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Abstract—Web-based metabolomics databases store relative metabolite abundance datasets measured under different physiological
conditions. However, their pathway-level analysis capabilities are mostly limited to superimposing the measurements onto the pathways
of the measured metabolites. Besides, none of the existing metabolomics databases offer tools to store, manage, compare, and search
metabolomics analysis results. In this paper, we present MetaboliticsDB, which features a database of metabolomics analyses and a
set of associated analytics tools. It enables users to store and compare their metabolomics analysis results against others to study, for
instance, the progression of a disease. Moreover, MetaboliticsDB implements a genome-scale metabolic network-based analysis tool
(i.e., Metabolitics) that performs network-based flux analysis. Besides, MetaboliticsDB features an advanced querying interface offering
flexible criteria, such as listing all analyses where a certain pathway experiences a major increase in activity, to help researchers
identify conditions sharing a similar mechanism. Finally, MetaboliticsDB employs AI-based models to associate the studied
metabolomics data with diseases. Currently, the database contains analysis results for 2,174 individuals and 40 diseases. We
demonstrate MetaboliticsDB’s usage with a case study on Hepatocellular Carcinoma. Our experimental evaluation shows that
MetaboliticsDB provides biologically relevant metabolic network-level analysis results, disease association with high accuracy, and a
scalable architecture.
Availability: MetaboliticsDB is available online at https://metabolitics.itu.edu.tr.
Web interface source codes are available at https://github.com/itu-bioinformatics-database-lab/metabolitics-client-v2.
Web API source codes are available at https://github.com/itu-bioinformatics-database-lab/metabolitics-api-v3.
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1 INTRODUCTION

M ETABOLOMICS aims to profile the relative abundances
of metabolites in an organism [1]. It provides in-

valuable insights regarding physiological conditions, as the
phenotype of diseases is often reflected in the metabolome
of an organism. With the advancements in experimental
methods (e.g., NMR, LC-MS, GC-MS, etc.), researchers are
now able to measure the relative amounts of many metabo-
lites with reasonable accuracy. The main challenge has
been interpreting (i.e., analyzing) these measurements to
understand the health and disease states, and accordingly,
develop new diagnosis and treatment approaches. Many
methods have been proposed to analyze metabolomics data
at different levels of granularity (e.g., pathway-, reaction-
, peak-level, etc.) ( [2] [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19]). Despite the
large variety of metabolomics data analysis algorithms in
literature, relatively few of them ( [13], [14], [15], [16], [17])
have been made available to the researchers over web-
based databases. The existing web-based tools fall under
two general categories: (i) metabolic data resources and (ii)
database-enabled metabolomics data analysis resources.

Metabolic data resources ( [20], [21], [22], [23], [24], [25],
[26], [27]) have been around for a relatively longer time, and
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they usually act as data dissemination hubs for the research
community. The maintainers of such resources compile their
data by (i) generating in their own labs, (ii) collecting from
literature, and (iii) integrating data from multiple external
sources. Such resources usually feature essential browsing,
searching, and visualization capabilities. Among several, the
most widely used resources in this category are KEGG [20],
BioCyc [21], Reactome [22], etc. Besides, some other data
resources focus on metabolites rather than pathways, such
as HMDB [23], CheBI [24], PubChem [26], etc.

Database-enabled metabolomics data analysis resources
( [13], [14], [15], [16], [17], [28]) usually work on data that
is imported from the above metabolic data resources. In
addition to the basic searching and visualization capabilities
provided by the metabolic data resources, this category of
tools also allows users to upload their own metabolomics
data, and then the analysis results are provided to the
user in different formats. One of the most comprehensive
analysis resources in this category is MetaboAnalyst 6.0 [13].
Besides the statistical significance and discrimination analy-
sis tools at the metabolite level, it also features pathway-
level analysis in the form of enrichment and topology-
based assessment. Moreover, MetaboAnalyst 6.0 allows
integrated analysis of transcriptomics and metabolomics
datasets. Metabolomics Workbench [14] is NIH’s official
data repository for metabolomics. It offers a wide array
of statistical analysis tools at the metabolite level, ranging
from ANOVA to hierarchical clustering. It also allows the
creation of various forms of visualiations, such as boxplots,
volcano plots, bar graphs, etc. However, it does not provide
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any pathway-level analysis. MeltDB 2.0 [15] offers a number
of features to annotate the metabolites, detect peaks, and
eliminate noise in user-submitted raw data. Once the data
is preprocessed, users may perform statistical significance
tests, classification, and clustering. One differentiating fea-
ture of MeltDB is that it provides built-in support to form
project groups, share data among group members or differ-
ent project groups. MetabolomeExpress [16] offers similar
capabilities to MeltDB 2.0 in the categories of raw data pro-
cessing and statistical analysis of the processed data. XCMS
Online [17] takes multi-omics integration one step further
than MetaboAnalyst 6.0, and accommodates proteomics
(in addition to transcriptomics) along with metabolomics
measurements. It also features other common metabolite-
and pathway-level analysis features (e.g., raw data process-
ing, statistical analysis, pathway enrichment analysis, etc.)
similar to the above tools. Caleydo [18] allows mapping
omics data on pathways and nicely visualizes them so that
users can see which pathways are being covered by the
uploaded omics data, and to what degree their activities
change based on the relative abundance change of metabo-
lites in a metabolomics dataset, or the change in mRNA
levels in a gene expression dataset. WebSpecmine [29] is
a web-based metabolomics data analysis and mining tool
built on the specmine R package. WebSpecmine enables
users to upload datasets to process, visualize, and per-
form various analyses. WebSpecmine also trains machine
learning models and predicts classes for future samples.
3Omics [30] is a web-based human metabolomics data anal-
ysis tool that offers visualization and analysis capabilities
on the uploaded datasets with an emphasis on combining
different omics data. Workflow4Metabolomics [31] offers
data preprocessing with retention time alignment and peak
extraction, and univariate analysis with nonparametric and
parametric tests. POMAShiny [32] provides data prepro-
cessing with missing value imputation, normalization, and
outlier detection, univariate analysis with t-test, ANOVA,
Mann-Whitney U-test, and Kruskal-Wallis test. It also offers
clustering with the k-means algorithm and classification
with the random forest algorithm. OmicsDashboard [33]
provides multi-omics analysis capabilities. In particular, it
offers multi-level hierarchical pathway-mapped visualiza-
tions of a multi-omics datasets along with several filtering
options. MetaboLink [34] focuses on raw metabolomics data
analysis which include tools for normalization, imputation,
and statistical analysis. PathBank 2.0 [35] extends its earlier
versions with increased number of pathways and improved
pathway diagrams. It also contains pathway enrichment
tools. WebGestalt [36] stands out with its high-performance
multi-omics analysis and enrichment computation capa-
bilities. IDSL.GOA [37] performs enrichment analysis in
terms of Gene Ontology terms instead of custom pathways.
MetExplore [38] allows curating, visualizing, and browsing
metabolic networks. It also provides multi-omics analysis
capabilities in the form of over-representation statistics.
There are several other tools that perform functional enrich-
ment analysis and visualization of metabolomics data, such
as MBRole3 [39], RaMP-DB [40], PhenoMultiOmics [41], and
PaintOmics [42]. In addition to the above discusses web
tools, several others offer somewhat similar metabolomics
analysis features but are available only as stand-alone desk-

top applications, such as Pathway Tools [19], SIMCA-P+
(Umetrics, Umea, Sweden), etc.

Even though the above database-enabled metabolomics
analysis resources are quite extensive in the number and
variety of the raw data processing and statistical analysis
features that they offer, their pathway-level analysis capa-
bilities are limited to superimposing measured metabolite
changes onto their corresponding pathways. Moreover, all
of the above resources consider each pathway indepen-
dently of the metabolic network that they belong to. Even
though MetaboAnalyst computes network-level measures,
such as betweenness, centrality, etc., it only uses them for
ranking pathways. Hence, the evaluation in the above re-
sources is limited to only those pathways whose metabolites
overlap with the user-submitted measurements to some
extent.

In this paper, we present a novel database-enabled
web resource, MetaboliticsDB, that performs metabolic ac-
tivity analysis of user-provided metabolomics data in a
holistic manner, considering interconnections between path-
ways with mass balances preserved. The main strength
of MetaboliticsDB lies in its network-based metabolic flux
analysis, which may offer advantages over standard path-
way enrichment analysis. To this end, it employs a state-
of-the-art systems-level algorithm, Metabolitics [3], which
computes metabolic pathway activity differentiation scores
in reference to healthy/control individuals based on the rel-
ative changes in metabolite abundances. As secondary ben-
efits, MetaboliticsDB stores analysis results in its database,
and users may compare current analysis results with pre-
viously stored analysis results of their own or other pub-
licly available analysis results shared by other users. In
this paper, we use the term ”results” to broadly refer to
pathway-, reaction-, and metabolite-level change analysis
at the metabolic network scale based on metabolite fold-
change values provided as input. Furthermore, Metaboli-
ticsDB allows users to make a comparison between differ-
ent analysis methods (e.g., Metabolitics vs. pathway en-
richment) on the same dataset. Users may also flexibly
search the stored analysis results to list those where certain
pathways experience significant activity increase/decrease.
Finally, within a limited scope, MetaboliticsDB enables users
to associate their metabolomics datasets with diseases based
on AI models that it creates and maintains. MetaboliticsDB
currently supports metabolomics datasets that contain an-
notated metabolites, which may come from targeted or
untargeted studies as well as metabolite panels/kits (e.g.,
Biocrates kits).

We evaluate the features of MetaboliticsDB on a real
metabolomics dataset obtained from individuals with hep-
atocellular carcinoma (HCC). Our results demonstrate that
MetaboliticsDB provides (i) biologically relevant metabolic
network-level analysis results along with markings through
a metabolic graph, (ii) disease association to analysis results
with high accuracy, and (iii) a scalable architecture support-
ing hundreds of simultaneous users. This paper is organized
as follows. The next section summarizes data manage-
ment, metabolomics analysis features, and the architecture
of MetaboliticsDB. Then, we discuss our results from the
evaluation of MetaboliticsDB on an HCC dataset as well as
the performance and accuracy of different features. Finally,
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we conclude with a discussion on how MetaboliticsDB may
be employed in a wider scope with the proposed features.

2 METHODS

2.1 Database Model and Data Management
MetaboliticsDB integrates multiple data sources, including
the Recon3D human metabolic network dataset [43], a hu-
man disease ontology dataset [44], a customized metabolite
synonym mapping dataset, and a metabolomics analysis
database. The data is managed using a hybrid approach
combining relational and NoSQL models, with regular con-
tent updates.

2.1.1 Genome Scale Metabolic Network Data
The Recon3D dataset, encompassing 10,600 reactions, 5,835
metabolites, and 106 pathways, is stored as a compressed
JSON file optimized for efficient storage and retrieval (see
Fig. 1). Its schema, at the top level, contains three main prop-
erties, namely, pathways, reactions, and metabolites. Each of
these properties is a JSON object, where the keys are the IDs
of the components, and the values are the corresponding
component objects. These properties use object references to
establish component relationships, enabling efficient perfor-
mance of client-side queries in web interfaces.

2.1.2 Human Disease Ontology Data
MetaboliticsDB incorporates 5,278 distinct disease terms, in-
cluding their parent diseases (if applicable) and synonyms,
sourced from the Human Disease Ontology (DO). Users
can associate their metabolomics datasets with a specific
disease in the database. The database content is period-
ically updated. DO was chosen over MESH due to its
stronger integration with genomic resources, which aligns
with plans to enable multi-omics analyses in future versions
of MetaboliticsDB.

2.1.3 Metabolomics Analysis Data
MetaboliticsDB employs a relational database hosted on
a PostgreSQL instance with hybrid NoSQL features, such
as JSON fields, to store information on users, methods,
diseases, datasets, metabolomics measurements, analysis re-
sults, and machine learning models. Currently, the database
contains metabolomics data and corresponding analysis re-
sults for 2174 individuals across 40 distinct diseases. The
database schema comprises seven tables, as illustrated in
Figure 2:

• User: Stores user information and maintains a one-
to-many relation with the Analysis table.

• Methods: Includes available analysis methods such
as Metabolitics, Direct Pathway Mapping, and Path-
way Enrichment.

• Datasets: Contains details of uploaded datasets.
• MetabolomicsData: Stores metabolomics measure-

ments uploaded with datasets.
• Analysis: Records analysis results for samples, using

two JSON columns to store reaction and pathway-
level results, where each JSON field features pathway
or reaction names as keys and computed flux scores
as values.

Fig. 1. The schema for the MetaboliticsDB Recon3D data (JSON)

• Diseases: Lists diseases known to MetaboliticsDB.
• DiseaseModels: Holds machine learning models

trained on metabolomics analysis results.

This streamlined structure ensures efficient organization
and accessibility of data for metabolomics research.

2.1.4 Multi-source Metabolite Synonym Mapping
User-provided metabolite names need to be mapped to
MetaboliticsDB’s database due to the lack of standardized
naming conventions and the absence of synonym data in the
original Recon3D dataset. MetaboliticsDB leverages BiGG
[45] IDs from the Recon3D dataset and employs two strate-
gies to enhance synonym mapping:

1) Synonym Repository: MetaboliticsDB consolidates
alternative metabolite synonyms from datasets such
as HMDB [23], KEGG [20], PubChem [26], and
CheBI [24], creating a comprehensive synonym
repository.

2) RefMet Integration: If a synonym match is not
found in the local repository, RefMet nomencla-
ture [46] is queried via HTTP POST requests.
Any matched names are subsequently appended
to MetaboliticsDB’s customized synonym mapping
dataset.

These approaches significantly enhance the recognition
of metabolite synonyms, ensuring more robust and inclusive
metabolomics data analysis.

2.2 Metabolomics Data Analysis
MetaboliticsDB facilitates the analysis of user-provided
metabolomics datasets, aiding in the interpretation of ob-
served changes. The platform supports three analysis meth-
ods: Metabolitics [3], Pathway Enrichment Analysis, and
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Fig. 2. Relational database schema of MetaboliticsDB

Direct Pathway Mapping. While Metabolitics provides the
highest accuracy, the other methods offer faster computation
and are widely used in the field. Users can leverage a built-
in tool to compare the results of these methods on the same
dataset. This section details the usage and principles of the
analysis tools provided by MetaboliticsDB.

2.2.1 Uploading Datasets

MetaboliticsDB accepts metabolomics measurements in sev-
eral file formats. Once a dataset is uploaded, fold-change
values are computed relative to the average of healthy
samples. The platform supports four input file formats:

• Metabolomics Workbench mwTab.
• JSON file structured as a dictionary with metabolite

names as keys and abundances as values.
• CSV file containing metabolites and their abundance

values.
• MetaboliticsDB’s custom file format where rows are

samples and columns are metabolites with cells con-
taining the abundance value of a metabolite in a
sample.

Examples of these formats are available in the online
Documentation. Upon upload, MetaboliticsDB employs ad-
vanced mapping techniques to align metabolites from the
input file with the genome-scale metabolic network (Re-
con3D) stored in its database. After mapping, a summary of
mapped and unmapped metabolites is provided, allowing
users to review and optionally remove any entries before
analysis. The uploaded datasets stay on the server until the
owners delete them.

2.2.2 Metabolic Flux Differentiation Analysis

MetaboliticsDB dynamically constructs a linear program-
ming model [47] of the metabolic network using user-
provided data. This process integrates a proprietary algo-
rithm [3], where the total production flux for each measured
metabolite is incorporated into the objective function. Fold-
change values are used as coefficients for these terms.

Flux variability analysis (FVA) [48] is then performed to
determine the upper and lower flux limits for each reaction.
A metabolic flux differentiation score is computed for each
reaction by comparing its flux boundaries to those from
healthy/control samples. For each pathway, the mean dif-
ferentiation score of its reactions is calculated, representing
the pathway’s activity deviation in individual samples. At
a high level, a pathway/reaction “diff” value represents
the differentiation of the pathway/reaction activity for an
individual compared to healthy individuals. Hence, a pos-
itive diff value is interpreted as increased activity, while a
negative diff value is interpreted as decreased activity for a
pathway/reaction. These scores are stored in the database
as part of the analysis.

2.2.3 Pathway Enrichment Analysis

Pathway enrichment analysis identifies pathways signif-
icantly enriched with metabolites from user-uploaded
datasets. The method uses a hypergeometric distribution to
compute p-values with Benjamini-Hochberg correction ap-
plied for multiple testing. MetaboliticsDB does not enforce
a strict significance threshold; instead, it provides a table of
computed p-values for all pathways.

2.2.4 Direct Pathway Mapping Analysis

Direct pathway mapping uses a linear model to associate
metabolites from a dataset with their respective pathways.
Each pathway is assigned a score based on the sum of the
relative abundances of its constituent metabolites.

2.3 Tabular and Visual Analysis Results

MetaboliticsDB presents analysis results at multiple levels of
detail in both visual and tabular formats. A bar plot displays
the top 20 pathways, sorted by the absolute value of their
diff scores (Fig. 3). Below the bar plot, all pathways and
their computed diff values are listed in tabular form. Each
pathway entry includes two interactive buttons:

• Pathway Visualization: Displays the corresponding
pathway as a graph, where nodes represent metabo-
lites and edges represent reactions. Edges are color-
coded and thickened based on the reactions’ diff
values (see Fig. 8 for an example), enabling quick
inspection of the most altered pathway regions.

• Reaction Table: Lists all reactions within the path-
way along with their diff values in a tabular format.

All analysis results are stored in the database, accessible
via the user account menu or the ”Browse Analysis Results”
menu. Users can mark results as ”public,” making them
available to other users, or retain them as ”private”.
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Fig. 3. Analysis results page: top-20 pathways with their diff values.

2.4 Similarity-based Disease Association

MetaboliticsDB introduces a novel feature that identifies
diseases and physiological conditions most similar to a
given metabolomics analysis result based on pathway-
level metabolic behavior. The database stores pre-computed
metabolomics analysis results for various diseases. For each
user-submitted analysis, the platform identifies the top 5
diseases (e.g., diabetes) that exhibit the highest similarity to
the analyzed data in terms of metabolic pathway activity
distribution (see Fig. 4). To compute similarity, Metaboli-
ticsDB represents both the user’s analysis results and the
disease results in the database as numeric vectors, where
each value corresponds to the diff score of a pathway.
Pearson correlation is then calculated between the user’s
vector and each disease vector. The diseases are ranked
based on their correlation values, and the top 5 are presented
to the user.

Fig. 4. Similarity-based Disease Prediction

2.5 Machine Learning-based Disease Prediction

In addition to similarity-based disease association, Metabol-
iticsDB provides machine learning-based disease status pre-
diction for individuals (Fig. 5). To achieve this, machine
learning models are periodically trained using previously
stored metabolomics data analysis results for each disease.

For each disease, five models are trained: Logistic Re-
gression, Random Forest, Support Vector Machines, XG-
Boost, and an ensemble model that combines the above
models using soft voting. Preprocessing steps, including
feature selection and vectorization, are applied to ensure

model robustness. These algorithms were selected based on
their strong performance in clinical studies, as highlighted
in an extensive systematic literature review [49].

Model performance is evaluated using 10-fold cross-
validation, with f1-scores and standard deviations cal-
culated to provide a comprehensive assessment. Disease
datasets are split into training (90%) and testing (10%) sets,
and the test set is used to evaluate model performance on
unseen data. Performance results are summarized in Tables
1 and 2. The best-performing model is stored in the database
as a binary file using the Python’s pickle package.

These models use computed reaction metabolic differ-
entiation scores as features. For each disease, a probability
score between 0 and 1 is displayed, indicating the likelihood
of having the disease.

Fig. 5. AI-based Disease Prediction

2.6 Comparison of Analysis Results
MetaboliticsDB enables users to compare their
metabolomics analysis results against (i) their own
previous results and (ii) publicly available results from
other users stored in the database. On the analysis results
page, users can select any number of studies for comparison
by checking the boxes next to them. Clicking the ”compare”
button at the top navigates to the comparison page.

The comparison interface includes a heatmap, where
rows represent pathways with the highest variance in diff
values across the selected results, and columns correspond
to the chosen analysis results (Fig. 6). Each cell in the
heatmap is color-coded based on the pathway’s diff value,
providing a clear visualization of metabolic variations.

2.7 Advanced Search Interface
A unique feature of MetaboliticsDB is the ability to search
metabolomics analysis results in the database based on
metabolic activity changes in specific pathways. For ex-
ample, users can query analysis results where the Urea
Cycle shows decreased activity, while Fatty Acid Synthesis
exhibits increased activity. In addition, users can specify the
magnitude of these increases or decreases for more precise
filtering.

Users can dynamically add or remove pathways to con-
struct filters with multiple conditions. These conditions are
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Fig. 6. MetaboliticsDB Comparison interface featuring a heatmap

evaluated using SQL ”AND” semantics, ensuring that all
specified criteria are satisfied simultaneously.

2.8 Browsing and Visualization Features

MetaboliticsDB includes a user-friendly search interface to
locate metabolites, reactions, and pathways of interest. The
search features auto-complete functionality, akin to Google
Search, which dynamically suggests database entries as
users type. Suggestions are categorized by entity types (e.g.,
metabolites, reactions) for better organization. Search results
are similarly categorized, and selecting an entry redirects
users to detailed information and visualizations for the
selected entity.

Users can also browse the database pathway by pathway.
The browsing page lists all pathways on the left-hand panel,
and selecting a pathway displays its constituent reactions
along with a graphical network visualization (see Fig. 8 for
an example). These pathway visualizations are generated
using the Escher library [50] and stored in the database.

2.9 Architecture

The architecture of MetaboliticsDB (Fig. 7) is designed to
efficiently handle computational and data management re-
quirements. The frontend is implemented using Angular, a
JavaScript framework for developing sophisticated single-
page web applications. Rendering and application logic are
primarily executed on the client side to enhance perfor-
mance and user experience.

The backend is powered by a PostgreSQL relational
database, which stores analysis results and user accounts.
Communication between the frontend and the database
is managed via a RESTful API developed with Flask, a
lightweight Python web framework. This API also provides
programmatic access for researchers who wish to integrate
MetaboliticsDB’s functionalities into their projects. Detailed
documentation for the RESTful API interfaces is available at
https://metabolitics.itu.edu.tr/api/spec in OPENAPI spec-
ification.

To manage computationally intensive analysis tasks,
MetaboliticsDB employs Celery, a distributed task queue,
in combination with Redis for task storage. Celery workers
subscribe to Redis and execute metabolomics analyses upon
task submission. This approach ensures efficient handling of
resource-demanding operations outside the regular HTTP
request lifecycle.

Scalability is a core design consideration for Metaboli-
ticsDB. All architectural components are dockerized, allow-
ing distributed deployment of Celery workers across multi-
ple instances. Additionally, the use of Angular significantly
reduces server load by offloading most application logic to
the client side.

Fig. 7. Architecture overview diagram of the project.

3 EVALUATION

In this section, we evaluate MetaboliticsDB and demonstrate
its biological relevance through a case study on Hepatocel-
lular Carcinoma (HCC).

https://metabolitics.itu.edu.tr/api/spec
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3.1 A Case Study on Hepatocellular Carcinoma

To showcase MetaboliticsDB’s capabilities, we analyzed
a Hepatocellular Carcinoma (HCC) dataset [51] with
metabolomics measurements from 177 individuals (71
healthy and 106 with liver tumors). Measurements were
converted into fold changes based on healthy samples. The
data was uploaded to MetaboliticsDB, analyzed using the
’Metabolitics’ method, and results were displayed as bar
charts and tables (available online at https://metabolitics.
itu.edu.tr/panel/past-analysis/1761). Here, we discuss the
top 10 pathways with the highest absolute diff scores to
illustrate MetaboliticsDB’s effectiveness.

Fig. 8. Change in citric acid cycle

The protein formation pathway has the largest absolute
diff value in the negative direction. PROTEIN BS reaction
in the Protein formation pathway yields Torasemide-M3
metabolite. Activated metabolite Torasemide-M3 is formed
from the oxidation of Torasemide [52]. Liver disease has
been reported to affect the activities of Torasemide with
the increased recovery of Torasemide inspected in urine
[53]. This may explain the decreased activity of Torasemide
activation in HCC patients.

The fatty acid synthesis pathway has the second largest
diff value in the positive direction. Hepatocellular tumori-
genesis has been reported to increase with abnormal activity
in Fatty acid synthesis, and treatments inhibiting Fatty acid
synthase enzyme might be utilized in HCC therapies [54].
Increased activity of Fatty acid synthase C180 reaction in
the Fatty acid synthesis pathway observed in HCC analysis
results supports this observation.

Nucleotide metabolism has the third largest diff value
in the positive direction. To keep up with the fast pace of
cell proliferation during tumorigenesis, increasing de novo
nucleotide synthesis is essential for large-scale RNA pro-
duction and DNA replication [55]. In addition, Nucleotide
interconversion has a substantial diff value in the positive
direction. This observation is plausible, as the essential
building blocks of Nucleotide metabolism are produced by
this pathway with a transformation of (d) NMP ↔ (d) NDP
↔ (d) NTP.

Another pathway with a large diff value in the positive
direction is Hippurate metabolism. Reduced amounts of
Hippurate are quantified in HCC patients due to decreased
Benzoate binding proficiency [56]. Even though this is not
fully aligned with our observation, the elevated quantity
of Hippurate may be closely related to the diet styles of
individuals [57]. Hence, more information is needed about
the lifestyles of individuals to create hypotheses on this
observation.

Heme degradation is another pathway with a large diff
value in the positive direction. The enzyme that catalyzes
heme degradation, Heme oxygenase 1 has been reported to
be related to cancer progression [58]. Inhibiting the activity
of Heme oxygenase 1 has been claimed to decrease HCC
progression [59].

Another pathway with a large diff value in the positive
direction is Vitamin B6 metabolism. The amount of Vitamin
B6 compounds present in cancer cases has been reported
to be less than that in control cases, and the activation
levels of Pyridoxal kinase enzyme have been reported to
help disease progression [60]. Increased activity of Pyridoxal
kinase reaction in the Vitamin B6 metabolism seen in HCC
analysis results supports these statements.

Another pathway with a large diff value in the positive
direction is Limonene and pinene degradation. Limonene
has been reported to inhibit the progression of HCC by
suppressing cell proliferation [61]. Pinene also has been
reported to inhibit cancer cell development in vitro and in
vivo [62]. Decreased levels of Limonene and Pinene due
to activities of Limonene and pinene degradation may be
hypothesized as contributing to HCC progression.

Cytochrome metabolism is another pathway with a large
diff value in the positive direction. Intrinsic clearance val-
ues indicating activity levels show an activity growth for
CYP2E1, CYP2D6, and CYP2C9 cytochrome P450 types in
HCC samples [63]. Increased activity of Cytochrome P450
2E1, Cytochrome P450 2C9, and Cytochrome P450 2D6
reactions in the Cytochrome metabolism pathway seen in
HCC analysis results supports these observations.

Another pathway with a large diff value in the posi-
tive direction is Thiamine metabolism. The activity levels
of enzymes that rely on Thiamine have been reported to
increase in cancer cases [64]. Increased activity levels of
Thiamine diphosphokinase, Thiamine diphosphate kinase,
and Thiamine-triphosphatase reactions in the Thiamine
metabolism pathway seen in HCC analysis results support
these findings.

Finally, Fructose and mannose metabolism is the last
among the top 10 pathways with a large diff score in
the positive direction. The development of HCC was hy-
pothesized to increase with diets rich in fructose since it
enhances activity levels of the lipogenic pathway and lipid
accumulation [65].

The above brief discussion illustrates that Metaboli-
ticsDB is useful and effective in analyzing metabolomics
datasets by providing insights into the underlying metabolic
mechanisms. Nevertheless, we note the limitations of the
literature-based evaluation due to its coarse granulation
and multi-source nature of the information under different
experimental settings. Thus, detailed wet lab experiments
are needed for more precise conclusions.

https://metabolitics.itu.edu.tr/panel/past-analysis/1761
https://metabolitics.itu.edu.tr/panel/past-analysis/1761
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The employed HCC dataset and the computed pathway
diff scores are provided in the supplementary material.

3.1.1 Similarity-based Disease Association

MetaboliticsDB identifies diseases and physiological con-
ditions similar to the analyzed metabolomics dataset by
correlating current analysis results with previously com-
puted disease data. To assess the relevancy, we cluster all
diseases using agglomerative clustering (Pearson correla-
tion, complete linkage) and compare it to a ”ground-truth
clustering” with one cluster per distinct disease, ignor-
ing patient characteristics like gender and age. Currently,
MetaboliticsDB stores 40 distinct diseases, resulting in 40
clusters. We use homogeneity and completeness metrics [66]
to compare clusterings. Both metrics range from 0 to 1, with
1 being the best score. Our evaluation shows homogeneity
and completeness scores of 0.94, indicating accurate cluster
assignments.

3.1.2 Machine Learning-based Disease Association

We present the prediction performance of machine learning
models in MetaboliticsDB. Using k-fold cross-validation (k =
10 or k = 5). Data is split based on unique patient identifiers
to ensure no overlap between training and testing sets.
Stratification maintains class distribution across training,
validation, and testing sets. Table 1 summarizes precision,
recall, and F1 scores for disease prediction models. Further-
more, we performed another evaluation with a hold-out
dataset for each disease. To this end, each dataset is split
into an unseen hold-out (10%) and a training datasets (90%).
Based on k-fold cross-validation on the training dataset, the
selected best model is tested on the hold-out dataset(see
Table 2 for performance results). Results show high accuracy
in classifying healthy individuals and patients.

Disease Precision Recall F1 F1 SD Alg. K
Hepatocellular Carcinoma 0.88 0.90 0.88 0.07 LR 10
Colon Carcinoma 0.96 1.00 0.98 0.01 ENS 5
Breast Cancer 0.88 0.98 0.92 0.04 ENS 10
Stomach Cancer 0.93 0.99 0.96 0.02 LR 10
Ovarian Cancer 0.93 1.00 0.96 0.08 RF 10
Crohn’s Disease 0.81 0.94 0.86 0.17 ENS 10
Asthma 0.98 1.00 0.99 0.03 ENS 10
Rheumatoid Arthritis 0.85 0.94 0.87 0.14 RF 10
Steatotic Liver Disease 0.77 0.90 0.78 0.15 RF 10
Type 2 Diabetes Mellitus 0.78 1.00 0.88 0.02 SVM 10
Wilson Disease 0.80 1.00 0.87 0.16 LR 5
Adult Respiratory Distress
Syndrome 0.91 1.00 0.95 0.06 SVM 5

Androgenic Alopecia 0.83 1.00 0.88 0.16 LR 10
Chronic Fatigue Syndrome 0.75 0.85 0.76 0.03 ENS 10
Cystic Fibrosis 1.00 1.00 1.00 0.00 RF 5
Intermediate Coronary
Syndrome 0.80 0.90 0.80 0.16 LR 5

Peanut Allergy 0.92 1.00 0.95 0.09 RF 5
Pre-eclampsia 0.60 1.00 0.73 0.13 SVM 5
Sarcoidosis 0.80 0.94 0.83 0.16 LR 10
Schizophrenia 0.89 1.00 0.94 0.01 RF 5
Alzheimer’s Disease 0.75 0.81 0.71 0.11 RF 10
Cognitive Disorder 0.83 1.00 0.89 0.16 LR 5
Hypospadias 0.75 1.00 0.83 0.17 SVM 5
Melioidosis 0.63 1.00 0.75 0.14 LR 5
Polycystic Ovary Syndrome 0.77 0.96 0.85 0.04 SVM 10

TABLE 1
Average results of k-fold cross validation

Disease Precision Recall F1 Alg. K
Hepatocellular Carcinoma 1.00 0.91 0.95 LR 10
Colon Carcinoma 0.96 1.00 0.98 ENS 5
Breast Cancer 0.84 0.96 0.90 ENS 10
Stomach Cancer 0.93 1.00 0.96 LR 10
Ovarian Cancer 1.00 1.00 1.00 RF 10
Crohn’s Disease 0.50 0.50 0.50 ENS 10
Asthma 1.00 1.00 1.00 ENS 10
Rheumatoid Arthritis 0.80 1.00 0.89 RF 10
Steatotic Liver Disease 0.80 1.00 0.89 RF 10
Type 2 Diabetes Mellitus 0.75 1.00 0.86 SVM 10
Wilson Disease 1.00 1.00 1.00 LR 5
Adult Respiratory Distress
Syndrome 0.80 1.00 0.89 SVM 5

Androgenic Alopecia 1.00 0.33 0.50 LR 10
Chronic Fatigue Syndrome 0.70 0.70 0.70 ENS 10
Cystic Fibrosis 1.00 1.00 1.00 RF 5
Intermediate Coronary
Syndrome 0.67 1.00 0.80 LR 5

Peanut Allergy 0.25 0.50 0.33 RF 5
Pre-eclampsia 0.33 1.00 0.50 SVM 5
Sarcoidosis 0.75 1.00 0.86 LR 10
Schizophrenia 0.95 0.95 0.95 RF 5
Alzheimer’s Disease 0.50 1.00 0.67 RF 10
Cognitive Disorder 0.33 1.00 0.50 LR 5
Hypospadias 1.00 1.00 1.00 SVM 5
Melioidosis 0.50 1.00 0.67 LR 5
Polycystic Ovary Syndrome 0.74 1.00 0.85 SVM 10

TABLE 2
Test results on holdout dataset

3.2 Responsiveness Evaluation
We evaluate MetaboliticsDB’s responsiveness with varying
numbers of simultaneous users. Each user sends one request
per second, totaling 100 requests during their browsing
session. Table 3 reports the average response time in seconds
and the percentage of successful responses. For this simula-
tion, we used the open-source load testing tool Locust. The
server configuration during these tests was a DELL R720
with 2 x XEON E5-2620v2 2.10 GHz CPU and 80 GB RAM
running Linux Ubuntu.

Number of Users Average Response Time (sec) Success Rate (%)
10 0.28 100
100 0.36 100
1000 1.51 100

TABLE 3
Responsiveness evaluation results

3.3 Load Test
We performed additional performance tests for Metabol-
iticsDB’s analysis feature. The running time depends on
two factors: the size of the metabolic network and the
number of metabolites in the input data. We evaluated
several metabolic networks of different sizes from various
organisms (obtained from BIGG [25]) (Table 4). To test the

Metabolic Net. BIGG Id Num. of Reactions Num. of Metabolites
e coli core 95 72
iAB RBC 283 342 469
iRC1080 1706 2191
RECON1 3742 2766
RECON2 7785 5324

TABLE 4
Metabolic network size
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effect of metabolomics data size, random metabolites were
selected from each network, and random fold-change values
were assigned. The number of metabolite measurements
varied between 5 and 150 (incremented by 5, resulting in 30
datasets). The analysis was run with these artificial datasets
on each metabolic network. Fig. 7 charts the average run-
ning time for each network.

MetaboliticsDB also offers similarity and machine
learning-based disease prediction. Training, selecting, and
saving the best model for 40 diseases (2,174 samples) takes
45 minutes and 42 seconds offline. The mean prediction time
for AI-based disease association is 3.3 seconds.

Fig. 9. Running time of MetaboliticsDB anlysis on different networks

4 COMPARISON

In this section, we compare MetaboliticsDB to some of
the well-known tools in the field in terms of different as-
pects. In particular, the comparison includes MetaboAnalyst
6.0 [13], Metabolomics Workbench [14], MeltDB 2.0 [15],
MetabolomeExpress [16], XCMS Online [17], Caleydo [18],
WebSpecmine [29], 3Omics [30], Workflow4Metabolomics
[31], and POMAShiny [32]. Even though MetaboliticsDB,
is not a direct competitor of the Metabolomics Work-
bench, the official NIH data repository for metabolomics,
and XCMS Online / MetaboAnalyst / W4M which are
the references in the field of metabolomics data pre-
processing/processing/annotation, we included these tools
in the comparison as some of their included analysis fea-
tures overlap with what MetaboliticsDB offers. Table 5 sum-
marizes the considered aspects for comparison.

MetaboliticsDB offers metabolite name mapping, fold
change scaling, and reaction diff conversion in terms of
data preprocessing. Data filtration, normalization, name
mapping of metabolites, and alignment and detection of
peaks are some of the data preprocessing steps supported
by MetaboAnalyst. Normalization and scaling are also avail-
able in Metabolomics Workbench for data preprocessing.
Alignment and detection of peaks on raw data are also
offered by MeltDB 2.0 and MetabolomeExpress. Data filtra-
tion is available on XCMS Online and Caleydo, however,
data normalization is not supported. Data is processed with
the alignment and detection of peaks steps during data up-
load by WebSpecmine, also other steps such as normaliza-
tion and scaling are available. Normalization is supported
by Workflow4Metabolomics whereas data filtration isn’t
available. Detection and cleaning of outliers are available

on POMAShiny contrary to Workflow4Metabolomics and
MetaboAnalyst 6.0.

The fold-change analysis is the univariate analysis
method available in MetaboliticsDB. Volcano plots, t-tests,
and fold-change analysis are among the univariate anal-
ysis methods offered by MetaboAnalyst 6.0 and MeltDB
2.0. Volcano plots and ANOVA analysis are available in
Metabolomics Workbench. t-tests and fold-change analysis
are provided by MetabolomeExpress, but volcano plots
are not supported. Fold-change analysis is also offered by
XCMS Online. ANOVA analysis is also accessible along
with t-tests and fold change analysis in WebSpecmine. Non-
parametric and parametric tests and ANOVA analysis are
provided by Workflow4Metabolomics and POMAShiny.

MetaboliticsDB offers automatically managed machine
learning classification models of type Logistic Regression
(LR), Support Vector Machines (SVM), Random Forest (RF),
XGBoost (XGB), and ensemble of all of the above models
with soft voting (ENS). MetaboAnalyst 6.0 provides Support
Vector Machine, Random Forest, and Partial Least Squares
Discriminant Analysis classification methods. Random For-
est and Orthogonal Partial Least Squares Discriminant Anal-
ysis classification methods are provided by Metabolomics
Workbench. Support Vector Machine and Random Forest
Classification methods are also supported by MeltDB 2.0.
Linear Discriminant Analysis and Support Vector Machine
methods are provided by WebSpecmine. Random Forest
algorithm is also available in POMAShiny for classification.

Both enrichment analysis and pathway analysis are
available in MetaboliticsDB. Enrichment analysis is sup-
ported by MetaboAnalyst 6.0, Metabolomics Workbench,
MeltDB 2.0, XCMS Online, and 3Omics. MetaboAnalyst 6.0,
MeltDB 2.0, MetabolomeExpress, XCMS Online, Caleydo,
WebSpecmine, and 3Omics provide Pathway Analysis.

MetaboliticsDB, MetaboAnalyst 6.0, Metabolomics
Workbench, MeltDB 2.0, XCMS Online, Caleydo, 3Omics,
and POMAShiny support genome-scale metabolic
networks. Python or R packages are available for
MetaboliticsDB, MetaboAnalyst 6.0, Metabolomics
Workbench, XCMS Online, WebSpecmine, and POMAShiny.

MetaboliticsDB, MetaboAnalyst 6.0, WebSpecmine, and
POMAShiny train machine learning models and use these
models for sample prediction. MetaboliticsDB periodically
trains and stores predictive models on analysis results for
disease prediction.

MetaboliticsDB, Metabolomics Workbench, MeltDB 2.0,
MetabolomeExpress, XCMSOnline, WebSpecmine, and
3Omics enable users to compare analysis results. An ad-
vanced analysis search interface is available in Metaboli-
ticsDB, Metabolomics Workbench, MetabolomeExpress, and
XCMS Online. Metabolic flux change prediction is only
available in MetaboliticsDB.

As a further comparison, we analyzed the hepatocellular
carcinoma (HCC) dataset included in our case study sec-
tion with the MetaboAnalyst and Metabolomics Workbench
tools. MetaboAnalyst offers a network analysis feature to vi-
sualize relations between metabolites and diseases. Metabo-
lites identified with their KEGG IDs and their fold changes
in this dataset were uploaded to MetaboAnalyst Network
Analysis with the Metabolite-Disease Interaction Network
option. Schizophrenia was listed as the most associated
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Data Pre-
processing

Univariate
Analysis

Classi-
fication

Enrichment
Analysis

Pathway
Analysis

Genome-
Scale

Metabolic
Network
Support

Python/R
Package

Availability

Disease
Prediction

Analysis
Comparison

AI Model
Management

Advanced
Analysis
Search

Metabolic
Flux

Change
Prediction

MetaboliticsDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Metabo-
Analyst 5.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Metabolomics
Workbench ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

MeltDB 2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Metabolome-
Express ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

XCMS Online ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Caleydo ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

WebSpecmine ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

3Omics ✗ ✗ ✗ ✓ ✓ 51 ✗ ✗ ✓ ✗ ✗ ✗

Workflow4-
Metabolomics ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

POMAShiny ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

TABLE 5
Comparison of MetaboliticsDB with existing tools

disease based on the network-based scores computed by
MetaboAnalyst. In contrast, MetaboliticsDB lists HCC as
the most associated disease. Schizophrenia was listed as
the third related disease. Furthermore, the HCC dataset
was also analyzed with Pathway Enrichment Analysis fea-
tures offered in both MetaboAnalyst and MetaboliticsDB.
Seven pathways, namely Galactose metabolism, Methion-
ine metabolism, Cysteine metabolism, Arginine and pro-
line metabolism, Citric acid cycle, Alanine and aspartate
metabolism, and Purine synthesis, are listed in the top-
20 pathways in both tools along with high correlations
outside of the top-20 list. Metabolomics Workbench lacks
disease prediction and pathway analysis features. Hence,
a direct comparison was not possible in these dimensions.
However, it offers classification with OPLS-DA/VIP and
Random Forest/VIP analyses that, given two chosen factors
from the dataset, lists the most discriminating features.

5 DISCUSSION

MetaboliticsDB stands out in several ways compared to
existing tools. It offers a comprehensive data management
platform for metabolomics analysis results, along with web-
based tools for querying, visualizing, and studying these
results at the network level. Key features include:

(i) Comparison Feature: Allows researchers to compare
their datasets with known diseases or other users’ public
analysis results. This can reveal common mechanisms be-
tween different conditions, aiding in the sharing of therapies
and providing insights for interpreting new cases. It can
also help understand disease sub-types, progression stages,
and drug effects through before-and-after comparisons. For
example, Fig. 4 compares different cancers, highlighting the
Warburg Effect.

(ii) Disease and Physiological Condition Association
Tools: Helps clinicians make accurate and faster diagnoses
by narrowing down possible conditions based on personal-
ized metabolomics data analysis results using AI-powered
prediction tools.

(iii) Advanced Search Interface: Facilitates the discovery
of recurring patterns of metabolic fluctuations across differ-
ent conditions in terms of pathway activity changes.

MetaboliticsDB’s powerful analysis interface is central to
its functionality. As demonstrated in the HCC case study,
it enables holistic interpretations of metabolomics data,
allowing users to explore metabolic mechanisms beyond
biomarkers. This is achieved through its state-of-the-art
personalized metabolic analysis algorithm [3].

Additionally, MetaboliticsDB can aid drug design re-
search by highlighting changes in metabolic networks, sug-
gesting potential drug targets, and explaining drug efficacy
through pathway visualizations.

MetaboliticsDB is designed for easy generalization. Fu-
ture support for multi-omics analysis will incorporate gene
expression and proteomics data, enhancing the impact of
MetaboliticsDB. This extension will provide invaluable in-
sights into various physiological conditions by combining
multi-omics datasets from the same patient.

6 CONCLUSION

In this paper, we present MetaboliticsDB, which incorpo-
rates a novel pathway-level metabolomics data analysis
results database and a set of powerful associated tools
running on this database. In particular, MetabolomicsDB
allows users to analyze their metabolomics datasets with
three different methods, store them in their private user area
or share them with other users, compare them with known
diseases in terms of the underlying metabolic mechanisms,
visualize the changes in the metabolic network, perform
basic and advanced search on metabolomics analysis results,
and associate their datasets with different diseases (if any).
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[45] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz, J. A. Lerman,
A. Ebrahim, B. O. Palsson, and N. E. Lewis, “Bigg models: A
platform for integrating, standardizing and sharing genome-scale
models,” Nucleic acids research, vol. 44, no. D1, pp. D515–D522,
2016.

[46] E. Fahy and S. Subramaniam, “Refmet: a reference nomenclature
for metabolomics,” Nature methods, vol. 17, no. 12, pp. 1173–1174,
2020.

[47] J. D. Orth, I. Thiele, and B. Ø. Palsson, “What is flux balance
analysis?” Nature biotechnology, vol. 28, no. 3, pp. 245–248, 2010.

[48] A. C. Müller and A. Bockmayr, “Fast thermodynamically con-
strained flux variability analysis,” Bioinformatics, vol. 29, no. 7, pp.
903–909, 2013.

[49] E. M. Nwanosike, B. R. Conway, H. A. Merchant, and S. S. Hasan,
“Potential applications and performance of machine learning tech-
niques and algorithms in clinical practice: a systematic review,”
International journal of medical informatics, vol. 159, p. 104679, 2022.
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