Homework 2

Theory of a Complex Variable Functions
Asst. Prof. Mehmet Nuri Akıncı
TA: Semih Doğu
Due to: 07.11.2017

QUESTIONS

1. Construct an analytic function whose real part is $u(x, y)$.

$$
u(x, y)=x^{3}-3 x y^{2}+x^{2}-y^{2}+x+1
$$

2. Show that following functions are harmonic and determine their harmonic conjugates.
(a) $u(x, y)=2 x(1-y)$
(b) $u(x, y)=\frac{y}{x^{2}+y^{2}}$
(c) $u(x, y)=y\left(3 x^{2}-y^{2}\right)$
(d) $u(z)=\ln |(z)|$ for $\operatorname{Re}(z)>0$
3. Show that $s(z)=x^{3}+3 x y^{2}-3 x+i\left(y^{3}+3 x^{2} y-3 y\right)$ is differentiable on the coordinate axes but is nowhere analytic.
4. If u and v are expressed in terms of polar coordinates (r, θ), find the CauchyRiemann equations in polar form.
5. Verify that the real and imaginary parts of the following analytic functions satisfy Laplace's equation.
(a) $f(z)=z^{2}+2 z+1$
(b) $g(z)=\frac{1}{z}$
(c) $h(z)=e^{z}$
6. Consider two non-concentric circles $C_{1}:|z|=R$ and $C_{2}:|z-a|=r$ as shown in Figure 1. Find a bilinear transformation that maps these non-concentric circles into two concentric circles.

Figure 1

