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Abstract—In this paper we study the localization and tracking
of a radio frequency (RF) emitting target using multiple un-
manned aerial vehicles (UAVs) over a large scale environment.
Although localization of RF emitting targets using multiple
measurements is a well studied problem, the standard approaches
become inefficient when the signal power is uncertain and there
is significant noise in the received signal strength (RSS) when
the search environment is large scale. We present a localization
and tracking architecture, where a data driven neural network
model is used for estimating the unknown signal strength and
extended Kalman filters are utilized for eliminating the RSS noise
and increase the precision of target tracking performance. We
present simulation results in a 10 x 10 km? search area, where
3 fixed wing UAVs localize and track a target with up to 28.3 m
average error distance.

I. INTRODUCTION

With the increasing autonomy, range and cost efficiency of
Unmanned Aerial Vehicles (UAVs) over the years, utilization
of UAVs in search and rescue operations have been gaining
significant popularity in both civil [1], [2] and military [8]
applications. One of the most common scenarios is where the
target is emitting a radio frequency (RF) signal, and UAVs
measure and process this signal to localize the target [3].
Although this problem was addressed up to some degree by the
previous research, there are still scenarios where the current
algorithmic capabilities and hardware constraints prevent an
efficient solution. One of such problems is the case where
the target’s transmitter power is unknown or uncertain, which
makes the target localization much more difficult. In addition,
the hardware setup for estimating the direction of the signal
might not be available in some situations, hence the UAVs
might need to rely only on the signal strength for localizing
the target. Also, localization of RF sources in large scale
environments poses additional challenges due to the variation
of noise characteristics of the received signal strength (RSS)
with large distances.

In this paper, we present an algorithm that uses a data
driven model to estimate the target transmitter power and then
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applies trilateration and extended Kalman Filtering to estimate
and track the target’s position using multiple UAVs in large
scale environments. We show via simulations that the average
distance error can be reduced significantly with this method,
even though the algorithm lacks the knowledge of the exact
transmitter power and the considered search environment has
a significantly large area.

A. Previous Work

Localization of RF Targets poses many challenges, such as
location estimation, path planning, addressing Non-Line-of-
Sight (NLOS) problems and utilization of appropriate sensing
architecture. Deghan et al. [4] developed a novel observation
model that can address NLOS conditions for simultaneous
localization of UAVs and RF emitting sources. Bamberger et
al. developed a RF direction finder called pseudo-Doppler [5],
with emergent autonomous control concepts to control sensor
platforms and optimize flight trajectories for effective geolo-
cation of the target. In [6], estimation and control algorithms
were proposed for a team of robots for localization of station-
ary RF targets in non-convex environments. Stachura et al.
studied localization problems with communication constraints
[7] and developed algorithms for generating information-
gathering trajectories for ensuring reliability of multihop com-
munication networks. In [8], a control architecture that allows
multiple UAVs to cooperatively detect mobile RF emitting
ground targets is presented. The UAVs are equipped with low-
precision RF direction finding sensors and it is assumed that
the targets may emit signals randomly with variable duration.
Scerri et al. [9] examined an RF emitting target localization
problem that involves a large team of UAVs over a large scale
environment. In Scerri’s work, signal characteristics received
from different UAVs are fed into a Bayesian filter to compute
probability distribution over emitter locations. Delima and
Toussaint [10], [12] presented a cooperative control method
to detect RF targets with angle of arrival sensors on UAVs.
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Fig. 1. Overview of the system architecture for the specific case of 3 UAVs. 1) RF signal emitted by the RF target, 2) RSS for each UAV, 3) distance vector
generated from signal propagation model by using RSS values for all possible transmitter powers, 4) distance differences between estimated positions of the
target for all possible transmitter powers by using Trilateration algorithm, 5) classified transmitter power, which is output of the neural network classification
block, 6) distance vector between the target and the UAVs, computed according to classified transmitter power, 7) estimated position of the target, which is
used as the initial value for Filtering (EKF), 8) final estimated position of the target, 9) the desired route for UAVs from flight manager.

Kalman filtering was used in order to minimize target location
error and target localization time. In [11], different configu-
rations of multiple UAVs and onboard sensors were analyzed
for localizing an RF emitting target by using a Kalman filter
to fuse information collected from UAVs.

In all of the previous work mentioned above, the power
of the RF signal is assumed to be known beforehand, which
enables direct utilization localization and tracking algorithms.
In this paper, we develop a multiple UAV target localization
architecture that enables efficient localization and tracking of
the target without knowing the RF signal power a priori.
We analyze the signal data to model the mismatch between
the assumed transmitter power and the actual transmitter
power, and train a neural network for online classification
of the transmitter power of RF emitting target. Afterwards,
the transmitter power estimation and trilateration, extended
Kalman filter (EKF) is used for eliminating the noise on RSS
and enable precise tracking of the target in the large-scale
environment. We present via simulations that the developed
architecture can localize and track a target randomly located
in an 10 x 10 km? area up to 28.3 m average error distance,
using 3 fixed wing UAVs.

The rest of the paper is organized as follows: section II
introduces the system architecture and the problem setup,
section III gives details on localization algorithm, section
IV provides the implementation of estimation and tracking
algorithms. Finally, section V presents the simulation results

and section VI comments on the conclusions and future work.

II. PROBLEM OVERVIEW AND SYSTEM ARCHITECTURE

A. Problem Setup and Assumptions

This paper studies the problem of localization and track-
ing of an RF-emitting target using multiple UAVs, with the
following assumptions:

o There is no prior information on target’s location.

o Terrain is assumed to be 2-dimensional, hence target’s
position is completely determined by its longitude and
latitude.

e The power of target’s transmitter is not exactly known
beforehand, however it is known that the actual signal
power can only take finite number of different values
(such as 10mW, 100mW and 1W).

e UAVs measure only signal strength, there is no time
stamp or other meaningful data in the signal. No direction
finding hardware is available onboard.

o The LOS between UAVs and the target is always clear.

o There are no communication constraints; UAVs may pass
data in between them without loss of information.

o There are RF signal receiving constrains between UAVs
and RF target for determined distance.

o Each UAV flies at a distinct, constant altitude.

Comparing the performance of UAVs with different speeds is
out of the scope of this paper.
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B. System Architecture

The methodology developed in this paper to address the
localization and tracking problem given in the previous sub-
section can be summarized as follows: After the initialization,
UAVs follow precomputed trajectories for sweeping the area
and receive signal from the RF emitting target. Once a UAV
picks up the signal, the other UAVs are directed towards
the location of signal receiving UAV. Once all the UAVs are
receiving the RF signal, the distances from UAVs to the target
are computed using the RSS values and a signal propagation
model for various possible transmitter powers. Next, a previ-
ously trained neural network classification algorithm estimates
the transmitter power from the input UAV-target distance data.
Due to noise characteristics of the RSS, even after estimating
the transmitter power and running the trilateration algorithm,
target position cannot be determined with high accuracy. In
order to increase the tracking performance, UAVs fly in circles
with a fixed radius around the target while an EKF is ran
based on UAV positions and measured distances from the
RSS values. After calculations, flight manager generates the
waypoints for each UAVs using calculated position of the
target and receiving condition of RF signal. As UAVs continue
to fly in loiter mode, tracking error decreases and converges
to a fixed value. The system architecture is presented in Fig.
1 for a specific case where the team consists of 3 UAVs. Fig
2 summarizes the process given above.

III. LOCALIZATION OF THE TARGET WITH UNCERTAIN
TRANSMITTER POWER

This section provides the details on how the measured
RF signal strengths are converted into distances for a given
signal transmitter power, multi UAV trilateration algorithm
and neural network classification algorithm for estimating the
transmitter power.

A. Signal Propagation Model

As it is explained in section II, the first step in the local-
ization process is computing distances between the UAVs and
target for all possible transmitter powers (which is a finite set
as presented in the subsection II-A). Since the LOS between
UAVs and the target is always clear (see subsection II-A),
a free-space propagation model, such as Friis’ Free Space
Equation [13] can be used for computing the distances between
the target and UAVs:

g— PthtQX Gr><>\2’ 0
47 x P,

where d is the distance between receiver and transmitter,
P, is the transmitted power, P, is the received power, A is
wavelength, G is the transmitter antenna gain and G, is the
receiver antenna gain.

The free-space propagation model is not an exact rep-
resentation of the actual signal propogation, since it does
not take into account effects such as reflection and received
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Fig. 2. Flowchart of the system

signal strength uncertainty [14]. In this work, these effects are
modelled as a high magnitude Gaussian white noise added on
the computed distance in Eq. 1.

B. Localization Method

After computing the distances under various different trans-
mitter powers, the trilateration algorithm is ran on each dataset
for comparative analysis of localization results under different
assumed transmitter powers. An East-North-Up (ENU) Carte-
sian coordinate system is used in the trilateration algorithm. At
least 4 distinct measurements are required for 3-dimensional
trilateration [15]. However, for the problem of interest in
this paper, target lies on a 2-dimensional surface and UAVs
fly at constant altitude (see subsection II-A), thus 3 distinct
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Fig. 3. Modified axes for trilateration with 3 UAVs in the z = 0 plane.

measurements are sufficient [16]. Fig. 3 shows how three
distinct measurements and a modified coordinate axes can be
utilized for localization of the target. In the modified axes,
origin of the coordinate system coincides with the first UAV
and the z-axis is oriented towards the second UAV.

Steps of trilateration algorithm are given below for a team
consisting of 3 UAVs. In equations below (see Eq. 2-11), Py,
is the position vector of UAVy and Dy is distance between
the target and UAV,, where k£ = 1,2, 3, e,, e, and e, are the
basis unit vectors, output of the algorithm is the position of
the target Pigrget,

e, =Py —Pq)/||P2— Py, )
a=e;(P3s—Py), 3)

e, = (P3 — Py —ae;) /||Ps — P —ae,]|, (@))

e, =e; X ey, (®)]

d= [Py — Py, (6)
b=e,(P3—Py), (7N

Tpew = (D} — D3 +d?)/2d, ®)
Ynew = [(D] — D3 + a® +b%)/2b] — (azpew/b),  (9)
znew = /] D}~ 2 — e | (10)
Piorget = P1 + Tnewez + Ynewey + Znewes, (1)

Fig. 4 plots the results of trilateration process under differ-
ent assumed transmitter powers (10mW, 100mW and 1W),
where the actual transmitter power is 100mW. Examining
Fig. 4 reveals that when the assumed transmitter power is
less than the actual value, there is a considerable deviation
in estimated target locations (black dots in Fig. 4) despite the
fact that there was no noise in the simulations. In addition,
estimated locations are relatively close to each other and
follow a distinct curved pattern. On the other hand, when the
assumed transmitter power is greater than the actual value,
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Fig. 4. RSS values are modelled for 100 mW (the real power value) and
localization algorithm is ran for all three transmitter power values (noise is
not considered in these simulations). The search environment dimensions are
10km x 10km.
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Fig. 5. Distances between the target and UAV1 for all transmitter powers.
Noise in the signal is inclulded in these simulations.

estimated locations (red dots in Fig. 4) at each step vary
significantly over the search area.

Next, we analyze the effect of including noise in the
assumed transmitter power-actual transmitter power mismatch.
Fig. 5 shows computed distances between the target and UAV,
for different assumed transmitter powers. From the figure it
can be observed that the dispersion pattern in the estimated
distance varies significantly across different power transmitter
assumptions. For instance, when the assumed value is greater
than the actual value (red dots in 5), estimated distances vary
greatly, whereas the dispersion among the estimated locations
where assumed value is less than the actual value is relatively
smaller.

C. Neural Network Classification and Results

The analysis in subsection III-B suggests that actual trans-
mitter power can be identified by examining computed dis-
tance dispersion data from trilateration. This result moti-
vates the use of machine learning algorithms for estimat-
ing/classifying the actual transmitter power. In this subsection,
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Fig. 6. Explanation of collecting data input for the neural network classifier.
UAVs are flying from step to to ts and estimated locations of the target are
shown as red crosses and real location of the target is shown as the blue star.
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Fig. 7. Structure of the neural network classifier

we show that a such classification problem can be solved by
using neural networks [17].

The differences of computed distances between UAVs and
the target are used as the main feature for training the classifier.
Since the distance differences of different transmitter power
values have significant variance, the data input for the training
and test stages are selected as distance differences of the
estimated locations (see Fig. 6).

To obtain the data inputs, while UAVs are flying and
measuring RSS values, the estimated locations of the target
are calculated for each measurement step (¢). This process is
repeated for all three possible transmitter power values. At the
end of the measurement stage, distance differences from one
estimated location to another are calculated for all three power
values and the data input for neural network is prepared (see
Fig. 7).

Neural network was trained using a multilayer feedforward
network structure and Levenberg-Marquardt training function
[18]. Diagram of the neural network is shown in Fig. 8. The
formulation for the neural network structure is presented as

Hidden
layer

Output
layer

Input
layer

Fig. 8. Diagram of the neural network in Fig 7
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Fig. 9. Confusion Matrix of Classification

follows: n
L) = > wiy ()0, (B), (12)

k=1
Oit) = fUIi(t), j=1,2,...,n, (13)

where f is the activation function (sigmoid function), n; is
the number of neurons in the i*" layer, I ]’ (t) is the input of
the j*" neuron in the i*" layer and O%(t) is the output of the
4" neuron in the i*" layer. The training was performed using
data from 160 different simulations, where each simulation
consists of 100 measurement steps from UAVs. There were
20 neurons in neural network hidden layer. The classification
results, for the case where the transmitter power admits only
three different values (10mW, 100mW and 1W), are shown

in the confusion matrix format in Fig. 9). From the figure it
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can be seen that the total success rate of the classification is
93.1%.

IV. ESTIMATION AND TRACKING ALGORITHM

Because of the noise of RSS, trilateration can only estimate
target location to a certain level in large-scale environments.
For instance, Fig. 5 shows that even when the power of
transmitter is determined correctly, localization errors might be
in the order of kilometres. In this section, we present an EKF
structure for increasing the tracking accuracy of the target.
The main idea is to use first result of trilateration as an initial
condition for the EKF and let the filtering algorithm improve
the accuracy of the tracking performance.

Since the target is assumed to be stationary, the filter states
consist solely of the location of the target:

X1 = [o(Xp) = AXy, (14)
T

Xe= |y, (15)
2k

where X}, represents the state of system Xy = [z, Yk, 2k
the location of the target in Cartesian coordinates. The mea-
surement model consists of locations of UAVs relative to the
target, note that UAV locations are measured using onboard
sensors (inertial sensors and GPS).

e = v (@uk — 78)% + Wuk — Uk)2 + (Zuk — 22)2, (16)

where T, Yuk, Zuk are position of kth UAV and ry, is distance
between RF target and ki UAV. Using this equation, the
Jacobian matrix can be computed as follows:

ror, ory ory
H, = % BL; % a7
drg  Org  Org
Loz oy 0z
_ (Tu1—z) _ (Yu1—y) _ (zu1—2)
_ | _ (171,21—96) _ (yu,zl—y) _ (Zuzl—z) (18)
_ (9:uT32—z) _ (yugz—y) _ (Zugz_z)
- T3 T3 T3
D,
Zyy1 = | D2 (19)
D3
EKF update equation is given as:
Xpy1 = X + Kp1[Zryr — Hyya], (20)
01231 0 0
R,=1|0 0%2 0 21
0 0 0%3

where K4 is the gain matrix computed using EKF design
equations and Ry is measurement noise covariance matrix
computed by o% . Which represents precalculated variances

Received Signal Strength (dBm)
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Fig. 10. RSS-distance relation
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Fig. 11. UAVs follow precomputed waypoints until at least one of UAVs senses
the RF emitting target’s signal.

of each distance [19]. Note that the initialization of the filter is
set from the results obtained from the trilateration algorithm.

After the localization of the target is achieved up to a certain
level, UAVs start to circle the target by flying in the loiter
mode. The radius of the circle is a parameter of the system
that can be selected beforehand, based on the desired level of
accuracy and the constraints on UAV dynamics.

In order to gain a better insight the relationship between
the RSS noise, estimated distances and EKF, we can look at
how the RSS varies as a function of distance. Fig. 10 displays
the variation of the noisy RSS versus distance. Note that, as
the relative distance between the target and UAV gets smaller,
EKF is expected to perform better since the signal to noise
ratio of the signal gets larger.

V. SIMULATION AND TEST RESULTS

Localization and tracking of a target in a 10 x 10km?
search area was considered for simulation studies. 3 DOF
models were used and aircraft were guided using cross-track
guidance algorithm to track waypoints [20] for simulating
UAV dynamics. RF emitting target was chosen to be randomly
located in all test scenarios.

In the first phase of the mission, UAVs fly a precomputed
trajectory to sweep the search area, looking for the RF
signal. Trajectories of the search patterns are given in Fig.
11. In the second phase, trilateration and transmitter power
estimation/classification algorithms are ran (see section III) to
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Fig. 12. EKF results are shown with green dots and it can be seen that all UAVs close the distance between the target to improve the performance of EKF.
After the distance between UAVs and the target reduces below a certain level, UAVs start flying in loitering mode with a fixed radius. It can be seen that
EKF performance gets better with time and estimated location of the target (green dots) are close to RF emitting target’s location.

estimate the location of the target. Next, this estimation is
used as an input to the initial condition of EKF. EKF tracking
performance results are presented in Fig. 12, where the blue,
red and magenta lines represent trajectories of UAV;, UAVy
and UAVj; respectively. The black point represents the real
location of the RF target and the green points are EKF state
outputs, which are the estimated location of the RF target.

TABLE 1
AVERAGE ERROR DISTANCE ACCORDING TO LOITER RADIUS
Loiter Radius (m) | Average Error Distance (m)
800 57.3
600 42.8
400 28.3

Finally, we examine the relationship between the loiter
radius and tracking performance. Table I displays the loiter
radius versus distance error (averaged over 100 simulation
results with random target and UAV locations). From these
results it can be seen that decreasing the loiter radius indeed
improves the tracking performance. However, it should be
noted that decreasing the radius beyond a limit might not
be possible in a realistic scenario, due to structural and
aerodynamic limits of the aircraft. Note that average error
distance can be reduced down to 28.3 meters in a search
environment of 10 x 10km? area.

VI. CONCLUSION AND FUTURE WORKS

In this paper we developed an architecture and presented
a collection of localization, classification and tracking al-
gorithms that can be used for solving RF emitting target
localization and tracking problems in large scale environments.
In particular, the developed system can work when the signal

power is uncertain, and the combination of trilateration and
EKF enables accurate tracking of the target in large-scale
environments.

For future work, based on the problem setup and assump-
tions in subsection II-A, the architecture and algorithms will
be improved for more realistic cases such as communication
loss cases. Also, improving trajectory planning performance
by using information based algorithms and validating the
algorithms with outdoor flight tests are considered.
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