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Accurately identifying organisms based on their partially available genetic material is an im-

portant task to explore the phylogenetic diversity in an environment. Speci¯c fragments in the
DNA sequence of a living organism have been de¯ned as DNA barcodes and can be used as

markers to identify species e±ciently and e®ectively. The existing DNA barcode-based classi-

¯cation approaches su®er from three major issues: (i) most of them assume that the classi¯-

cation is done within a given taxonomic class and/or input sequences are pre-aligned, (ii) highly
performing classi¯ers, such as SVM, cannot scale to large taxonomies due to high memory

requirements, (iii) mutations and noise in input DNA sequences greatly reduce the taxonomic

classi¯cation score. In order to address these issues, we propose a multi-level hierarchical
classi¯er framework to automatically assign taxonomy labels to DNA sequences. We utilize an

alignment-free approach called spectrum kernel method for feature extraction. We build a

proof-of-concept hierarchical classi¯er with two levels, and evaluated it on real DNA sequence

data from barcode of life data systems. We demonstrate that the proposed framework provides
higher f1-score than regular classi¯ers. Besides, hierarchical framework scales better to large

datasets enabling researchers to employ classi¯ers with high classi¯cation performance and high

memory requirement on large datasets. Furthermore, we show that the proposed framework is

more robust to mutations and noise in sequence data than the non-hierarchical classi¯ers.

Keywords: Taxonomies; classi¯cation; scalability; supervised learning.

1. Introduction

Classi¯cation of living organisms is a key problem in both biology and computer

science. Using traditional morphological keys for classi¯cation is often e±cient only

||Corresponding author.

Journal of Bioinformatics and Computational Biology
Vol. 18, No. 5 (2020) 2050026 (22 pages)

#.c World Scienti¯c Publishing Europe Ltd.

DOI: 10.1142/S0219720020500262

2050026-1

https://dx.doi.org/10.1142/S0219720020500262


for a particular gender or life stage. Besides, this method is slow and expensive, as it

requires the time and e®ort of highly experienced taxonomists.

DNA barcoding has gained signi¯cant attention in the scienti¯c community1,2

after it was ¯rst introduced.3 Speci¯c gene regions have been chosen as markers that

can distinguish between di®erent species.4–6 For animal groups, cytochrome c oxi-

dase 1 gene (COI) is used as a barcode, while matK and rbcL are used for identifying

land plants, and ITS is used for fungi.7 The problem then translates into classifying

barcodes to a known species in a fast and e±cient way.8

There are a number of methods that tackle with the DNA barcode-based

classi¯cation problem using the tools of sequence comparison and alignment.9,10

However, aligning multiple sequences in an optimal way is computationally costly.

Using alignment-free kernel methods has been proven e±cient for this problem.11

In this approach, the occurrences of each possible ¯xed-length substring are

counted in each DNA barcode sequence. These substrings are called k-mers, where

k is an integer parameter that corresponds to the length of the substring. These

k-mers are then used as features with their corresponding count per sequence as

feature values.

Several machine learning classi¯cation techniques are proposed and compared to

determine species given a DNA barcode.9 More speci¯cally, support vector machines

(SVMs),12 the rule-based method RIPPER,13 the decision tree C4.5,14 and the Naïve
Bayes are considered.15 A major drawback in such studies is that only pre-aligned

sequences are considered. Besides, the classi¯cation is strictly performed within the

scope of speci¯c taxonomic classes like bats, birds, fungi, or ¯shes. Hence, in order to

classify a given barcode sequence, it ¯rst needs to be aligned, and one also needs to

know to which taxonomic class the given sequence belongs to.

Besides, phylogenetic and statistical classi¯cation methods are also studied to-

gether.16 More speci¯cally, neighbor joining and PHYML are studied as phylogenetic

methods,17,18 and k-nearest neighbor, classi¯cation and regression trees (CART),

random forests (RFs), and SVM are evaluated under statistical classi¯cation

methods. However, a limitation is that a priori knowledge about the genus of the

sequence is assumed to be available and employed sequences are pre-aligned. An-

other direction is to exploit a supervised machine learning approach that selects

suitable nucleotide positions and then compute the logic formulas for species clas-

si¯cation.10 Nevertheless, the input DNA barcode sequences are required to be

pre-aligned.

In later studies, the requirements for pre-aligned sequences are removed. As an

example, k-mers are employed for DNA barcode classi¯cation and analytics.11 In

particular, 10-mer features are exploited to train classi¯cation models using two

classes of algorithms: nearest neighbor and SVM.

Another alignment-free approach employs a new set of classi¯cation features that

are based on covariance of nucleotides in DNA barcodes.19 The computed features

are later exploited in a RF classi¯er to perform phylogenetic analysis on a particular

fungi species.
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In addition to real datasets, synthetic datasets are also considered and compared

within the domain of DNA barcode-based classi¯cation.20 To this end, di®erent

classi¯ers including (i) simple logistic function,21 (ii) IBk from lazy classi¯er,22 (iii)

PART from rule-based classi¯er,23 (iv) RF from tree-based classi¯er,24 (v) attribute

selected classi¯er, and (vi) bagging from meta classi¯ers are benchmarked.25

In most of the existing studies that focus on the problem of organism classi¯cation

using DNA sequences, the classi¯cation is mainly performed within a speci¯c taxo-

nomic class assuming a priori knowledge about the given to-be-classi¯ed sequence.

This assumption may not always hold true, e.g. when inspecting fossil remains or

sequences extracted from mud-samples and earth layers. In such situations, it is hard

to identify whether these sequences belong to the class of bats, birds, rodents, ¯shes,

etc. Furthermore, highly performing classi¯ers, such as SVM, cannot scale to large

taxonomies due to high memory requirements. Besides, mutations and noise in input

DNA sequences greatly reduce the taxonomic classi¯cation.

In order to address the above issues, in this paper, we introduce a hierarchical

framework that can be extended into one hierarchical classi¯er capable of classi-

fying any DNA barcode sequence without any a priori knowledge about its taxo-

nomic tree. This framework utilizes support vector classi¯ers in order to build a

two-stage classi¯er that can predict the species given the DNA barcode sequence

only, without the need to compute any sequence alignment. Our framework enables

leveraging the strength of the support vector classi¯ers while overcoming the

scalability issues that arise when the number of classes increases or when the data

matrix size grows.

In order to establish a proof-of-concept, we test the proposed approach on ¯ve

di®erent datasets obtained from Barcode of Life Data (BOLD) systems26: (i) aves

(i.e. birds), (ii) chiroptera (i.e. bats), (iii) rodentia (i.e. rodents), (iv) polypodiopsida

(a member of vascular plants), and (v) pucciniomycetes (a member of fungi). For

each dataset, the classi¯cation performance of di®erent classi¯ers using varying

subsequence lengths are compared. We observe that the SVM classi¯er with a linear

kernel outperforms all the other methods for larger subsequence lengths. The RF

classi¯er, on the other hand, outperforms the SVM-based classi¯ers when the sub-

sequence length is relatively small. Then, we merge the ¯ve datasets to examine the

scalability of each classi¯cation method. For larger datasets, SVM was not a feasible

solution, since the data matrix was not representable. Nevertheless, the RF method

did not experience such problems, and provided a reasonable accuracy (f1-score:

90.8%). In order to overcome this scalability drawback and utilize the high classi-

¯cation performance of the linear kernel SVM, we build a hierarchical SVM-based

classi¯er, and demonstrate that it outperforms the non-hierarchical regular classi¯er

(93.0% versus 90.8%). Besides, we also study the robustness of the proposed method

by introducing arti¯cial mutations to the sequences with increasing ratios. Our

experimental results show that as mutations rates increase, the proposed hierar-

chical classi¯er framework exhibits more robustness than the other non-hierarchical

classi¯ers.
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Our contributions in this paper are as follows:

. We propose a multi-level hierarchical DNA sequence classi¯cation framework, and

build a proof-of-concept instance with two taxonomic levels. The proposed

framework can be extended to predict the species within larger scopes that go

beyond just the taxonomic class level. More speci¯cally, it can be used as a

blueprint in building a full supervised classi¯er that can classify all life forms.

. We demonstrate that the hierarchical classi¯er framework classi¯es DNA

sequences with higher f1-score than the regular stand-alone classi¯ers.

. The proposed framework allows taking advantage of SVM's high accuracy pre-

diction power for larger datasets as well by increasing its scalability with multi-

level architecture. While regular SVM-based classi¯ers run out of memory when

trained on a large dataset on a decently con¯gured test environment, the hierar-

chical SVM-based classi¯er successfully runs on the same test hardware and

dataset.

. We demonstrate that with the hierarchical classi¯er framework, the robustness of

classi¯cation in the presence of mutations and/or noise in sequence data is higher

than the regular non-hierarchical classi¯ers.

2. Methods

2.1. Kernel-based alignment-free method for feature extraction

Kernel-based methods are employed to represent sequences with variable lengths and

also to avoid the burden of handling insertions and deletions. Kernel-based methods

have been proven to be e±cient in a number of similar tasks like protein–protein
interaction prediction and protein classi¯cation.27–29 They have been also demon-

strated to be e®ective in tackling the problem of species classi¯cation using DNA

barcodes.11 In this method, sequences are represented as collections of short sub-

string kernels of length k. These substrings are called k-mers. Figure 1 illustrates how

a sequence can be represented as a vector of k-mers frequencies, where k ¼ 5.

The number of k-mers increases exponentially with k. Since we have four bases

(i.e. A;C;G;T ), the number of all k-mers is 4k. The occurrence frequency of these

k-mers is then used as features. A variation of this method employs mismatch-kernels

for feature extraction.29,30 In this case, at most m, mismatches are allowed within a

substring. This can enhance the results of the classi¯cation task by making the data

Fig. 1. An example of how 5-mer kernels are used to represent a DNA barcode sequence.
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matrix denser which is desirable for most of the classi¯cation algorithms. However, in

this paper, we do not study the e®ect of allowing mismatches and the e®ect of

changing the value of m. Instead, we focus on building a hierarchical classi¯er that

allows the classi¯cation tasks to be more e±ciently performed on large datasets that

include di®erent taxonomic classes.

In order to generate k-mers from raw datasets, we use the algorithm shown

in Fig. 2. The inputs are the sequence data from BOLD systems and a number

k that represents the length of substring kernels. We ¯rst create an empty fre-

quency dictionary, and then populate it with all possible k-mer combinations of

A;G;C and T along with initial frequency value of 0 (lines 1–3). Next, we loop

over the BOLD systems dataset until there are no samples left (lines 4–17). In each

iteration, we skip a DNA string if its length is smaller than 657, since the full

length of COI segment used as a DNA barcode is 657 bp (lines 5–7).31 Then, in a

sliding window manner, we consider each k-mer in the sequence (lines 9–16). We

skip a k-mer if it contains ambiguous characters like \-" or \N" (lines 12–14).
Then, we increment the appearance frequency of each qualifying k-mer by 1 (line

15). At the end, the set of all k-mers along with their frequencies is returned

(line 18).

Fig. 2. K-mer generation algorithm.
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2.2. Scalable supervised learning

In most of the related works, it has been shown that it is possible to train a supervised

classi¯er that has the ability to predict the species given the DNA barcode sequence.

However, there were two factors that kept the e®ectiveness of such approaches re-

stricted. First, these studies carried out the prediction e®ort within a speci¯c taxo-

nomic organism rank, e.g. performing the experiments on the taxonomic class level

such as chiroptera, rodentia, aves, mammalia, etc.,9,11 or on the taxonomic genus

level as in Ref. 16. Hence, they assume the availability of a priori knowledge of the

taxonomic class or genus to which a specimen or a sequence belong to. Such an

assumption may not hold true in many cases such as when inspecting samples from a

lake or soil.

Second, among the supervised classi¯cation algorithms, SVMs are commonly

employed in taxonomy classi¯cation, as it provides more accurate results than many

other methods. However, SVM su®ers from scalability issues when the number of

classes in the dataset increases, as the data matrix grows in size. All these reasons

hinder its use as an e±cient classi¯cation algorithm to train a classi¯er that predicts

the species directly from the DNA barcode sequence. As, in that case, the number of

classes would be the number of all known species, and the dataset would be all the

data samples available on BOLD systems. Motivated by the above observations, in

this paper, we propose a two-stage hierarchical classi¯er inspired by the hierarchical

nature of the taxonomy tree. The ¯rst stage predicts the taxonomic class. Then,

according to the prediction of the ¯rst-stage classi¯er, the feature vector representing

a given DNA barcode sequence is directed to the corresponding classi¯er trained to

predict the species within that taxonomic class. A diagram of this framework is

shown in Fig. 3.

The illustrated framework is used to train a classi¯er capable of predicting the

species name for a given DNA barcode sequence out of 1400 species appeared in the

datasets used in this work. Although the results were obtained for 1400 species that

belong to ¯ve di®erent taxonomic classes (aves, rodentia, chiroptera, polypodiopsida,

Fig. 3. Two-stage hierarchical classi¯er for predicting the species without any a priori knowledge about its

taxonomic class.
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and pucciniomycetes), the extension of this work into one hierarchical learner ca-

pable of classifying all known living things is straightforward.

The algorithm in Fig. 4 provides a more detailed description of the proposed

hierarchical classi¯cation method in a 10-fold cross-validation setting. For each fold

of the dataset that is split in a strati¯ed manner, we ¯rst determine the indices of

train and test portions of the dataset (line 2). Then, on the current training split, we

build a classi¯cation model for the ¯rst level to predict the class that a given sequence

belongs to (line 3). Then, the classi¯ers for the second level are built. More speci¯-

cally, in a loop, a separate species classi¯er for each taxonomic class is built on

the current training split (lines 4–6). In the next stage, using the above-created

classi¯cation models, predictions are computed for the sequences in the test split

(lines 7–12). In particular, for each sequence in the test split, we ¯rst run the class-

level model to predict the class (line 8). Next, we employ the species-level classi¯er

that corresponds to the predicted class by the ¯rst-level classi¯er to predict the

species for the test sequence (lines 9–10). Finally, the set of the predicted species for

each sample is returned at the end (line 14).

3. Results

In this section, the proposed framework is experimentally assessed in terms of f1-

score, scalability, and robustness. We also compare it to regular non-hierarchical

approaches. As a proof-of-concept, two popular supervised learning classi¯ers are

Fig. 4. Hierarchical classi¯cation algorithm.
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contrasted, namely, SVM and RFs. We study how di®erent classi¯cation methods

perform and how varying k a®ects their performance. In Sec. 3.1, the performance

within the scope of a taxonomic class level is evaluated using ¯ve di®erent datasets

(rodentia, aves, chiroptera, polypodiopsida, and pucciniomycetes). Then, the ro-

bustness aspects of the classi¯ers are studied in the presence of mutations or noise in

data. Finally, a scalability analysis of the proposed hierarchical classi¯cation is

performed in comparison with the non-hierarchical classi¯cation.

For each experiment, the models are evaluated using 10-folds cross-validation by

repeating the dataset randomization, splitting, training, and testing steps 10 times,

and the resulting f1-scores are averaged. Moreover, in order to make sure that class

and species distributions match in both training and test splits, strati¯ed sampling is

applied during 10-fold cross-validation. Here, we report the averages over all runs.

All the experiments for this paper were carried out on a DELL R720 server whose

speci¯cations are 24 core vCPU, 80GB RAM and 2.4TB storage. All the scripts are

coded in Python using Scikit ��� Learn machine learning library to implement SVM

and RF classi¯ers. Besides, Matplotlib and Seaborn are used for visualization.32,33

3.1. Datasets

For this study, the datasets are obtained from BOLD systems which is an initiative

to support the generation and application of DNA barcode data.26 It contains

8,132,361 DNA barcode sequences for animals, plants, fungi, and protists. The

specimen is collected from di®erent sites by di®erent organizations worldwide.

Through the portal of BOLD systems, data for di®erent life forms may be down-

loaded in various formats including XML and tab-separated text.

In this paper, ¯ve datasets were used: chiroptera, aves, rodentia, polypodiopsida,

and pucciniomycetes datasets. All major organism kingdoms (i.e. animals, plants,

and microbes) are represented in the dataset. As a preprocessing step, all the

sequences that are less than 657 in length were removed since the full length of the

COI segment used as a DNA barcode sequence is 657 bp.31 However, sequences with

ambiguous letters like \Ns" and dashes \-" were kept. Table 1 presents a summary of

datasets after the preprocessing step. Besides, the maximum, minimum, and average

frequencies are calculated and reported in Table 2.

Figures 5–9 show the percentage of removed samples for species in each dataset.

In particular, the total number of removed samples from chiroptera is 5 which are

Table 1. Class datasets summary.

Dataset No. of species No. of samples

Chiroptera 122 4731
Rodentia 127 3653

Aves 841 4192

Pucciniomycetes 34 1905

Polypodiopsida 276 5850

G. N. Sohsah et al.
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distributed over four unique species, as shown in Fig. 5. No species is completely

deleted from chiroptera.

The total number of removed samples from aves is 1035 which are distributed

over 516 unique species. No species is completely deleted from aves, as shown in

Fig. 6. The total number of removed samples from rodentia is 482 which are dis-

tributed over 38 species. No species is completely deleted from rodentia, as shown in

Fig. 7.

The total number of removed samples from pucciniomycetes is 1001 which are

distributed over 30 unique species. Ten species (i.e. insolibasidium, septobasidium,

zaghouania, helicobasidium, platygloea, cumminsiella, batistopsora, aecidium,

eocronartium and auriculoscypha) are completely removed from pucciniomycetes, as

shown in Fig. 8.

The total number of removed samples from polypodiopsida is 945 which are

distributed over 82 unique species. No species is completely deleted from poly-

podiopsida, as shown in Fig. 9.

Table 2. Class datasets species frequencies summary.

Dataset Maximum frequency Minimum frequency Average frequency

Chiroptera 0.2 0.0002 0.008

Rodentia 0.1 0.0002 0.008

Aves 0.02 0.0002 0.001
Pucciniomycetes 0.43 0.001 0.03

Polypodiopsida 0.09 0.0002 0.004

Fig. 5. The percentage of removed samples for species in chiroptera dataset.
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3.2. The evaluation of non-hierarchical classi¯ers

In this part of our experiments, the e®ect of changing the length of the subsequence

kernel k-mers on the f1-scores of non-hierarchical classi¯ers is studied. To this end, on

each of the datasets, three di®erent classi¯ers (i.e. RF with 10 estimators, SVM with

Fig. 7. The percentage of removed samples for top-30 species with the highest removal rate in rodentia

dataset.

Fig. 6. The percentage of removed samples for top-30 species with the highest removal rate in aves dataset.
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Fig. 9. The percentage of removed samples for top-30 species with the highest removal rate in poly-

podiopsida dataset.

Fig. 8. The percentage of removed samples for top-30 species with the highest removal rate in puccinio-
mycetes dataset.
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linear kernel, and SVM with radial kernel) are trained and tested using 10-folds

cross-validation.

Figure 10 presents a summary of how each classi¯cation algorithm performs on

di®erent datasets. In all experiments, for SVM with radial kernel, the kernel width is

set to the number of samples in the training split at each iteration. In all charts,

boxplots are also included in order to demonstrate the variability of f1-scores across

di®erent folds during cross-validation. Please note that in order to prevent the

overlap among box plots as well as the original f1-score lines, box plots are slightly

shifted so that they do not block each other in the visualization.

The results for the chiroptera dataset are visualized in Fig. 11. The SVM classi¯er

with a linear kernel, for larger k values, outperforms the other classi¯cation methods,

while the RF classi¯er performs better for lower k values. It can also be noted that

the f1-scores obtained with the SVM classi¯er with a linear kernel increase as k

increases in the range ½1; 7� without any drop, unlike the SVM classi¯er with a radial

kernel which experiences f1-score drop for larger values of k.

Similar observations are made for the rodentia dataset, as illustrated in

Fig. 12.

As for the aves dataset, although the test f1-score is lower than the other studied

datasets (see Fig. 10), the relative rank and behavior of the classi¯ers are similar to

the above results with the change of k, as shown in Fig. 13.

Similar observations are made for the pucciniomycetes and polypodiopsida

datasets, as illustrated in Figs. 14 and 15.

It can be concluded that as long as the memory resources allow larger values of k,

it is possible to train an SVM classi¯er with a linear kernel that achieves better

classi¯cation scores than both an SVM classi¯er with a radial kernel and an

Fig. 10. Maximum mean f1-score of test folds from di®erent models.
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RF classi¯er. On the other hand, if the memory limitations hindered the increase of k,

one may opt for RF classi¯er, as RF requires less memory.

To sum up, the best f1-scores for all datasets are provided by an SVM classi¯er

with a linear kernel trained with subsequence length k ¼ 7. As Fig. 10 shows, the

Fig. 11. The e®ect of changing the value of k on the classi¯cation f1-scores for the chiroptera dataset.

Fig. 12. The e®ect of changing the value of k on the classi¯cation f1-scores for the Rodentia dataset.

Scalable classi¯cation of organisms into a taxonomy using hierarchical supervised learners

2050026-13



classi¯cation f1-score for the aves dataset is comparably low. The reason behind this

is mainly the insu±cient number of samples per species. As summarized in Table 1,

the average number of samples per species in aves dataset is signi¯cantly lower than

that of the other datasets.

Fig. 13. The e®ect of changing the value of k on the classi¯cation f1-scores for the aves dataset.

Fig. 14. The e®ect of changing the value of k on the classi¯cation f1-scores for the Pucciniomycetes

dataset.
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As consistent with our results in this section, the previous studies also reported a

similar observation that the classi¯cation performance improves as the value of k

increases in all datasets, and the percentage of improvement signi¯cantly drops for

the higher values of k.11 Besides, similarly, in our results, birds (i.e. aves) have the

highest error rate as reported earlier in the literature.11 Finally, SVM's better per-

formance is also in line with the previously published results.9,16 As an example, in

Ref. 16, the method that obtained the best score varied according to the dataset.

However, the support vector machine method attained the best score at three out of

six datasets while each of the other methods achieved the best score for at most two

datasets.

3.3. Scalability of non-hierarchical classi¯ers

In order to study how e±ciently di®erent classi¯cation methods scale to larger

datasets, the ¯ve datasets used in this paper, chiroptera, rodentia, aves, puccinio-

mycetes, and polypodiopsida datasets, are merged into a single dataset. Then,

the above three classi¯ers are trained using the same settings used in the previous

Sec. 3.2. Unfortunately, the attempts to train the SVM classi¯ers (with both linear

and radial kernels) failed due to memory limitations, despite the decent memory size

of the test machine. However, the RF classi¯er was trained successfully and provided

the results, as illustrated in Fig. 16. The maximum test score (91.1% approximately)

was obtained at k ¼ 7.

In order to be able to leverage the strength of SVM classi¯ers, while overcoming

their scalability issues, we employ our proposed hierarchical framework as demon-

strated next.

Fig. 15. The e®ect of changing the value of k on the classi¯cation f1-scores for the Polypodiopsida dataset.
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3.4. Evaluation of the hierarchical classi¯cation framework

3.4.1. Taxonomic class predictor

The ¯rst stage of the proposed framework (see Fig. 3) involves the training of a

taxonomic class predictor. Figure 17 presents the e®ect of changing the value of k on

the f1-scores of three di®erent classi¯cation methods (RF with 10 estimators, SVM

Fig. 16. The e®ect of changing the value of k on the classi¯cation f1-score of a RF classi¯er with 10

estimators trained and tested on all the ¯ve datasets merged together.

Fig. 17. The e®ect of changing the value of k on the f1-scores of three di®erent classi¯cation methods

trained to predict the taxonomic class on the merged dataset.
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with linear kernel, and SVM with radial kernel) trained to predict the taxonomic

class on the merged dataset (that involves chiroptera, aves, rodentia, poly-

podiopsida, and pucciniomycetes datasets).

From Fig. 17, we observe that the best f1-scores are obtained when using SVM

classi¯er with a linear kernel and setting the subsequence length k to be 5. The test

f1-score in this case is 99.9% which means that we are able to predict the taxonomic

class with an error of 0.1%, and then pass the sequence to a class-based classi¯er

capable of predicting the species with the f1-scores given in Fig. 19.

Fig. 19. Comparison between hierarchical and non-hierarchical models based on their testing f1-score.

Fig. 18. The e®ect of changing the value of k on the f1-scores of the hierarchical classi¯er that employs
linear kernel SVM and RF subclassi¯ers.
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In the hierarchical classi¯er, two SVM classi¯ers with linear kernels are com-

bined in a hierarchical manner. The ¯rst one assigns a taxonomic class to each DNA

barcode sequence, and passes the sequence down to the second level species clas-

si¯er to assign a species. The framework for the hierarchical method is illustrated in

methods section. SVM classi¯ers with linear kernels are chosen due to their rela-

tively high performance as shown with the above experimental results. Figure 18

shows how the performance of the two-stage SVM-hierarchical classi¯er and RF-

hierarchical classi¯er change with the value of k. Figure 19 also compares the f1-

scores of the non-hierarchical classi¯er (with the RF classi¯er) trained on the

merged dataset (with k ¼ 7) against the f1-score of the hierarchical classi¯er on the

same dataset.

The above results demonstrate that the proposed hierarchical classi¯cation

framework provides superior f1-score performance than the non-hierarchical classi-

¯er. It also overcomes the memory limitation that is discussed above.

Earlier studies mostly focused on the comprehensive evaluation of phylogenetic

and statistical learning models for DNA barcode-based classi¯cation, and pointed

out in agreement that SVM outperforms other alternatives consistently in most of

the studied datasets.9,16 However, a major limitation point was that SVM could not

scale for datasets that contain multiple species, classes, etc. Our results in this section

demonstrate that with the proposed hierarchical classi¯cation framework, SVM's

superior performance now become available for datasets with multiple species,

classes, etc. as well.

3.5. Robustness analysis

In this section, we study the robustness of hierarchical and non-hierarchical classi-

¯cation frameworks in the presence of mutations and/or noise in DNA sequences. In

order to simulate the mutations or sequencing noise, we randomly introduce arti¯cial

mutations in the DNA barcode sequences with di®erent ratios. More speci¯cally, the

mutation ratios are varied in the range [0, 1] with a step of 0.1, and the f1-score for

each classi¯er is reported. For each mutation ratio, the number of mutation positions

is calculated by multiplying the ratio by the sequence length, and then that many

mutations are introduced at random positions. Replacement characters are chosen

randomly from the set A;G;C;T .

As discussed in the above experiments, one single SVM classi¯er could not be

trained using the merged dataset due to high memory requirements. However, the

RF algorithm could scale to train one classi¯er capable of predicting the species for a

given DNA barcode sequence regardless of the taxonomic class in the merged

dataset. Here, we compare the robustness of the proposed hierarchical classi¯cation

framework (with SVM and RF subclassi¯ers, separately) to that of non-hierarchical

classi¯er (built with RF). The kernel that is employed in all classi¯ers is a linear

kernel due to the relative e±ciency of the SVM-linear classi¯ers as illustrated

in Figs. 11–15. All studied classi¯ers are trained and tested with 10-folds

G. N. Sohsah et al.
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cross-validation using the combined dataset that merges the ¯ve taxonomic classes

considered in this work.

Figure 20 presents the test f1-scores of classi¯ers. These results demonstrate that

the proposed hierarchical framework provides more robust f1-score performance in

the existence of mutations of noise in data in comparison to the conventional non-

hierarchical structure.

4. Conclusions

In this paper, the problem of assigning taxonomic labels to DNA sequences using

supervised learning is studied. A multi-level hierarchical classi¯cation framework,

which combines multiple classi¯ers built for predicting a label (e.g. class, genus,

species, etc.) at di®erent levels in organism taxonomy, is proposed. The proposed

framework is evaluated on real data of 1400 species from BOLD systems. We dem-

onstrate that in comparison to the conventional supervised classi¯ers, the proposed

method provides the following advantages: (i) better f1-scores, (ii) improved scal-

ability, (iii) more robustness against mutations or noise in sequence data.

The recent works in natural language processing ¯eld have shown promising

progress in understanding text given sequences of characters. We believe that similar

techniques may be employed to achieve better results in the problem of classifying

living organisms taxonomy. As part of our future work, we plan to investigate the use

of deep learning within the proposed hierarchical taxonomy classi¯cation framework.

Fig. 20. The e®ect of introducing arti¯cial mutations on the classi¯cation test samples, f1-scores of a
hierarchical RF classi¯er with the number of trees set to 10, non-hierarchical RF classi¯er with the number

of trees set to 10, a hierarchical SVM classi¯er with linear kernel.

Scalable classi¯cation of organisms into a taxonomy using hierarchical supervised learners
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In particular, we will explore the possible adaptation of long sort-term memory and

convolutional neural networks architectures.

Availability: https://github.com/sehir-bioinformatics-database-lab/Hierarchical-

Supervised-Learners.
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