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Abstract—The metabolic wiring of patient cells is altered drastically in many diseases, including cancer. Understanding the nature of

such changes may pave the way for new therapeutic opportunities as well as the development of personalized treatment strategies for

patients. In this paper, we propose an algorithm called Metabolitics, which allows systems-level analysis of changes in the biochemical

network of cells in disease states. It enables the study of a disease at both reaction- and pathway-level granularities for a detailed and

summarized view of disease etiology. Metabolitics employs flux variability analysis with a dynamically built objective function based on

biofluid metabolomics measurements in a personalized manner. Moreover, Metabolitics builds supervised classification models to

discriminate between patients and healthy subjects based on the computed metabolic network changes. The use of Metabolitics is

demonstrated for three distinct diseases, namely, breast cancer, Crohn’s disease, and colorectal cancer. Our results show that the

constructed supervised learning models successfully differentiate patients from healthy individuals by an average f1-score of 88

percent. Besides, in addition to the confirmation of previously reported breast cancer-associated pathways, we discovered that Biotin

Metabolism along with Arginine and Proline Metabolism is subject to a significant increase in flux capacity, which have not been

reported before.

Index Terms—Systems biology, biomedical informatics, classification algorithms, metabolomics, supervised learning

Ç

1 INTRODUCTION

THE phenotype of diseases has often reflections on the
metabolism of patients [1], [11], [18], [20], [42]. Certain

pathways may be boosted, while some others may experi-
ence activity decrease. Collectively, such changes may
explain the etiology of a disease [18], [44]. In this paper, we
propose an algorithm, Metabolitics, which quantifies the
changes in the activity levels of pathways given concentra-
tion fold changes for a set of metabolites. It later employs
the computed metabolic activity changes as features to
build classification models that predict whether an individ-
ual has a disease of interest or not.

A number of past studies (e.g., [13], [24], [56], [71], [77])
focused on the pathway/reaction level analysis of high-
throughput biological data. The initial set of studies mainly
employed pathway enrichment analysis ([56], [59], [68], [71],
[72], [73], [74], [75], [76]). Briefly, these methods first identify
significantly changing genes/metabolites in a given omics
dataset. Then, the identified metabolites/genes are mapped
to the pathways that they participate in. Based on the num-
ber of changing metabolites/genes included in each path-
way, statistical significance analysis is performed to identify
those pathways that are overrepresented within the mea-
sured genes or metabolites. Accordingly, each pathway is
assigned a score based on the computed statistical test val-
ues. iOmicsPass [67] extends these approaches from a node-

level view to an edge-level view in the context of biological
networks. More specifically, it does not consider the mea-
sured entities by themselves but focuses on the direct interac-
tions of the measured biological entities. To do this, it first
computes co-expression scores for interactions based on
their source and target entities’ Z-scores. Next, using the
interaction scores, it computes the significantly differing sub-
networks. Then, on these computed subnetworks, pathway
enrichment analysis is performed. XCMS Online [78] com-
bines statistical significance-based filtering at both metabo-
lite and pathway levels. The next set of methods ([13], [33],
[50]) directly transfers the measured metabolite/gene
changes to their corresponding pathways without any filter-
ing. Then, statistical significance analysis is performed on
the pathways and their change levels to assign them deregu-
lation scores. These methods consider each pathway as a col-
lection of genes/metabolites and ignore the interactions
between these entities. An extension of the above set ofmeth-
ods also considers pathway topology ([12], [28], [52], [54],
[69]). In particular, some measured genes/metabolites are
given more weights in the statistical significance analysis
based on the centrality of each gene/metabolite in the
pathway topology. The centralitymay be computedwith dif-
ferent measures, e.g., betweenness, eigenvector centrality,
neighborhood size, etc. [27].

The state of the art in this particular field is represented by
Pathifier [13] and Paradigm [54]. Pathifier considers each
pathway as a metabolite vector by matching the measured
metabolites with the pathways that they participate. In this
vector, each entry represents the concentration change mea-
sured for ametabolite. Then, Pathifier computes the principal
curve that best fits the region where each individual is repre-
sented as a point in this high-dimensional space. On this
curve, the mean distance from the point representing a per-
son to the points representing healthy individuals is called
the pathway dysregulation score which represents how
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much the pathway activity has altered in that individual. For
each pathway, Pathifier fits a distinct curve.

Paradigm [54] is another successful approach in the path-
way-based analysis domain. It employs probabilistic graph
models to compute probability values for each pathway. A
pathway is turned into what is called a factor graph. A factor
graph contains a set of nodes representing different biologi-
cal entities and their states. As an example, for each gene in
a pathway, the factor graph contains the following nodes:
gene, mRNA, protein, and active protein. The factor graph
contains an edge for any type of information flow or state
change between these nodes. For instance, there is an edge
from a gene to its mRNA representing its transcription, an
edge from mRNA to protein representing its translation,
etc. Each node in a factor graph represents a variable that
can have one of the following values: 1 (activation), 0 (nor-
mal), and �1 (de-activation). The values of variables are
learned from the provided omics data.

None of the above-summarized pathway analysis meth-
ods considers the fact that pathways are part of a large bio-
logical network, and they interact with each other. The
main novelty of the proposed method in this paper is that
the analysis is performed on the whole pathway network in
a holistic manner, rather than considering each pathway in
an isolated manner. The core advantage of such an
approach is that, for a given disease, it allows identifying
those key player pathways for which there may be few or
no associated gene/metabolite measurements in the ana-
lyzed omics data. Our method is not specific to the metabo-
lomics domain. It may be easily extended to be used for the
analysis of other types of omics data as well (e.g., [79]
presents our preliminary results with gene expression
data). Such an extension usually requires customizing the
constraints and the objective function of an optimization
model as also illustrated in several other works (e.g., [80],
[81], [82], [83]).

In brief, Metabolitics assigns a score for each pathway/
reaction in a patient. This score represents how much the
activity of the corresponding pathway/reaction differs
from that of healthy individuals. In order to achieve this,
Metabolitics works on the whole network of metabolic path-
ways. In particular, it turns the analysis task into an optimi-
zation problem [38], where the objective is dynamically set
to maximize the flux for increasing metabolites’ reactions
and minimize the flux for decreasing metabolites’ reactions
in proportion to their fold changes. The metabolic network
is assumed to be in steady-state [35], that is, the amounts of
consumption and production are equal for all the metabo-
lites. The steady-state requirements are represented as con-
straints. Then, the optimization problem is solved using
linear programming [14]. Since the optimization problem is
under-determined [38], there are usually multiple solutions.
In order to accommodate multiple solutions with a single
score, we employ flux variability analysis [31], which identi-
fies the lower and upper flux bounds for each pathway. The
average lower and upper flux values of healthy individuals
are considered as reference values. Then, for each pathway,
Metabolitics computes how much the lower and upper flux
values differ from the reference values in a given patient.
Finally, pathway diff scores are derived from their reac-
tions’ flux boundary values.

Once “diff” scores are computed, Metabolitics builds
supervised-learning models to predict whether an individ-
ual carries a disease of interest based on the computed met-
abolic changes. In particular, each individual is represented
as a vector of the computed pathway diff scores.

Several other works combine machine learning and
metabolomics analysis ([3], [8], [70], and [85] for recent
reviews). Heckman et al. [40] employ regression models to
predict the catalytic turnover rates of enzymes in a genome-
scale metabolic model based on features such as metabolite
concentrations, average flux, enzyme structure, etc. MFlux
[37] constructs supervised learning models to estimate the
fluxome of bacterial metabolism as a low-cost alternative to
13C metabolic flux analysis. To this end, it utilizes the strain
of bacteria, types of substrates, growth rate, and environ-
mental conditions such as oxygen levels as features. GEESE
[32] is an FBA approximator for bacteria that employs gene
expression data as well as external glucose and oxygen con-
centrations as input. The estimation algorithm is based on a
deep generative model, namely, a variational autoencoder.
Similarly, Guo and Feng [25] study the use of deep learning
to predict the phenotype based on transcriptomic data
enriched with flux balance analysis results over metabolic
networks. Yaneske and Angione [21] propose a metabolic
age predictor based on multi-omics-integrated constraint-
based models. The underlying model employs elastic net
regression to estimate themetabolic predictors of aging. Tou-
binana et al. [17] combine metabolite correlation-based net-
work analysis with machine learning models to predict
unknown pathways. Costello and Martin [15] develops a
supervised learning model that predicts metabolite concen-
trations based on a time series of proteomics and metabolo-
micsmeasurements used as training data.

In order to evaluate the Metabolitics algorithm, we apply
it to breast cancer, Crohn’s disease, and colorectal cancer.
We demonstrate that Metabolitics (i) captures biologically
relevant information, (ii) accurately predicts disease status
of subjects using supervised learning models, (iii) is robust
to decrease in the amount of measured metabolite data, and
(iv) provides more metabolic network coverage than the
state of the art.

We have also implemented Metabolitics as a web tool,
MetaboliticsDB, which is described in another work [7].

2 METHODS

In this section, the details of the Metabolitics algorithm are
presented. Metabolitics employs Recon2 [53] as the metabolic
network data. Recon2 is a genome-scale reconstructed human
metabolic network model that includes 5324 metabolites and
7785 reactions. It features 100 pathways which are non-over-
lapping subgraphs of the metabolic network; thus, each has a
unique set of reactions. Metabolitics is not specific to Recon2,
and it is generic enough to adapt to other network models. In
essence, the Metabolitics pipeline consists of the following
steps. Fig. 1 pictorially depicts these steps which (except for
data splitting) are explained below.Data splitting is discussed
in Section 3 as part of the cross-validation strategy.

1. Matching the names of metabolites in the input
metabolomics data to the metabolites in Recon.
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2. Dynamic creation of a linear programming model.
3. Flux variability analysis.
4. Calculation of reaction and pathway diff values.
5. Statistical significance analysis.
6. Feature extraction.
7. Feature selection.
8. Building a supervised classification model

2.1 Matching Metabolite Names

It may not be possible to match all the metabolite names in a
given metabolomics dataset to those in Recon2 [41]. The
main reason is that manymetabolites do not have a standard
common name used by all researchers. Therefore, as a first
step, one needs to find the equivalents of user-provided
metabolites in the Recon2 data. In this study, the set of all
known alternative names for each metabolite is compiled by
the cross-integration of different metabolite data sources.
More specifically, the names of the metabolites that are
included in two widely used public data sources, namely,
HMDB [58] and CheBI [23], are combined. In particular, a
pair of metabolite entries from two different sources are con-
sidered the same, if they share at least one synonym. Next,
eachmetabolite of Recon2 is searched in this combined name
dataset, and all known synonyms are transferred to Recon2.
Finally, the names in the input metabolomics dataset are
matched to the compiled set of synonyms.

2.2 Personalized Linear Programming Models

Metabolic analysis studies in the literature generally assume
that metabolic networks are in steady-state [30], [34]. The
steady-state hypothesis considers that the total production
of each metabolite in the metabolic network is equal to its
total consumption. This allows a metabolic network to be
expressed mathematically as a set of linear equations. More
specifically, a metabolic network may be represented as a
matrix in which the rows correspond to the metabolites and
the columns correspond to the reactions in the network. In
this matrix, a cell located at row i and column j contains the
stoichiometry of metabolite mi in reaction rj. If metabolite mi

does not participate in reaction rj, then 0 is placed in the

corresponding cell. With this representation, flux balance
analysis may be expressed as a linear program under the
steady-state assumption as follows [38]:

maximize CT V

subject to S � V ¼ 0 and vlower < V < vupper

(1)

In eq. (1), S is the matrix representation of the metabolic
network, V is a vector of variables which represent reaction
fluxes,C contains coefficients for reactions, vlower and vupper are
the upper and lower boundaries of reaction fluxes. By solving
the above linear program, the values of the reaction flux varia-
bles in vectorV are determined. At this point, the steady-state
assumption is represented as constraints. In single-cell organ-
isms, the objective function is often set to maximize the fluxes
of reactions that produce cell building blocks (amino acids,
nucleotides, lipids, etc.) to amplify the cell biomass. However,
for multi-cellular organisms, e.g., humans, there is no agreed-
upon standard for the objective function structure. In this
study, the objective function is dynamically set in a personal-
ized manner. More specifically, the objective function (i.e.,
CT V ) is constructed as follows: V includes flux variables for
all reactions that produce at least one metabolite in the input
metabolomics dataset. C is a vector of coefficients. Each entry
CR in C is associated with the flux variable of a unique reac-
tion R fromV. Eq. (2) shows howCR is computed.

CR ¼
X

m � MR

mfc Sm;R = Stotal
m

Stotal
m ¼

X
r � R

Sm;r;
(2)

where

� CR is the coefficient of reaction R’s flux variable,
� MR is the set of metabolites that are produced by R,
� mfc is the concentration fold change for metabolite

m, as computed in Eq. (3),
� Sm ;r is the stoichiometry of metabolitem in R,
� Stotal

m is the total stoichiometry ofm over all producer
reactions of m in the metabolic network.

Fig. 1. Metabolitics pipeline steps.

1016 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on June 06,2021 at 08:57:48 UTC from IEEE Xplore.  Restrictions apply. 



The objective function is heuristically built based on the
intuition that, by incorporating mfc as a coefficient, the
higher the change in the measured concentration of a
metabolite, the more effect it will have on the objective func-
tion value. In doing so, the total stoichiometry of the metab-
olite is used as a normalization term to prevent the popular
(currency) metabolites from artificially dominating the
objective function. This is because, in the metabolic net-
work, there are several hub (currency) metabolites that par-
ticipate in many reactions. H2O, ATP, and NAD are some
examples of currency metabolites. Many studies [64]
remove these metabolites from their analysis, but the
removal of the currency metabolites may damage the stoi-
chiometric balance of the metabolic network. Moreover, the
removal of currency metabolites is a strong assumption;
therefore, it should be avoided. In order to accommodate
the above considerations, the currency metabolites are kept,
and each metabolite is normalized with its total stoichiome-
try. Moreover, the objective function is defined completely
based on the measured metabolite concentration changes
which will be different for each person. This way of model-
ing allows our approach to produce personalized results.
Besides, metabolite concentrations need to be normalized as
fold-changes since the scale of each metabolite is different,
and a change is only meaningful when compared to a refer-
ence healthy value. That is,

mfc ¼ logmc � logmhealthy
m ; (3)

where

� mc is the concentration measurement of metabolite m
in an individual.

� mfc is the concentration fold change of metabolite m
for the individual.

� mhealthy
m is the mean concentration of metabolite m in

all healthy individuals.
In order to compute the fold-changes as in eq. (3), first,

the reference mean concentration of each metabolite is com-
puted based on the measurements in healthy individuals.
Then, for all individuals (including healthy individuals and
patients), the metabolite fold changes are computed relative
to the above computed mean values. As a result, though
usually smaller than patients, even healthy individuals are
assigned metabolite fold changes. These fold changes are
employed for each individual in the corresponding objec-
tive function, as described above.

2.3 Flux Variability Analysis

Typically, the number of metabolic reactions is greater
than the number of metabolites in a metabolic network
[38]. Hence, the optimization problem presented in the
previous section is underdetermined. Therefore, many
alternative solutions (i.e., reaction flux value assignment)
are usually possible. In order to cover all of these alterna-
tive solutions, flux variability analysis (FVA) [36] is
employed. FVA allows determining the minimum and
maximum flux values for each reaction. In brief, FVA
works as follows (Fig. 2): First, the optimal value of the
objective function is determined by solving the optimiza-
tion problem described in the previous section. Then, the

computed optimal value of the objective function is added
to the model as an additional constraint. For each reaction
R in the metabolic network, the objective function is set to
maximize the flux of R, and the optimization problem is
solved. The computed objective function value is stored as
the upper boundary for the flux of R. Next, the objective
function is set to minimize the flux of R, and the optimiza-
tion problem is solved once again. The computed objective
function value is stored as the lower boundary for the flux
of R. This process is repeated for each reaction in the meta-
bolic network.

2.4 Diff Value Computation

Pathways are defined by biologists as a set of closely
related reactions that work together, often in a particular
order, to achieve a common cellular goal (e.g., fatty acid
synthesis). Analyzing the perturbations caused by diseases
in metabolic networks in terms of changes in known path-
ways is a commonly used summarization method [13],
[26]. In this study, a similar approach is adopted as well.
To this end, for each pathway, we compute a “diff” value
that represents the differentiation of the pathway activity
for an individual in comparison to healthy individuals.
The pathway diff values are computed as follows. First,
the average lower and upper flux boundary values for
each reaction in healthy individuals are computed as
described above. These values are recorded as “reference”
values. Then, during the analysis of a given set of metabo-
lomics data of an individual, the overall differences
between the lower and upper flux values obtained from
this dataset and the reference values are computed for
each reaction as its “diff value”. More formally, for a reac-
tion R, let Rmin and Rmax be R’s lower and upper boundary
flux values, respectively, computed for an individual;
RHmin and RHmax be R’s average lower and upper bound-
ary flux values, respectively, computed for healthy sub-
jects (in the training/reference dataset). First, each flux
interval is split into two subintervals, one for the positive
side with boundary values Rþ

min and Rþ
max, Rþ

Hmin and
Rþ

Hmax, and the other for the negative side with boundary
values R�

min and R�
max, R

�
Hmin and R�

Hmax for both patient
and healthy subjects, respectively. For a flux interval,
[Rmin, Rmax], the boundaries for the negative and positive
subintervals are computed as follows:

Fig. 2. FVA algorithm [63].
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R�
min ¼ �Rmax; if Rmax < 0

0 otherwise

�

R�
max ¼ �Rmin; if Rmin < 0

0; otherwise

�

Rþ
min ¼ Rmin; if Rmin > 0

0 otherwise

�

Rþ
max ¼ Rmax; if Rmax > 0

0; otherwise

�
;

R�
Hmin; R�

Hmax; Rþ
Hmin; and Rþ

Hmax are computed similarly.
Note that the boundaries of the subintervals are non-negative.
Then, the diff scores are computed for positive and negative
subintervals,Rþ

diff andR�
diff , respectively, as follows:

Rþ
diff ¼ Rþ

min �Rþ
Hmin

� �þ Rþ
max �Rþ

Hmax

� �
(4Þ

R�
diff ¼ R�

min �R�
Hmin

� �þ R�
max �R�

Hmax

� �
: (5Þ

Finally, the diff value for reaction R, denoted as Rdiff , is
computed as the average of the diff values for negative and
positive subintervals:

Rdiff ¼ R �
diff þ Rþ

diff

2
: (6)

Eqs. (4), (5), and (6) may be rewritten in combination as
follows:

Rdiff ¼ Rminj j þ Rmaxj jð Þ � RHminj j þ RHmaxj jð Þ
2

: (7)

A similar alternative approach to splitting reaction flux
intervals is to convert all reversible reactions into two irre-
versible reactions (one in forward direction and the other in
backward direction), and then, calculate diff scores based
on only the positive intervals of newly introduced reactions
(i.e., Rþ

min; Rþ
max; Rþ

Hmin; and Rþ
Hmax). In this new setting,

the negative and positive subintervals of an originally
reversible reaction will be represented by the positive subin-
tervals of the newly added irreversible reactions. There is no
difference regarding the irreversible reactions between
these two alternative approaches.

A diff score represents the change in the range of possible
flux values for a reaction. That is, a positive diff score indicates
that the actual activity level of a reaction would be drawn
from a range that includesmostly larger values, while a nega-
tive score indicates that the actual activity level would be
drawn from a range that includes mostly smaller values.
Hence, in positive diff cases, the likelihood of having larger
flux values is higher compared to healthy individuals, while
in negative diff cases, the likelihood of having smaller flux
values is higher for the corresponding reactions/pathways.
The magnitude of a diff score represents the expectation of
how much higher (for positive scores) or lower (for negative
scores) the flux magnitude of a reaction would be in a patient
compared to the average healthy reference values. For sim-
plicity, we assume that flux values within each flux interval
are uniformly distributed. As an example, for a reaction R, let
[2], [4] be the reference flux interval obtained from healthy
individuals, and [3], [5] be the flux interval computed for
a patient. R may have the following possible flux value

combinations in a healthy individual and the patient (only
integer flux values are considered in the example for brevity,
even though real flux values are also possible in practice): [(2,
3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)]. Then, the
set of corresponding flux differences between the patient and
a healthy individual would be [1, 2, 3, 0, 1, 2, -1, 0, 1]. The aver-
age (i.e., expectation) of these differences would be 1, which is
also the diff score for R computed using Eq. (7) (i.e.,
½ð3� 2Þ þ ð5� 4Þ�=2 ¼ 1Þ. Fig. 3 illustrates several example
scenarios and the associated diff scores. In each case, the left-
hand side shows the original flux intervals as computed by
FVA, while the right-hand side shows the corresponding sub-
intervals and the associated diff values. Fig. 3 presents exam-
ples of positive diff scores. The symmetric cases (where
patient and reference-healthy labels are switched) would pro-
vide examples of negative diff scores.

Next, for each pathway, a diff value is computed as the
mean diff value of its reactions. This is similar to pathway-
level aggregation methods [62] in the literature. As an alter-
native, the mean of the top-k reactions with the highest
ANOVA score is also considered.

2.5 Statistical Significance Analysis

It may be misleading to directly interpret a diff value solely
based on its magnitude. In this study, a statistical signifi-
cance analysis is carried out to evaluate the possibility of ran-
dom occurrence of these scores (i.e., null hypothesis). To this
end, ANOVA [9] is used to calculate the F- and p-values (cor-
rected for multiple hypothesis testing using Benjamini-
Hochberg), which indicate the statistical significance of path-
way activity differences between patient and healthy groups.
ANOVA is preferred because it is widely used in bioinfor-
matics studies [61]. This way, essential pathway changes
that characterize a diseasemay be statistically determined.

2.6 Machine Learning-Based Classification

Computeddiff scores for healthy individuals andpatients are
used as training data to build machine learning-based classi-
fication models. These trained models are then employed to
predict whether a new/unseenmetabolomics data belongs to

Fig. 3. Various diff score examples.
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a patient. In this context, a metabolomics analysis result
should be represented as a numerical vector. To this end, one
needs to first determine the structure and content of this
numeric vector.

Feature Extraction. Since our approach in this study is
pathway-based, pathway diff values are used as features
(i.e., entries in the numeric vector representation). There are
100 different pathways in the current version of the Recon2
data. Hence, in this study, the size of each vector represent-
ing an individual is 100.

Feature Selection. The employed reaction diff score fea-
tures are correlated among themselves. This is because the
steady-state constraint of linear programming leads to cor-
related min-max values among neighboring reactions. This
multicollinearity may negatively affect the performance of
the trained linear classification models [16]. Hence, as a pre-
processing step, the highly correlated features are elimi-
nated from the vector representation before building a
classification model. We consider recursive feature elimina-
tion [22], feature importance based on feature weights, and
ANOVA.

Classification. A binary classification model for a disease
is constructed by using the vector representations of the
metabolomics analysis results from healthy individuals and
patients as training data. In this work, we consider the most
commonly used algorithms, e.g., Support Vector Machines
[22], Decision Trees [29], Logistic Regression [6], etc.

3 EXPERIMENTAL EVALUATION

In this section, we present our results from an experimental
evaluation of Metabolitics on a breast cancer dataset [26] that
includes 160 metabolite measurements collected from 214
individuals’ plasma samples (76 healthy individuals and 138
breast cancer patients). Metabolitics is also applied to
Crohn’s disease and colorectal cancer for further evaluation.
First, an evaluation of the breast cancer dataset is presented
in detail, and then, the results on Crohn’s disease and colo-
rectal cancer datasets are discussed. The implementation of
the presented algorithms is done in Python. ScikitLearn [39]
library is used for machine learning models and statistical
significance analysis. Cameo [14] is used for the FVA.

Cross-Validation Strategy. In all experiments, repeated
stratified K-fold (K ¼ 10 and repeat count ¼ 10) cross-vali-
dation is employed. The pipeline is re-run end-to-end for
each iteration of the cross-validation. That is, in each fold,
(i) the diff values are re-computed for all individuals in the
train split based on the average fluxes computed for healthy
people in the train split, (ii) a new classification model is
built along with feature selection based on the current train
split, (iii) diff values are recomputed for all individuals in
the test split based on the average fluxes computed for
healthy people in the train split, and (iv) the built model is
tested on the corresponding test split. Then, the above steps
are repeated. In each repeat, the data is re-shuffled, and test
and train splits among healthy individuals and patients are
re-determined in a stratified manner. The reported results
are the average and standard deviation of the 100 folds (K ¼
10, repeats ¼ 10). In each iteration, 8 folds are used for train-
ing, 1 fold is used for parameter tuning, and 1 fold is used
for testing.

3.1 Evaluation of Pipeline Steps of Metabolitics

Alternative approaches for each step of the pipeline is bench-
marked to justify our choice in each step. The results are
reported in Fig. 4. Higher classification performance is
achieved using reaction-level diff-scores. However, reaction-
level information alone is not interpretable due to a large
number of reactions (about 7500 of them). Thus, we aim to
obtain pathway-level scores that provide a similar classifica-
tion performance. Averaging all reaction scores to obtain
pathway scores slightly decreases the classification perfor-
mance because few numbers of reactions for each pathway
are significantly altered and probably have important signals,
unlike the rest of the reactions whose change is insignificant.
Thus, as an alternative approach, the top-k significant reac-
tions are chosen based on their ANOVA score, and then the
average pathway diff score is computed over the top-k reac-
tions. The value of k is computed automatically as part of the
parameter tuning fold. The tuned value for k is 100 in our
reported experiments. Reaction-level feature selection
slightly decreases the performance (by 0.9 percent). How-
ever, averaging at the pathway-level restrores the perfor-
mance of classification back to the same level (i.e., 89.9
percent). Feature selection at the pathway-level contributes
to pathway-level performance (by 2.2 percent), as it better
represents pathway alteration characteristics. Recursive fea-
ture elimination (89.8 � 4.8) [22] and feature importance
based on feature weights (89.4� 4.5) in logistic regression are
considered as alternatives to ANOVA. However, none of
them provides better performance; thus, ANOVA is
employed in feature selection step. Moreover, we also
explore whether dimensionality reduction techniques, such
as PCA,would improve the classification performance. Based
on Fig. 4, there is no clear benefit that PCA provides. More-
over, alternative dimensionality reduction methods such as
factor analysis (82.4 � 1) [65] and truncated SVD (89.7 � 4.4)
[66] are considered, but they do not provide any better perfor-
mance than PCA. Therefore, dimensionality reduction is not
employed in this study. PCA results are still kept in Fig. 4 to
illustrate the results of the exploratory analysis.

Classifiers. Several alternative classifiers are con-
sidered. Average and standard dev. of f1-score (i.e.,
2�precision�recall/(precisionþrecall)) for each classifier are
presented in Fig. 5 (calculated over 10-folds that are repeated
10 times). We tune the hyper-parameters of each model,
such as regularization parameter and different regularization

Fig. 4. Repeated stratified K-fold (10 fold and 10 repeat) cross-validation
on breast cancer dataset (Feature selection is ANOVA-based).
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metrics (L1 and L2) for logistic regression and SVM, gini and
entropy as criterion metric and different tree depths for deci-
sion tree and random-forest, different numbers of estimators
for ensemble methods (adaboost and random-forest), etc.
Also, we include a neural network model with one hidden
layer, relu activation, and adamoptimizer. Logistic regression
(LR) and linear-svm (SVM) beat other methods, and they per-
form almost equally well (with f1 score �90 percent). Hence,
one could choose either SVM or LR for the dataset considered
in this study. In our experiments, LR is employed (for no par-
ticular reason over SVM).

3.2 Metabolitics Captures Biologically Relevant
Information in Breast Cancer

Table 1 lists the top-10 significantly changing pathways in
breast cancer patients. In the Alanine and Aspartate Metab-
olism pathway, the reaction that experiences most flux
capacity increase is asparagine synthase (encoded by ASNS).
This reaction converts glutamine into glutamate and aspara-
gine. Glutamate is a precursor that leads to the biosynthesis
of other amino acids which are needed by breast cancer
tumor cells to proliferate [57].

The association of Arginine and Proline Metabolism with
breast cancer is reported for the first time in this study. De
Ingeniis et al. [10] suggested that NADPþ, which is pro-
duced during the synthesis of proline from arginine, may be
directed to PP-ribose-P synthesis. PP-ribose-P is later metabo-
lized in nucleotide synthesis. Breast cancer tumors may also
use the same mechanism to enhance nucleotide synthesis.

Breast cancer cells often experience high oxidative stress
[4]. Hypotaurine has a significant effect on the reactive oxida-
tive stress states of cells [5], [19].

Fatty acids are used for lipid synthesis, and lipids form the
main structure of the cell membrane. In order to form new
tumor cells, lipids have a vital role as a building block of cell
membranes [2]. The first committed step of fatty acid synthe-
sis is the carboxylation of acetyl-CoA to malonyl-CoA. This
reaction is heavily dependent on Biotin to take place [51].
Hence, the increase in flux capacity of Biotin Metabolism is
another indicator of increased fatty acid synthesis.

As related to the above phenomena, the CoA metabolism
(both synthesis and catabolism) exhibits a positive flux
capacity change. Acetate is an important input for lipid syn-
thesis in breast cancer tumors [46]. More specifically, Acetyl
CoA is first produced from Acetate (ACOT12) and then

converted to Malonyl CoA (ACC-alpha) [47]. Malonyl CoA
is the primary input metabolite to the first steps of fatty acid
synthesis.

NTPs and dNTPs form the main input metabolites of
nucleotide synthesis. Nucleotide interconversion performs
the transformations (d) NMP $ (d) NDP $ (d) NTP by
transferring phosphate to produce the critical metabolites
necessary for nucleotide metabolism which is essential for
breast cancer tumor cells to proliferate [48].

N-acetylgalactosamine and N-acetylglucosamine of Amino-
sugar metabolism are associated with the invasiveness
capability of breast cancer cells [84].

Eicosanoids are divided into 3 different subgroups: pros-
tanoids (COX), lipoxygenases (LOX), and v-hydroxylases/epox-
ygenases. COX and LOX eicosanoids have a supporting role
in breast cancer development and metastasis [55]. COXs are
more active in ER-positive breast cancer tumors, while
LOX’s are more effective in ER-negative tumors. In the ER-
positive breast cancer subtype, tumor cells have estrogen-
sensitive receptors. Such tumors bind to the estrogen hor-
mone, and estrogen accelerates the development and spread
of these cells. COXs boost estrogen synthesis by increasing
the activity of the rate-limiting enzyme in estrogen synthe-
sis, aromatase [55].

Finally, Glycolysis is associated with what is known as
the Warburg effect [43]. That is, tumor cells consume and
convert glucose into lactate even though plenty of oxygen is
available and mitochondrial oxidation is possible.

3.3 Comparison With the State of the Art

We compare Metabolitics with Pathifier [13] and Paradigm
[54] in terms of (i) accuracy (AUC-ROC), (ii) the coverage of
metabolism, and (iii) robustness to data loss.

Accuracy. Fig. 6 presents AUC (Area under the Curve)
ROC (Receiver Operating Characteristics) curve that is
obtained with repeated stratified K-fold (10 folds and 10
repeats) cross validation. Metabolitics has better AUC value
than both Paradigm and Pathifier. The default parameters

Fig. 5. f1-scores for different classification algorithms.

TABLE 1
Significantly Changing Pathways in Breast Cancer

The statistical significance values (i.e., F-val and p-val) are computed through
ANOVA analysis based on computed diff values. The last column reports the
measured metabolite counts for the reported pathways. Columns 5-6 provide
scores for Pathifier and Paradigm.
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of Pathifier and Paradigm are used, since they provide the
best performance. Pathifier, in its original implementation,
employs the labels of the entire dataset to learn and extract
pathway features. The original implementation is adapted
to the k-fold cross-validation setting so that in each fold, it
uses only the training split for that fold to fit its principal
curve, and later, the same curve is used to compute the
pathway dysregulation scores for the test split. The same
train-test splits as Metabolitics are used in a 10-fold cross-
validation setting (repeated 10 times). Likewise, Paradigm
learns its model parameters based on the entire dataset.
However, a similar adaptation for Paradigm was not possi-
ble, as it is not open-source, and we had to use the binary
executable of Paradigm to perform the comparison experi-
ments in this study. Nevertheless, Paradigm’s AUC values
are still included in Fig. 6 to show that Metabolitics outper-
forms Paradigm, even though Paradigm uses the whole
dataset to learn its parameters.

Coverage of the Metabolic Network. In this section, we dem-
onstrate that Metabolitics provides higher coverage of the
metabolism than Paradigm and Pathifier. The coverage of
the metabolic network is important to discover the complete
set of metabolic changes caused by a disease. According to
Table 1, 6 of the 10 significant pathways reported by Metab-
olitics cannot be detected by Pathifier (i.e., no dysregulation
score is computed). Similarly, Paradigm misses 4 of the top-
10 pathways. The reason for this drawback of the Pathifier
and Paradigm is explained by the last column of Table 1.
That is, Pathifier and Paradigm are capable of evaluating
and scoring only pathways with at least several metabolites
included in the analyzed metabolomics data set. Therefore,
they may miss several important key pathways for which
no measured metabolite is available in the analyzed metab-
olomics dataset. On the other hand, since Metabolitics con-
siders the metabolic network as a whole, and the pathways
are interconnected in this network, it can produce analysis
results for pathways for which no or only a few measure-
ments are available.

Robustness to Data Loss. In this section, the robustness of
Metabolitics to that of the Pathifier and Paradigm is com-
pared. We informally define “robustness” as the resistance
of an algorithm’s performance to keep its initial value in
case of a decrease in the number of measured metabolites.
In other words, more robust algorithms experience lower

performance loss, when the number of measured metabo-
lites decreases. In order to simulate the worst-case scenario,
first, ANOVA is performed to identify the most significantly
differing metabolites between healthy individuals and
patients. Next, the metabolites are sorted by their F-values
(as computed by ANOVA). Then, in an iterative way, the
top-10 metabolites with the highest F-values are removed
from the metabolomics dataset. Next, the classification
models are rebuilt in each iteration on the reduced dataset.
Fig. 7 shows the average f1-score of stratified K-fold (K ¼
10) cross-validation for Metabolitics, Pathifier, and Para-
digm, after each metabolite removal iteration. As shown,
Metabolitics is more robust to decrease in measured data
than Pathifier and Paradigm, since it provides insights on
parts of the metabolic network with no measurements.

3.4 Pathway Significance-Based Prediction

In this section, as an alternative method, we compute path-
way-wise significance that considers all positive and nega-
tive diffs in a pathway to determine whether the pathway is
indeed up- or down-regulated (similar to gene set enrich-
ment analysis, e.g., [60]). More specifically, the averages of
healthy and patient samples are computed separately. As a
result, for each pathway, two reaction vectors are obtained,
one for the healthy group and one for cancer patients. Then,
Fisher exact test is performed for each pathway based on
these reaction vectors. The contingencymatrix has “healthy”
and “patient” as columns, and the numbers of increasing,
decreasing, and unchanged reactions as rows, respectively.
The resulting significance values are employed as features in
the classification task. The f1-score of this classification is 80
percent which is lower thanMetabolitics’ performance.

3.5 Stability Analysis

In this section, the stability of the proposed linear program-
ming objective function is evaluated under systematically
introduced noise in the input data. To this end, the effect of
noise in metabolomics data on the f1-score is measured on a
real dataset, i.e., the breast cancer dataset. More specifically,
some uniform noise proportional to metabolite fold-changes
is introduced into the original breast cancer dataset with
increasing amounts. Then, Metabolitics is run for each case.
Fig. 8 shows the change in f1-score as the noise amount

Fig. 6. AUC – ROC curve for metabolitics, pathifier, and paradigm.
Fig. 7. Classification performance (average f1-score) of metabolitics,
paradigm, and pathifier with less measurements.
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increases. We conclude that Metabolitics performs reason-
ably well under increasing noise.

3.6 Applying Metabolitics on Other Diseases

In this section, to further validate the proposed methodol-
ogy, we demonstrate the application of Metabolitics on two
additional disease datasets, namely, Crohn’s disease [49]
and colorectal cancer [45]. Fig. 9 presents the overall f1-score
of Metabolitics in predicting disease status of subjects, sepa-
rately for each disease.

Crohn’s disease (CD) is an autoimmune disorder that
causes inflammation in the gastroenterological tract of
patients. Metabolitics is run on a recent dataset [49] that is
obtained from the serum measurements of 40 subjects (20
with CD and 20 healthy). With the Metabolitics assigned
pathway diff scores as features, a logistic regression-based
classifier (with C ¼ 0.3e-6) discriminates between subjects
with CD and healthy ones with a mean f1-score of 77
percent.

Colorectal cancer (CRC) originates from the epithelial
cells of the colon or rectum, and it is one of the most com-
mon cancers worldwide. Metabolitics is run on a metabo-
lomics dataset [45] that are obtained from visceral fat
tissues of 55 subjects (49 CRC patients, 6 healthy controls).
On this dataset, logistic regression achieves a 98 percent
f1-score.

3.7 Sparsity Robustness Analysis

In this section, a simulation study is performed to analyze the
effect of sparsity in terms of the coverage of metabolomics
measurements of the metabolic network on the stability of
Metabolitics analysis results. To this end, a new metabolite
fold-change dataset is generated by using the original breast
cancer data set as a seed, and expanding it into a full-coverage
metabolomics data set as follows: For each unmeasured
metabolite m, within the seedmetabolomics data, we identify
the metabolite that is most similar to m in terms of the reac-
tions that it participates. That is, given two metabolites, the
number of common reactions that they both participate in is
employed as a measure of their similarity. Suppose that the
most similar metabolite to m is x. Then, the fold change of m
is assigned as that of x plus a certain noise which is generated
randomly under a normal distribution with a mean of 0 and a
standard deviation of 0.1. In order to perform the simulation,
the network coverage is systematically decreased by 5 percent
by randomly removing metabolites from the initial dataset
at each iteration. At each step, the proposed linear pro-
gramming objective function is run on the current data set,
and the correlation between the reaction min-max flux val-
ues of the current results and that of the full coverage data-
set is computed. The results are presented in Fig. 10. The
figure shows that even with very sparse measurements,
Metabolitics provides results that are highly correlated
with those of the full coverage.

Fig. 8. The effect of noise in input metabolite measurements on the
breast cancer diagnosis f1-score.

Fig. 9. Diagnosis f1-score of Metabolitics in different diseases.

Fig. 10. Simulation study results with the breast cancer dataset employed
as a seed.

Fig. 11. Multi-class classification results.
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3.8 Multi-Class Classification

In this section, we experiment with the multi-class classifi-
cation of multiple diseases based on the computed diff val-
ues. Metabolitics is run independently on each disease
dataset to obtain pathway-level diff-scores. Repeated strati-
fied K-fold (10 fold and 10 repeats) cross-validation is
employed. Then, a multi-class logistic regression model is
trained to predict diseases. The results (Fig. 11) show that
the average performance in the multi-class setting is worse
than that of binary classification.

4 CONCLUSION

Metabolic networks in patients often experience dramatic per-
turbations in comparison to healthy individuals. These per-
turbations carry important information regarding the root
cause of the underlying condition. In this paper, we present
the Metabolitics algorithm. Given some metabolomics meas-
urements of an individual and a database containing meta-
bolic network data, Metabolitics computes the metabolic
network configuration thatmay lead to themeasured changes
in the provided metabolomics data. More specifically, it com-
putes a personalized “diff” score for each pathway that repre-
sents the amount of activity change in the pathway of that
individual. Our approach is based on (i) dynamically creating
a linear programming model of the metabolic network
according to the givenmetabolite measurements, and (ii) per-
forming a customized flux variability analysis on these mod-
els to quantify the differentiation of pathway flux capacities in
reference to healthy people. After computing the diff scores,
classification models that employ the computed diff scores as
features are built to differentiate patients from healthy indi-
viduals. We extensively evaluated Metabolitics on three dif-
ferent disease datasets, namely, breast cancer, Crohn’s
disease, colorectal cancer, and show that it (i) can identify
patients with around 88 percent f1-score on the average, (ii)
provides a biologically relevant metabolic analysis of dis-
eases, (iii) is robust to noise and (iv) enables a larger coverage
of themetabolic network in the analysis result.
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