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The emerging data explosion in sports ¯eld has created new opportunities to practice data

science and analytics for deeper and larger scale analysis of games. With collaborating and

competing 22 players on the ¯eld, soccer is often considered as a complex system. More spe-
ci¯cally, each game is usually modeled as a network with players as nodes and passes between

them as the edges. The number of passes usually de¯ne the weight of each edge, and these

weights are employed to identify the key players using network modeling theory. However, the
number of passes metric considers each pass the same and cannot di®erentiate players who are

making ordinary passes, usually in their own pitch to a close teammate, from those who make

key passes that start or improve an attack. As a solution, in this paper, we present a descriptive

model to quantify the e®ectiveness of passes in soccer to di®erentiate between key passes and
regular passes with not much contribution to the play of a team. Our model captures the

perception of domain experts with a careful combination of risk and gain assessments. We have

implemented our model in a soccer data analytics software. We performed a user study with

domain experts, and the results show that our model captures domain expert evaluations of a
number of example scenarios with 94% accuracy. The proposed model is not computationally

demanding which allows real-time pass assessment during games on commodity hardware as

demonstrated by our software prototype.

Keywords: Data analytics; information modeling; genetic algorithms; sport analytics; complex

systems.

1. Introduction

With the recent advancements in sensor and camera technologies, it is now possible

to automatically track the movement of the ball and players on the ¯eld with high

precision [3]. These tracking technologies generate tremendous amounts of raw data,

and the computational analysis of such data may lead to new insights about teams

and individual players [8, 9, 28, 14, 29]. The derived insights may later be used to
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design game tactics, develop personalized training programs, discover young talents,

analytically compare teams/players, etc. [30].

The game of soccer may be considered as a complex system where each player

interacts with other players leading to an emerging behavior for each team [24, 25,

18, 19]. In this regard, complex systems theory is often employed to reveal the

governing dynamics of the game [20]. As an example, St€ockl et al. [22] employ

recurrence plots to visually characterize di®erent phases of soccer games based on the

distinct play patterns over the time. Moreover, Gr�ehaigne et al. [23] introduce the

notion of e®ective play-space and study di®erent shapes of e®ective play-space to

identify a comprehensive set of con¯gurations that a game may evolve into. Besides,

Vilar et al. [26] study the distributions of home and away teams' players at di®erent

regions of the ¯eld and analyze the emerging patterns of dominance during defense

and o®ense at key areas of the pitch. As a predictive approach, Pappalardo and

Cintia [27] employ the numbers of di®erent events, e.g., pass, goalkeeping, inter-

ception, etc., as features to build classi¯cation and regression models which predict

the outcome of a game. They simulate a complete season and show that the simu-

lated rankings are highly correlated with the actual rankings.

A popular trend in the complex systems view of soccer is the network modeling

approach [31–33], as network models facilitate understanding the structural con-

¯gurations of a soccer game as a system [35]. In such approaches, individual players

represent the nodes and various game interactions between them represent the edges.

In particular, passes are commonly used to model the edges between nodes in such

networks [36, 37], as passes are among the most essential game elements that often

determine the fate of a game. As an example, Cintia et al. [40] report high correlation

between passing activity and team success. Similarly, Redwood-Brown [34] shows

that teams have signi¯cantly higher pass accuracy within 5 min before a scoring

takes place than the game average. Moreover, players with decent pass skills are

usually rated much higher than others [43]. One analysis aspect of such network

models is to identify the key players that contribute most to their teams [33]. Among

the employed measures, the most common ones are the variations of centrality

measures [39]. One gap in such network modeling approaches is that they consider

all passes between players as the same and weigh an edge between two players as

the total number of passes between them. Such an equalitarian view undervalues

the key players who may not necessarily exchange the most number of passes but

may make the most key passes that contribute to the play of a team signi¯cantly.

Those key players may be considered to represent key actors controlling the gates of

various °ows in the complex system view of a team [35]. Hence, it is important to

identify them e®ectively to understand the underlying structure of the system, i.e.,

a soccer team.

In this paper, in order to ¯ll this gap, we propose a computational framework that

quanti¯es pass e®ectiveness in a robust and scalable manner. To this end, we craft

the desired properties of an e®ective pass and, accordingly, create a computational

model. More speci¯cally, our model considers (i) the risk of intervention by opponent
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team players, (ii) the gain in terms of the number of eliminated opponent team

players from the attacking region, (iii) the goal chance of the player who receives the

pass, (iv) the availability of well-positioned teammates to whom the pass-receiving

player can pass the ball in the next step, and (v) the amount of time that the pass-

receiving player has to make decision on how to use the ball before s/he (i.e., she or

he) is pressured by the nearest opponent players. In addition, our model is recursive

in its nature in the sense that it evaluates a pass not by itself individually but as part

of a sequence of passes that it belongs to. That is, an e®ective pass is assumed to lead

to another e®ective pass (or a goal shot).

Coaches and players may bene¯t from such a model (as implemented in a software

tool) in many di®erent ways. As an example, coaches may design their own pass

scenarios (maybe by modifying passes from past games) and show players how the

e®ectiveness of a pass is changing when some players take di®erent positions in

defense or o®ense [4]. Players may also be given feedback during exercises about their

pass choices and missed opportunities (if any).

In order to evaluate the e®ectiveness and the accuracy of our model, we perform a

user study with domain experts (i.e., professional coaches and players) on a set of

many possible passes. Experimental results show that the agreement between the

evaluation of pass e®ectiveness by the proposed model and those by the domain

experts on a number of example scenarios is quite high (over 94% accuracy).

Finally, we have incorporated the proposed model into an interactive software

tool [4] with a graphical interface. This tool allows to (i) replay the game visually at

di®erent speeds with real-time e®ectiveness scores reported for each pass, (ii) perform

\what-if" scenarios with support for dragging and dropping player objects and de-

¯ning arti¯cial passes between them, (iii) create heatmap-style visualizations which

are overlaid on the ¯eld and show risk and gain map of a particular game con¯gu-

ration, (iv) save any snapshot of the game on disk in a ¯le and load it later (possibly

on a di®erent computer), (v) perform dominant region analysis with real-time vi-

sualization support, and so on.

Contributions: Our contributions in this work are as follows:

. De¯nition of the desired properties of an e®ective pass,

. A computational model and associated algorithms to quantify pass e®ectiveness,

. Incorporation of a genetic algorithm to automatically learn model parameters from

expert knowledge,

. Preparation and conduction of a survey study with domain experts,

. Implementation of a fully functional software tool with graphical user interface

that packs the proposed models along with other useful features.

Organization: This paper is organized as follows. In the next section, we discuss

the related work. In Sec. 3, we present our pass e®ectiveness model. Section 4 pro-

vides an overview of the software implementation. In Sec. 5, we present the exper-

imental evaluation the proposed model. Section 6 concludes with a discussion on
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possible impact of presented results, the limitations of the current study, and poin-

ters for future work.

2. Related Work

Even though soccer has a long history, soccer data analytics using computational

means has recently gained traction in the last decade. Gudmundsson and Horton [38]

provide an extensive survey on the recent research works in the ¯eld with pointers to

open research questions. In this section, we particularly focus on algorithmic studies

that aim to assess the value of a pass in soccer.

With the increasing popularity of machine learning, an intuitive direction is

building a supervised model that automatically predicts the quality of a pass. Horton

et al. [8] employ a classi¯er which assesses a given pass by assigning one of the three

labels: \good", \OK", or \bad". The model uses the spatial features of the game at

the time of the pass and achieves an accuracy of 85.8%.While the reported results are

promising, this approach does not allow to di®erentiate between \good" passes and

provide an assessment of how good a pass is. In comparison, our approach does not

only rank passes, it also provides a quantitative assessment of each pass individually,

independent of other compared passes. That is, we can now di®erentiate between two

\good" passes, and even without a comparison, based on pass e®ectiveness value, one

may have an idea about how good a pass is.

Similarly, Beetz et al. [2] employ statistical learning models for the analysis of

passes as part of their ASPOGAMO project. As one di®erence from Horton et al.'s

approach, ASPOGAMO approach is an interactive one that combines both super-

vised and unsupervised machine learning models. More speci¯cally, users may

manually mark di®erent classes of passes, and then the system automatically creates

the descriptions of these classes by turning the trained decision trees into rules in the

form of conjunctions and disjunctions. Then, these rules are presented as descriptions

of the corresponding pass groups. Moreover, the proposed system also features un-

supervised learning capabilities in that it can automatically categorize a given set of

passes of a team from a game. The employed features are mostly positional ones, e.g.,

starting and ending points of passes. Pass initiating and receiving players' qualities

may also be used as features. All in all, the proposed tool may be very helpful in

exploratory post-game analysis to see the pass characteristics of di®erent teams.

Nevertheless, pass descriptions are totally structural referring to their length (e.g.,

long or short passes), the region of the pitch that they are initiated from and/or

targeted to, etc. Thus, it does not provide any assessment regarding whether a pass

was a good one or not.

Another example of using passes to di®erentiate between game styles of di®erent

teams or players may be seen in Gyarmati et al.'s work [7]. In particular, the authors

construct the pass network of a game and analyze pass sequence patterns, called

\°ow motifs". Such motifs may be useful to compare di®erent teams or reveal their
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passing characteristics. On the other hand, the proposed framework does not provide

any way to evaluate the value of individual (or even a sequence of) pass(es).

As an alternative to above quantitative learning models, Vercruyssen et al. [41]

follow a slightly di®erent route and propose a qualitative learning model to predict

the receiver and likelihood of a pass. The authors employ a number of qualitative

features in the form of binary relationships, such as player A is located to the north of

player B during a successful pass between players A and C and train an inductive

learning model to learn a set of rules that describe successful passes. As training data,

they employ all successful passes in a number of matches. One drawback of this

approach is the assumption that, in all past passes, the players made the best de-

cision as to whom to pass the ball, which may not be the case in many passes.

Moreover, the likelihoods provided by the model are relative/local and not comparable

between passes. That is, having a higher likelihood for a pass between players A and B

than that of a pass between C andD does not necessarily show that ¯rst is a better pass

than the latter. This limits the applicability of the model in practice to a large extent.

While the above studies focus on passes themselves, Maheswaran et al. [15] are

interested in the after e®ects of missing a particular pass, i.e., a shot, in basketball.

The authors employ a binary classi¯er model to predict what team will get the

rebound if a particular shot is missed. Among its features does the model use player

locations and ball height. Although it is interesting, it does not directly apply to

soccer, as only an ignorably small percentage of shots hits the goal post and comes

back to the pitch in any game.

From the basketball domain, the expected point value (EPV) approach of

Cervone et al. [16] is particularly interesting. The authors propose to compute EPV

for each movement in basketball games. To some extent, it may be applicable to

soccer data as well, but obviously, more research is needed. The immediate concerns

(hence, research questions) on the applicability of EPV approach on soccer data

would be as follows:

(i) EPV approach employ's a kind of Markov Model with states and transitions

between these states. The ¯eld is divided into discrete regions. The number of

states is proportional to [number of players] � [number of ¯eld regions] �
[whether the player is being defended]. Given the number of players and the

size of the soccer ¯eld, the number of states would be signi¯cantly larger.

Training such a model would require an enormous amount of training data to

have a su±ciently expressive model for each player. It may be challenging to

obtain such a data given the size of probable path space.

(ii) Basketball is a game where a large number of points are scored in relatively

smaller sequence of movements. Hence, connecting each movement to a score/

point value is more intuitive. On the other hand, in soccer, a lot of games end

with no goals scored, and in many others, one or two goals would be scored,

despite hundreds of passes made during the entire game. Hence, it may be

challenging to compute expected point values for soccer.
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(iii) As related to item (i), the computational complexity of coming up with the

expected point values for passes in soccer may be too high, and real-time pass

assessment may not be possible. In our current setting, real-time evaluation is

critical, as one of the main motivations of our proposed model is to give

instant feedback to players and coaches during training sessions.

(iv) The whole focus of EPV is how each movement will contribute to a team's

goal of scoring. Inherent to this approach is the assumption that the move-

ment is successful. On the other hand, our assessment of a pass directly

considers the likelihood that whether such a pass can be made successfully.

The goal here is to value high gain low risk movements over high risk high

gain movements to guide players and coaches on possible pass alternatives.

Nevertheless, the EPV approach ignores this aspect.

A much simpler version of the EPV approach is studied by Link et al. [42] within

soccer domain. In particular, the authors propose a custom model that quanti¯es the

likelihood of the current ball owner to pose a serious threat (i.e., scoring a goal) for

the opponent team. Even though the proposed measure, \dangerousity", is some-

what relevant to the concept of goal chance that we use in our model, it is designed

for particularly attacking scenarios and becomes relevant only when the player is in

the ¯nal third of the pitch. On the other hand, our pass e®ectiveness model does not

assume particular game setting and provides evaluations for all passes in each point

of the ¯eld.

The above study is complemented by Lucey et al.'s work [29] in that the authors

focus on the quality assessment of shots on goal. In particular, the authors employ

spatiotemporal features, such as location, game context (e.g., open play, counter

attack, etc.) to predict the expected probability that the shot would result in scoring

a goal. The authors consider only the last 10 s before a shot. As di®erent from Lucey

et al.'s work, our work focuses on the more general problem of assessing the quality of

passes. Moreover, we consider the entire game period, rather than a small fraction

(i.e., 10 s) before a particular event, e.g., a shot as in the above study.

Szczepański and McHale [43] argue that the number of completed passes metric

fails to assess the players' passing ability, as it ignores many intrinsic details, such as

the di±culty of passing against strong teams, or in regions close to the goal. As an

alternative, the authors propose a statistical model to predict the probability that a

pass would complete successfully and assess the players based on the completion

probability of their passes. Although their results show that assessment of players by

the probability measure is better than by the count of successful passes, the proposed

model does not provide any measure regarding the quality of a pass.

Similar to the above approaches, as input, we use ball and player position data

that are generated by sensors and cameras installed on the ¯eld. However, what

makes our work novel is its output, i.e., our model provides a quantitative evaluation

of each pass individually as well as with respect to the pass network of a team.

In addition, instead of predictive models adopted by most of the above related work,
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we employ more of a descriptive approach due to the lack of labeled pass evaluation

data that includes a large number of passes in di®erent settings with their true

e®ectiveness values as determined by experts. Presently, such data is not available,

and is costly to generate, which limits the applicability of predictive approaches.

More recently, somewhat more directly related to our approach, the following two

studies are presented. The ¯rst work [44] is a summarization-based approach that (i)

looks at the history of matches in the past, (ii) scores zones based on the number of

successful passes and/or goal shots made on them, and (iii) then, on this scored zone

map, assesses a pass that transfers the ball from a lower value zone to higher value

zone as a more valuable pass than a pass that transfers the ball between two nearly

equally scored zones. The authors ignore the current game con¯guration such as

defending players' positions and base their assessment mostly on the summarized

values of pass starting and ending zones. In comparison, our model captures the

current game context in detail and accordingly decides on the value of a pass in a

dynamic way. The second work [45] is more involved and enriched with game context

to some extent. Similar to our proposal, the authors assign risk and reward scores to

each pass. However, the employed measures are over-focused on immediate goal

scoring potential (represents pass reward) and successfully passing the ball to an-

other teammate (represents pass risk). Such an approach is greedy, i.e., it focuses on

immediate bene¯t and undervalues \e®ective" passes that start or contribute to

building up an attack and are far from the goal region. In this study, we ¯ll these gaps

by considering the likelihood that the current pass may lead to other e®ective passes

in a recursive manner with the inclusion of pass advantage component.

3. Pass E®ectiveness Model

In this section, we present basic elements that constitute our pass e®ectiveness

model. Many of the notions that motivate the components of our model build on the

factors in°uencing pass success as discussed by Szczepański and McHale [43].

We ¯rst de¯ne the risk assessment of a pass which is based on the likelihood of an

intervention by opponent players. Our employed motion model in the below risk area

discussion is partly inspired by the dominant region concept proposed by Taki and

Hasegawa [14, 17].

De¯nition (Pass Risk with respect to an Opponent Player): Pass risk

represents the probability that a pass between two players will be intervened by an

opponent player. More speci¯cally, we de¯ne the risk of a pass between teammates P1

and P3 with respect to an opponent player P2 as follows:

RiskðP2;passðP1;P3ÞÞ ¼ intervention probðP2; passðP1;P3ÞÞ;
where intervention prob is the probability that a player P2 can intervene a pass

between players P1 and P3 (Fig. 1). The value of intervention prob is learnt from the

past game data. More speci¯cally, let Vmin be the minimum speed that player P2

should run to intervene the pass from player P1 to P3. Then, intervention prob is the
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ratio of player runs with speed Vmin or higher among all player runs in past game

data. Vmin may be computed as d2/tpass where d2 is the distance of the player P2 to the

pass line as shown in Fig. 1, and tpass is the time that the ball takes to travel distance

d1 (Fig. 1). That is, tpass ¼ d1/Vball where Vball may be available as part of game data.

Otherwise, an average ball speed in a pass is assumed (i.e., reported as 23.28m/s in

Asai et al.'s study [1]).

De¯nition (Risk Area): The risk area of a certain pass is a region in which any

opponent team player might intervene the pass.

The size of the risk area depends on the pass distance. The risk area consists of

three components, namely, (i) the region around the player who initiates the pass,

(ii) the region around the player who receives the pass, and (iii) the area between these

two regions (see Fig. 2 for an example). The regions around players are modeled as

circles with the passing players at the center, respectively. The radius of these circles are

learnt from training data via a genetic algorithm [6, 13] as described in the next section.

De¯nition (Overall Pass Risk): The overall risk of a pass is de¯ned as the cu-

mulative risk of the pass with respect to all the opponent players that are located in

the risk region of a pass. More formally, we de¯ne the overall risk of a pass between

teammates P1 and P2 as follows:

Overall riskðpassðP1;P2ÞÞ ¼
X
Pi

RiskðPi; passðP1;P2ÞÞ;

where Pi is de¯ned over the set of all opponent players that are located in the risk

region of the pass. As an example, for the pass in Fig. 2, players 8 and 26 from the

Fig. 1. Pass risk evaluation with respect to an opponent player ��� A pass between players P1 and P3

where a player P2 can intervene. d2 is the distance of player P2 to the path between P1 and P3. d1 is the
distance of P1 to the point on the pass path that P2 is closest to.
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opponent team are the two players who are included in the risk region of the pass;

hence, they contribute to the overall risk of the pass.

De¯nition (Shooting Line): Shooting line conceptually represents a set of points

that are as far away from the goal as possible to the extent that a ball-possessing

player would still consider that shooting from one of these points will result in a goal

with high likelihood.

In this work, we represent the shooting line as a semi-circle which is centered at

the midpoint of the goal line. Figure 2 shows an example shooting line with dashes

around the goal on the left-hand side. We choose the circle shape as it allows placing

the goal region in the center with equal distance from all sides. The radius of the

semi-circle is learnt from training data through a genetic optimization algorithm [13]

as described in the next section.

De¯nition (Threat-Posing Player): Let P1 be the ball-possessing player at a

time point ti and s be the closest point to P1 located on the shooting line. An

opponent player P2 is called a threat-posing player for P1, if P2 can reach s no later

than P1. We assume that both P1 and P2 start running at the same time with their

maximum speeds (we consider maximum speed of 8.97m/s as reported in Rampinini

et al.'s work [11], if player speci¯c speed data is not available).

As an example, in Fig. 2, for player 3 from the red team, player 22 from the

opponent blue team is the only threat-posing player.

Fig. 2. (Color online) Risk region with respect to a pass ��� A pass is de¯ned between player 2 and 16.
The red lines indicate the borders of the risk area in which an opponent player may pose a threat to

the pass.
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De¯nition (Pass Gain): Let T ðP Þ denote the number of threat-posing players for a

player P . Given a pass from player P1 to player P2, pass gain is de¯ned as follows:

GainðpassðP1;P2ÞÞ ¼ T ðP1Þ � T ðP2Þ:
Pass gain corresponds to the measure of how o®ensive or neutral the pass is as

discussed by Reiner [46] who in turn adapts the concept from Gr�ehaigne et al.'s work

[10]. Moreover, pass gain is also similar to \packing-rate" of Impect (a soccer ana-

lytics startup based in Germany) [21]. While packing-rate simply counts the decrease

in the number of opponent players between the ball and the opponent goalkeeper,

pass gain measure di®erentiates between threat-posing opponent players and those

are who have no chance of tackling or intervention regarding the current pass. This

way, passive opponent players who are being bypassed by a pass but are located at

far distances (e.g., on the opposite side) are automatically eliminated to prevent

arti¯cially high pass gains.

De¯nition (Pass Advantage): Pass advantage is an attribute of a player position

in relation to his teammates. It quanti¯es the appropriateness of a player's position

at a time point t for making an e®ective pass to another teammate. We consider that

when a player receives a pass, regarding to whom s/he would pass the ball, s/he

would choose the teammate for whom the gain/risk ratio of the possible pass would

be the maximum. More speci¯cally, the pass advantage of a player P is de¯ned as

follows:

Pass advantageðP Þ ¼ argmaxPi2TeamMatesðP Þ
10þGainðpassðP ;PiÞÞ

10þOverall riskðpassðP ;PiÞÞ
� �

;

where 10 is an additive term that makes sure that pass advantage is always a positive

value so that maximization operator would produce accurate results even for back

pass scenarios. In order to prevent this additive term in the numerator from dis-

torting Gain/Risk ratio considerably, we add the same amount into the denominator

as well.

Based on the fact that it combines often con°icting gain and risk, pass advantage

may be considered as similar to reward/risk combination in Power et al.'s work [45].

One di®erence of our work is that Power et al.'s reward concept is only relevant if

there is a chance of goal shot within 10 s, which usually happens in goal area. On the

other hand, in this work, we consider a more general \reward" that stays relevant

even in a team's own half of the pitch.

De¯nition (Goal Chance): Goal chance represents the probability that a player P

will score a goal if s/he chooses to make a shot to the goal from his current position.

More speci¯cally, we consider that:

. Goal chance increases as the distance of the player to the goal decreases [5, 24].

. Furthermore, goal chance increases as the angle between the player and the goal

area corners increases [5]. Here, we assume that penalty point has the highest goal
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chance. Hence, we use the angle of the player at the penalty point as the best angle

that one could get.

. Finally, to account for defenders between the player and goal [5, 24], we take

advantage of our existing risk model in that we consider a shot to the goal as a pass

from the shooting player to the opponent goal keeper. Lower the risk of such a pass

is higher the goal chance.

Translating the above considerations, we mathematically de¯ne the goal chance

as follows:

Goal chanceðP Þ ¼ goal width

d
� minð�; penalty angleÞ

penalty angle

� 1

1þOverall riskðpassðP ;GoalKeeperÞÞ

where goal width is the width of the goal area, d is the distance of the shooting player

P from the goal, � is the angle between the lines drawn from P's location to the two

endpoints of the goal area, penalty angle is the angle between the lines drawn from

the penalty point to the two endpoints of the goal area. penalty angle is computed as

59 based on standard ¯eld size. Angles larger than penalty angle imply that the

shooting player is even closer to the goal keeper than the penalty point, and we still

consider that angle the same as the penalty angle. GoalKeeper is the opponent team's

goal keeper. These parameters are illustrated in Fig. 3.

The goal chance concept employs similar features, such as the number and

location of defenders between the player and goal, location of the shot, etc., which are

Fig. 3. Goal chance evaluation elements ��� � is the angle between the lines that connect the shooting

player to the goal area poles. d is the distance of the shooting player to the center of the goal area. Penalty

angle is the value of �, when the shooting player is located at the penalty point, i.e., the best angle.
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also incorporated into the computation of the expected goal value (EGV) proposed

by Lucey et al. [29]. EGV is a predictive model of a shot success, while goal chance is

a descriptive model. Although Lucey et al. does not explicitly discuss it, an earlier

work by Pollard et al. [5] considers the angle of the shot as well, in addition to

position and defenders' distance to the player.

De¯nition (Decision Time): Decision time represents the length of duration that

a pass receiving player has to decide how to use the ball before the closest opponent

player challenges him/her. We assume that at least the closest player to a pass

receiving player P runs towards P to defend against P . The decision time for a pass

receiving player P is computed as follows:

Decision timeðP Þ ¼ d=max speedðclosest player to P Þ;
where, if not de¯ned in a player speci¯c way, we assume the same maximum speed for

all players (8.97m/s based on Rampinini et al.'s study [11]). As an example, in Fig. 2,

player 22 has better decision time than player 77, if they were to receive a pass from

any blue team player.

Decision time corresponds to the pressure concept in Link et al.'s work [42], where

the authors put more focus on defenders that are between the player and goal, as

they also consider the risk concept as part of pressure. In comparison, we treat all

defenders in any direction around the player the same in decision time component, as

the closest player, from any direction, would be reaching to the player ¯rst to put

pressure.

De¯nition (Successful Pass): A successful pass is the one for which the players

who initiate and receive the pass belong to the same team.

De¯nition (Mis-Pass): A mis-pass is the one for which the players who initiate

and receive the pass belong to di®erent teams.

De¯nition (E®ective Pass): An e®ective pass is the one that eventually leads to a

goal scoring opportunity (possibly through a number of additional passes) for the

team of the player who initiates the pass. More speci¯cally, we list the following

properties that an e®ective pass should have.

. Properties of an e®ective pass: An e®ective pass:

� is a successful pass.

� eliminates several opponent team players o® of the active game (high pass

gain).

� is targeted to a player with high pass advantage.

� leads to a high goal chance situation.

� is targeted to a player with su±cient decision time to make the next move.

� leads to an e®ective pass (recursive de¯nition), i.e., the next pass in a

sequence of passes should be an e®ective pass as well.
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Based on the above properties, we de¯ne pass e®ectiveness score as follows.

De¯nition (Pass E®ectiveness Score): Given a passðP1;P2Þ from player P1 to

player P2, assume that passðP1;P2Þ is part of a pass sequence S in which it is followed

by another pass passðP2;P3Þ from player P2 to player P3. Then, pass e®ectiveness

score is de¯ned as follows:,

EffectivenessðpassðP1;P2ÞÞNextPass: passðP2;P3Þ ¼ w1 �GainðpassðP1;P2ÞÞþ
w2 � Pass advantageðP2Þþ
w3 �Goal chanceðP2Þþ
w4 �Decision timeðP2Þþ
w5 � EffectivenessðpassðP2;P3ÞÞ

where wi are weights which may be tuned based on insights from domain experts

(e.g., team coaches). However, even for experts, coming up with precise weights may

be challenging. In this paper, as a more robust solution to this problem, we employ a

genetic optimization algorithm [13] to automatically ¯nd the best set of weights that

match domain experts' evaluation. For cases where a pass is evaluated individually

(i.e., not as part of a pass sequence), the last term in the above equation (i.e., the

e®ectiveness of the next pass) is ignored.

The above e®ectiveness scores are de¯ned for successful passes. As for mis-passes,

we score them in the same way but with a negative sign. That is, a mis-pass that

would normally be very e®ective if it were successful pass (e.g., starting a counter

attack, for instance) with a computed score s will get a score of �s.

4. An Overview of the Software Implementation

We have implemented the proposed model into a standalone software tool [4] in

Python. Users can load game data from ¯les organized in common formats, such as

XML, JSON, etc. At a high level, the tool provides a variety of features that enable a

user to analyze, replay, and visualize game data. First of all, it allows users to de¯ne a

new pass between any players. Users may also change the position of any player by

dragging and dropping the player on the ¯eld in any direction. Besides, users can

visually replay the game at di®erent speeds. During game replay, e®ectiveness of

each pass is displayed on the screen real-time with details on subcomponents of the

e®ectiveness presented on the left pane (Fig. 4). Paths of last three passes are shown

for visual game analysis.

When a user de¯nes a pass between any two players, pass e®ectiveness values for

that pass is shown again on the left pane. In addition, pass risk area is also shown to

visually identify the opponent players who pose a risk for the current pass (Fig. 5).

4.1. Visual pass evaluation analytics

Our tool also provides visual pass analytics from di®erent aspects in the form

of heatmaps (Fig. 6). This allows to analyze what if scenarios in a holistic manner.
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Fig. 4. Live pass e®ectiveness display during game replay ��� E®ectiveness value is displayed for the most

recent pass which is between players 22 and 7 in the ¯gure. Solid arrows show the preceding two passes,
and dashed lines show the path that two previous ball owning players moved the ball before passing it to

the next player. On the left-hand side of the tool, the subcomponents of each pass is shown with their

numeric values.

Fig. 5. (Color online) Pass risk area visualization for manually de¯ned passes ��� For each pass,

the red lines indicate the borders of the risk area in which an opponent player may pose a threat to

the pass.
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Once a pass is de¯ned by the user, the tool allows three di®erent kinds of pass

evaluation analytics. As an example, consider the example pass de¯ned in Fig. 6

between players 22 and 16. The ¯rst analysis scenario evaluates the appropriateness

of pass target's (player 16) positioning. To this end, the locations of all the players on

the ¯eld except player 16 is assumed to be ¯xed. Then, assuming that player 16 may

have chosen to be positioned at any point on the ¯eld, the target of the pass in Fig. 6

is set to each point on the ¯eld, and the e®ectiveness score is recomputed for the pass.

Then, according to the resulting pass e®ectiveness value, that particular point is

colored based on the used color spectrum (see the left side of Fig. 6). After this is

repeated for all coordinates on the ¯eld, the resulting coloring of points is visualized

in the form of a heatmap. The second one is very similar to the ¯rst one with the only

di®erence that instead of the position of the pass target, the position of pass source

(player 22) is varied over all points on the ¯eld, and the e®ectiveness score is re-

computed for each point. Finally, in the third one, we consider that there is an

imaginary defending player from the opposite team, whose goal is to prevent this

pass. This imaginary defending player may be located anywhere on the ¯eld. We

introduce this imaginary player and vary his position over all points on the ¯eld. For

each point that this defender is located at, the e®ectiveness score of the pass is

recomputed and registered for that particular point. The results are visualized again

in the form of a heatmap. Besides e®ectiveness scores, users may choose to visualize

the change in any subcomponents of pass e®ectiveness (e.g., pass advantage, gain,

risk, etc.).

Fig. 6. Pass target position taking analysis through a heatmap ��� A pass is de¯ned between players 22

and 16. The heatmap shows how the pass advantage subcomponent of the pass e®ectiveness would change

if the pass target, player 16, received the pass at other points on the ¯eld.
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5. Evaluation and Validation

In order to evaluate the proposed pass e®ectiveness model, we performed a user study

with a number of domain experts who are mostly active professional trainers or

players. To this end, we prepared a survey which asks the participants to evaluate

and rank di®erent pass alternatives from di®erent perspectives. We next present a

summary of the survey and participant pro¯le. Survey questions and responses are

provided in the supplementary material.

5.1. Survey summary

The survey consists of 15 questions. First 3 questions are about the participant's

background such as experience in the domain, certi¯cations, etc. In each of the

remaining 12 questions, several alternative pass scenarios were shown to a partici-

pant, and s/he was asked to sort the given scenarios (often, in terms of how good each

pass is, and sometimes, how risky each pass is). For instance, if the participants were

asked to sort given three pass alternatives initiated by P1, P2, and P3 in terms of how

good they were, the answer is expected to be in the form of an ordering like P2–P1–P3

where the ¯rst one is the best pass, while the last one is the worst among the provided

scenarios.

5.2. Survey participants pro¯le

In total, 34 people participated in the survey. We eliminated those participants who

did not answer some of the questions in the survey, i.e., 17 participants are left after

this ¯ltering. Among 17 participants, several of them provided responses to some

questions in a format di®erent than expected (e.g., listing only two passes, such as

P3–P1, while all three passes were expected in the ordering). We ignored such vague

responses, as we could not interpret them fully. However, we kept the proper

responses from those participants.

Table 1 provides the experience level of the participants as a coach/trainer. In

summary, the majority of the participants (88%) have 1þ years of coaching/trainer

experience.

Table 2 presents the experience level of the participants as a soccer player. In

summary, a substantial number of the participants (82%) have 3þ years of soccer

playing experience.

Table 1. Experience level of participants as a coach/
trainer.

Experience as a coach/trainer? # of participants

3þ Years 11

1–3 Years 4

No experience 2
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Finally, Table 3 provides the ¯gures for the types of o±cial certi¯cation/training

that the participants had. In summary, 88% of participants have completed some

sort of formal training, while 59% of participants hold coaching licenses from UEFA

(the Union of European Football Associations) and/or TFF (Turkish Football

Federation).

5.3. Brief overview of surveyed pass scenarios

The ¯rst pass scenario (Q1 and Q2) focuses on evaluating di®erent choices while

moving the ball from the end of one's own ¯eld to the opponent's ¯eld during an

attack initiation. Considered options involve (i) a greedy-type choice of making a

long deep pass to a teammate close to the edge of the opponent penalty region, (ii) a

short pass to the center with relatively open space ahead, and (iii) a diagonal long

pass to the opposite side which is defended by less opponents. The next scenario (Q3

and Q4) studies di®erent passes to improve already a mature attack. More speci¯-

cally, it explores the options of (i) passing the ball further deeper into the opponent's

side with a short pass to a teammate who is closely defended by an opponent, (ii)

passing the ball back away from the opponent's goal towards the center to move the

game to a more open space with no \very close" defenders, (iii) making a horizontal

pass to the opposite open side close to the edge of penalty region. Another scenario

(Q5) focuses on the most appropriate position taking decision for a forward player to

increase the likelihood of receiving a highly e®ective pass. In di®erent alternatives,

only the position of the pass receiving player is changed, all the other players keep

their position. In particular, this scenario considers that a forward player may wait

for a pass (i) inside a heavily defended penalty region, (ii) outside of the penalty

region but with a blocked shooting angle by a defendant, and (iii) outside of the

penalty region with somewhat clear shooting angle. The next scenario (Q6) evaluates

a back pass inside a team's own half pitch. Since often a back pass leads to seriously

dangerous situations for the back passing team, this scenario investigates the

Table 2. Experience level of participants as a

soccer player.

Experience as soccer player? # of participants

3þ Years 14
No experience 3

Table 3. Formal certi¯cation pro¯le of survey participants.

Which of the following license do you have? # of participants

UEFA-licensed coach 5

TFF-licensed coach 5
TFF course-completed coach 2

Other 3

No o±cial course 2
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potential risk that is posed by each back pass. An important aspect that is given a

special emphasis is the e®ect of potential threat of pressure that the opponent team

may apply right after the back pass, which may stress the back passing team and

force them to make a serious mistake. In this scenario, (i) an almost horizontal back

pass where the opponent team may immediately pose pressure on the receiving

player, (ii) a deep back pass with some pressure possibility by the opponent team,

and (iii) a similar deep back pass with minimal pressure risk by the opponent team.

Another scenario (Q7) investigates the case where a team has just moved to the

opponent's half pitch and is building up an attack. It studies di®erent decisions that

an attacking mid¯elder may make, i.e., (i) long horizontal pass to a wing with no

immediate blocking defenders around the path of the pass, (ii) short vertical pass to

an area crowded with opponent players, (iii) long horizontal pass to another wing

through or over several opponent players that are on or around the pass path. The

next scenario (Q8) illustrates passing the ball from own half of the pitch to the

opponent's half. However, the center area is crowded with opponent players. Hence,

an intermediate pass is required to pass the ball in two steps to the other side of the

pitch. In this context, this scenario assesses the position taking of the intermediate

player who usually acts as the playmaker. The investigated positioning options of the

playmaker include (i) a position that is at a distance from opponent players and no

opponents on the path between him and the next pass receiving player, (ii) similar to

the previous one, but this time, there are some threat posing defenders between the

playmaker and his passing partner, (iii) the playmaker is in the middle of a group of

opponent players and relatively closer to the player to whom s/he is going to pass the

ball. In another scenario (Q9), we focus on a case where a team makes a mistake and

passes the ball to an opponent player (i.e., mis-pass) during a developing attack

around the middle region of the opponent. Each considered mis-pass has a di®erent

degree of likelihood to start a counter attack before the ball-losing team gets orga-

nized in the defense. The considered options include (i) a short mis-pass to a point

with a crowd of teammates who may prevent a counter attack, (ii) a medium-length

mis-pass to an opponent with a teammate in front around the center without any

players from own team, who may pose a threat to a possible quick pass to this next

player, and (iii) a long mis-pass to an opponent player who is defended by at least one

player, and the only passing option for the ball-receiving player is a back pass which

is not likely to create a counter attack. The next scenario (Q10) investigates the

position-taking decision of a defense player on the e®ectiveness of a pass in a mature

attack. In particular, the explored options include (i) staying close to the center of

the pass path for possible intervention, (ii) staying close to the ball receiver to either

steal the ball or tackle the pass-receiving player, and (iii) stay inside the penalty

region to prevent any opponent player entering the region or shooting from that

particular angle. Another scenario (Q11) focuses on post-ball-stealing pass decision

to quickly initiate a counter attack. The ball stealing player considers (i) passing the

ball with a short pass to a mid¯elder who is close to the center of the ¯eld and has

opportunity to pass the ball further to a forward player who is not defended well, (ii)
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passing the ball with a long pass to the right wing which has open space, but there are

several threat-posing players who may intervene the pass, and (iii) passing the ball

with a medium range risky pass to the left wing which is somewhat defended better

than the right wing. Finally, the last scenario evaluates the initiation of an attack in

a set play by a defense player from the middle of his team's half of the pitch. There

are three mid¯elders that the defense player may consider to pass the ball. One is at

the center of ¯eld and closely defended by an opponent. Another one is on the near-

right of the ¯eld center with some open space ahead and some opponent players at

mid-range distance. The third mid¯elder is on the far-left of the ¯eld center with

large open space that s/he may possibly run with the ball along the ¯eld border on

the left.

5.4. Survey evaluation and scoring metrics

In order to calculate the accuracy of the proposed pass evaluation model, we compare

the survey results with those provided by our tool. To compute an accuracy score, we

use the following metric. Assume that for a particular survey question on compar-

ative evaluation of n di®erent pass scenarios, the correct (as voted by the majority of

the domain experts) ordering of di®erent pass scenarios is S ¼ P1, P2, . . ., Pn. Then,

we create a set of all possible pairs (Pi, Pj) of these pass scenarios where the relative

ordering of Pi, Pj is consistent with their order in S. That is, Pi should come before Pj

in S. As an example, for S ¼ P1, P2, P3, the set of valid pairs would be f(P1, P2), (P1,

P3), (P2, P3Þg. A similar pairs set is computed for the ordering created by our pass

evaluation model. Then, the number of common pairs between these two sets is used

as the score of our model for that question. For instance, for the above example,

assume that the ordering of pass scenarios is S 0 ¼ P2, P1, P3 based on our pass

evaluation model. Then, the accuracy score would be 2, as two pairs (i.e., f(P1, P3),

(P2, P3)g) are shared between S and S 0. Such a scoring scheme allows for the

quantitative evaluation of partial matches between expert evaluations and that of

our model.

In order to treat all questions equally, in our survey, we include 3 pass scenarios in

each question, which makes sure that the maximum score that can be contributed by

each question is the same (i.e., 3, as there are three possible pairs). Therefore, we do

not further normalize with the possible number of pairs in each question.

Table 4 summarizes the responses to the questions in the survey by the partici-

pants where columns are questions, rows are all possible permutations of pass

alternatives, and a number in cell (i; j) represents the number of participants who

provided permutation i as answer to question j (e.g., frequency of each permutation

to appear under each question in participant responses). For each question, the most

common answer is chosen as the consensus answer. In two questions (6 and 12), there

were 2 alternative responses that shared the highest number of votes (5 and 6,

respectively). In those questions, instead of opting for one of the answers, we con-

sidered both answers as correct. Note that the sum of the frequencies under each
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question may be slightly di®erent, as some participants did not respond to some

questions in the way we expected (e.g., provided permutation may not include one or

two passes). Those incomplete responses are eliminated. Therefore, some questions

do not have a response from all participants.

5.5. Results

In this section, we report our accuracy evaluation results with respect to the above

survey data.

5.5.1. Learning the values of model parameters

Our model includes several parameters (Table 5). One set of parameters are the

weights associated with each subcomponent of the pass e®ectiveness model. Besides,

we have radius parameters for the risk area and shooting line de¯nitions as discussed

in Sec. 3. Hence, we need to set these parameters ¯rst before we can get results.

In order to avoid arbitrary setting of these parameter values, and compute their

optimum values, we turn the problem into an optimization problem with an objec-

tive function that maximizes the similarity of the model-produced survey results to

those answers provided by the domain experts. We employ and test three established

optimization algorithms, namely, genetic optimization, hill-climbing, and simulated

annealing [13]. Pseudocodes of these algorithms are provided in Appendix A. The

accuracy results that we obtained from these alternative algorithms are provided

in Table 6. Since the genetic optimization algorithm provides the best accuracy,

Table 4. Responses of participants to survey questions.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

P1–P2–P3 1 0 2 1 0 5 1 2 2 1 4 1
P1–P3–P2 0 3 0 0 0 2 3 0 1 0 2 6

P2–P1–P3 1 3 7 0 6 1 11 13 4 1 3 1

P2–P3–P1 4 6 2 2 4 2 1 1 9 9 7 0

P3–P1–P2 0 1 2 4 0 2 0 1 0 0 0 6
P3–P2–P1 9 3 2 9 3 5 0 0 0 6 1 2

Table 5. Model parameters learnt through
training (w5 is not part of the model for this

speci¯c study).

Symbol Description

w1 Weight of gain

w2 Weight of pass advantage
w3 Weight of goal chance

w4 Weight of decision time

r1 Radius of pass source

r2 Pass target radius coe±cient
r3 Shooting line radius
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we employ this algorithm while learning the values of model parameters. We adopted

the default parameters as suggested by Segaran [13] (population size ¼ 50, mutation

probability ¼ 0.2, step ¼ 1, elite ratio ¼ 0.2), and run 100 iterations.

5.5.2. Accuracy evaluation

In order to evaluate the success of the resulting model, we performed leave-one-out

cross validation approach [12]. That is, we trained the model with all survey response

data except for one question which is used for testing. We repeated this 12 times by

making sure that each time a distinct question is chosen for testing. We computed

score and accuracy in each iteration where scores are computed as discussed in the

previous section (Sec. 5.4). During the computation of pass e®ectiveness scores, we

employ z-scored values of individual pass e®ectiveness components to extract

meaningful weight values which are normalized to make sure that they sum up to 1.

Table 7 provides the detailed results for each iteration.

6. Discussion

Our experimental results point to three major observations. First, our model is able

to capture the expert evaluations of a number of pass scenarios with relatively high

accuracy, 94.7% (std: 2.3%). Second, based on the average weight values, pass ad-

vantage and goal chance components contribute most to the pass e®ectiveness score,

while the contribution of gain and decision time is limited. Third, over the iterations,

Table 7 reports very diverse values of the weights, while 10 out of 11 training

questions remain the same in any pair of table lines. This suggests that the model

may be too general, or rather, that the validation dataset may be too scarce.

As opposed to the fact that many of the reviewed techniques in the literature are

o®ense oriented (e.g., [42, 45]), our model can also accurately evaluate passes that are

not in o®ense region. As an example, in the case of Q12, we compare three alternative

passes that defense players are making to the mid¯elders within their own half of

the pitch, i.e., almost no goal possibility. Even at such an early stage of the set play,

Table 6. Evaluating alternative optimization algorithms to learn the values of weights and parameters.

Optimization

algorithm Input details

Number of

iterations

Max score

(out of 36) Accuracy (%)

Genetic popsize ¼ 50, mutprob ¼ 0.2, step ¼ 1,

elite ¼ 0.2, maxiter ¼ 100 weights

range: (1,10), (1,5), (1,20), (1,100),

(1,100), (1,100), (1,100)

100 34 94.4

Simulated annealing T ¼ 10; 000, cool ¼ 0.95, step ¼ 1

weights range: (1,10), (1,5), (1,20),

(1,100), (1,100), (1,100), (1,100)

1000 25 69.4

Hill-climbing weights range: (1,10), (1,5), (1,20),

(1,100), (1,100), (1,100), (1,100)

N/A 25 69.4
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our model predicts the ordering of passes in terms of their e®ectiveness scores fully

consistent with expert evaluations. As another example, in Q11, there is a possibility

of counterattack after stealing the ball from an opponent. Even though the event is

taking place in the middle of the passers' own half of the pitch, the proposed model's

evaluation of alternative passes for the best counterattack completely overlaps with

that of experts. Finally, in the case of Q4, although pass P1 is a vertical pass that

moves the ball closer to the opponent's goal area, it is evaluated as less e®ective than

P2 which is actually a back pass moving the ball away from the goal area. In such a

tricky case, many models in the literature would value P1 over P2, but our model

successfully makes the right assessment which is consistent with expert evaluations.

This work may contribute to complex systems view understanding of soccer in

two distinct ways. First, network models of soccer games [31–33] may be constructed

at a ¯ner granularity with edge weights that are computed based on pass e®ective-

ness scores. On such models, key players that are at the center of most key passes

may be detected in a more realistic manner. This may guide coaches to re-assign

players in their team based on their e®ective pass making skills. Besides, they may

implement additional measures to prevent players with high pass e®ectiveness scores

in the opponent team.

Table 7. Leave-one-out cross validation results.

Score Learnt parameter values (r1, r2, r3, w1, w2, w3, w4) ��� z score Overall accuracy

Test quest (Out of 3) r1 r2 r3 w1 w2 w3 w4 (Out of 33) (%)

Q1 3.0/ 10 3 4 0.03 0.55 0.36 0.06 31–93.9

100%

Q2 2.0/ 10 5 9 0.09 0.58 0.20 0.13 31–93.9
66.60%

Q3 3.0/ 10 5 4 0.03 0.63 0.24 0.10 31–93.9

100%
Q4 3.0/ 10 3 9 0.08 0.44 0.44 0.04 30–90.9

100%

Q5 3.0/ 10 5 9 0.05 0.64 0.24 0.06 32–96.9

100%
Q6 3.0/ 10 5 9 0.18 0.55 0.26 0.01 31–93.9

0%

Q7 2.0/ 10 3 4 0.10 0.47 0.42 0.02 32–96.9

66.60%
Q8 3.0/ 10 5 9 0.13 0.39 0.47 0.02 31–93.9

100%

Q9 2.0/ 10 5 11 0.16 0.42 0.38 0.05 31–93.9
66.60%

Q10 2.0/ 10 5 9 0.24 0.59 0.16 0.01 33–100

66.60%

Q11 3.0/ 10 3 4 0.06 0.46 0.47 0.01 31–93.9
100%

Q12 3.0/ 10 3 9 0.02 0.62 0.23 0.13 31–93.9

100%

Mean 10.0 4.2 7.5 0.10 0.53 0.32 0.05 31.25–94.7
Std 0.0 1.0 2.6 0.07 0.09 0.11 0.05 0.75–2.3
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Another potential contribution of the proposed model in understanding soccer

game is that now a particular type of simulation studies may also become possible.

More speci¯cally, over past games, e®ective pass making skill levels for each player

may be determined. Based on this data, one may perform what-if scenario analysis

(e.g., what would happen if a certain player with high e®ective-passing skills is

prevented by the opponent) on the network structure of a team. To this end, the

passing network of a team may be considered as a °ow network, and °ux balance

analysis [48] from the systems biology domain [49] may be adapted to soccer, where

e®ective passing skill values of players will be set as upper bound constraints for the

amount of °ow that they can handle. This way, one may simulate and analyze

potential players who may make up for the prevented/blocked/sold player in the

game. In a way, this will allow to perform robustness analysis of teams, in that, teams

that depend on a single star player may be shown not to be robust, while those that

rely on team play may stand out as teams that are more robust to opponent teams

with such tactical measures on their players with high e®ective passing skills.

6.1. Limitations

We note the following limitations of the presented study. First, our model does not

directly incorporate game context into its consideration. For instance, being under

press may have a di®erent consideration of what a good pass is than a counter-attack

setting. Second, our motion model is a simple one which does not consider many

parameters, such as the acceleration of players, ball speed changes, etc. Third,

the user survey dataset used for validating our model is small, which may lead to

over¯tting during parameter learning. Moreover, survey questions cover only a small

subset of the space for all possible pass types that may take place in practice. Hence,

the accuracy values presented in the previous section may not fully re°ect the general

performance of the model. Therefore, one may consider the presented results as a ¯rst

step for the validity of the model, and more experiments with a larger dataset are

required to further validate the descriptive power of the proposed pass e®ectiveness

model.

7. Conclusion and Future Work

To sum up, in this paper, we propose a quantitative pass evaluation model for

computational soccer game data analytics. Our model combines a variety of factors

such as risk, gain, goal chance, etc. to mimic expert evaluation. We employ machine

learning to learn some of the model parameters from expert knowledge. In order to

evaluate the e®ectiveness of our model, we conduct a user survey with certi¯ed and

experienced professionals with domain knowledge. We demonstrate that our model

captures domain expert evaluations of a number of example scenarios with 94%

accuracy. We have also implemented and incorporated our model into a soccer data
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analytics tool which is open-source and freely available to the researchers and

practitioners in the ¯eld.

As for future work directions, our work may be extended in several ways. First,

one may take the game context into consideration. More speci¯cally, instead of a

static °at model, one may create a multilevel-model similar to a decision-tree

structure. Based on the current game context parameters, di®erent branches of the

model may be executed. In practice, such a hierarchical organization may be at full

model level with di®ering de¯nitions of pass e®ectiveness at di®erent branches, or it

may also be at a level, where only the weights of pass e®ectiveness components

change based on the game context. For the latter, the weight parameters may be

learned in a game context speci¯c way from past games or domain experts via

enriched questionnaires that also describe the game setting for each particular pass.

Second, one may adopt a more involved motion model that considers, for instance,

how the ball moves in three-dimensional space on a particular trajectory following a

dynamic speed function. Besides, player speci¯c acceleration, maximum speed,

passing skill quality parameters may be learnt from pass matches, and incorporated

into the model. This will allow to create player speci¯c personalized game models

that will assign di®erent pass e®ectiveness scores depending on who the passing,

receiving, and defending players are. Finally, our results rely on a relatively small set

of data points. In order to validate the proposed model and assess the value of the

pass e®ectiveness scores, more experiments with larger datasets may be carried out.
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Appendix A. Optimization Algorithms

CostFunction (weights)
1 Get answers from tool based on the given weights (eg.[p1,p3, p2])

2 i = 0

3 score = 0

4 While i < 12: (12 is # number of question)

5 get Qis (Answer for Qi from survey) (Sample answer: . [p1,p3, p2])

6 get Qia (Answer for Qi from tool)

7 get possible pairs of two from Qia and Qis and keep order the same

8 if pair1 of Qia ¼¼ pair1 of Qis:

9 scoreþþ
10 return score

Mutation (w)

1 generate a random int i between 0 to length of domain

2 t ¼ generate a random number between 0–1

3 if t <0.5

4 w=w[0:i]þ[w[i]-step]þw[iþ1]
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5 else if w[i]<domain[i]-1

6 w¼w[0:i]þ[w[i]þstep]þw[iþ1]

7 else

8 w¼w

9 return w

Crossover (w1,w2)

1 generate a random int i between 0 to length of domain

2 w¼w1[0:i]þw2[i:] # get the firt I item from list w1

# and the last item from w2

# and create a new list

3 return w

Genetic Optimization

1 domanin ¼ [(1, 10), (1, 5), (1, 20), (1, 100), (1, 100), (1, 100), (1, 100)]

2 Initialize random weights, i = 0

3 for i < maxiter

4 evaluate the weights via cost function

5 choose top elites

6 while newpopulation < maxpopulation

7 i ¼ a random number between 0 to 1

8 if i<mutation probability

7 generate new weight population with mutation

8 else

9 generate new weight population with crossover

10 iþþ
11 return best weight

HillClimbing Optimization Pseudo Code

1 Initialize random weights

2 while True

3 for i < length of domain

4 generate the list of neighbor weight

5 while newpopulation < maxpopulation

6 get current best weight via cost function

7 for i < length of neighbor list

8 compare each neighbor weight

9 if new weight has more more than current weight

10 current weight ¼ new weight

11 if cost of current weight ¼¼ cost of new weight

12 break

13 return current weight

Simulated Annealing Optimization Pseudo Code

1 Initialize random weights

2 while T > 0.1

3 get a random index between (1 and range-1)

4 dir ¼ get a random direction between (-step size and step size)

5 generate a new weight via the dir to value at selected index

6 get the cost value of original and new weight

7 if new weight cost > original weight cost

8 current weight¼ new weight
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9 cool down T

10 return current weight
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