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Abstract We study a bio-medical fluid flow simulation using the incompressible,
laminar OpenFOAM flow solver icoFoam using iterative linear equation solver and
direct solvers (kernel class) such as SuperLU_DIST 3.3 and SuperLU_MCDT (Many-
Core Distributed) for the large penta-diagonal and hepta-diagonal matrices coming
from the simulation of blood flow in arteries with a structured mesh domain. A realistic
simulation for the flow of blood in the heart or vessels in the whole body is a complex
problem and may take a very long time, thousands of hours, for the main tasks such
as pre-processing (meshing), decomposition and solving the large linear systems. Our
aim is to test the potential scaling capability of the fluid solver for multi-petascale
systems. We started from the relatively small instances for the whole simulation and
solved large linear systems. We measured the wall clock time of single time steps of the
simulation. This version gives important clues for a larger version of the problem. Later,
we increase the problem size and the number of time steps to obtain a better picture
gradually, in our general strategy. We test the performance of the solver icoFoam at
TGCC Curie (a Tier-0 system) at CEA, France (see [31]). We achieved scaled speed-
up for the largest matrices of 64 million ×64 million in our dataset to run up to 16,384
cores. In other words, we find that the scalability improves as the problem size increases
for this application. As the matrix size quadrupled, the speed-up improves at least 50 %
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Scalability of OpenFOAM 939

near speed-up saturation point. This shows that there is no structural problem in the
software up to this scale. This is an important and encouraging result for the problem.
Moreover, we imbedded other direct solvers (kernel class) such as SuperLU_DIST
3.3 and SuperLU_MCDT in addition to the solvers provided by OpenFOAM. Since
future exascale systems are expected to have heterogeneous and many-core distributed
nodes, we believe that our SuperLU_MCDT software is a good candidate for future
systems. SuperLU_MCDT worked up to 16,384 cores for the large penta-diagonal
matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from
the incompressible blood flow simulation, without any problem.

Keywords OpenFOAM software · Solver · Bio-medical flow · Scalability

1 Introduction

It is important to have a fast, robust and scalable library having a potential for multi-
petascale systems or future exascale systems to solve a sparse linear system AX = B
coming from bio-medical flow applications. In this paper, we solve sparse linear sys-
tems with large penta-diagonal and hepta-diagonal matrices coming from the simula-
tion of blood flow in arteries with a structured mesh domain. Incompressible, laminar
OpenFOAM solver icoFoam is used as the flow solver.

We generate the structured mesh using blockMesh as a mesh generator tool. To
decompose the generated mesh, we use the decomposePar tool. After the decompo-
sition, we use icoFoam as a flow simulator/solver. For example, the total run time of
a simple case is about 1,500 h without pre-conditioning on one core for one period
of the cardiac cycle, measured on the Linux Nehalem Cluster (see [33]) available at
the National Center for High Performance Computing (UHeM) (see [32]). Therefore,
this important problem deserves careful consideration for usage on multi-petascale or
exascale systems.

On the other hand, we completed the integration of direct solvers such as
SuperLU_DIST (see [11]) and SuperLU_MCDT (Many-Core Distributed) (see [2] and
[5]) into OpenFOAM in addition to the solvers provided by OpenFOAM. We performed
the scalability tests for the integration of the direct solvers into OpenFOAM.

The sloshing of blood in heart is important to understand heart rate turbulence,
potential damage of the sloshing to walls of vessels and heart attack. When we exam-
ine the sinus rhythm with Q wave and T wave for a human heart seen on electrocar-
diography, the QT interval is a measure of the time between the beginning of the Q
wave and the end of the T wave in the heart’s electrical cycle (see [29]). A prolonged
QT interval is considered a risk factor for ventricular tachyarrhythmia disorders and
sudden death (see [27]). The QT interval is used as one of the input parameters for
devices used to regulate the heart, such as cardiac pacemakers. We believe that this
study is useful to contribute to the development of artificial blood vessel and tempo-
rary or permanent cardiac pacemakers which are sensitive to the sloshing of blood and
various behaviors of QT interval.

The simulation of blood flow via OpenFOAM has attracted more attention recently
in the literature. For example, Pal et al. [15] studied large eddy simulation of tur-
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940 A. Duran et al.

bulence for axis symmetric blood flow and compared three different subgrid scales.
Moreover, Wu et al. [22] investigates two-dimensional flow of blood in a rectangu-
lar microfluidic channel. Furthermore, Kelly et al. [10] describes the use of fluid,
solid and fluid–structure interaction simulations on patient-specific abdominal aortic
aneurysms. Several realistic bio-fluid flow simulations have been carried out as well
(see [17,18]). The geometries were extracted from real patients or generated using
real patient data from CT or MRI scans. Measured flow rates at the vessel inlet by
ultrasound technique are used to get a velocity profile of the simulation geometry inlet
(see [17–19] and [21]). Turkeri et al. ([21]) investigates the effects of several rheolog-
ical models on blood flow in patient-specific carotid artery geometry with measured
inlet flow data. It is important to use real geometry and experimental data to analyze
clinical outputs of several medicines used for humans.

In this study, we describe the speed-up based on variable problem sizes as well.
In other words, we not only deal with the linear speed-up for a fixed problem size,
but also scaled speed-up which is consistent with the Gustafson’s law (see [7,28]).
Focusing on the entire performance of the many cores globally rather than focusing on
particular core efficiencies may provide encouraging results (see also [8]). In the liter-
ature, there are several scalability results using OpenFOAM for some iterative solvers
up to 1,000 cores (see [1,3,6,13,14,20] and references therein) for different applica-
tions and studies. Culpo [3] investigates the scaling behavior of different OpenFOAM
versions on benchmark problems. He finds that the applications scale well up to 1,000
tasks. He also investigates in depth for several MPI routines that cause communica-
tion bottleneck and proposes solution for them. Pringle [20] presents the installation
of OpenFOAM versions 1.6 and 1.5 on HECToR, the UK National Supercomputing
service. He defines the optimum number of cores for a given simulation using itera-
tive solvers such as icoFoam, interFoam and pisoFoam as the largest number of cores
where the performance is greater than 1.4. He argues the absence of simple relation
between the optimum number of cores to be used for a given iterative solver and a
given number of cells, based on his tests up to 4,096 cores.

The remainder of this work is organized as follows: In Sect. 2, the test environment
and the flow of approach are presented. In Sect. 3, simulation test results with icoFoam
and SuperLU_MCDT solvers are discussed. Section 4 summarises this work.

2 HPC tools, test environment and flow of approach

OpenFOAM (see [24]) is an open-source Computational Fluid Dynamics (CFD) tool-
box, (see [9]). It is useful to simulate complex fluid flows involving turbulence, heat
transfer and solid dynamics. It is a generic CFD software package with many tools for
several main tasks of the simulation such as pre-processing (meshing), decomposition
and solution. Here, the solver refers to not only linear system solver but also Navier
Stokes solver and simulator. In this project, specifically, we used the OpenFOAM to
simulate blood flow in arteries as an application.

Here, we generated a structured mesh using blockMesh as the mesh generator. To
decompose the generated mesh, we employed decomposePar tool. After the decom-
position, we used icoFoam as an incompressible laminar flow simulator/solver tool.
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Scalability of OpenFOAM 941

It can use several iterative linear system solvers with different pre-conditioners. Up
to now, we tested a pre-conditioned bi-conjugate gradient linear solver with diagonal
incomplete LU pre-conditioner, as an option in the icoFoam solver. Five or seven-
banded sparse matrix occurs at each time step. All the simulations in this study are
obtained using the OpenFOAM 2.1.1. We present the flowchart in Fig. 1 to explain the
flow of approach in the paper.

The simulations were conducted on TGCC Curie (a Tier-0 system) (see [31]). It
is a Linux environment with InfiniBand QDR Full Fat Tree network and a 100 GB/s
bandwith disk system. Each node has 2 eight-core Intel® processors Sandy Bridge EP
(E5-2680) 2.7 GHz, 64 GB of RAM and one local SSD disk. The simple decomposition
method was used for partitioning the mesh into sub-domains. The decomposition of a
matrix with the size of 32 million ×32 million elements into 8,192 partitions was done
in serial and took more than 2 h. So, parallel decomposition techniques are needed
when we increase the matrix size and the number of partitions.

3 Test results

The total run time of a simple case took about 1,500 h without preconditioning on
one core for one period of the cardiac cycle, measured on the Linux Nehalem Cluster
(see [33]) available at the National Center for High Performance Computing (UHeM)
(see [32]). The run time was reduced to 15 h with preconditioning techniques on
eight cores for one period of cardiac cycle. This was a laminar, rigid wall case with
a small portion of the geometry. There were more complex simulations with longer
periods (see [16,18,19]) that we run at the Linux Nehalem Cluster (see [33]). Also, we
needed at least 10 periods of the cardiac cycle for several cases because the periodic
convergence of the case occurs after 10 cycle of the simulation. So the necessary CPU
time went up to a few thousand (2,000–5,000) h per case. The results of this study
show that increasing the mesh size produces a good scale on parallel computing.

Table 1 describes a dozen of matrices coming from the simulation of blood flow.
For example, mC_1M_D_t is a matrix encountered at the twelfth time step, at time
0.0006 (s) of the simulation where the time step size is 0.00005 (s). The other matrices
are obtained at time 0.00005 (s) of the simulation. mC_8M matrix means 8M of cells
in the fluid domain and has matrix size of 8 million ×8 million.

3.1 icoFoam solver results

Some of the results obtained using OpenFOAM icoFoam solver are shown in Fig. 2
(see [19]). The results were obtained after establishing periodic convergence in time.
The figure on the left and right shows the developed velocity and pressure distrib-
utions, respectively, for a sample time step. The distributions were taken at a cross
section (symmetry of z axis) of the three-dimensional (3D) carotid artery geometry.
The geometry consists of common, internal and external carotid arteries with one
bifurcation. There is a stenosis (narrowing) at the sinus of internal carotid artery. The
inlet of the flow is pulsatile velocity profile and the outlets are assigned as pressure
outlet. The walls have no-slip boundary condition.
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942 A. Duran et al.

Fig. 1 Flowchart for the flow of the approach including the main tasks

123

Author's personal copy



Scalability of OpenFOAM 943

Table 1 Description of matrices of different number of nonzeros (NNZ) per row

Matrix N NNZ NNZ/N Origin

mC_1M 1,000,000 4,996,000 4.996 UHeM

mC_8M 8,000,000 39,988,000 4.999 UHeM

mC_16M 16,000,000 79,984,000 4.999 UHeM

mC_32M 32,000,000 159,976,000 4.999 UHeM

mC_64M 64,000,000 319,968,000 5 UHeM

mC_1M_D 1,000,000 6,940,000 6.940 UHeM

mC_1M_D_t 1,000,000 6,940,000 6.940 UHeM

mC_2M_D 2,000,000 13,900,000 6.950 UHeM

mC_4M_D 4,000,000 27,840,000 6.960 UHeM

mC_5M_D 5,000,000 34,820,000 6.964 UHeM

mC_6M_D 6,000,000 41,800,000 6.967 UHeM

mC_8M_D 8,000,000 55,760,000 6.970 UHeM

The matrices come from 2D–3D meshes obtained for simple incompressible blood flow. The structured
mesh produces penta or hepta-diagonal matrices. The rest of the matrices has zero elements

Fig. 2 The results (see [16]) obtained using OpenFOAM icoFOAM solver

The tests were done for only one time step due to time limitations, while the real case
runs are conducted for more than millions of time steps. The most time consuming
part of the simulation was the decomposing of the mesh. For example, when we
considered the decomposing 64M cells of data, it took over 3 h for 8,192 partitions,
while it took over 7 h for 16,384 partitions. The decomposition was run on one core
since blockMesh does not support parallel decomposition. Meshing time was the same
for all partition numbers. The total meshing time for 64M cells (i.e., having problem
matrix size of 64M × 64M) was about 1 h. The simple decomposition method was
preferred since the running cases were for a structured mesh. This technique simply
splits geometry into pieces by direction, such as 32 pieces in x direction and 32 pieces
in y direction. When the geometry is more complex and an unstructured mesh is used,
more advanced techniques can be selected such as METIS (see [25]) or Scotch (see
[26]). Also, mC_64M matrix means 64M of cells in the fluid domain.

We tested several matrices of different mesh sizes. Here, we present the scalability
results for three matrices of size 8 million × 8 million up to 1,024 cores in Table 2;

123

Author's personal copy



944 A. Duran et al.

Table 2 Wall clock time and
normalized speed-up for
mC_8M matrix

# Of cores (meshes) Wall clock time (s) Speed-up

128 (16 × 8) 20.7 1.00

256 (16 × 16) 10.4 1.99

512 (32 × 16) 5.3 3.91

1,024 (32 × 32) 4.7 4.40

Table 3 Wall clock time and
normalized speed-up for
mC_32M matrix

# Of cores (meshes) Wall clock time (s) Speed-up

128 (16 × 8) 43 1.00

256 (16 × 16) 23 1.87

512 (32 × 16) 11 3.91

1,024 (32 × 32) 5 8.60

2,048 (64 × 32) 2.5 17.20

4,096 (64 × 64) 2 21.50

8,192 (128 × 64) 2 21.50

Table 4 Wall clock time and
normalized speed-up for
mC_64M matrix

# Of cores (meshes) Wall clock time (s) Speed-up

128 (16 × 8) 91 1.00

256 (16 × 16) 47 1.94

512 (32 × 16) 22 4.14

1,024 (32 × 32) 10 9.10

2,048 (64 × 32) 5 18.20

4,096 (64 × 64) 3 30.33

8,192 (128 × 64) 2 45.50

16,384 (128 × 128) 1.3 70.00

32 million×32 million up to 8,192 cores in Table 3; and 64 million × 64 million
up to 16,384 cores in Table 4. The code has shown speed-up up to 16,384 cores for
the largest matrix in our tests. Our observation is consistent with results of other
codes which show a similar behavior. To exploit massively parallel architectures on
large number of cores we need bigger size of problems. On the other hand, there
may not be right match between the problem size and the available memory for the
small number of cores. In calculation of speed-up, the irregular memory access of
reference point for specific core numbers and the more memory necessity for small
number of cores can affect negatively in wall clock time and they cause superlin-
ear speed-up, up to 2,048 cores, since the more consuming time than the expected
value on numerator. Another reason for the superlinear speed-up is due to the nonlin-
ear characteristics of the iterative solver and the pre-conditioner performance. More-
over, we observe that the scalability becomes better as the problem size increases.
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Fig. 3 Speed-up for different problem sizes

For example, for 4,096 cores the speed-up became 30.33 for 64 million × 64 mil-
lion matrix while it was 21.5 for 32 million ×32 million matrix. That is, approxi-
mately 50 % improvement was achieved in speed-up as the size quadrupled. For 8,192
cores, even better improvement was obtained. Figure 3 illustrates this scaled speed-
up for large matrices having sizes up to 64 million× 64 million and up to 16,384
cores.

4 SuperLU_MCDT solver results

SuperLU_MCDT is a distributed direct solver and the software will be uploaded to
web site (see [32]) after academic permissions from Istanbul Technical University.
Here, we used symbolic factorization, ParMETIS (see [25]) for column permutation
and Intel MKL (see [30]) as the BLAS library, among several options. The tuning of
super-nodal storage parameters is important for the performance and we selected the
tuned parameters relax:100 and maxsuper:110 (see [5]). Table 5 illustrates the time
for the factorisation and the total time for each matrix.

We define an optimal minimum number of cores as the number of cores that provides
the minimum wall clock time for a given size of problem, where a right match occurs
between the problem size and the available resources such as memory, in presence of
communication overhead. We find that the optimal minimum number of cores required
depends on the sparsity level and size of the matrix. As the sparsity level of matrix
decreases and the order of matrix increases, we expect that the optimal minimum num-
ber of cores increases slightly. For example, while 512 cores is the required minimum
number of cores for mC_8M, mC_16M, mC_1M_D and mC_2M_D matrices, 2,048
cores provide minimum wall clock time for mC_4M_D, mC_5M_D, mC_6M_D and
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946 A. Duran et al.

Table 5 Wall clock times (s) of SuperLU_MCDT for the large penta-diagonal matrices for 2D problems
and hepta-diagonal matrices for 3D problems, described in Table 1, coming from the incompressible blood
flow simulation

Matrices # Of cores
(meshes)

256
(16 × 16)

512
(16 × 32)

1,024
(32 ×32)

2,048
(32 × 64)

4,096
(64 × 64)

8,192
(64 × 128)

16,384
(128×128)

mC_1M Factor time 1.96 1.97 3.29 4.62 10.77 14.71 32.95

Total time 9.45 12.71 17.83 25.6 72.04 75.59 197.61

mC_8M Factor time 9.34 1.79 13.64 13.87 25.33 43.46 90.98

Total time 45.53 12.68 61.71 97.08 145.22 201.96 418.53

mC_16M Factor time 15 15.68 25.65 25.29 46.73 70.07 156.88

Total time 80.53 67.04 95.88 141.78 198.08 308.80 461.76

mC_1M_D Factor time 21.01 2.71 18.23 15.14 17 26.79 53.57

Total time 40.86 14.77 45.29 59.67 55.61 106.7 172.1

mC_1M_D_t Factor time 16.23 10.77 19.77 19.62 43.04 28.98 57.70

Total time 38.43 42.78 51.07 50.55 97.66 120.29 349.97

mC_2M_D Factor time 43.35 28.11 27.83 23.85 37.99 48.56 98.32

Total time 87.64 82.1 84.18 87.23 118.98 160.26 377.6

mC_4M_D Factor time 148.99 95.7 82.51 56.88 80.91 80.81 219.4

Total time 224.67 201.77 212.51 173.71 224.44 403.14 561.99

mC_5M_D Factor time 194.31 118.73 113.44 66.22 103.82 104.74 271.77

Total time 328.13 246.09 255.6 215 284.61 301.6 659.86

mC_6M_D Factor time 265.07 163.34 150.03 117.96 129.19 136.56 226.23

Total time 438.46 318.71 330.46 303.24 340.88 378.73 558.22

mC_8M_D Factor time 478.27 278.96 244.23 175.19 184.89 179.49 330.24

Total time 712.99 493.45 494.23 441.53 473.72 491.27 678.04

Fig. 4 The performance comparison of SuperLU_MCDT and icoFoam solvers for mC_8M matrix

mC_8M_D matrices in this portfolio of matrices (see Table 5). The minimum wall
clock time values are written in bold.

Overall, we observed that the wall clock time with SuperLU_MCDT is longer
than that of icoFoam solver, as expected, because generally direct solvers take longer
time than iterative solvers. For example, Fig. 4 shows that icoFoam solver outper-
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Table 6 Distribution of wall clock time (s) for mC_8M matrix using ParMETIS for column permutation

# Of cores 256 512 1,024 2,048 4,096 8,192 16,384
(mesh) (16 × 16) (16 × 32) (32 × 32) (32 × 64) (64 × 64) (64 × 128) (128 × 128)

Nonzeros
in L

736867161 80858737 759889256 765376719 692260216 700475156 690287571

Nonzeros
in U

736867161 80858737 759889256 765376719 692260216 700475156 690287571

Nonzeros
in L + U

1465734322 160717474 1511778512 1522753438 1376520432 1392950312 1372575142

Nonzeros
in LSUB

102386047 11558966 106262844 108045660 94662608 97338383 96491385

# Of
super-nodes

204238 26847 207025 208620 215465 214535 217216

Equil time 0.39 0.27 0.53 1.41 2.07 2.23 6.05

RowPerm
time

2.18 0.27 2.17 2.18 2.18 2.2 2.17

ColPerm
time

5.54 8.63 31.12 66.29 102.04 139.54 301.12

SymbFact
time

3.92 0.41 4.07 4.1 3.57 3.66 3.63

Distribute
time

1.07 0.24 0.75 0.76 0.69 0.92 1.68

Factor
time

9.34 1.79 13.64 13.87 25.33 43.46 90.98

Solve time 3.33 0.01 1.59 1.88 1.59 1.85 2.05

Refinement
time

19.76 1.06 7.84 6.59 7.75 8.1 10.85

||X-Xtrue||/
||X||

1.18E−012 4.06E−011 1.80E−012 2.35E−012 1.12E−012 1.08E−012 1.10E−012

Total time (s) 45.53 12.68 61.71 97.08 145.22 201.96 418.53

forms SuperLU_MCDT for mC_8M matrix. The wall clock time for SuperLU_MCDT
becomes closest to that of icoFoam solver around 512 cores. Later, it diverges. On the
other hand, direct solvers are more robust and may provide smaller error. For example,
the error of SuperLU_MCDT for mC_8M matrix is around 4.06E−011, while the error
for icoFoam solver is approximately 9.8E−07 with 2,100 iterations. Both errors seem
to be sufficiently small for this application. The error of iterative solver can be sensitive
to the number of iterations and the matrices. We obtained almost similar results with
SuperLU_DIST 3.3 for this set of matrices.

We find that the communication overhead coming from ParMETIS [25] becomes
one of the dominating factors in the distribution of wall clock time on the large sparse
matrices for certain large numbers of cores, for example greater than 256 cores, depend-
ing on the pattern, sparsity level and order of matrix, consistent with the results of
Duran et al. [4]. For example, Table 6 shows the distribution of wall clock time (s) for
mC_8M matrix and the impact of number of super-nodes and the communication over-
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Fig. 5 The performance of SuperLU_MCDT for mC_1M_D_t

Fig. 6 The performance of SuperLU_MCDT for mC_8M_D

head coming from ParMETIS on the performance. We obtained similar results for the
other matrices in Table 1. SuperLU_MCDT uses dense block structures called super-
nodes to get advantages of BLAS3 with the common technique of array padding, like
SuperLU_DIST 3.3. Super-node detection differs as process mesh size and its square or
rectangular shape. So we observe sometimes more efficient case matched to the super-
node detection strategies of the algorithm like the optimal performance of mC_8M
matrix for 512 cores. Figures 5 and 6 show the performance of SuperLU_MCDT for
mC_1M_D_t and mC_8M_D, respectively.

5 Conclusions

In this study, we tested the scalability of the existing OpenFOAM solver icoFoam
and SuperLU_MCDT for various sizes of penta-diagonal and hepta-diagonal matrices
coming from the simulation of blood flow in arteries with structured mesh domain.
We observe speed-up up to 16,384 cores on Curie (see [31]) for the largest matrix
in our tests using icoFoam. Moreover, we find that the scalability becomes better as
the problem size grows. We achieved scaled speed-up for large matrices having sizes
up to 64 million × 64 million and up to 16,384 cores. We observed linear speed-up
up to 4,096 cores on Curie (see [31]) for a 64 million × 64 million matrix. They are
significant results for the problem.

Moreover, we imbedded other direct solvers (kernel class) such as SuperLU_DIST
(see [11,12]) and SuperLU_MCDT (see [4,5] and references therein) in addition to
default solvers provided by OpenFOAM. In general, we obtained reasonable perfor-
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mance results with SuperLU_MCDT, in addition to the advantages of the direct solvers
for robustness.

We define an optimal minimum number of cores under various trade-offs. We find
that the optimal minimum number of cores required depends on the sparsity level and
size of the matrix. As the sparsity level of matrix decreases and the order of matrix
increases, we expect that the optimal minimum number of cores increases slightly.

To show better usability of our direct method compared with iterative methods
in blood flow simulations, the coefficient matrices with high condition number in
transient flow conditions need to be tested. It is important to observe that, for high
condition numbers, the time difference between direct and iterative solvers for the
solution of linear set of equations will be reduced. For more complex flow condi-
tions the solution time of iterative solvers will increase based on fixed solution pre-
cision. In this case, the cost of direct methods is still fixed and the potential gap is
expected to be reduced. To show better usability of our many-core enabled direct
method compared with iterative methods in blood flow simulations, the coefficient
matrices with high condition number in transient flow conditions have to be tested.
It is a well-known fact that during the flow simulations both coefficient matrices and
right-hand side vector are changing. This change is especially drastic during the severe
flow dynamics conditions in simulation. This drastic change, in most cases, shows
itself as an ill-conditioned spectral space and high condition numbers. It is impor-
tant to observe that, for high condition numbers, the time complexity gap between
direct and iterative solvers for the solution of linear set of equations will be reduced.
For more complex flow conditions the solution time of iterative solvers will increase
based on fixed solution precision. In this case direct method’s cost is still fixed and
the potential gap in solution time is expected to be reduced. It is also worth noting
that iterative methods work on both coefficient matrix and the right-hand side vector
changing at each time step but our direct solver works only on coefficient matrix.
This is also a potential advantage for our direct solver in case of large simulation
times.

Our many-core aware direct sparse solver has a capability of exploiting the poten-
tial benefits of many-core distributed systems than any other sparse direct solvers
especially for unsymmetrical matrices. Future exascale systems are expected to be
having heterogeneous and many-core distributed nodes (see [23]). We believe that our
SuperLU_MCDT software is a good candidate for these future systems with its scal-
ability on the servers we tested. While SuperLU_MCDT worked up to 16,384 cores
for the large sparse matrices coming from the incompressible blood flow simulation
without any problem, there was observable performance gain up to 2,048 cores for
the sufficiently large matrices, for example, mC_4M_D, mC_5M_D, mC_6M_D and
mC_8M_D matrices having seven number of nonzeros per row. Potential challenges
for our many-core aware software is resilience, accelerator support and hyper-graph
partitioning for both better scalability and sustainability. We make efforts to minimize
the communication overhead coming from ParMETIS for large number of cores and
search for alternative solutions.

As a future work we will test icoFoam simulator with other iterative solvers such as
generalized geometric algebraic multi-grid and incomplete Cholesky preconditioned
conjugate gradient. Also, we will test other flow simulators such as nonNewtonianIco-
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Foam or pisoFoam. nonNewtonianIcoFoam is used to simulate non-newtonian flows
while pisoFoam is for incompressible turbulent flow.
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