

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Scalability of OpenFOAM for Bio-medical Flow Simulations

Ahmet Duran
a,b

*, M. Serdar Celebi
a,c

, Senol Piskin
a,c

, and Mehmet Tuncel
a,c

aIstanbul Technical University, National Center for High Performance Computing of Turkey (UHeM), Istanbul 34469, Turkey
bIstanbul Technical University,Department of Mathematics, Istanbul 34469, Turkey

 cIstanbul Technical University, Informatics Institute, Istanbul 34469, Turkey

9 June 2014

Abstract

We study a bio-medical fluid flow simulation using the incompressible, laminar OpenFOAM solver icoFoam and

other direct solvers (kernel class) such as SuperLU_DIST 3.3 and SuperLU_MCDT (Many-Core Distributed) for

the large penta-diagonal and hepta-diagonal matrices coming from the simulation of blood flow in arteries with a

structured mesh domain. A realistic simulation for the sloshing of blood in the heart or vessels in the whole body

is a complex problem and may take a very long time, thousands of hours, for the main tasks such as pre-

processing (meshing), decomposition and solving the large linear systems. We generated the structured mesh by

using blockMesh as a mesh generator tool. To decompose the generated mesh, we used the decomposePar tool.

After the decomposition, we used icoFoam as a flow simulator/solver. For example, the total run time of a

simple case is about 1500 hours without preconditioning on one core for one period of the cardiac cycle,

measured on the Linux Nehalem Cluster (see [28]) available at the National Center for High Performance

Computing (UHeM) (see [5]). Therefore, this important problem deserves careful consideration for usage on

multi petascale or exascale systems. Our aim is to test the potential scaling capability of the fluid solver for multi

petascale systems. We started from the relatively small instances for the whole simulation and solved large linear

systems. We measured the wall clock time of single time steps of the simulation. This version gives important

clues for a larger version of the problem. Later, we increase the problem size and the number of time steps to

obtain a better picture gradually, in our general strategy. We test the performance of the solver icoFoam at

TGCC Curie (a Tier-0 system) at CEA, France (see [21]). We consider three large sparse matrices of sizes 8

million x 8 million, 32 million x 32 million, and 64 million x 64 million. We achieved scaled speed-up for the

largest matrices of 64 million x 64 million to run up to 16384 cores. In other words, we find that the scalability

improves as the problem size increases for this application. This shows that there is no structural problem in the

software up to this scale. This is an important and encouraging result for the problem.

Moreover, we imbedded other direct solvers (kernel class) such as SuperLU_DIST 3.3 and SuperLU_MCDT in

addition to the solvers provided by OpenFOAM. Since future exascale systems are expected to have

heterogeneous and many-core distributed nodes, we believe that our SuperLU_MCDT software is a good

candidate for future systems. SuperLU_MCDT worked up to 16384 cores for the large penta-diagonal matrices

for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow

simulation, without any problem.

1. Introduction

It is essential to have a fast, robust and scalable library having a potential for multi-petascale systems or future

exascale systems to solve a sparse linear system AX=B coming from many science and engineering applications.

In this paper, we solve sparse linear systems with large penta-diagonal and hepta-diagonal matrices coming from

* Corresponding author. E-mail address: aduran@itu.edu.tr.

2

the simulation of blood flow in arteries with a structured mesh domain. Incompressible, laminar OpenFOAM

solver icoFoam is used as the flow solver.

The sloshing of blood in heart is important to understand heart rate turbulence, potential damage of the sloshing

to walls of vessels and heart attack. When we examine the sinus rhythm with Q wave and T wave for a human

heart seen on electrocardiography, the QT interval is a measure of the time between the beginning of the Q wave

and the end of the T wave in the heart's electrical cycle (see [25]). A prolonged QT interval is considered a risk

factor for ventricular tachyarrhythmias disorders and sudden death (see [26]). The QT interval is used as one of

the input parameters for devices used to regulate the heart, such as cardiac pacemakers. We believe that this

study is useful to contribute to the development of artificial blood vessel and temporary or permanent cardiac

pacemakers which are sensitive to the sloshing of blood and various behaviours of QT interval.

Several realistic bio-fluid flow simulations have been carried out (see [1-2]). The geometries were extracted

from real patients or generated using real patient data from CT or MRI scans. Measured flow rates at the vessel

inlet by ultrasound technique is used to get a velocity profile of the simulation geometry inlet (see [1-4]).

In this study, we describe the speed-up based on variable problem sizes as well. In other words, we not only deal

with the linear speed-up for a fixed problem size, but also scaled speed-up which is consistent with the

Gustafson's law (see [22] and [23]). Focusing on the entire performance of the many cores globally rather than

focusing on particular core efficiencies may provide encouraging results (see also [24]). We achieved scaled

speed-up for large matrices up to 64 million x 64 million matrices and speed-up up to 16384 cores on Curie (see

[21]). We observed linear speed-up up to 4096 cores on Curie for a 64 million x 64 million matrix. They are

significant results for the problem. In literature, there are several scalability results using OpenFOAM for some

iterative solvers up to one thousand cores (see [8-12] and references therein) for different applications and

studies.

On the other hand, we completed the integration of direct solvers such as SuperLU_DIST (see [16]) and

SuperLU_MCDT (see [14] and [15]) into OpenFOAM. We performed the scalability tests for the integration of

the direct solvers into OpenFOAM.

The remainder of this work is organised as follows: In Section 2, the test environment is presented. In Section 3,

simulation test results with icoFoam and SuperLU_MCDT solvers are discussed. Section 4 summarises this

work.

2. HPC Tools and Test environment

OpenFOAM (see [7]) is an open source Computational Fluid Dynamics (CFD) toolbox, (see [29]). It is useful to

simulate complex fluid flows involving turbulence, heat transfer and solid dynamics. It is a generic CFD

software package with many tools for several main tasks of the simulation such as pre-processing (meshing),

decomposition and solution. Here, the solver refers to not only linear system solver but also Navier Stokes solver

and simulator. In this project, specifically, we used the OpenFOAM to simulate blood flow in arteries as an

application.

Here, we generated a structured mesh by using blockMesh as the mesh generator. To decompose the generated

mesh, we employed decomposePar tool. After the decomposition, we used icoFoam as an incompressible

laminar flow simulator/solver tool. It can use several iterative linear system solvers with different pre-

conditioners. Up to now, we tested a preconditioned bi-conjugate gradient linear solver with diagonal incomplete

LU pre-conditioner, as an option in the icoFoam solver. 5 or 7 banded sparse matrix occurs at each time step. All

the simulations in this study are obtained using the OpenFOAM 2.1.1.

The simulations were conducted on TGCC Curie (a Tier-0 system) (see [21]). It is a Linux environment with

InfiniBand QDR Full Fat Tree network and a 100 GB/s bandwith disk system. Each node has 2 eight-core Intel®

processors Sandy Bridge EP (E5-2680) 2.7 GHz, 64 GB of RAM and one local SSD disk. The simple

decomposition method was used for partitioning the mesh into sub-domains. The decomposition of a matrix with

the size of 32 million x 32 million elements into 8192 partitions was done in serial and took more than 2 hours.

So, parallel decomposition techniques are needed when we increase the matrix size and the number of partitions.

3. Test results

The total run time of a simple case took about 1500 hours without preconditioning on one core for one period of

the cardiac cycle, measured on the Linux Nehalem Cluster (see [28]) available at the National Center for High

Performance Computing (UHeM) (see [5]). The run time was reduced to 15 hours with preconditioning

techniques on eight cores for one period of cardiac cycle. This was a laminar, rigid wall case with a small portion

3

of the geometry. There were more complex simulations with longer periods (see [2, 3, 5]) that we run at the

Linux Nehalem Cluster (see [28]). Also, we needed at least 10 periods of the cardiac cycle for several cases

because the periodic convergence of the case occurs after 10 cycle of the simulation. So the necessary CPU time

went up to a few thousand (2000-5000) hours per case. The results of this white paper shows that increasing the

mesh size produces a good scale on parallel computing.

Table 1 describes a dozen of matrices coming from the simulation of blood flow. For example, mC_1M_D_t is a

matrix encountered at the twelfth time step, at time 0.0006 s of the simulation where the time step size is

0.00005. The other matrices are obtained at time 0.00005 of the simulation. mC_8M matrix means 8M of cells in

the fluid domain and has matrix size of 8 million x 8 million.

Table 1. Description of matrices of different number of nonzeros (NNZ) per row. The matrices come from 2D-3D meshes obtained for

simple incompressible blood flow. The structured mesh produces penta or hepta-diagonal matrices. The rest of the matrices has zero
elements.

Matrix N NNZ NNZ/N Origin

mC_1M 1000000 4996000 4,996 UHeM

mC_8M 8000000 39988000 4,999 UHeM

mC_16M 16000000 79984000 4,999 UHeM

mC_32M 32000000 159976000 4,999 UHeM

mC_64M 64000000 319968000 5 UHeM

mC_1M_D 1000000 6940000 6,940 UHeM

mC_1M_D_t 1000000 6940000 6,940 UHeM

mC_2M_D 2000000 13900000 6,950 UHeM

mC_4M_D 4000000 27840000 6,960 UHeM

mC_5M_D 5000000 34820000 6,964 UHeM

mC_6M_D 6000000 41800000 6,967 UHeM

mC_8M_D 8000000 55760000 6,970 UHeM

3.1. icoFoam solver results

Some of the results obtained using OpenFOAM icoFoam solver are shown in Figure 1 (see [3]).

Fig. 1. The results (see [5]) obtained using OpenFOAM icoFOAM solver.

The tests were done for only 1 time step due to time limitations, while the real case runs are conducted for more

than millions of time steps. The most time consuming part of the simulation was the decomposing of the mesh.

For example, when we considered the decomposing 64M cells of data, it took over 3 hours for 8192 partitions,

while it took over 7 hours for 16384 partitions. The decomposition was run on 1 core since blockMesh does not

support parallel decomposition. Meshing time was the same for all partition numbers. The total meshing time for

64M cells (i.e. having problem matrix size of 64Mx64M) was about one hour. The simple decomposition method

was preferred since the running cases were for a structured mesh. This technique simply splits geometry into

pieces by direction, such as 32 pieces in x direction and 32 pieces in y direction. When the geometry is more

complex and an unstructured mesh is used, more advanced techniques can be selected such as METIS (see [18])

or Scotch (see [19]). Also, since the mesh is structured, mC_64M matrix means 64M of cells in the fluid domain.

4

Table 2. Wall clock time and normalized speed-up for mC_8M matrix.

of cores (meshes) Wall clock

time (s)

Speed-up

128 (16x8) 20.7 1.00

256 (16x16) 10.4 1.99

512 (32x16) 5.3 3.91

1024 (32x32) 4.7 4.40

Table 3. Wall clock time and normalized speed-up for mC_32M matrix.

of cores (meshes) Wall clock

time (s)

Speed-up

128 (16x8) 43 1.00

256 (16x16) 23 1.87

512 (32x16) 11 3.91

1024 (32x32) 5 8.60

2048 (64x32) 2.5 17.20

4096 (64x64) 2 21.50

8192 (128x64) 2 21.50

Fig. 2. Speed-up for different problem sizes

We tested several matrices of different mesh sizes. Here, we present the scalability results for three matrices of

size 8 million x 8 million up to 1024 cores in Table 2; 32 million x 32 million up to 8192 cores in Table 3; and

64 million x 64 million up to 16384 cores in Table 4. The code has shown speed-up up to 16384 cores for the

largest matrix in our tests. Our observation is consistent with results of other codes which show a similar

behaviour. To exploit massively parallel architectures on large number of cores we need bigger size of problems.

On the other hand, there may not be right match between the problem size and the available memory for the

small number of cores. In calculation of speed-up, the irregular memory access of reference point for specific

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

Sp
e

e
d

-u
p

Number of cores

Scaled Speed-up

8Mx8M

32Mx32M

64Mx64M

Linear Speed-up

5

core numbers and the more memory necessity for small number of cores can affect negatively in wall clock time

and they cause superlinear speed-up, up to 2048 cores, since the more consuming time than the expected value

on numerator. Another reason for the superlinear speed-up is due to the nonlinear characteristics of the iterative

solver and the pre-conditioner performance. Moreover, we observe that the scalability becomes better as the

problem size increases. Figure 2 illustrates this scaled speed-up for large matrices having sizes up to 64 million x

64 million and up to 16384 cores.

Table 4. Wall clock time and normalized speed-up for mC_64M matrix.

of cores (meshes) Wall clock

time (s)

Speed-up

128 (16x8) 91 1.00

256 (16x16) 47 1.94

512 (32x16) 22 4.14

1024 (32x32) 10 9.10

2048 (64x32) 5 18.20

4096 (64x64) 3 30.33

8192 (128x64) 2 45.50

16384 (128x128) 1.3 70.00

3.2. SuperLU_MCDT solver results

SuperLU_MCDT is a distributed direct solver and the software will be uploaded to website (see [17]) after

academic permissions from Istanbul Technical University. Here, we used symbolic factorization, ParMETIS (see

[18]) for column permutation and Intel MKL (see [27]) as the BLAS library, among several options. The tuning

of super-nodal storage parameters is important for the performance and we selected the tuned parameters

relax:100 and maxsuper:110 (see [14]). Table 5 illustrates the time for the factorisation and the total time for

each matrix.

We define an optimal minimum number of cores as the number of cores that provides the minimum wall clock

time for a given size of problem, where a right match occurs between the problem size and the available

resources such as memory, in presence of communication overhead. We find that the optimal minimum number

of cores required depends on the sparsity level and size of the matrix. As the sparsity level of matrix decreases

and the order of matrix increases, we expect that the optimal minimum number of cores increases slightly. For

example, while 512 cores is the required minimum number of cores for mC_8M, mC_16M, mC_1M_D and

mC_2M_D matrices, 2048 cores provides minimum wall clock time for mC_4M_D, mC_5M_D, mC_6M_D and

mC_8M_D matrices in this portfolio of matrices.

Fig. 3. The performance comparison of SuperLU_MCDT and icoFoam solver for mC_8M matrix

0

10

20

30

40

50

60

70

0 500 1000 1500

W
a
ll-

c
lo

c
k
 t
im

e

Number of cores

mC_8M

Factorization time for
SuperLU_MCDT (s)
Total time for SuperLU_MCDT (s)

Solution time for OpenFOAM (s)

6

Table 5. Wall clock times (s) of SuperLU_MCDT for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D

problems, described in Table 1, coming from the incompressible blood flow simulation

Matrices
of cores

(meshes)

256

(16x16)

512

(16x32)

1024

(32x32)

2048

(32x64)

4096

(64x64)

8192

(64x128)

16384

(128x128)

mC_1M
Factor Time 1,96 1,97 3,29 4,62 10,77 14,71 32,95

Total Time 9,45 12,71 17,83 25,6 72,04 75,59 197,61

mC_8M
Factor Time 9,34 1,79 13,64 13,87 25,33 43,46 90,98

Total Time 45,53 12,68 61,71 97,08 145,22 201,96 418,53

mC_16M
Factor Time 15 15,68 25,65 25,29 46,73 70,07 156,88

Total Time 80,53 67,04 95,88 141,78 198,08 308,80 461,76

mC_1M_D
Factor Time 21,01 2,71 18,23 15,14 17 26,79 53,57

Total Time 40,86 14,77 45,29 59,67 55,61 106,7 172,1

mC_1M_D_t
Factor Time 16,23 10,77 19,77 19,62 43,04 28,98 57,70

Total Time 38,43 42,78 51,07 50,55 97,66 120,29 349,97

mC_2M_D
Factor Time 43,35 28,11 27,83 23,85 37,99 48,56 98,32

Total Time 87,64 82,1 84,18 87,23 118,98 160,26 377,6

mC_4M_D
Factor Time 148,99 95,7 82,51 56,88 80,91 80,81 219,4

Total Time 224,67 201,77 212,51 173,71 224,44 403,14 561,99

mC_5M_D
Factor Time 194,31 118,73 113,44 66,22 103,82 104,74 271,77

Total Time 328,13 246,09 255,6 215 284,61 301,6 659,86

mC_6M_D
Factor Time 265,07 163,34 150,03 117,96 129,19 136,56 226,23

Total Time 438,46 318,71 330,46 303,24 340,88 378,73 558,22

mC_8M_D
Factor Time 478,27 278,96 244,23 175,19 184,89 179,49 330.24

Total Time 712,99 493,45 494,23 441,53 473,72 491,27 678.04

Overall, we observed that the wall clock time with SuperLU_MCDT is longer than that of icoFoam solver, as

expected, because generally direct solvers take longer time than iterative solvers. For example, icoFoam solver

outperforms SuperLU_MCDT for mC_8M matrix (see Figure 3). We obtained almost similar results with

SuperLU_DIST 3.3 for this set of matrices.

Table 6. Distribution of wall clock time (s) for mC_8M matrix using ParMETIS for column permutation

of cores 256 512 1024 2048 4096 8192 16384

(mesh) (16 X 16) (16 X 32) (32 X 32) (32 X 64) (64 X 64) (64 X 128) (128 X 128)

Nonzeros in L 736867161 80858737 759889256 765376719 692260216 700475156 690287571

Nonzeros in U 736867161 80858737 759889256 765376719 692260216 700475156 690287571

nonzeros in L+U 1465734322 160717474 1511778512 1522753438 1376520432 1392950312 1372575142

nonzeros in LSUB 102386047 11558966 106262844 108045660 94662608 97338383 96491385

of super nodes 204238 26847 207025 208620 215465 214535 217216

Equil time 0,39 0,27 0,53 1,41 2,07 2,23 6,05

RowPerm time 2,18 0,27 2,17 2,18 2,18 2,2 2,17

ColPerm time 5,54 8,63 31,12 66,29 102,04 139,54 301,12

SymbFact time 3,92 0,41 4,07 4,1 3,57 3,66 3,63

Distribute time 1,07 0,24 0,75 0,76 0,69 0,92 1,68

Factor time 9,34 1,79 13,64 13,87 25,33 43,46 90,98

Solve time 3,33 0,01 1,59 1,88 1,59 1,85 2,05

Refinement time 19,76 1,06 7,84 6,59 7,75 8,1 10,85

||X-Xtrue||/||X|| 1,18E-012 4,06E-011 1,80E-012 2,35E-012 1,12E-012 1,08E-012 1,10E-012

Total time (s) 45,53 12,68 61,71 97,08 145,22 201,96 418,53

We find that the communication overhead coming from ParMETIS [18] becomes one of the dominating factors

in the distribution of wall clock time on the large sparse matrices for certain large numbers of cores, for example

greater than 256 cores, depending on the pattern, sparsity level and order of matrix, consistent with the results of

7

Duran et al. [13]. For example, Table 6 shows the distribution of wall clock time (s) for mC_8M matrix and the

impact of number of supernodes and the communication overhead coming from ParMETIS on the performance.

We obtained similar results for the other matrices in Table 1. Figure 4 and Figure 5 show the performance of

SuperLU_MCDT for mC_1M_D_t and mC_8M_D, respectively.

Fig. 4. The performance of SuperLU_MCDT for mC_1M_D_t

Fig. 5. The performance of SuperLU_MCDT for mC_8M_D

4. Summary and future work

In this study, we tested the scalability of the existing OpenFOAM solver icoFoam and SuperLU_MCDT for

various sizes of penta-diagonal and hepta-diagonal matrices coming from the simulation of blood flow in arteries

with structured mesh domain. We observe speed-up up to 16384 cores for the largest matrix in our tests using

icoFoam. Moreover, we find that the scalability becomes better as the problem size grows. Figure 2 shows this

scaled speed-up for large matrices having sizes up to 64 million x 64 million and up to 16384 cores. We

observed linear speed-up up to 4096 cores on Curie (see [21]) for a 64 million x 64 million matrix.

Moreover, we imbedded other direct solvers (kernel class) such as SuperLU_DIST (see [16] and [20]) and

SuperLU_MCDT (see [13], [14] and references therein) in addition to default solvers provided by OpenFOAM.

In general, we obtained reasonable performance results with SuperLU_MCDT, in addition to the advantages of

the direct solvers for robustness.

In order to show better usability of our direct method compared with iterative methods in blood flow

simulations, the coefficient matrices with high condition number in transient flow conditions need to be tested. It

is important to observe that, for high condition numbers, the time difference between direct and iterative solvers

for the solution of linear set of equations will be reduced. For more complex flow conditions the solution time of

iterative solvers will increase based on fixed solution precision. In this case, the cost of direct methods is still

fixed and the potential gap is expected to be reduced. In order to show better usability of our many-core enabled

direct method compared with iterative methods in blood flow simulations, the coefficient matrices with high

condition number in transient flow conditions have to be tested. It is well known fact that during the flow

simulations both coefficient matrices and right hand side vector are changing. This change is especially drastic

0
50

100
150
200
250
300
350
400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

W
a
ll-

c
lo

c
k
 t
im

e

Number of cores

mC_1M_D_t

Factorization time (s)
Total time (s)

0
100
200
300
400
500
600
700
800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

W
a
ll-

c
lo

c
k
 t
im

e

Number of cores

mC_8M_D

Factorization time (s)

Total time (s)

8

during the severe flow dynamics conditions in simulation. This drastic change, in most cases, shows itself as an

ill-conditioned spectral space and high condition numbers. It is important to observe that, for high condition

numbers, the time complexity gap between direct and iterative solvers for the solution of linear set of equations

will be reduced. For more complex flow conditions the solution time of iterative solvers will increase based on

fixed solution precision. In this case direct method's cost is still fixed and the potential gap in solution time is

expected to be reduced. It is also worth noting that iterative methods works on both coefficient matrix and the

right hand side vector changing at each time step but our direct solver works only on coefficient matrix. This is

also a potential advantage for our direct solver in case of large simulation times.

Our many-core aware direct sparse solver has a capability of exploiting the potential benefits of many-core

distributed systems than any other sparse direct solvers especially for unsymmetric matrices. Future exascale

systems are expected to be having heterogeneous and many-core distributed nodes. We believe that our

SuperLU_MCDT software is a good candidate for these future systems with its scalability on the servers we

tested. While SuperLU_MCDT worked up to 16384 cores for the large sparse matrices coming from the

incompressible blood flow simulation without any problem, there was observable performance gain up to 2048

cores for the sufficiently large matrices, for example, mC_4M_D, mC_5M_D, mC_6M_D and mC_8M_D

matrices having 7 number of nonzeros per row. Potential challenges for our many-core aware software is

resilience, accelerator support and hyper graph partitioning for both better scalability and sustainability. We

make efforts to minimize the communication overhead coming from ParMETIS for large number of cores and

search for alternative solutions.

As a future work we will test icoFoam simulator with other iterative solvers such as generalised geometric

algebraic multi-grid and incomplete Cholesky preconditioned conjugate gradient. Also, we will test other flow

simulators such as nonNewtonianIcoFoam or pisoFoam. nonNewtonianIcoFoam is used to simulate non-

newtonian flows while pisoFoam is for incompressible turbulent flow.

References

[1] S. Piskin, M. S. Celebi, Analysis of the effects of different pulsatile inlet profiles on the hemodynamical

properties of blood flow in patient specific carotid artery with stenosis, Computers in Biology and Medicine,

Volume 43, Issue 6, 1 July 2013, Pages 717-728, ISSN 0010-4825,

http://dx.doi.org/10.1016/j.compbiomed.2013.02.014

[2] S. Piskin, M. S. Celebi, "Numerical blood flow simulation with predefined artery movement," Biomedical

Engineering and Informatics (BMEI), 2012 5th International Conference, pp.654,658, 16-18 Oct. 2012 doi:

10.1109/BMEI.2012.6513039

[3] S. Piskin and M. S. Celebi, Bir boyutlu damar hareketi ile sayısal kan akısı benzetimi (The analogy between

one dimensional blood vessel movement and numerical blood flux), Tıp Teknolojileri Ulusal Kongresi -

TIPTEKNO 12, Antalya, Turkey, November 1-3, 2012

[4] H. Turkeri, S. Piskin, and M. S. Celebi, A comparison between non-Newtonian and Newtonian blood

viscosity models, Journal of Biomechanics, 44, Supplement 1, 2011

[5] S. Piskin and A. Akkus¸ Biofluid flow applications by open-source software, 17. National Biomedical

Engineering Meeting - BIYOMUT 2012, Istanbul, Turkey, October 3-5, 2012

[6] D7.2.1 A Report on the Survey of HPC Tools and Techniques, PRACE-3IP, April 25, 2013,

http://www.prace-project.eu/IMG/pdf/d7.2.1.pdf

[7] OpenFOAM main site, http://www.openfoam.com

[8] P. Dagna and J. Hertzer, Evaluation of multi-threaded OpenFOAM hybridization for massively parallel

architectures, PRACE WP98, Aug. 20, 2013, www prace-pro ect eu I pdf wp pdf

[9] M. Manguoglu, PRACE WP, Sep. 6, 2012,

http://www.praceproject.eu/IMG/pdf/A_General_Sparse_Sparse_Linear_System_Solver_and_Its_Applicati

on_in_OpenFOAM-2.pdf

[10] M. Culpo, PRACE WP, Sep. 6, 2012, http://www.prace-

ri.eu/IMG/pdf/Current_Bottlenecks_in_the_Scalability_of_OpenFOAM_on_Massively_Parallel_Clusters-

2.pdf

[11] M. Moylesa, P. Nash, and Ivan Girotto, PRACE WP, Sep. 6, 2012, http://www.prace-

ri.eu/IMG/pdf/Performance_Analysis_of_Fluid-Structure_Interactions_using_OpenFOAM.pdf

[12] T. Behrens, OpenFOA ’s basic solvers for linear systems of equations: Solvers, preconditioners,

smoothers, Tech. Rep. DTU, Denmark, Feb. 18, 2009,

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-report-fin.pdf

http://dx.doi.org/10.1016/j.compbiomed.2013.02.014

9

[13] A Duran, S Celebi, Tuncel and B Akaydın, Design and implementation of new hybrid algorithm and

solver on CPU for large sparse linear systems, PRACE-2IP white paper, Libraries, WP 43, July 13, 2012,

http://www.prace-ri.eu/IMG/pdf/wp43-newhybridalgorithmfo_lsls.pdf

[14] A. Duran, M.S. Celebi, M. Tuncel, and F. Oztoprak. Structural analysis of large sparse matrices for scalable

direct solvers. PRACE-2IP white paper, Scalable algorithms, WP 82, August 20, 2013,

http://www.prace-project.eu/IMG/pdf/wp82.pdf

[15] M.S. Celebi, A. Duran, M. Tuncel, B. Akaydin and F. Oztoprak, Performance analysis of BLAS libraries in

SuperLU_DIST for SuperLU_MCDT (Multi Core Distributed) development, PRACE-2IP white paper,

Libraries, WP 83, August 20, 2013, http://www.prace-project.eu/IMG/pdf/wp83.pdf

[16] Xiaoye S. Li and James W. Demmel, SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver

for Unsymmetric Linear Systems, ACM Trans. on Math. Software, Vol. 29, No. 2, June 2003, pp. 110-140.

[17] http://www.uybhm.itu.edu.tr

[18] (Par)METIS homesite: http://www.lrz.de/services/software/mathematik/metis

[19] Scotch and PT-Scotch homepage http://www.labri.fr/perso/pelegrin/scotch

[20] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users' Guide, Tech.

Report UCB, Computer Science Division, University of California, Berkeley, CA, 1999, update: 2011

[21] http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

[22] J. L. Gustafson, Reevaluating Amdahl's Law, Communications of the ACM 31(5), 1988. pp. 532-533

[23] http://en.wikipedia.org/wiki/Gustafson's_law

[24] M. D. Hill and M. R. Marty, Amdahl's Law in the Multicore Era, IEEE Computer, vol. 41, pp. 33–38, July

2008

[25] http://en.wikipedia.org/wiki/QT_interval

[26] http://en.wikipedia.org/wiki/Electrocardiography

[27] http://software.intel.com/en-us/intel-mkl

[28] http://www.uybhm.itu.edu.tr/eng/inner/duyurular.html#karadeniz

[29] K.A. Hoffmann and S.T. Chiang, Computational Fluid Dynamics, Engineering Education System Vol. I and

II, 2000.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-312763. The work was achieved using the PRACE

Research Infrastructure resource Curie at CEA, France (see [21]). Moreover, computing resources of the

National Center for High Performance Computing of Turkey (UHeM) (see [17]) were used under grant number

1001682012.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.6348
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://www.cs.wisc.edu/multifacet/amdahl/

