section, we compare our proposed method (P-SPH) with

the existing SPH, LBS, and KVI algorithms.

5.4.5.1. Accuracy-based comparison. We first conduct a comparative
study based on selectivity estimation accuracy. SPH originally does
not have the partition-based matching (PBM) and redundant pat-
tern elimination (RPE) features. On the other hand, these tech-
niques are generic enough to be transferred from P-SPH to SPH.
Hence, for comparison purposes, we also create an enhanced ver-
sion of SPH extended with PBM and RPE. Fig. 18 shows the average
accuracy values for the original SPH, extended SPH, and P-SPH
approaches with different minsup thresholds (number of buckets:
2048).

Observation 10: P-SPH provides up to 20% lower error rates in
comparison to the original SPH.

Observation 11: P-SPH provides up-to 7% better selectivity esti-
mation accuracies than the extended SPH for all minsup values.
Since the only difference between P-SPH and the extended SPH is
that the former employs positional sequence patterns while the
latter employs regular sequence patterns, the success of P-SPH
over the extended SPH is attributed to the positional sequence pat-
tern usage.

We next perform a similar comparison by changing histogram
bucket counts and keeping the minsup value fixed this time.
Fig. 19 shows the average accuracy values for the above three
approaches with different bucket counts (minsup: 1.5%).

Observation 12: In all bucket count configurations, P-SPH out-
performs SPH (up-to 17%). Both approaches, in general, benefit
from increased bucket counts in terms of lowering the estimation
error rates.

Observation 13: Positional sequence patterns lead to better
selectivity estimates than the regular sequence patterns as P-SPH



Fig. 20. Accuracy comparison of P-SPH, SPH, KVI, and LBS.

Fig. 19. Relative error comparison for different number of buckets.

Fig. 21. Average build time for P-SPH, SPH, KVI, and LBS.

Fig. 23. The selectivity estimation (online phase) time comparison.

Fig. 22. Average build phase space overhead for all algorithms.
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outperforms (up-to 7%) the extended SPH featuring partitioning-
based matching and redundant pattern elimination for all bucket
configurations.

The above two experiments show that P-SPH outperforms both
SPH and its extended version for all configurations of minsup and
bucket counts.

We next compare P-SPH with two earlier methods, KVI and LBS
in terms of the selectivity estimation accuracy. We also include
SPH to illustrate all methods in one picture. Fig. 20 shows the
average relative error for P-SPH, SPH, KVI, and LBS approaches. In
all following experiments, bucket count is set to 2048 and
minimum support is set to 1.5%.

Observation 14: P-SPH provides the least estimation error rate
by a significant margin when the whole query set is considered,
even though LBS performs slightly better for the first group of
queries.

Time and space overhead-based comparison:
In this section, we compare different approaches in terms of

memory and running time requirements. Here, we perform our
analysis in two parts: (i) offline build phase where patterns are
computed and a histogram is built during database statistics gath-
ering time, and (ii) online phase, which involves the estimation of
query predicate selectivity during query optimization time.

First, we present time and memory requirements for the offline
build phase. Figs. 21 and 22 show the build phase time and mem-
ory requirements, respectively, for all compared algorithms.

Observation 15: In terms of build time, P-SPH takes consider-
ably more time than SPH, and it is comparable with LBS, while
KVI takes the least amount of time owing to its simpler
methodology.



Fig. 24. Online phase memory requirement comparison.
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The above observation is directly explained by Fig. 9, which
shows that there is a similar relation between the numbers of posi-
tional and regular patterns. The number of positional patterns is
significantly higher. Therefore, it takes more time to compute
them. Besides, since this stage takes place offline before query time
and possibly on a separate machine than the production servers,
the time spent for this stage is considered a lot less critical than
the online query optimization time, which is discussed in the next
set of experiments.

Observation 16: In terms of build phase memory, P-SPH and
SPH are comparable. KVI and LBS require significantly less build
phase memory than P-SPH and SPH.

Even though P-SPH computes 2 times more patterns than SPH,
the memory requirements do not reflect this difference. This is
mostly because the proposed positional sequence mining approach
follows the depth-first strategy of the original BIDE algorithm that
it extends.

Since the histogram building phase takes place offline on a pos-
sibly different server, it does not directly affect the performance of
the query optimizer during actual query execution time. Hence, the
higher space requirement of P-SPH during this offline phase is not
considered to be a major concern point.

Next, we present time and memory requirements for the online
phase. Fig. 23 shows the selectivity estimation time, and Fig. 24
presents the online phase memory requirements for P-SPH, SPH,
KVI, and LBS.

Observation 17: The selectivity estimation time of SPH is con-
siderably less than that of P-SPH. LBS has the worst estimation
time, while KVI has the least estimation time.

Two factors contribute to the above observation: (i) P-SPH uses
partitioning-based matching, which adds extra computation time,
whereas SPH lacks this feature, and (ii) the endpoint values in his-
tograms build with positional sequence patterns are longer than
those built with regular sequence patterns. Hence, P-SPH spends
more time than SPH while computing encapsulated or exact
matches.

5.5. Discussion

The above experimental results, in brief, imply the following
insights:

� Positional sequence patterns are richer in variety and number
than the regular sequence patterns, as the former allows to
express more information about the items in a pattern, i.e.,
whether each item pair is strictly consecutive or not. Hence,
more resources are needed to compute and store positional
sequence patterns than that for regular sequence patterns.

� Minsup threshold value that is employed during pattern com-
putation has a dramatic effect on the prediction accuracy and
pattern mining cost. It is also tightly connected to the resulting
pattern content and length. As the minimum support threshold
values get larger, the cost of pattern mining step decreases.
However, with high minsup values, the average length of the
mined sequential patterns gets smaller and smaller. This
decreases the ratio of query predicates that matches at least
one histogram bucket endpoint. Accordingly, prediction accu-
racy may get lower.

� Increasing the size of the knowledgebase of the query optimizer
does not improve the selectivity estimation accuracy forever.
After a point (about 2048 buckets), the improvement is negligi-
ble. This may imply that once the coverage of histogram end-
points over the database reaches maturity, additional
endpoints do not contribute much. Hence, there is no need to
pay the additional cost of keeping a larger knowledgebase after
this critical point.

� Very small partitions in partial matching case harm the predic-
tion accuracy, as they match almost all histogram endpoints,
and they are not specific enough to represent the original
unpartitioned query predicate.

� Partitioning’s benefit percentage is lower than the extra time
requirement that it introduces. Hence, if optimization time is
overly vital for a company’s database management system,
the partitioning may be turned off in favor of optimization time.

� All extensions that the P-SPH algorithm combines over SPH con-
tribute to the accuracy improvement both individually when
they are applied alone, as well as in a group when they are
applied together. This is evident when each of these extensions
is integrated with SPH, even though SPH is not using the posi-
tional sequence patterns. What is more, with all extensions
added to SPH, P-SPH still performs better owing to the richer
representation power of newly proposed positional sequence
patters.

Despite the significant improvements over the state of the art,
we also note the following limitations of our study.

� A production database of a company is often subject to updates,
insertions, and deletions which change the content of the data-
base over time. Some of these modifications may not lead to a
significant change in terms of the mined frequent positional
sequence patterns, while some others may cause considerable
differentiation in the sequence pattern set. This study does
not offer an adaptive solution to determine the best time point
for re-computing the pattern set, and then re-construct the cor-
responding histograms accordingly.

� All pattern mining algorithms require minimum support
threshold (i.e., minsup) to be provided as input for the pattern
mining process. High threshold values may lead to missing
some important patterns, while low threshold values increase
the number of patterns and pattern computation time dramat-
ically. Even though this study suggests the optimal minsup
threshold that minimizes the prediction error rate (see
Fig. 10), the suggested values are specific to this dataset, and
it has to be re-determined for each dataset separately. This
introduces another layer of tuning that an expert system has
to take care of.

� Similarly, for ‘‘no match case”, during selectivity estimation, the
current study employs a fixed selectivity estimation indepen-
dent of the query predicate. This implies two limitations: (i)
since the employed constant estimation value is not adaptive
for different query predicates, it may lead to large estimation
discrepancies for some predicates, and (ii) the employed thresh-
old is tuned for the current query workload and the employed
dataset. As the set of queries changes and the database content
evolves, this fixed value needs to be re-determined.

� The query workloads that we have employed are extensive in
terms of their coverage of different selectivity levels. However,
they are synthetic query workloads that are generated ran-
domly. Hence, they may not fully reflect a real query workload’s
performance.
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� In regular traditional histogram structures that are constructed
for numeric values, histogram endpoints are sorted, and binary
search is employed to efficiently locate the matching bucket
endpoint(s). However, for the histograms that we employ in
this study, there is no order that one can enforce on patterns.
Hence, a similar binary search may not be applied during
matching. Therefore, all histogram endpoints are attempted
one by one for a possible match for each query predicate,
which leads to spending extra time during histogram endpoint
search.

� In order to build the proposed histogram structure, we first
mine the positional sequential patterns. Even though this step
is performed offline and takes place before the query optimiza-
tion time possibly on a different machine than the production
server, pattern mining is a resource-intensive step.

� Finally, this study mostly focuses on selectivity estimation accu-
racy. However, the effect of accuracy improvements on the
actual query execution plans and database performance is not
explored. Concentrating purely on prediction accuracy values
may be misleading, as the suggested selectivity estimation
improvements may not directly translate to database perfor-
mance enhancements at similar levels.

6. Conclusion & future work

In this paper, we propose a new approach to estimate the selec-
tivity of SQL LIKE query predicates. To this end, we introduce a new
type of sequence patterns called positional sequence patterns, and
extend a regular sequence mining algorithm to compute positional
sequence patterns. A histogram is built on top of the mined posi-
tional sequence patterns during database statistics gathering time,
and then this histogram is later employed during query optimiza-
tion time to compute the estimated selectivities. In order to
increase the coverage of histograms, we introduce an information
content-based redundant pattern elimination approach. Besides,
to take advantage of partial matches between histogram endpoints
and query predicate strings, we also propose a partitioning-based
matching algorithm. We assess the proposed techniques on a real
dataset from DBLP, and demonstrate that our methods significantly
outperform the state of the art in terms of selectivity estimation
accuracy.

As part of future work, we would like to investigate the follow-
ing directions:

� One future research direction is to parallelize the computation
of positional sequential patterns. Parallel processing may
improve the efficiency and scalability of extracting positional
sequence patterns frommassive datasets so that expert systems
that work on big data maymore efficiently benefit from the pro-
posed positional sequence patterns. To this end, Apache Spark-
and Hadoop-based distributed mining algorithms will be
investigated.

� Our proposed positional sequence patterns are mined based on
only the concept of the frequency. On the other hand, expert
systems that are employed in the retail business may be inter-
ested in customer’s buying choices that are both frequent as
well as bring high profits. In this setting, profit may be included
in the mining process as an additional constraint in addition to
frequency to mine frequent and high-profit sequence patterns
in a customer transaction database.

� Besides, one may consider incorporating a ‘‘confidence” metric
into the positional sequence pattern mining process, as target-
ing high-profit patterns may not provide a complete picture of
whether items in those high-profit patterns are tightly associ-
ated or not. Confidencewill provide a measure of the conditional
probability that will supply expert systems with positional buy-
ing rules in the form of {item1, item2} ? {item3} similar to tra-
ditional association rules with additional positional
consideration for items.

� Query optimizers traditionally keep their knowledgebase small
to decrease the memory space requirements and increase the
scalability of database management systems to handle multi-
ple queries simultaneously. Therefore, effectively selecting
the limited histogram bucket endpoint values from the pool
of all mined patterns is critical. One may consider analyzing
the past query workloads to assign a ‘‘utility score” to each
positional sequence pattern, and then prioritize the patterns
with high utility score for inclusion in the limited histogram
buckets in the knowledgebase of the query optimizer. This
may improve the accuracy of the query optimizer’s
predictions.

� Another task that query optimizers perform while automati-
cally building a query execution plan is to determine the order
of joining different tables in a given query. A new expert system
may be designed to analyze a company database’s query work-
load and mine positional sequence patterns in join orders of
past query execution plans. Next, these join order patterns are
stored in the knowledgebase of the query optimizer, and they
are used to quickly decide on the join order of a new future
query. Such a pattern-based approach may reduce the compila-
tion time and resources that the query optimizer consumes dur-
ing query compilation.

� In this work, we focus on the accuracy of the selectivity
estimations. Another future direction would be incorporat-
ing these estimations into the query optimizer of a well-
known database management system (e.g., Postgres, Oracle,
etc.). Then, the effect of improved prediction accuracy on
overall database performance may be empirically assessed
on a real query workload benchmark such as TPC-H,
TPC-DS, etc.

� Incremental maintenance (Chakkappen et al., 2008) of his-
tograms and mined sequential patterns may save a considerable
amount of time by eliminating the unnecessary recomputation
of positional sequence patterns over the whole database. There-
fore, developing an incremental maintenance model for
pattern-based histograms may be another promising research
direction.

� Usually, query optimizers populate their knowledgebase based
on a sample taken from the whole database. Determining the
minimum sampling percentage without harming the represen-
tative power of the mined sequential patterns is another open
research problem.

� Finally, further research is needed to adaptively set the estima-
tion value for no match cases based on the underlying predicate,
and the current histogram and database content for more
robust selectivity estimation.
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