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The phenotype of diseases have often reflections on the metabolism of patients. Certain pathways may 

be boosted, while some others may experience activity decrease. Collectively, such changes may explain 

the etiology of a disease. In this paper, we propose an algorithm, Metabolitics, which quantifies the 

changes in activity levels of pathways (and their reactions) given concentration fold changes for a set of 

metabolites. A number of past studies (e.g., Drier et al., 2013; Wang et al., 2013) focused on 

pathway/reaction level analysis of high throughput biological data. The initial set of studies mainly 

employed pathway enrichment analysis (Wang et al., 2013). The next set of methods (Drier et al., 2013) 

directly transfers the measured metabolite/gene changes to their corresponding pathways without any 

filtering. Then, statistical significance analysis is done on the pathways and their change levels to assign 

them a deregulation score. These methods consider each pathway as a collection of genes/metabolites, 

and ignore the interactions between these entities. An extension of the above set of methods also takes 

into account pathway topology (Vaske et al., 2010). More specifically, some measured genes/metabolites 

are given more weights in the statistical significance analysis based on the centrality of each 

gene/metabolite in the pathway topology.  

None of the above summarized pathway analysis methods considers that pathways are part of a larger 

network, and they interact with each other. The main novelty of the proposed method is that we perform 

the analysis on the whole pathway network in a holistic manner, rather than considering each pathway in 

an isolated manner. The main advantage of such an approach is that, for a given disease, it allows to 

identify those key player pathways for which there are few or no associated gene/metabolite 

measurements in the analyzed omics data. Our method is not specific to the metabolomics domain. It 

may be easily extended to for the analysis of other types of omics data (e.g., mRNA) as well.  

Metabolitics assigns a score for each pathway/reaction in each patient. This score represents how much 

the activity of the corresponding pathway/reaction differs from that of healthy individuals. In order to 

achieve this, Metabolitics works on the whole network of metabolic pathways. It turns the analysis task 

into an optimization problem (Orth et al., 2010) where the objective is dynamically set to maximize the 

flux for increasing metabolites’ reactions, and minimize the flux for decreasing metabolites’ reactions in 

proportion to their fold changes. Then, the optimization problem is solved with linear programming 

(Fernández-Castané et al., 2014). Since the optimization problem is under-determined (Orth et al., 2010), 

there are usually multiple solutions. In order to accommodate multiple solutions with a single score, we 

employ flux variability analysis (Labhsetwar et al., 2013) to identify the lower and upper bound flux values 

for each pathway. The average lower and upper flux values of healthy individuals are considered as 

reference values, and for each individual and pathway, Metabolitics compute how much the lower and 

upper flux values differ from the reference values in a given patient. The average of the changes in upper 

and lower flux bounds is assigned to each patient-pathway pair as the “diff” score.  

In order to evaluate the Metabolitics algorithm, we apply it on a breast cancer metabolomics dataset. We 

demonstrate that Metabolitics (i) captures biologically relevant information in breast cancer, (ii) 
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accurately stratifies people with breast cancer, (iii) is robust to decrease in the amount of measurement 

data, and (iv) provides more coverage than the state of the art. Table 1 lists the top-10 significantly 

changing pathways with their diff scores in comparison to the state of the art.  

Pathway  
F-

val  
p-val  diff  Pathifier  Paradigm  

Met. 

Cnt 

Alanine and aspartate metabolism  200  1.70E-31  1300  0.16  0.0012  7 

Arginine and Proline metabolism  160  1.90E-26  850  0.46  -0.019  8 

Methionine and cysteine met.  130  2.50E-23  170  0.17  0.024  6 

Taurine and hypotaurine met.  130  1.00E-22  970  -  0.18  1 

CoA catabolism  120  2.50E-22  610  -  -  0 

Fatty acid oxidation  120  2.40E-21  -1100  0.21  -  15 

Nucleotide interconversion  110  2.70E-20  1300  -  -  1 

Eicosanoid met.  80  6.30E-16  -730  0.5  -  4 

Butanoate met.  69  3.40E-14  -670  -  -  0 

Glycolysis  68  4.60E-14  770  0.11  -0.019  5 

Std. Deviation   883.5  0.17  0.08  

 
Table 1. Significantly changing pathways in breast cancer with their diff scores computed by Metabolitics. The 

statistical significance values (i.e., F-val and p-val) are computed through ANOVA analysis based on computed diff 

values (corrected for multiple hypothesis testing using Benjamini/Hochberg). The last column reports the measured 

metabolite counts for the reported pathways. Columns 5-6 provides the scores computed by the state of art 

approaches Pathifier and Paradigm. 
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