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Abstract In this work, we aim to develop a fast trajectory replanning method-
ology enabling highly agile aerial vehicles to navigate in cluttered environ-
ments. By focusing on reducing complexity and accelerating the replanning
problem under strict dynamical constraints, we employ the b-spline theory
with local support property for defining the high dimensional agile flight trajec-
tories. We utilize the differential flatness model of an aerial vehicle, allowing us
to directly map the desired output trajectory into input states to track a high
dimensional trajectory. Dynamically feasible replanning problem is addressed
through regenerating the local b-splines with control point reallocation. As the
geometric form of the trajectory based on the location of the control points
and the knot intervals, the control point reallocation for fast replanning with
dynamical constraints is turned into a constrained optimization problem and
solved through deep reinforcement learning. The proposed methodology en-
ables generating dynamically feasible local trajectory segments, which are con-
tinuous to the existing, hence provides fast local replanning for collision avoid-
ance. The DRL agent is trained with different environmental complexities, and
through the batch simulations, it is shown that the proposed methodology al-
lows to solve fast trajectory replanning problem under given or hard dynamical
constraints and provide real-time applicability for such collision avoidance ap-
plications in agile unmanned aerial vehicles. Hardware implementation tests
of the algorithm with the agile trajectory tracker to a small UAV can bee seen
in the following video link: https://youtu.be/8IiLQFQ3V0E.
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1 Introduction

Not long ago, the operations or the applications requiring high-performance
guided and navigation would have required the use of tactical-size unmanned
aerial vehicles. The main reason for this was that high-performance algorithms
required bigger or heavier avionics with high computing capabilities or reli-
able communication buses linked with the ground systems. However, with the
development of technology, these capabilities can now be achieved in smaller
avionics, making it possible onboard for small-size unmanned aerial vehicles.
New lightweight sensory systems enabled small unmanned systems to have
advanced ”situational awareness” and allow them to be capable of performing
complex missions. Yet, guidance, navigation, and motion planning methodolo-
gies are still mostly ”conservative” and ”use-case-specific,” render the UAVs
incapable of performing multipurpose-operations.

Many studies have been published on navigating drones in an unknown
cluttered and highly dynamic environment. In this vast literature, path-planning
algorithms can be grouped under two main headings: optimization-based meth-
ods and methods utilizing motion primitives. Optimization-based trajectory
planning and re-planning are one of the approaches to generate safe non-
collision trajectories, and some of these approaches are using differential flat-
ness to formulate the output trajectory. This approach provides convenience to
optimize dynamically feasible trajectories [1–3]. [4] also includes the cost of the
maneuvers to find a feasible trajectory. On the other hand, there are other ap-
proaches where using sampling-based trajectory generation algorithms to find
a pass through waypoints and formulate an optimization problem to find the
desired minimum cost trajectory [5]. [6] uses another sampling-based method
RRT* and fit these points a polynomial trajectory. This polynomial trajectory
is formulated as a quadratic program problem to find a minimum snap trajec-
tory. This polynomial trajectory approach is used as the kinodynamic planning
method [7]. To guarantee safety, [8] uses the polyhedral decomposition of the
visible free space to convexify obstacle-free space. Identifying the free flight
corridors and utilize it as an occupancy grid map is another approach to find
a minimum snap trajectory [9]. [10] utilizes point cloud map and uses this in
the nearest neighbor search in KD-tree and adopts a sampling-based pathfind-
ing method to generate a flight corridor with safety guaranteed. To generate a
path, minimize jerk polynomial trajectory method is used, and the problem is
formulated as a quadratically constrained quadratic programming [10]. Some
studies use B-splines to define trajectories and optimize control point locations
to find feasible trajectories [11]. [12] presents the Bezier curve representation
for trajectories. For collision avoidance, the presented algorithm changes the
shape of the planned curve by adding an appropriate detour.
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Another preferred approach is using motion primitives for online re-planning
on small UAV platforms since they can be executed fast, and each primitive
is generated to be dynamically feasible. [13] uses primitives to evaluate ma-
neuvers probabilistically for collision avoidance, chooses a maneuver based on
unconstrained objective combining collision avoidance and navigation. [14] also
uses a probabilistic approach as robust motion primitives to overcome uncer-
tainties. [15] samples the vehicle’s control space to generate motion primitives
to guarantee the trajectory to be dynamically feasible. Another approach is
to generate minimum jerk primitives online given in vehicles’ current state
and desired final state [16]. [17, 18] uses a maximum dispersion algorithm to
use pre-computed motion primitives. [19] generates motion primitives off-line
automatically as a robot motion model and uses an incremental re-planning
algorithm that allows producing smooth, dynamically feasible motion plans
while reusing previous computation.

In addition to these approaches, [20] presents an efficient perception and
planning approach, which uses the Triple Integrator Planner (TIP). This ap-
proach allows the system to operate at its physical limits. Also, [21] presented
an improved method of TIP called Relaxed-constraint Triple Integrator Plan-
ner (R-TIP) that overcomes the perception system used onboard that cause
limiting vehicle speed. The proposed method solves this problem by choosing
a previously generated motion primitive.

In this study, we propose a fast re-planning strategy based on deep rein-
forcement learning for highly agile aerial vehicles. First, we utilize the differ-
ential flatness model of an air vehicle, allowing us to directly map the desired
output trajectory, which is parameterized with b-spline curves, into required
input states to track trajectory. Moreover, we use a perception model with fixed
range and FOV on the vehicle, and as soon as the vehicle detects the obstacle,
it performs the real-time evasive action through repetitive re-planning over an
infinite trajectory. Specifically, the algorithm is initialized with a flight trajec-
tory plan, then performs optimal control point vector update and knot inser-
tion to generate a dynamically feasible conflict-free trajectory. Through this
modification, the regenerated trajectory provides feasible evasive maneuvers
for the vehicle, where the location and the number of the added control points
form the ”agility” of this evasive maneuver. The control point insertion consid-
ering dynamic constraints and the defined agility metrics is transformed into a
trajectory optimization problem, which is solved through deep reinforcement
learning (DRL). We utilized the proximal policy optimization (PPO) method
to train the re-planner with the random forest generation environment. The
agent produces re-planned dynamically feasible conflict-free trajectories with
modified control points approximately in 400us, which enables the real-time
flight trajectory generation for highly agile aerial vehicles.

The rest of the paper organized as follows: Section-2 explains the B-spline
and properties used in output trajectory formulation. In Section-3, we explain
the differential flatness model for the vehicle. Section-4 introduces deep re-
inforcement learning and proximal policy optimization for the control point
vector update. In Section-5, we present several experimental results from the
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rigorous simulations. Finally, we summarise the methodology and give a con-
clusion and future works at the end of the paper.

2 Differential Flatness based Dynamic Model

Considering the aerial vehicles, the trajectory planning problem with dynami-
cal constraints on the vehicle might become extremely challenging due to their
high dimensional dynamics. However, for most of the dynamical systems, it is
generally possible to parameterize a part of the state regarding a given out-
put trajectory and its time derivatives. This phenomenon called differentially
flatness enabling an effective dimension reduction when the whole state and
the input can be parameterized with one output. Let the state of the system
is x ∈ Rn and let the input of the system is u ∈ Rm. A nonlinear system
ẋ = f(x, u), y = h(x) is differentially flat, if one can write the system equation
in the following form:

z = ζ(x, u, u̇, ..., u(p)) (1)

where,

x = x(z, ż, ..., z(q)) (2)

u = u(z, ż, ..., z(q)). (3)

Through differential flatness formulation, all of the feasible trajectories
for the system can be written as functions of a flat output z ∈ Rm and its
derivatives [2].

2.1 Aerial Vehicle Model

In this work, the differential flatness principle is applied to real-time flight
trajectory generation problem of an aerial vehicle. We have formulated the
desired output trajectory through b-spline curves, enabling a map into the
required input states to track the given trajectory. For the implementation
purposes, we utilized dynamical model of a quadcopter, which can be derived
by the Lagrangian approach as given below:
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ẍ = U1
(cosψ) cosφ sin θ + sinψ sinφ

m

ÿ = U1
(sinψ) cosφ sin θ − sinφ cosψ

m

z̈ = U1
(cos θ) cosφ
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1
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ṙ =
Ix − Iy
Iz

pq +
d

Iz
U4
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sinφ

cos θ
q +

cosφ

cos θ
r

(4)

Where m is the aircraft mass, p, q and r are the angular rates in the body-
frame, Ix, Iy and Iz are the moments of inertia. Jm is the motor inertia, andΩR
is defined as ΩR = −Ω1−Ω3 +Ω2 +Ω4. The input vector with U1, U2, U3, U4

is expressed in terms of the motor angular rates Ωi, where i = {1, 2, 3, 4} and
given as follows:

U1 = b

4∑
i=1

Ω2
i ,

U2 = bl(Ω2
4 −Ω2

2),

U3 = bl(Ω2
3 −Ω2

1),

U4 = d(−Ω2
1 +Ω2

2 −Ω2
3 +Ω2

4)

(5)

An aerial vehicle state can be represented by the flat variables x = [x, y, z, ψ],
where x, y, z are the Cartesian positions and ψ is the vehicle’s yaw angle. With
these four inputs, the dynamics of the quadcopter can be expressed as differ-
entially flat. To obtain these flat outputs, we utilize the b-spline curves to
formulate the Cartesian position vector [x, y, z] and derivatives. Yaw will be
considered as a constant for simplification. Therefore, the state of the aerial
vehicle x is given as follows:

x = [xT ẋT ẍT ]T = [xT vTaT ]T (6)

Through B-spline representation, which will be explained in Section-3, one
can define position of the vehicle and its derivatives by using the B-spline
continuously differentiable property. The total thrust U1 can be represented
by the flat outputs as follows:
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U1 = m
√
ẍ2 + ÿ2 + (z̈ + g)2 (7)

The pitch θ and roll φ angle equations is given as follows:

φ = arcsinmẍ sinψ −mÿ cosψ/U1 (8)

θ = arcsin
mẍ cosψ −mÿ sinψ

U1 cosφ
(9)

Finally, U2, U3 and U4 can be derived as in Eq. (7) defined through flat
outputs and Lagrangian model of quadcopter.

2.2 Perception Model

Typically, aerial vehicles have limited range and field of view (FOV). Because
of the forward and horizontal acceleration that the air vehicle can produce,
the sensor needs to have more FOV, on the other hand, in that physically
maximum acceleration situations, there is no way that air vehicle can sense
the obstacles around itself [21]. The generating infinite collision-free trajectory
for a flight in clutter environments with a limited field of view, regardless of
the planning algorithm, resembles the flying in an environment with a random
obstacle generating process. In [22], it is shown that when this process is
ergodic, the existence of an infinite collision-free trajectory exhibits a phase
transition with certain critical speed. Sensing with random obstacle process is
depicted in Fig.1.

Fig. 1: Sensing with limited field of view (FOV) and range for the aerial vehicle.
The local interest of environment is perceived as random.

3 Trajectory Characterization and Modification

In this section, we provide the details about output trajectory parameteriza-
tion for the aerial vehicle, and how to provide modification over the generated
trajectory.
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3.1 Trajectory Parameterization with B-Spline

The B-Spline representation allows one to describe any flight trajectory with
their derivatives, which enables parameterizing of a flat output through the
generation of several joined polynomials. Generally, a pth-degree B-Spline
curve is defined as follows:

p(t) =

n∑
i=0

PiBi,p(t) a ≤ t ≤ b (10)

Where p(t) denotes the curve at t and the Pi are the control points. The
Bi,k(t) are basis functions that can be computed using the De Boor-Cox re-
cursive formula [23–25].

Bi,0(t) =

{
1 if ti ≤ u < ui+1

0 otherwise
(11)

Bi,p(t) =
u− ui

ui+p − ui
Bi,p−1(t) +

ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(t) (12)

These basis functions are defined as the function of the knot vectors:

τ = [u0, ..., um] (13)

We used uniform knot vector which could also be presented as:

τ = [a, ..., a, tp+1, ..., tm−p−1, b, ..., b] (14)

The length of the knot vector is m + 1 where m = n + p + 1 [25]. We
assume that a = 0 and b = 1 for the unity knot vector, and the first and
last knots have multiplicity p + 1. We define a knot vector τ = [t0, ..., tm] is
uniform if all interior knots are equally spaced such that d = ti+1 − ti for all
p ≤ i ≤ m− p− 1. .

Property 1. Endpoint interpolation
The trajectory p(t) with control point array [P0, ..., Pn] consisting of n + 1
control points, and by assuming first and last knots have multiplicity p + 1
where a = 0 and b = 1, then it holds endpoint interpolation property such
that P0 = p(0) and Pn = p(1).

The p(t) curve has a strong relationship between the instantaneous posi-
tions of the vehicle as the p(t) curve is the normalized form of the generated
trajectory. The endpoint interpolation ensures that the first and last control
points are the initial and final states of the aerial vehicle.

Let p
(k)
i denote the kth-derivative of pi. Then p(t) said to be Cj continuous

at the break-point ti if p
(k)
i (ti) = p

(k)
i+1(ti) for all 0 ≤ k ≤ j.
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Property 2. Continuity
The trajectory p(t) is infinitely differentiable in the interior of knot intervals,
and it is at least p− k times continuously differentiable at a knot multiplicity
k. Then, typically a pth-degree B-Spline curve includes piecewise polynomials
of degree p and have Cp−1 continuity. The derivatives of p(t) curve enables to
define the velocity, acceleration, jerk and snap of the trajectory, and can be
expressed as follows:

p(k)(t) =

n∑
i=0

PiB
(k)
i,p (t) t ∈ [0, 1] (15)

where k represents the order of derivatives. B-spline curve is a linear combi-
nation of the basis functionBi,p(t),therefore the differentiability and continuity
of the B-spline depends on their basis functions Bi,p(t). The Eq. (15), allow
us to obtain velocity and acceleration vectors of the trajectory through first
and second derivatives respectively, and an example trajectory with velocity
and acceleration vectors is given in Fig. 2.

Fig. 2: An example B-spline trajectory agility with instantaneous veloci-
ties(red) and accelerations (green), where the velocity vectors shows the mo-
tion direction of the aerial vehicle.

Considering the agility in generated flight trajectories, in addition to ve-
locity and acceleration continuity, we have included jerk and snap continuity
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as well while defining flat outputs to track; therefore, we have chosen to rep-
resent flat output trajectories with p = 6-degree B-splines to ensure at least
C4 continuity.

The B-spline curves have a strong convex hull property that the curve is
constrained in the convex hull of its control polygon.

Property 3. Strong convex hull
The curve is contained in the convex hull of its control polygon. If t ∈ [ti, ti+1]
where p ≤ i ≤ m− p− 1, then p(t) is in the convex hull of the control points
Pi−p, ..., Pi. In other words, the generated trajectory remains within certain
limits, which are formed by control points Pi and as a result of this known
beforehand. Knot insertion or breaking uniformity, therefore, does not change
these limits of this convex form. This property is depicted in Fig. 3 with an
example.

Fig. 3: An example of B-spline curve defined by five control points P0,..,4 which
are shown as blue dots. The curve is completely enclosed within the convex
hull created by its control points.

The other property that we exploit is local support.

Property 4. Local support
Relocating Pi changes p(t) trajectory only interval of [ti, ti+p+1) due to the
fact that Bi,p = 0 for t /∈ [ti, ti+p+1). In other words, relocating one of control
points changes the curve’s position and derivatives only locally [25]. This prop-
erty allows us to relocate the control points, without repetitively checking the
collision and dynamical feasibility of the whole trajectory with its positions
and derivatives.

One can note that there is a strong relationship between the knots t and
the time allocations over the generated trajectory as ti ∈ [0, 1] ∀i ∈ R is the
normalized time parameter. In the other words, considering the knot vector
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ητ = η[t1, ..., tk], the η factor does not change the geometry of generated
trajectory while scaling the derivatives of it.

3.2 Trajectory Modification with Control Point Relocation and Knot
insertion

The trajectory replanning strategy is based on control point relocation and
knot insertion to the generated B-spline curve. Through exploiting the follow-
ing properties of the B-splines, we can achieve this replanning with knowing
the limits and the local interest of the modification over the trajectory.

After defining the trajectory with a uniform B-spline, through control point
and knot insertion, one can replan the trajectory only changing the geometry
of local interest for certain intents such as dynamic collision avoidance, re-
optimization, etc. Let us assume that the collision over the trajectory around
t̄ sensed, meaning that immediate replanning is required, which is depicted in
Fig. 4.

... ...

Fig. 4: Collision sensing over trajectory around t̄ knot point

... ...

Fig. 5: Control point relocation over the trajectory
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Control Point Relocation
To express the relocation of the control point, Eq. (10) can be written in

the following form :

p(t) = P0B0,p(t) + ...+ PiBi,p(t) + ...+ PnBn,p(t) (16)

Where 0 < i ≤ n. Let us assume to relocate the Pi, then the new control
point and location become P̄i:

P̄i = Pi + V (17)

Where V presents the relocation vector. After relocation, the B-spline curve
equation becomes:

p̄(t) = P0B0,p(t) + ...+ (Pi + V )Bi,p(t) + ...+ PnBn,p(t) (18)

or

p̄(t) = p(t) + V Bi,p(t) (19)

The relocation process, due to the local support, only effects the curve
within the t ∈ [ti, ti+p+1) interval where Bi,p(t) 6= 0 and this is depicted in
Fig. 5.

Knot Insertion
Relocating existing control points gives us a limited behavior for replanning

and in some cases, might cause additional agility, almost breaking dynamic
feasibility. By addressing this problem, the knot insertion methodology shown
in Fig. 6, enables an increasing number of control points; in other words, more
flexibility, without changing the geometry of the trajectory.

Let us assume that p(t̄) is the closest point to the sensed obstacle or mean
of the sensed obstacles pso on the trajectory. t̄ is starting from the current
time t0 when the aerial vehicle sense any object with its sensor. Then, it uses
the knot insertion method to add this new Pnew control point.

Pnew = p(t̄) (20)

t̄ = min(‖p(t̄)− pso‖2) (21)

t̄ ∈ [t0, 1]

As we already know the location of Pnew from (20), we need to insert t̄
inside the knot interval from the knot vector. We assign l = ti, where t̄ ∈
[ti, ti+1]. Then, we utilize following Eq. (22) and Eq. (23):

αi =


1 i ≤ l − p+ 1
0 i ≥ l + 1

t̄−ti
tl+p+1−ti l − p+ 2 ≤ i ≤ l

(22)
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P̂i = (1− αi)Pi−1 + αiPi (23)

(a) Initial Trajectory (b) Knot insertion method

(c) New control points replaced

Fig. 6: Replacing control points with the new ones through knot insertion
method is presented. (a) is a simple trajectory defined by P0, ..., P9 control
points. (b) shows knot insertion method and the output of the method is
shown as Q3, ..., Q7 control points. (c) presents the result of the knot insertion
method where P3, ..., P6 are replaced with Q3, ..., Q7 control points.

Through the knot insertion, we find the knots correspond to the required
control point positions. We replace control points Pl−k+1, ..., Pl−1 withQl−k+1, ..., Ql;
hence, the new control point vector is defined as P̂i, and the new B-spline curve
can be found with following Eq. (24).

p(t) =

n+1∑
i=0

P̂iB̂i,p(t) t = [0, 1] (24)
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An example control point vector modification through knot insertion is
depicted in Fig. 6. It should be noted that an increasing number of control
points does not cause geometric change over the trajectory.

3.3 Replan Decision Point

In trajectory planning problems, mostly global and local planning/replanning
runs together to achieve safe navigation in a highly dynamic environment. In
addition to geometric and dynamic feasibility, local planners require compu-
tational feasibility that considers computational and time complexity of the
utilized algorithms. To achieve real-time fast replanning, the algorithm should
consider calculation time as the vehicle flies over the trajectory. Through the
local support property as we know already, which segment of the trajectory to
be reformed, it is essential to consider the backpropagation of this modification
over the planned trajectory.

Now suppose that t̄ is the knot vector value with t̄ ∈ [tk, tk+p+1) and
p(t̄) = Pi is the control point where a modification requires and the obstacle
detection occurred at p(t0). Recall that knot values over the trajectory has
a direct scaling relationship between the time as the knot vector t ∈ [0, 1] is
the normalized time value. It is possible to define an algorithm run-time and
transform into a knot value, let it be δt. Due to the translation of Pi to P̄i,
all trajectory points outside the t̄ ∈ [tk, tk+p+1) interval are to be unaffected.
Therefore following safety rule should be satisfied always while replanning;

tk ≥ t0 + δt, t̄ ∈ [tk, tk+p+1) (25)

This rule guarantees that any possible replanning trajectory has a chance
to provide an evasive maneuver. As the replanning [t0, tp+1) span over the
trajectory depends on the size of the knot vector, the scope of the replanning
segment shows a difference with the number of control points. There is a trade-
off here between the trajectory description resolution and the number of fails in
replanning algorithm run: the more control points providing more flexibility in
trajectory modification means possibly more fails in dynamic feasibility check;
while fewer control points give smoother trajectory modifications, unlikely
breaking the dynamic feasibility over the trajectory. Fig.7 demonstrates these
effects with different trajectory description resolutions.
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Fig. 7: Replanning scopes over the trajectories with different number of control
point representations

4 Optimal Replanning with Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a tool that can provide an optimal
decision based on what it has learned in certain situations. The purpose of this
tool, which uses Markov decision processes (MDP), is to produce an action
based on the state of the agent in a particular environment. After taking any
action, the agent receives a reward for the action and the next state. Through
estimating/learning the rewards corresponding to the state, the agent develops
its policy.

In reinforcement learning, the maximization of the accumulated reward
is the main goal of the agent. Therefore, In each episode, the agent learns
to self-adjust policies to maximize the accumulated reward. The agent learns
these policies through interaction with the unknown environment, which is
formulated as an MDP by a tuple M = (S,A, T,R, γ). S is a set of agent
states, and A is a set of actions. This representation assumes that the next state
st+1 is only conditional on the current state st and action at which is derived
from Markov property. T is a transition probability function T : SxA ∈ [0, 1],
which maps the transition to probability.R : SxA ∈ R is the reward function
represents the amount of reward or punishment that the environment will pass
in for a state transition. γ is the discount factor γ ∈ (0, 1], which is used to
receive the return from the process as a sum of the discount rewards. Further
thought, the agent is at state st, and it takes action at and receives a reward
rt based on predefined reward function. Then, the environment transitions to
state st+1 according to the T .

Reinforcement learning applies this MDP formulation and modifies it to
use for learning. The technique that we use is defined under policy-based
reinforcement learning. This policy represents a function mapping a state to
action, and the agent aims to optimize the policy to maximize the accumulated
reward.
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4.1 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) is one of the policy gradient meth-
ods for reinforcement learning. It uses the first-order algorithm to utilize the
benefits of trust region policy optimization (TRPO) such as reliable perfor-
mance and data efficiency [26]. The TRPO aims to maximize the surrogate
objective function LCPI (conservative policy iteration) [27]. Let rt(θ) is the
probability ratio shown as follows:

rt(θ) =
πθ(at|st)
πθold(at|st)

r(θold) = 1 (26)

LCPI(θ) = Êt
[
rt(θ)Ât

]
(27)

CPI refers to conservative policy iteration. [26] proposes new objective
function, which is presented in below:

LCLIP (θ) = Êt
[

min(rt(θ)Ât, clip(θ), 1− ε, 1 + ε)Ât)
]

(28)

where epsilon ε is a hyperparameter that we have chosen as 0.2. The dif-
ference between TRPO and PPO based on the clip(θ), 1 − ε, 1 + ε)Ât term,
which allows us to adjust the surrogate objective by saturating the probability
ratio. The reason for this clip function is to avoid extensive updates by the
maximizing LCLIP . Clipping function also depends on the interval [1−ε, 1+ε]
term, where we can change the size of the update rate by changing the ε.

For the training part of the DRL, first, we need to define observation,
reward, and action vectors. In order to start the learning process, random
scenarios where the agent to be trained are generated. In Fig.8, some possible
scenarios are depicted. In each scenario, Poisson distributed random numbers
are generated to create the number of obstacles encountered by air vehicles
through the distribution equation given by Eq. (29), and the position of the
obstacles is randomly assigned according to a uniform distribution.

Pois(x;µ) = (e−µ)(µx)/x! (29)

Considering the small region of interest due to limited FOV, we only pro-
duce one collision situation in each scenario during the training. Instead of
running the training algorithm depending on the cumulative rewards where
there are too many obstacles, we have created specific scenarios that only lo-
cates one or more obstacles once, and tries to generate solution locally. This
modification simplifies the collision avoidance in the cluttered environment
and allows the DRL agent to learn faster.

In DRL, we defined observation, reward and action as follows:
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Fig. 8: Depiction of scenarios with random obstacle generation and limited
FOV.

Observation Space:
We assume that the air vehicle can obtain the state measurements via iner-
tial measurement unit (IMU) sensor and GPS. The trajectory plan, defined
through B-spline curve, involves initial and future states and their derivatives.
For describing a collision state, the observation state also includes the states
of the obstacles that are sensed, and the new inserted control point location.
Observation space tuple is given as follows:

Ω = {p(t), ˙p(t), ¨p(t), pobs, Pnew} (30)

where {p(t), ˙p(t), ¨p(t)} are the current state and its derivatives of the aerial
vehicle over the generated trajectory; pobs is the closest point to collision with
the obstacles; and Pnew is the newly inserted control point.

Action Space:
Action space consists of the relocation position with respect to the newly
inserted control point. After the DRL agent generates a new action based on
the observation space, this action values are added to this new control point,
and the B-spline curve is updated. Action space tuple is given with relocation
of newly inserted control point A = {Pnew}.

Reward Function:
In this local re-planning problem, DRL agent’s learning is directly depends on
how to define the reward function.

Considering agile flight enabling fast collision avoidance, we have chosen to
use the agility metric for the reward function. Given the definition, agility can
be a positive reward or penalty to obtain aggressive or smooth flight under the
dynamical constraints enabling a feasible trajectory. These constraints limit
the search space for the training of the agent for re-planning.

The definition of the agility metric is a well-studied topic on many dif-
ferent vehicles. In [28, 29] many of the agility metrics are summarised. [29]
especially focuses on maneuverability and agility for rotary unmanned aerial
vehicles, and defines the attitude quickness as Q = ˙αpeak/∆α where ˙αpeak =
{ppeak, qpeak, rpeak} and ∆α = {θ, φ, ψ}. Considering these definitions, we have
chosen the agility metric based-on Instantaneous-rates, which are also pro-
posed in [30–32]. Hence, the reward function R can be defined with the agility
metric as a second derivative of the generalized state variables, as given below:
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R = ∓
ti+p+1∑
t=ti

m∑
j=1

ωjẍjt (31)

where x ∈ Rm represents the generalized state variables and ωj is the
weight value for each state. By setting these weight values, we have chosen to
use the agility definition with high dominance at angular velocities.

Dynamic Feasibility:
To make sure the generated trajectory is feasible, we must ensure that velocity,
acceleration, jerk, and Euler angles at each state of the trajectory remain
bounded, and guarantee that the newly generated trajectory remains within
the collision-free space with small safety volume, as depicted in Fig.9. Note
that relocating one of control point Pi changes p(t) trajectory only interval
of [ti, ti+p+1), and requires collision check over this segment of the trajectory
only. To meet the dynamical feasibility, we included constraints inside the
reward function. If at any point, the generated trajectory respect to the action
breaks the following constraints, then the reward function takes a big negative
constant value.

‖p(t)− pso‖2 ≤ dobs,r + dsafe (32)

vmin ≤ ṗ(t) ≤ vmax t ∈ [ti, ti+p+1] (33)

amin ≤ p̈(t) ≤ amax t ∈ [ti, ti+p+1] (34)

jmin ≤
...
p (t) ≤ jmax t ∈ [ti, ti+p+1] (35)

θmin ≤ θ(t) ≤ θmax t ∈ [ti, ti+p+1] (36)

φmin ≤ φ(t) ≤ φmax t ∈ [ti, ti+p+1] (37)

Fig. 9: Safety volume around the vehicle
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5 Fast Replanning Hardware and Software Implementation Results

To generate a DRL agent, we used OpenAI gym environment [33] with prox-
imal policy optimization. After defining the required spaces, we trained the
DRL agent approximately 1200 episodes. Because of the number of CPU and
scenario number for each episodes, the DRL agent trained with approximately
30 million scenarios. The reward results can be seen in Fig.10.

Fig. 10: Reward performance, each episode includes 5120 randomly generated
scenarios

The initial point Ginit and the goal point Ggoal are randomly generated
with a specific distance between them shown in Fig.11. From very start, be-
cause there are not any known-obstacles, the minimum distance trajectory
between Ginit and Ggoal is a simple straight line. Because of randomly genera-
tion of these points, the lines heading also changes. This is very important for
the scenario generation allows the generalization of the DRL agent. Another
important point to mention is encountering obstacles situations.

The on-board sensor model [21] is used to detect obstacles and find their
relative positions respect to the air vehicle’s location. We used a sensor model
on the air vehicle with a 20◦ field of view (FOV) and 4 meters range. Whenever
sensor finds any obstacle, the local re-planning algorithm starts, which consists
of adding new control point with knot insertion algorithm, generating obser-
vation for DRL agent, action generated by DRL agent and with new location
for the new control point is used to update the trajectory. The schematics for
the scenario is shown in Fig.11.

In the cluttered environment simulations, the scenarios are designed through
randomly cluttered forests with different obstacle density where the vehicle
must fly from Ginit to Ggoal in 20m× 20m environment. Before the flight, the
air vehicle generates a B-spline, which is an almost straight flight trajectory
between Ginit and Ggoal, which can be seen in Fig.11.
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Fig. 11: Replanning algorithm in 20m × 20m environment with an obstacle
density of 0.1 obstacles/m2.

We have conducted several scenarios at different complexities for testing
our DRL agent. The results from three randomly generated scenarios can be
seen in Fig.12, 13 and 14 such that the obstacle densities are higher than 0.05
obstacles/m2 and 0.1 obstacles/m2.

5.1 Batch Simulation Results

Considering the dynamic feasibility of replanning, through the proposed method-
ology, we have full control authority over the defined dynamical constraints.
The methodology allows us to define the constraints and generate the tra-
jectories to comply with them. To test the ability of the algorithm, e.g., in
the training phase of DRL agent, we have defined upper bound constraint
at 11m/s and lower bound constraint at 8.5m/s in velocity; upper bound at
15m/s2 in acceleration, and upper bound 50m/s3 in jerk. This set of con-
straints has been chosen for a small UAV to track a trajectory at high speeds
based on the strict dynamic limits. Through a batch run with 500 randomly
generated scenarios, the velocity, acceleration, and jerk profiles generated by
the algorithm, are shown in Fig. 15. As seen in the figure, the algorithm does
not break the constraints, even though hits the limits in some cases. In addi-
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(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Fig. 12: The cluttered environment simulation, randomly generated obstacles
in 20m× 20m environment with an obstacle density of > 0.05obstacles/m2.
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(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Fig. 13: The cluttered environment simulation, randomly generated obstacles
in 20m× 20m environment with an obstacle density of > 0.1obstacles/m2.
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(a) Scenario

(b) Acceleration (c) Jerk

(d) Pitch (e) Roll

Fig. 14: The cluttered environment simulation, randomly generated obstacles
in 20m× 20m environment with an obstacle density of > 0.1obstacles/m2.
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tion to these results, there were only three scenarios terminated by pre-defined
safety rules, demonstrating that the RL agent can not generate a dynamically
feasible collision-free trajectory because of the deficiency of enough time to
maneuver. Furthermore, another 500 randomly generated scenarios are gen-
erated, with increased control point numbers to define a B-spline trajectory.
In this case, five scenarios were terminated due to no solution found under
dynamical limitations. From a practical point of view, It is possible to foresee
these situations and hold the action to avoid possible crash situations.

(a) Velocity (b) Acceleration

(c) Jerk

Fig. 15: 500 different flight scenarios where all the obstacles are positioned
randomly on the map are tested. The result of the flight tests are shown
for the following metrics (a) velocity m/s, (b) acceleration m/s2,and (c) jerk
m/s3.
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Table 1: Comparisons with other similar trajectory replanning methodologies

Liu et al. [5] 160ms 3.4 GHz dual-core i7 Intel NUC
Burri et al. [14] > 40ms AscTec Firefly 2.4 GHz Controller
Chen et al. [9] > 34ms 3.20 GHz Intel Core i5-4570 CPU
Lopez et al. [20] ≤ 5.06ms 2.70GHz Intel Core i7-2620M
CL-RRT* [34] ≥ 650ms Intel Xeon 2.4GHz
Our method 1.2ms Intel Xeon 2.4GHz

(a) CL-RRT* solution at 650ms (b) Our methodology at 1.2 ms

Fig. 16: Comparison with Closed-loop RRT* solution for trajectory replanning

5.2 Performance Comparison with Other Algorithms

Considering the real-time applicability, we have measured the computation
times, which are conducted on Intel Xeon 2.4 GHz. For the worst case sce-
nario, we have observed that it takes 0.512ms to produce a new location for
the control point of the DRL agent. And with the knot insertion method,
generating and updating the trajectory takes 1.2ms. The computation time
table with other reference methodologies with their computational power is
given below, and it is worth noting that 1.2ms computation time starts from
after obstacle detection to the end of the trajectory updating. The reported
computation times in the table might include the point cloud processing to
detect the obstacles in the environment, which typically has utilization around
%5− 10.

Then we have concentrated on the RRT* algorithm, as it is a well-known
and well-studied sampling-based trajectory planning methodology assuring
asymptotic optimality [34]. Considering the dynamical feasibility, we applied
the closed-loop modification of RRT* (CL-RRT*) algorithm to compare with
the presented method.

It should be noted that, in the agile collision avoidance problem, the goal
is to generate a solution as fast as possible; therefore, we have chosen to use
the first feasible trajectory of CL-RRT*. In sampling-based algorithms, while
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the number of samples goes to infinity, the algorithm’s solution converges to
the optimal solution [35]. Hence, they need to use large samples to generate
nearly optimal solutions.

When we compare our solution with the CL-RRT* algorithm, while our
algorithm provides a re-planned trajectory in 1.2 ms, the CL-RRT* algorithm
generates a feasible trajectory after 650 ms. This result is expected, as the
CL-RRT* has no ability to use existing (but compromised) flight trajectory,
while our methodology exploits it, in addition to offline training. As seen in
Fig. 16, the first product of the closed-loop RRT* algorithm, which presents
after 50 − 75 samplings on average, is far from the optimal trajectory. The
detailed comparison between the CL-RRT* algorithm with others can be seen
in [36].

5.3 Hardware Implementation

We have applied the methodology integrating with agile trajectory tracking
controller to a small UAV hardware platform flying under motion capture
system. A video including explanation of the algorithm and a couple of random
scenarios can bee seen in the following link: https://youtu.be/8IiLQFQ3V0E.

The air vehicle used in this work is Crazyflie 2.1 [37]. Fig. 17 shows the
architecture used in the implementation. The initial desired B-spine trajectory
reference is sent to the trajectory tracking controller by the navigation system.
The VICON motion capture system is used at a 100 HZ to obtain the drone
and the obstacles positions. The off-board trajectory tracking controller takes
the desired trajectory defined as flat outputs and the estimated states of the
air vehicle and sends the desired thrust and angles to the on-board attitude
controller which runs at 500 Hz.

We used a sensor emulator which is explained in Section-2 as a perception
model with 1m sensing range and 20◦ field of view. The navigation system
works at 100 HZ an Intel Core i7 CPU. It generates the trajectory references
for the trajectory tracking controller. If there are any obstacles in the sensor
FOV, the collision avoidance algorithm is triggered by the sensor emulator.
Then, the algorithm generates collision avoidance maneuver by only relocating
newly added control point.

https://youtu.be/8IiLQFQ3V0E
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Differential Flat 
Trajectory

Initialize: B-spline(Pinit , τinit)

DRL AgentP̂, τ̂ 

P, τ

Sensor Emulator VICON

Trajectory Tracking 
Controller

On-board Attitude 
Controller

IMU Data

Position Data

ROS

VICONROS

State Estimator
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States

Navigation System
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Fig. 17: The system architecture for hardware implementations

6 Conclusion

In this paper, we have proposed a fast trajectory replanning methodology
based on B-spline regeneration with deep reinforcement learning. Our aim was
to simplify and accelerate the replanning problem by providing a rigorous local
solution without breaking continuity over the trajectory. We have applied the
B-spline theory for local support property and apply it for defining the agile
flight trajectory. For regenerating the local trajectory segments, knot insertion
methodology with control point reallocation has been used. As the geometric
and dynamic form of the trajectory based on the location of the control points
and the knot intervals, we have turned the control point reallocation problem
into a constrained optimization problem and solved through Deep Reinforce-
ment Learning (DRL). With Principal Proxy Optimization (PPO), we have
solved the constrained optimization problem enabling to generate dynamically
feasible (considering dynamical constraints) local trajectory segment provid-
ing fast collision avoidance. We have trained the DRL agent with different
environmental complexities, as we defined through obstacle number per m2.
Through the batch simulations, we have shown that the proposed method-
ology is enabling to solve fast trajectory replanning problem under given or
hard dynamical constraints, and providing real-time applicability for such fast
collision avoidance applications in agile unmanned aerial vehicles.

As future work, we investigate utilizing adaptive increment in the number
of control points regarding the defined complexities such as obstacle density, if
known/estimated. In practice, this evaluation might be obtained through the
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algorithm’s number of trials while searching for a dynamically feasible trajec-
tory, and the knot number might be increased at certain thresholds. Consid-
ering the strong functional relationship between the number of control points
and the knot vector’s dimension, we will have limited control over the num-
ber of knots. Yet, the nonuniform knot vector utilization, enabling to morph
the focused region of interest’s length, will provide additional authority and
robustness to generate a replanned trajectory. We will further be benefiting
from integrating nonuniform knot vector and nonstationary size of it.

Another natural advancement of the work will be the extension of its im-
plementation to the 3D environments. On the replanning side, the theory be-
hind the proposed methodology is intrinsically generic and independent of the
work-space dimension. Obvious requirements will be integrating the control
point search over the additional dimensions and applying higher dimensional
Euclidian distances. On the implementation side, attitude tracking over the
generated trajectory at trustworthy levels will be imperative. We will further
enhance our methodology by supporting with precise trajectory tracking for
an extension to 3D environment implementations.

Moreover, the proposed methodology is being integrated into the motion
capture system and UAV hardware platforms with developed agile trajectory
tracking controller. We will be further studied to extend the algorithm to
use in the environments with dynamic obstacles through approximate motion
estimation.
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