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I. INTRODUCTION

Due to the increasing popularity of unmanned aerial vehi-
cles (UAV), increasing number of people and industries are
trying to integrate these systems into their own applications.
Technological developments because of increased demand
have already made unmanned aerial vehicles more efficient,
more autonomous and cheaper. One of the most common
application for civil and military is localization of radio
frequency (RF) emitting sources. A lot of research have been
conducted out in order to develop methods for localization
of RF source using a) the RF signal power [1], b) RF signal
arrival direction [2] and c) time of arrival of the RF signal [3].
Even though lots of research papers address the localization
problem, the localization in large-scale area brings additional
problems such as the variation of noise character.

There are many different aspects for localization of RF
sources, such as line-Of-Sight (LOS) or Non-Line-Of-Sight
(NLOS) situations; tracking with only one sensor or many
sensors; using different sensors like angle of arrival or signal
strength and so on. To deal with all these challenges, an ap-
propriate system structure should be suggested. Deghan et al.
[4] addresses NLOS conditions for simultaneous localization
of UAVs and RF sources. Bamberger et al. has developed
an algorithm that uses RF direction and optimized flight
trajectories for localization of the source [5]. In [6], stationary
RF source localization system is presented with estimation
and control algorithms for a team of robots in non-convex
environments. Stachura et al. [[7] studied communication

constraints in localization problems and developed algorithms
for generating information gathering trajectories in order to
ensure reliability of multihop communication networks. In [8],
swarm UAV’s control architecture is proposed for localization
of a mobile RF emitting ground source. Scerri et al. [9] have
examined large scale environment problems with localization
of RF source with a crowded team of UAVs. In Scerri’s
work, Bayesian filter is exploited to compute the probability
distribution over UAVs received signal strength (RSS). Delima
[10] and Toussaint [11] addressed localization of RF sources
with Kalman filtering where angle of arrival sensor is used.
Isaacs et al. [12] studied RF source localization via particle
filter where angle of arrival is used with directional antenna
on quadcopter. They propose a control strategy to control yaw
angle of quadcopter to receive angle of arrival without any
gimbal mechanism.

In a recent work, Effati et al. [13] use estimation algorithm
comparisons of Extended Kalman filter (EKF) and Unscented
Kalman filter (UKF) for moving RF ground source. As a result
of this study, UKF converges faster for localization of RF
source. Jagadeesan et al. [14] propose a Bayesian optimization
framework and show how to optimize the location estimation.
Hevrdejs et al. [15] propose Zigbee devices’ localization and
mapping with bearing and RSS measurements. In Hevrdejs
work, base RF device sends some signal to surrounding RF
devices and gather all RSS values from them. After that, base
RF device begins to turn around itself 360 degree to find bear-
ing angle. Koohifar el al. [16] propose receding horizon path
planning algorithm where unmanned aerial vehicle swarms
cooperatively localize a moving radio frequency transmitter.

In our previous work [1], we propose an algorithm that
uses received signal strength indicator (RSSI) to estimate the
position of RF source. First, multiple UAVs begin to search
for the RF source, actually for the first sensible signal strength
sample in a large area. When one of the UAVs receive the
signal, other UAVs also begin to head towards to it. At least
one of the UAVs has to receive a valid RF signal sample to start
gathering of all UAVs. When all the UAVs are able to receive
RF signal, trilateration algorithm gives first initial estimation
of this RF source. Then, EKF uses this estimation and begin
to estimate position of RF source.
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In this paper, we present an algorithm that uses received
signal strength indicator (RSSI) in particle filtering to esti-
mate and refine the source’s position using only one UAV
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required to run EKF algorithm for localization. This paper
proposes particle filter algorithm to solve localization problem
and only single UAV is required. This yields cost efficiency.
In previous work, whenever one of the UAVs receives the first
RF sample, others should arrive at around the first one to be
able to receive signal from the same source. As a result of
this method, whenever a UAV receives the first RF sample,
the localization process begins immediately without any wait
or delay, therefore it provides time efficiency. We demonstrate
this improved method by simulations using a software-in-
the-loop system architecture. It locates the RF source in a
simulated 5×5 km2 area. The appropriate usage of this method
is employing it after the first RF sample reception by one of
the UAVs till all UAVs’ arrival into the signal propagation
volume. Thus, this paper implicitly deals with the trajectory
planning of UAVs in period beginning with the first RF signal
reception and terminating with arrival of all UAVs at the RF
signal. The filter simulation results show that the localization
lasted in 84.06 seconds after the first signal reception with
13.96 m mean error distance using only one UAV.

The rest of the paper is organized as follows. Section II in-
troduces the proposed architecture and the problem overview,
Section III explains the RF signal modeling with the real
measurement tests, Section IV provides localization algorithm
for estimation and refinement. Section V presents the SITL
system and simulation results. Finally, Section VI concludes
the paper with projected future work.

II. PROBLEM OVERVIEW AND PROPOSED ARCHITECTURE

A. Problem Setup and Assumptions

This paper which is a progression of our previous paper [1]
studies the problem of RF emitting source localization using
only one UAV with particle filter algorithm, with the following
assumptions:

• There is no prior information about the location of the
RF source.

• The signal source is assumed to be on a flat terrain.
• The transmitting power of RF source is constant and

known. The unknown transmitting power problem is
answered in previous work [1].

• Localization algorithm only uses signal strength and
UAV’s location acquired by GPS. There is no other sensor
or further information source to be used for the solution.

• The RF source and the seeker UAV is always on LOS of
each other.

• RF source does not emit continuously, but rather emitter
periodically keeps silent.

• The UAV and the source have omni-directional monopole
antennas.

• UAV flies in altitude hold mode, where UAV’s altitude
may change ±5 m.

Comparing the performance of UAVs with different speeds is
out of the scope of this paper.

Figure1. Simulator diagram and flow: 1) generated RSSI value by using Free-
Space Propagation Model for distance between the UAV and the source,
2) generated additive Gaussian noise whose parameters determined by real
outdoor flight tests, 3) noisy (realistic) RSSI value, 4) measured RSSI value
that has the antenna model characteristics, 5) calculated distance between the
source and the UAV using measured RSSI, 6) estimated location of the source
generated by the particle filter.

B. Proposed Architecture

Using distance between the RF source and the UAV, RSSI
value is generated for specific frequency and transmitter power
value. In order to obtained more realistic simulation results
based on RSSI values, additive Gaussian white noise (AGWN)
is added on generated RSSI based on the outdoor RF measure-
ment experiments. At the final step of signal strength value
generation, the gain values for both transmitter and receiver
sides are determined using azimuth angle of UAV-antenna gain
approach. At the other side of the system, after UAV measures
the RSSI, using Friis Free Space Equation, RSSI is converted
to distance and this value is measurement parameter of particle
filter algorithm. Finally, as long as particle filter algorithm
estimates location of the RF source, the trajectory of the UAV
is updated. Proposed simulation flow is depicted in Fig. 1.

III. RF SIGNAL ANALYSIS

A. Signal Propagation

The obtained signal strength values have to be converted
into the distance values. Initially, since the LOS between UAV
and RF source is always clear, Friis Free Space Equation [17]
based on free-space signal propagation is used for calculating
the distances between the source and the seeker UAV as given
by

d =

√
PtGtGrλ2

4π2Pr

, (1)

285

in large scale environments. We use ArduPlane autopilot to
demonstrate software-in-the-loop (SITL) simulation setup with
integrated UAV planner where localization algorithms are
included. Based on the previous paper, this paper presents
following improvements. In previous work, multi UAVs are
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Figure2. Relation between elevation angle and antenna gain. Motion of the UAV
changes the angles between RF source antenna and UAV receiving antenna

which will have an additional effect on received RSSI

as additive white Gaussian noise (AWGN) with covarianceR.
Noisy RSSI value is calculated by

RSSIn = RSSIFriis +N (0, R). (2)

In addition to the RF signal noise, antenna gain is also mod-
eled. Since both the source and the UAV have omnidirectional
monopole antennas, it is also assumed that antenna mounted
on UAV is oriented towards the direction of the gravity and
the antenna of the RF source is oriented towards perpendicular
to ground. In reality, as UAV does pitch and roll motion, the
orientation of the antenna changes. However, it is assumed that
the orientations of both antennas are constant and independent
from the motion of the UAV.

In the modeling stage of antennas, MATLAB Antenna
Toolbox is used. Based on the physical characteristics of the
antennas used on real measurements, the gain of the monopole
antenna is calculated as a function of azimuth and elevation
angle of the UAV according to the source. Since the antenna
is omni-directional, the gain is not effected by azimuth angle.
However, there is a non-linear relation between elevation
angle and antenna gain. In simulation stage, these relation is
discretized and simplified as a look-up-table function. Both the
modeled non-linear function and discretized approximation are
shown in Fig. 2

B. Experimental RF Measurement Tests

In preliminary stage of analysis, RF signal is modeled using
Friis Equation. To determine proper covariance R value of
RSSI noise in Eq. 2, RF measurement test performed in real
environment. In measurement stage, a UHF band walkie-talkie
is used as RF source. To measure RF signals, the UAV is
equipped with a software defined radio (SDR), which is called

RTL-SDR RTL2832U, and a UHF band omni-directional whip
antenna. This model of the RTL-SDR device includes Rafael
Micro R820T chip and can work at a frequency range from
24 MHz to 1766 MHz. When RF source begins emitting RF
signal, SDR device provides in-phase and quadrature signals
(I/Q) after quadrature demodulation. These raw I/Q data is
transformed to frequency domain by Fast-Fourier Transform
(FFT). At the final stage of RF measurement, DC offset

Figure3. RSSI calculation flow: RF signal is received by SDR and transformed
to frequency domain via FFT. After DC offset subtraction, RSSI is obtained

by finding the maximum signal strength of signal spectrum.

of signal is subtracted and the maximum magnitude value
in frequency spectrum is obtained as measured RSSI value.
Components and RF measurement test structure are shown in
Fig. 3.

Experimental tests are accomplished by using Seagull De-
cathlon 46 model UAV platform shown in Fig. 4B. The
trajectory followed by the UAV during one of the tests includes
the take off stage, then a loop around three waypoints shown
as white squares in Fig. 4A, and finally the landing stage.
Fig. 4 shows ground station screen and the Seagull Decathlon
46 UAV platform at the landing stage. During the depicted
test, UAV has flown away 1261 m at most from the RF
source and at each time step the UAV location information and
accompanying RSSI measurement are logged. Using the exact
distance values between the source and the UAV, theoretical
RSSI-distance curve is obtained by means of Friis equation in
Eq. 1. Then the measured RSSI values are compared with the
theoretical results. The comparison is illustrated in Fig. 5.

Experimental results show that the mean value of RSSI
value is similar to Friis curve. However, the RSSI samples
are agilely scattered by the noise. Based on the noise level
acquired by these outdoor experiments, RF propagation model
in simulator is enhanced by calculated mean values and
standard deviations from discrete distances.

IV. LOCALIZATION AND TRACKING ALGORITHM

When the seeker UAV enters into the source radiation
range, it begins to provide RSSI samples which include large
magnitude of noise. Deterministic methods are not able to
work properly to localize the RF source due to this noise char-
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where d is the distance between the receiver and the trans-
mitter, Pt is the transmitted power, Pr is the received power,
λ is wavelength, Gt is the transmitter antenna gain and Gr

is the receiver antenna gain. Since the free-space propagation
model does not include RF effects such as reflection and RSSI
uncertainty [18], these effects added on Friis model in Eq. 1
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Figure4. Experimental RF measurement tests: A Seagull Decathlon 46 UAV platform (right) follows waypoints (white squares) which defined in order to cover
whole RF range area. All sample measurements taken during the flight are plotted on the map and the RSSI values are colored on the plotted samples (left).

Figure5. Comparison of RSSI values from experimental results shown in the
Fig. 4 and theoretical free-space model with distances between UAV and RF

source.

where n-th particle at time instance t is shown by x
[n]
t , and

its weight is shown by w
[n]
t . Np is the total number of the

particles. 2500 particles are used in the simulations.
2) Iterations for 0 < t < Tsimulation, t ∈ Z:

a) Sample the particles x[n]t from the proposal distribution
q(x

[n]
t |x

[n]
t−1, ut), where ut is the input control. Since RF source

is stationary, ut = 0.
b) Update weights w[n]

t ,

wn
t ∝ w

[n]
t−1

p(zt|x[n]t )p(x
[n]
t |x

[n]
t−1)

q(x
[n]
t |x

[n]
t−1, zt)

(4)

where zt is the measurement at time t. There is a trick
to make appropriate weighting. As it is mentioned before,

RSSI to distance conversion is a non-linear function, the
standard deviation of noise (σrss) on RSSI sensor should
be converted properly to the standard deviation of distance
(σd). The conversion is simply done by again using the Friis
equation.

c) Normalize the weights:

w
[n]
t = w

[n]
t /

Np∑
n=1

w
[n]
t (5)

d) Resample uniformly all particles according to the
weights and replace the w

[n]
t = 0 particles with the new

particles.
e) Result of the particle filter is:

xt =

Np∑
n=1

w
[n]
t xt (6)

Figure6. Initial uniform distribution of particles over the area in front of UAV.
Since the RF signal is not received from the route passed by UAV until the
first RF measurement, the particles are distributed only front-side of the UAV

at initial stage.
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1) Initially, a set of particle xt is prepared and all these
particles are distributed uniformly and they are independent
from each other. Also all particles have the same initial weight.

w
[n]
0 = 1/Np, n = 1, 2, ..., Np (3)

acteristics. Therefore, it is crucial to use filtering techniques to
eliminate this noise and use meaningful data for localization.
In this paper particle filter algorithm [19], [20] is utilized. Its
procedure is explained below.
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(a)
(b) (c)

(d) (e) (f)

(g)
(h)

(i)

Figure7. Localization results for both simulation and SITL tests. UAV (green) always tries to track the mean value of the particles (red) until the last received
RSSI values satisfy the localization. It can be seen in the following localization phase that the particles (blue) and their mean values concentrate on the RF

source (magenta) shown in simulation results (from (a) to (f)) and SITL results (from (g) to (i)).

Then, the result of the particle filter is assigned as the
temporary target of the UAV. However, update process is not
live. A certain delay has been added between route updates.
The reason is that when the filter is running, fluctuating
situations may be encountered. The temporary target generated
by the particle filter should pass the transient high frequency
oscillation. The delayed update provides both the low pass
temporary target location filter and reasonable target changes
that is suitable for smooth trajectories. This delay usually
extends the localization duration. However, insistent measure-
ments towards a wrong temporary target while flying a smooth
trajectory makes the particle filter to eliminate the particles
causing that wrong estimation. Smooth trajectories meet the
long sampling time requirement which eliminates the effect of
noise.

V. SIMULATION RESULTS

Localization of a RF source in a 5 × 5 km2 search area
is prepared for simulation studies. A simulator with SITL
autopilot is designed considering the maximum range of RF
signal which is gathered by outdoor experiments. Searching
stage is already expressed in the previous work [1]. 3 degrees
of freedom (DOF) UAV model is used and tracking of the
localization result is done by changing heading angle. Dy-
namics are modeled simply to show the proof of concept of
this particle filter localization. RF signal is modeled with field
tests in order to increase its fidelity.

At first, UAV flight starts from its initial point and the
position of the RF source is placed randomly. The seeker UAV
flies a predetermined trajectory to sweep the entire area until it
receives a valid RF signal strength sample. After the first signal
reception, particles are uniformly distributed into the forward
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field of the UAV. Particle distribution area is determined while
considering the position of the UAV and the maximum range
according to the RF signal sensitivity of the receiver. An initial
distribution is presented in Fig. 6. The output of particle filter
determines the temporary target of the UAV. Thus, trajectory of
the UAV is adaptively changed. When the last 10 measured RF
signal strength samples are greater than a certain magnitude
which also can be changed as a parameter, it is assumed
that the RF source is detected. Thus, the detection decision
is related to an acceptable level and period of continuous RF
signal strength reception. For instance, at 900 MHz, −35 dBm
RSSI value is set for the decision threshold. These values have
been simulated 100 times as Monte Carlo Simulations where
RF source location is randomly placed in each simulation and
mean error value is found as 13.96 m. Results of the simulation
can be seen at Figs. 7a to 7f.

After all simulation results, software-in-the-loop (SITL) sys-
tem is designed to see results close to the field tests. In planned
field tests, Pixhawk with ArduPlane autopilot is decided to
use. Therefore, SITL system is designed based on ArduPlane
autopilot and X-Plane simulation program are used to use
advanced UAV models and visualize it. In X-plane simulation,
cruise speed of UAVs is observed approximately 16m/s which
is the same speed as the Seagull Decathlon 46 UAV platform
used in the experimental RF measurement test flights. We
designed a software communicating with ArduPlane autopilot
to send desired heading values for UAV to track the RF source.
Since the SITL system tries to simulate the field tests as much
as possible, the prepared planner software can be used for field
tests the same as SITL system. Results of the SITL system and
localization can be seen in Figs. 7g, 7h and 7i.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed an architecture to present
RF signal characteristics and build simulation platform and
Software-in-the-loop system to show the results of the lo-
calization algorithm in large scale environments. Field tests
are presented to simulate exact RF signal characteristics and
particle filter performance for localization is shown in large
scale environment with UAV.

For future work, based on the assumptions, moving RF
source will be considered for localization. NLOS and ground
reflection situations will be examined. Also with designed
SITL system, outdoor flight tests are considered to validate
the algorithms.
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