1. $A=53$ and $B=29$, and they are decimal numbers.

1-a) Convert the numbers to binary form first and make this calculation in term of 2's complement arithmetic:
$S=B-A$
1-b) Convert the numbers to $B C D$ (Binary Coded Decimal) form and make this calculation.
$S=A+B$

1-c) Write a program for $B C D$ summing of $S=A+B$. Fetch the value of A from memory
$\$ 100$ and, B from memory \$101 and, write the S into memory \$103.

1-a) $A=53 \gg 00110101 \quad \mathrm{~B}=29$ >> 00011101
2 's complement of A is 11001011

00011101
11001011
11101000 : S = B-A

1-b) A: 01010011
B : $\quad \underline{00101001}$
$1100>9$
10110
2's complement of 1010
10000010

1-c) Yük $A,<\$ 100>$
Yük $B,<\$ 101>$
Top A,B
DYY ileri
Add A,\$16
ileri Yaz $A,<\$ 103>$

3 A program will be written for a simple encryption algorithm. The steps of the algorithm is given as follows:

Step -1: The character will be fetch from memory location $\$ 100$. The character looks like ;

D7	D6	D5	D4	D3	D2	D1	D0

Step-2: Move some bits of the character like this.

D5	D4	D7	D6	D1	D0	D3	D2

Step-3: Move some bits of the character like this.

D1	D0	D3	D2	D5	D4	D7	D6

Step-4: XOR the last form of character with \$AA and store the result into memory location \$200.
3)

Yük $A,<\$ 100>$
Akt B, A
Ve A,\%00110011
Sol A
Sol A
Ve B,\%11001100
Sağ A
Sağ A
Veya A, B
Dğş A
Yada A,\$AA
Yaz $A,<\$ 200>$
2. $2 K^{*} 8$ memory chips are given. You are going to design a memory for generic microcomputer. The capacity of memory will be $16 \mathrm{~K}^{*} 8$ and starting address will be $\$ 0000$. The data bus of microcomputer is 8 bits and address bus is 16 bits.

2-a) Design the memory.
2-b) If you need more $16 K^{*} 8$ continuous memory, what you should do?

A15

For next 16 K*8 Memory

