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Abstract

It is important to estimate the elapsed time to solve large sparse linear systems for time-restricted real life

decision making applications such as oil and gas reservoir simulators. Challenging matrices should be

distinguished and handled separately because they may lead to performance bottleneck. Therefore, we

need to examine the spectral effects of large matrices on the performance of scalable direct solvers by

using eigenvalues. In this work, we check whether there is relationship between the eigenvalue distribu-

tion of a matrix and the performance of the solver. We try to examine the eigenvalue distribution of

various sparse matrices. We may find all eigenvalues in order to obtain the distribution graph of

eigenvalues, if possible. However, it is very expensive to find all eigenvalues. Therefore, Gerschgorin’s

theorem may be used to bound the spectrum of square matrices. Several behaviors such as being disjoint,

overlapped or clustered of Gerschgorin circles may give clue regarding the distribution of the eigenvalues

and the performance of the solver for that matrix.

In this paper, we consider a portfolio of test matrices which include randomly populated sparse

matrices and various patterned matrices coming from reservoir modeling from single porosity single

permeability to dual porosity dual permeability models (see [10]). We examined our modified

HELM2D03LOWER_20K matrix and EMILIA_923 matrix from the University of Florida sparse matrix

collection (see [17]), in addition to the patterned matrices from 3 phase black-oil model and 7 component

EOS model.

We define an optimal minimum number of cores as the number of cores that provides the minimum

wall clock time for a given size of problem, where a right match occurs between the problem size, the

spectral effects of matrix and the available resources such as memory, in presence of communication

overhead. We find that the optimal minimum number of cores required depends on the sparsity level and

size of the matrix. As the sparsity level of matrix decreases and the order of matrix increases, we expect

that the optimal minimum number of cores increases slightly.



Introduction

We design a novel hybrid algorithm and solver for

large sparse linear systems. First, we consider scal-

able direct solvers because of their robustness and

examine the SuperLU_DIST 3.3 (see Li et al. [1])

for distributed memory parallel machines among

several sparse direct solvers (see Li et al. [1], Li and

Demmel [2], Amestoy et al. [3], Schenk and Gartner

[4, 5], Duran and Saunders [6], Duran et al. [7] and

references contained therein). Duran et al. [8] dis-

cussed the advantages and limitations of the Su-

perLU solvers and tested the code of SuperLU_D-

IST 3.0 (see Li et al. [1]) in order to measure the

performance scalability for various sparse matrices

(see [9] for the theoretical foundation regarding the

distribution of eigenvalues for some sets of random

matrices). SuperLU_DIST needs to be improved for

certain types of challenging sparse matrices.

We believe that the approach for exception han-

dling of challenging matrices via Gerschgorin circles is beneficial and practical to stabilize the perfor-

mance of the solvers. Nearly defective matrices are among the challenging matrices. Clustered eigenval-

ues observed via Gerschgorin circles may be used to detect nearly defective matrix.

The presence of repeated eigenvalues can be one of the sources of challenges. The repeated eigenvalue

may have fewer eigenvectors than the multiplicity of eigenvalue. While such eigenvalue is called

defective eigenvalue, the corresponding matrix is referred as a defective matrix (see [12]). If the matrix

of eigenvectors is singular, then the matrix cannot be diagonalizable and the matrix is defective. We

observe that it takes longer time to solve sparse linear system having defective or nearly defective matrix

than regular matrix. Moreover, defective matrix may lead to memory restriction due to the appearance of

more fill-ins than that of diagonalizable matrix.

The remainder of this work is organized as follows. First, the test matrices are described. Later, the

computation for spectral properties is presented and several illustrative examples are given. The final

section concludes this work.

Methods and results

The selected eigenvalues of large matrices are computed using the Scalable Library for Eigenvalue

Problem Computations (SLEPc) software (see [13]), which is developed based on the Portable, Extensible

Toolkit for Scientific Computation (PETSc) (see [14]). The code has been tested up for all sparse matrices

in the list on HP Integrity Superdome SD32B (see [15]), a computing server with shared memory

architecture at UHeM (see [18]). The software package includes implementations of a set of methods for

the solution of large sparse eigenproblems on parallel computers. It is applicable to both symmetric and

nonsymmetric matrices. In our computations, we used the Krylov-Schur method available in the package.

We can compute all eigenvalues of the small randomly populated matrices and show the distribution

of eigenvalues for RAND_30K_75 in Figure 1. We observe that nearly all eigenvalues can be found

within the circle except for the largest eigenvalue that is indicated by an isolated point in figure. The

distribution of eigenvalues for a randomly populated matrix is a good reference for other patterned

matrices in order to understand the deviations between them (see [24]). We describe the test matrices in

Table 1.

Figure 1—Distribution of eigenvalues for matrix RAND_30K_75
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For the large sparse matrices we compute the extreme eigenvalues. We try to see a rough picture of the

distribution for the rest of the eigenvalues by using Gerschgorin’s theorem. We show the Gerschgorin’s

circles of the patched matrix M_UHEM3 (see Duran et al. [16]), five matrices from 7 component EOS

model, matrix Emilia_923, and matrix HELM2D03LOWER_20K in Figures 2 – 9, respectively. As the

matrix becomes more patterned, the spectral space changes and the eigenvalues take place within disjoint,

overlapped or clustered of Gerschgorin circles.

For example, when we examine the spectral properties of HELM2D03LOWER_20K, the real parts of

the eigenvalues range between 2.294563 and 4.944602 with many repeated eigenvalues. Those clustered

eigenvalues can be observed via Gerschgorin circles. Therefore, HELM2D03LOWER_20K is a nearly

defective matrix. We used the SuperLU_DIST 3.3 with tunings of super-nodal storage parameters.

However, it runs slowly for the matrix HELM2D03LOWER_20K compared to EMILIA_923, because

HELM2D03LOWER_20K is a challenging matrix. It takes approximately 7,5 times longer than

EMILIA_923, although HELM2D03LOWER_20K’s order, total number of non-zeros and the number

non-zeros per row are less than that of EMILIA_923.

SuperLU_MCDT is a distributed direct solver and the software will be uploaded to website (see [17])

after academic permissions from Istanbul Technical University. Here, we used symbolic factorization,

ParMETIS (see [11]) for column permutation and Intel MKL (see [20]) as the BLAS library, among

several options. The tuning of super-nodal storage parameters is important for the performance and we

selected the tuned parameters relax:100 and maxsuper:110 (see [14]).

We define an optimal minimum number of cores as the number of cores that provides the minimum

wall clock time for a given size of problem, where a right match occurs between the problem size and the

available resources such as memory, in presence of communication overhead (see Duran et. al [23]). We

find that the optimal minimum number of cores required depends on the sparsity level and size of the

matrix. As the sparsity level of matrix decreases and the order of matrix increases, we expect that the

optimal minimum number of cores increases slightly.

Table 2 illustrates the time for the factorisation and the total time for each matrix based on the optimal

minimum number of cores. We observe that the optimal minimum number of cores can be different

depending on the matrix properties.

We imbedded direct solvers (kernel class) such as SuperLU_DIST 3.3 and SuperLU_MCDT in

addition to the solvers provided by OpenFOAM (see [23]). Since future exascale systems are expected to

have heterogeneous and many-core distributed nodes, we believe that our SuperLU_MCDT software is a

good candidate for future systems. We tested the performance of the solver at TGCC Curie (a Tier-0

system) at CEA, France (see [25] and [23]). SuperLU_MCDT worked up to 16384 cores for the large

penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the

Table 1—Description of the test matrices

Matrices Order NNZ NNZ/N Origin Kind of problem

RAND_30K_75 30000 2250000 75 UHeM Randomly populated

Matrix300k 900000 13362067 14,85 Reservoir simulation Black-oil model

spe5Ref_dpdp_a 2058000 66808700 32,46 Reservoir simulation 7 component EOS model

spe5Ref_dpdp_b 2058000 71260352 34,62 Reservoir simulation 7 component EOS model

spe5Ref_dpdp_c 2058000 68930222 33,49 Reservoir simulation 7 component EOS model

spe5Ref_dpdp_d 2058000 68930222 33,49 Reservoir simulation 7 component EOS model

spe5Ref_dpdp_e 2058000 67189220 32,65 Reservoir simulation 7 component EOS model

EMILIA_923 923136 40373538 43,74 UFSMC Geomechanical structural

HELM2D03LOWER_20K 392257 1939353 4,94 UHeM Patched matrix obtained from HELM2D03

M_UHEM3 1425825 17037638 11,94 UHeM Patched matrix obtained from parabolic_fem

mC_8M 8000000 39988000 4,999 UHeM CFD
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Figure 3—Gerschgorin’s circles of spe5Ref_dpdp_a

Figure 2—Gerschgorin’s circles of M_UHEM3
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Figure 5—Gerschgorin’s circles of spe5Ref_dpdp_c

Figure 4—Gerschgorin’s circles of spe5Ref_dpdp_b
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Figure 6—Gerschgorin’s circles of spe5Ref_dpdp_d

Figure 7—Gerschgorin’s circles of spe5Ref_dpdp_e
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Figure 8—Gerschgorin’s circles of matrix Emilia_923

Figure 9—Gerschgorin’s circles of matrix HELM2D03LOWER_20K
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incompressible blood flow simulation, without any problem. For example, Table 3 shows the distribution

of wall clock time (s) for mC_8M matrix and the impact of number of super-nodes and the communication

“overhead coming from ParMETIS on the performance. We obtained similar results for the other matrices

in Table 1. SuperLU_MCDT uses dense block structures, called super-nodes to get advantages of BLAS3

(see [19]) with the common technique of array padding, like SuperLU_DIST 3.3. Super-node detection

differs as process mesh size and its square or rectangular shape. So we observe sometimes more efficient

case matched to the super-node detection strategies of the algorithm where the optimal minimum number

of cores for the matrix mC_8M is 512.

Conclusions

The existing versions of SuperLU are sensitive to challenging matrices and need exception handling.

Apart from the solver, spectral analysis can be done and tuned parameters may be used accordingly. We

released the first SuperLU MCDT (Many Core Distributed) version (1.0) with several novelties based on

the direct solver SuperLU DIST 3.3. Our benchmark tests show that SuperLU MCDT can run on up to

16348 cores.

Table 2—Optimal wall clock times (s) of SuperLU_MCDT for the Matrix300k from the black-oil model and five matrices from 7 component EOS

model described in Table 1.

Matrices Optimal time (s) Optimal minimum number of cores (meshes)

Matrix300k Factor Time 10,46 1024

Total Time 24,48 (256�4)

spe5Ref_dpdp_a Factor Time 52,79 16384

Total Time 208,27 (4096�4)

spe5Ref_dpdp_b Factor Time 49,29 16384

Total Time 220,91 (4096�4)

spe5Ref_dpdp_c Factor Time 193,60 1024

Total Time 242,34 (256�4)

spe5Ref_dpdp_d Factor Time 193,54 1024

Total Time 242,11 (256�4)

spe5Ref_dpdp_e Factor Time 51,43 16384

Total Time 216,49 (4096�4)

Table 3—Distribution of wall clock time (s) for mC_8M matrix using ParMETIS for column permutation, at TGCC Curie (a Tier-0 system) at

CEA, France (see [25])

# of cores

(mesh)

256

(16 � 16)

512

(16 � 32)

1024

(32 � 32)

2048

(32 � 64)

4096

(64 � 64)

8192

(64 � 128)

16384

(128 � 128)

Nonzeros in L 736867161 80858737 759889256 765376719 692260216 700475156 690287571

Nonzeros in U 736867161 80858737 759889256 765376719 692260216 700475156 690287571

nonzeros in L�U 1465734322 160717474 1511778512 1522753438 1376520432 1392950312 1372575142

nonzeros in LSUB 102386047 11558966 106262844 108045660 94662608 97338383 96491385

# of super-nodes 204238 26847 207025 208620 215465 214535 217216

Equil time 0,39 0,27 0,53 1,41 2,07 2,23 6,05

RowPerm time 2,18 0,27 2,17 2,18 2,18 2,2 2,17

ColPerm time 5,54 8,63 31,12 66,29 102,04 139,54 301,12

SymbFact time 3,92 0,41 4,07 4,1 3,57 3,66 3,63

Distribute time 1,07 0,24 0,75 0,76 0,69 0,92 1,68

Factor time 9,34 1,79 13,64 13,87 25,33 43,46 90,98

Solve time 3,33 0,01 1,59 1,88 1,59 1,85 2,05

Refinement time 19,76 1,06 7,84 6,59 7,75 8,1 10,85

||X-Xtrue||/||X|| 1,18E-012 4,06E-011 1,80E-012 2,35E-012 1,12E-012 1,08E-012 1,10E-012

Total time (s) 45,53 12,68 61,71 97,08 145,22 201,96 418,53
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There is no unique solver that fits all our needs for every matrix because of the rich pattern spectrum

of matrices and the NP-complete problem of best reordering for minimum fill-in. We observe that the

optimal minimum number of cores can be different depending on the matrix properties. The existence of

optimal minimum number of cores requires a rule base to make a decision.

We believe that expert systems (see [22]), knowledge-based computer programs with a set of inference

rules (‘if then’ type statements) in a rule base, are among the most promising subfields in artificial

intelligence for big data discovery and decision making applications such as oil and gas reservoir

simulators in a timely and reliable fashion. We plan that expert system tools for real time decision making

based on the spectral properties and the super-node detection strategies of various large patterned matrices

coming from reservoir modeling and the exception handling for the challenging matrices will be among

the new properties of SuperLU_MCDT version (2.0). We will use an expert system with forward chaining

as a reasoning method to reach conclusions in our learning algorithm.
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