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1. INTEGER PROGRAMMING – FORMULATING IPs 

When formulating Linear Programs (LPs) we often found that, strictly, certain variables 

should have been regarded as taking integer values but, for the sake of convenience, we let 

them take fractional values reasoning that the variables were likely to be so large that any 

fractional part could be neglected.  

While this is acceptable in some situations, in many cases it is not, and in such cases, we 

must find a numeric solution in which the variables take integer values. 

Problems in which this is the case are called integer programs (IP's) and the subject of 

solving such programs is called integer programming (also referred to by the initials IP).  

IP's occur frequently because many decisions are essentially discrete (such as yes/no, do/do 

not) in that one or more options must be chosen from a finite set of alternatives.  

An IP in which all variables are required to be integers is called a pure IP problem. 

If some variables are restricted to be integer and some are not then the problem is a mixed 

IP problem.  

The case where the integer variables are restricted to be 0 or 1 comes up surprising often. 

Such problems are called pure (mixed) 0-1 programming problems or pure (mixed) binary 

IP problems. 

For any IP we can generate an LP by taking the same objective function and same 

constraints but with the requirement that variables are integer replaced by appropriate 

continuous constraints: 

“xi ≥ 0 and integer” can be replaced by xi ≥ 0 

“xi = 0 or 1” can be replaced by xi ≥ 0 and xi ≤ 1 

The LP obtained by omitting all integer or 0-1 constraints on variables is called LP 

Relaxation of the IP (LR). 

1.1 Budgeting Problems 

Example 1. Capital Budgeting (Winston 9.2, p. 478 – modified) 

Stock is considering four investments. Each investment yields a determined NPV ($8,000, 

$11,000, $6,000, $4,000). Each investment requires at certain cash flow at the present time 

($5,000, $7,000, $4,000, $3,000). Currently Stock has $14,000 available for investment. 

Formulate an IP whose solution will tell Stock how to maximize the NPV obtained from the 

four investments. 
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Answer 

Begin by defining a variable for each decision that Stockco must make. 

In this case, we will use a 0-1 variable xj for each investment: 

If xj is 1 then Stock will make investment j.  

If it is 0, Stock will not make the investment.   

This leads to the 0-1 programming problem:  

max z =  8x1 + 11x2 + 6x3 + 4x4 

s.t.          5x1 +  7x2 + 4x3 + 3x4 ≤ 14 

      xj = 0 or 1  (j = 1,2,3,4) 

Comment 

Now, a straightforward “bang for buck” (taking ratios of objective coefficient over constraint 

coefficient) suggests that investment 1 is the best choice. 

Ignoring integrality constraints, the optimal linear programming solution is:  

 x1 = x2 = 1, x3 = 0.5, and x4 = 0 for a value of $22K  

Unfortunately, this solution is not integer. Rounding x3 down to 0: 

 x1 = x2 = 1, x3 = x4 = 0 for a value of $19K 

There is a better integer solution (optimal solution): 

 x1 = 0, x2 = x3 = x4 = 1 for a value of $21K  

This example shows that rounding does not necessarily give an optimal value.  

Example 1. Multiperiod Capital Budgeting 

There are four possible projects, which each run for three years and have the following 

characteristics: 

Which projects would you choose in order to maximize the total return?  

   Capital requirements 
Project  Return Year1 Year2 Year3 
1  0.2 0.5 0.3 0.2 
2  0.3 1 0.5 0.2 
3  0.5 1.5 1.5 0.3 
4  0.1 0.1 0.4 0.1 
 Available capital 3.1 2.5 0.4 

Answer 

We will use a 0-1 variable xj for each project:  

xj is 1 if we decide to do project j;  

xj is 0 otherwise (i.e. not do project j).  

This leads to the 0-1 programming problem:  

max 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

s.t. 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4  3.1 

 0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4  2.5 
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 0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4  0.4 

 xj = 0 or 1 j = 1, …, 4  

Example 1. Capital Budgeting Extension 

There are a number of additional constraints Stock might want to add.  

Logical restrictions can be enforced using 0-1 variables: 

Stock can only make two investments 

 x1 + x2 + x3 + x4 ≤ 2 

Any choice of three or four investments will have x1 + x2 + x3 + x4 ≥ 3 

If investment 2 is made, investment 4 must also be made 

x2 ≤ x4 or x2 – x4 ≤ 0 

If x2 is 1, then x4 is also 1; if x2 is 0, then there is no restriction for x4 (x4 is 0 or 1) 

If investment 1 is made, investment 3 cannot be made 

x1 + x3 ≤ 1 

If x1 is 1, then x3 is 0; if x1 is 0, then there is no restriction for x3 (x3 is 0 or 1) 

Either investment 1 or investment 2 must be made (only one of them, not both) 

x1 + x2 = 1 

If x1 is 1, then x2 is 0 (only investment 1 is made); if x1 is 0, then x2 is 1 (only 

investment 2 is made)  

1.2 Knapsack Problems 

Any IP that has only one constraint is referred to as a knapsack problem. 

Furthermore, the coefficients of this constraint and the objective are all non-negative. 

The traditional story is that: There is a knapsack. There are a number of items, each with a 

size and a value. The objective is to maximize the total value of the items in the knapsack.  

Knapsack problems are nice because they are (usually) easy to solve.  

General representation of the knapsack problem: 

max z = c1x1 + c2x2 + ∙∙∙ + cnxn  

s.t.        a1x1 + a2x2 + ∙∙∙ + anxn ≤ b  

xi = 0 or 1 (i = 1, 2, …, n) 

where ci is the value of item i, ai is the weight of item i, and  b is the total weight capacity.  

For instance, the following is a knapsack problem: 

Maximize 8 x1 + 11 x2 + 6 x3 + 4 x4  

Subject to 5 x1 +  7 x2 + 4 x3 + 3 x4 ≤ 14 

   xj = 0 or 1 j = 1, … 4 
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1.3 Fixed Charge Problems 

There is a cost associated with performing an activity at a nonzero level that does not 

depend on the level of the activity. 

An important trick can be used to formulate many production and location problems involving 

the idea of a fixed charge as IP. 

Example 4. Gandhi (Winston 9.2, p. 480) 

Gandhi Co makes shirts, shorts, and pants using the limited labor and cloth described below. 

In addition, the machinery to make each product must be rented. Formulate an IP to 

maximize Gandhi’s weekly profits. 

 Shirts Shorts Pants Total Avail. 

Labor (hrs/wk)  3 2 6 150 

Cloth (m2/wk)  4 3 4 160 

Rent for machine ($/wk)  200 150 100  

Variable unit cost  6 4 8  

Sale Price  12 8 15  

Answer 

Let xj be number of clothing produced (j = 1 (shirt), 2 (short), 3 (pants)). 

Let yj be 1 if any clothing j is manufactured and 0 otherwise (j = 1 (shirt), 2 (short), 3 (pants)). 

Profit = Sales revenue – Variable Cost – Costs of renting machinery 

For example, the profit from shirts is  

 z1 = ( 12 – 6 ) x1 – 200 y1 

Since supply of labor and cloth is limited, Gandhi faces two constraints.  

To ensure xj > 0 forces yj = 1, we include the additional constraints  

 xj ≤ Mj yj  

From the cloth constraint at most 40 shirts can be produced (M1=40), so the additional 

constraint for shirts is not an additional limit on x1 (If M1 were not chosen large (say M1=10), 

then the additional constraint for shirts would unnecessarily restrict the value of x1). 

From the cloth constraint at most 53 shorts can be produced (M2=53) 

From the labor constraint at most 25 pants can be produced (M3=25)  

We thus get the mixed (binary) integer problem:  

max  6 x1 + 4 x2 + 7 x3 – 200 y1 – 150 y2 – 100 y3 

s.t. 3 x1 + 2 x2 + 6 x3 ≤ 150 (Labor constraint) 

 4 x1 + 3 x2 + 4 x3 ≤ 160 (Cloth constraint) 

 x1 ≤ 40 y1  (Shirt production constraint) 

 x2 ≤ 53 y2  (Short production constraint) 

 x3 ≤ 25 y3 (Pant production constraint) 
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 x1, x2, x3 ≥ 0 and integer 

 y1, y2, y3 = 0 or 1 

Example 5. Warehouse problem 

ATK-White are planning where to open warehouse (WH) and how to transport products from 

warehouses to costumers.  5 possible WH locations are considered to serve 4 customers. 

There is a fixed cost of opening and operating WHs (𝑓௜). There is also transportation cost of 

transporting products from WHs to customers (𝑐௜௝). If a WH is opened, its capacity (𝐾௜) 

cannot be exceeded. All demands of the customers (𝐷௝) should be met. 

Formulate an IP to minimize the total cost of ATK-White (WH opening costs and 

transportation costs) to meet the demands of the customers. 

 Cust. 1 Cust. 2 Cust. 3 Cust. 4 Fixed cost (TL)  Capacity 

WH -1 8TL 6TL 10TL 9TL 220,000 50,000 

WH -2 9TL 12TL 13TL 7TL 280,000 60,000 

WH -3 14TL 9TL 16TL 5TL 150,000 45,000 

WH -4 18TL 16TL 10TL 9TL 290,000 80,000 

WH -5 10TL 6TL 13TL 8TL 490,000 120,000 

Demand 40,000 30,000 25,000 75,000   

Answer 

Define decision variables: 

𝑥௜௝: Amount of product transported from WH-i to Customer j. (i=1,2,3,4,5; j=1,2,3,4) 

𝑦௜: binary variable for opening WH-i. (i=1,2,3,4,5) 

 𝑦௜= 1 if WH-i is opened,  𝑦௜= 0 if WH-i is not opened. 

 

Objective is to minimize the sum of WH opening cost and total transportation cost. 

𝑀𝑖𝑛 𝑍 ൌ  ෍𝑓௜𝑦௜

ହ

௜ୀଵ

൅෍෍𝑐௜௝𝑥௜௝

ସ

௝ୀ

ହ

௜ୀଵ

 

Subject to the following constraints: 

෍𝑥௜௝

ସ

௝ୀଵ

൑ 𝐾௜𝑦௜               ∀𝑖 

෍𝑥௜௝

ହ

௜ୀଵ

൒ 𝐷௝             ∀𝑗 

𝑥௜௝ ൒ 0    ∀𝑖, 𝑗,         𝑦௜ ∈ ቄ
0
1
ቅ    ∀𝑖      
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1.4 Either-Or Constraints 

Given two conditions 

 f(x1, x2,…, xn) ≤ 0  (1) 

 g(x1, x2,…, xn) ≤ 0  (2) 

ensure that at least one is satisfied (1 or 2) by adding either-or-constraints: 

 f(x1, x2,…, xn) ≤ M y 

 g(x1, x2,…, xn) ≤ M (1 – y) 

Here y is a 0-1 variable, and M is a number chosen large enough to ensure that both constraints 

are satisfied for all values of decision variables that satisfy the other constraints in the problem: 

o If y = 0, then (1) and possibly (2) must be satisfied.  

o If y = 1, then (2) and possibly (1) must be satisfied. 

Example 1. Warehouse problem – Either-Or extension 

Consider the Warehouse problem. Suppose that ATK-White has a chance of ignoring the 

demand of either customer 1 or customer 2. (i.e. they can choose to meet the demand of one 

of the two customers). How would you add this condition to the IP? 

Answer 

One of the following constraints should be satisfied: 

𝑥ଵଵ ൅ 𝑥ଶଵ ൅ 𝑥ଷଵ ൅ 𝑥ସଵ ൅ 𝑥ହଵ ൒ 40,000 

𝑥ଵଶ ൅ 𝑥ଶଶ ൅ 𝑥ଷଶ ൅ 𝑥ସଶ ൅ 𝑥ହଶ ൒ 30,000 

Arrange the constraints to be in the format of Either-or constraint formulation:  

െሺ𝑥ଵଵ ൅ 𝑥ଶଵ ൅ 𝑥ଷଵ ൅ 𝑥ସଵ ൅ 𝑥ହଵሻ ൅ 40,000 ൑ 0 

െሺ𝑥ଵଶ ൅ 𝑥ଶଶ ൅ 𝑥ଷଶ ൅ 𝑥ସଶ ൅ 𝑥ହଶሻ ൅ 30,000 ൑ 0 

In this way;  

𝑓ሺ𝑥ሻ ൌ െሺ𝑥ଵଵ ൅ 𝑥ଶଵ ൅ 𝑥ଷଵ ൅ 𝑥ସଵ ൅ 𝑥ହଵሻ ൅ 40,000  and 

𝑔ሺ𝑥ሻ ൌ െሺ𝑥ଵଶ ൅ 𝑥ଶଶ ൅ 𝑥ଷଶ ൅ 𝑥ସଶ ൅ 𝑥ହଶሻ ൅ 30,000. 

Add the following constraints to the model: 

െሺ𝑥ଵଵ ൅ 𝑥ଶଵ ൅ 𝑥ଷଵ ൅ 𝑥ସଵ ൅ 𝑥ହଵሻ ൅ 40000 ൑ Mଵ𝑦 

 െሺ𝑥ଵଶ ൅ 𝑥ଶଶ ൅ 𝑥ଷଶ ൅ 𝑥ସଶ ൅ 𝑥ହଶሻ ൅ 30000 ൑ Mଶሺ1 െ 𝑦ሻ. 

where 𝑦 ∈ ቄ0
1
ቅ . M values can be considered as 40,000 and 30,000, respectively. 

The final model would be as follows: 

𝑀𝑖𝑛 𝑍 ൌ  ෍𝑓௜𝑦௜

ହ

௜ୀଵ

൅෍෍𝑐௜௝𝑥௜௝

ସ

௝ୀ

ହ

௜ୀଵ

 

Subject to 
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෍𝑥௜௝

ସ

௝ୀଵ

൑ 𝐾௜𝑦௜               ∀𝑖 

෍𝑥௜௝

ହ

௜ୀଵ

൒ 𝐷௝             𝑗 ൌ 3,4,5. 

െሺ𝑥ଵଵ ൅ 𝑥ଶଵ ൅ 𝑥ଷଵ ൅ 𝑥ସଵ ൅ 𝑥ହଵሻ ൅ 40000 ൑ 40000𝑦 

 െሺ𝑥ଵଶ ൅ 𝑥ଶଶ ൅ 𝑥ଷଶ ൅ 𝑥ସଶ ൅ 𝑥ହଶሻ ൅ 30000 ൑ 30000ሺ1 െ 𝑦ሻ. 

𝑥௜௝ ൒ 0    ∀𝑖, 𝑗,         𝑦௜ ∈ ቄ
0
1
ቅ    ∀𝑖 , 𝑦  ∈ ቄ0

1
ቅ .   

Example 2. Compact Car 

Suppose 1.5 tons of steel and 30 hours of labor are required for production of one compact 

car. At present, 6,000 tons of steel and 60,000 hours of labor are available. For an 

economically feasible production, at least 1,000 cars of compact car must be produced. 

Answer  

If it is infeasible then there will be no production. At least 1,000 cars must be produced or there 

will be no production. 

 Given condition:  x = 0 or x ≥ 1000  

 Sign restriction: x ≥ 0 and Integer  

x = 0 or x ≥ 1000  x ≤ 0 or 1000 – x ≤ 0 

For f(x) = x; g(x) = 1000 –  x 

We can replace the constraint by the following pair of linear constraints: 

 x ≤ M y 

 1000 – x ≤ M (1 – y) 

 y = 0 or 1 

 M = min (6,000/1.5, 60,000/30) = 2000 

1.5 If-Then Constraints 

Suppose we want to ensure that 

a condition   f(x1, x2,…, xn) > 0 implies  

the condition g(x1, x2,…, xn) ≥ 0 

Then we include the following constraints in the formulation: 

–g(x1, x2,…, xn) ≤ M y  (1) 

f(x1, x2,…, xn) ≤ M (1 – y)  (2) 

Here y is a 0-1 variable, and M is a large positive number, chosen large enough so that f<M 

and –g<M hold for all values of decision variables that satisfy the other constraints in the 

problem. 
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If f > 0, then (2) can be satisfied only if y = 0. (1) implies –g ≤ 0 or g ≥ 0, which is the desired 

result. 

Example 3. Warehouse problem – If-then extension 

Consider the Warehouse problem. How would you add the following condition to the model: If 

more than 40% of the capacity of WH-2 is used, WH-3 cannot be opened? 

Answer 

Initially, write a mathematical formulation for the condition: 

If 𝑥ଶଵ ൅ 𝑥ଶଶ ൅ 𝑥ଶଷ ൅ 𝑥ଶସ ൅ 𝑥ଶହ ൐ 24,000  then  𝑦ଷ ൌ 0. 

𝑦ଷ ൌ 0  𝑦ଷ ൑ 0  െ𝑦ଷ ൒ 0 

Arrange the constraints to be in the format of If-then constraint formulation 

 

𝑓ሺ𝑥ሻ ൌ 𝑥ଶଵ ൅ 𝑥ଶଶ ൅ 𝑥ଶଷ ൅ 𝑥ଶସ ൅ 𝑥ଶହ െ 24,000 ൐ 0 

𝑔ሺ𝑥ሻ ൌ െ𝑦ଷ 

Add the following constraints to the model: 

𝑦ଷ ൑ Mଵ𝑦 

𝑥ଶଵ ൅ 𝑥ଶଶ ൅ 𝑥ଶଷ ൅ 𝑥ଶସ ൅ 𝑥ଶହ െ 24000 ൑ Mଶሺ1 െ 𝑦ሻ 

Where 𝑦 ∈ ቄ0
1
ቅ . M values can be considered as 1 and 36,000, respectively. 

The final model would be as follows: 

𝑀𝑖𝑛 𝑍 ൌ  ෍𝑓௜𝑦௜

ହ

௜ୀଵ

൅෍෍𝑐௜௝𝑥௜௝

ସ

௝ୀ

ହ

௜ୀଵ

 

Subject to 

෍𝑥௜௝

ସ

௝ୀଵ

൑ 𝐾௜𝑦௜               ∀𝑖 

෍𝑥௜௝

ହ

௜ୀଵ

൒ 𝐷௝             ∀𝑗 

𝑦ଷ ൑ 𝑦 

𝑥ଶଵ ൅ 𝑥ଶଶ ൅ 𝑥ଶଷ ൅ 𝑥ଶସ ൅ 𝑥ଶହ െ 24000 ൑ 36000ሺ1 െ 𝑦ሻ 

𝑥௜௝ ൒ 0    ∀𝑖, 𝑗,         𝑦௜ ∈ ቄ
0
1
ቅ    ∀𝑖 , 𝑦  ∈ ቄ0

1
ቅ .   

 

 

 

 

a constraint  f(x1, x2,…, xn) > 0 implies 

the constraint g(x1, x2,…, xn) ≥ 0 
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1.6 Membership in Specified Subsets 

Set covering, set packing, and set partitioning models are a special class of IP. 

Using decision variables that equal 1 if an object is part of a solution and 0 otherwise, set 

covering, set packing, and set partitioning models formulate problems where the core issue is 

membership in specified subsets. 

There are many applications in areas such as location (facility, fire/police station, warehouse), 

scheduling (crew, airline, truck, bus), delivery, vehicle routing, political districting, capital 

budgeting. 

 Set covering problems arises when each set element must appear in at least one subset:  

∑jJ xj ≥ 1 

 Set packing problems arises when each set element must appear in at most one subset:  

∑jJ xj ≤ 1 

 Set partitioning problems arises when each set element must appear in exactly one 

subset:  

∑jJ xj = 1 

Example 9. Fire Station 

A county is reviewing the location of its fire stations.  

The county is made up of a number of cities:  

  

A fire station can be placed in any city. It is able to handle the fires for both its city and any 

adjacent city (any city with a non-zero border with its home city).  

How many fire stations should be built and where? 
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Answer  

We can create decision variable xj for each city j (1 if we place a station in the city, 0 otherwise 

– j = 1,2,…,11):  

Each constraint should state that there must be a station either in city j or in some adjacent 

city.  

The jth column of the constraint matrix represents the set of cities that can be served by a fire 

station in city j.  

We are asked to find a set of such subsets j that covers the set of all cities in the sense that 

every city appears in the service subset associated with at least one fire station. 

There must be at least one fire station either in city j or in some adjacent city (set covering 

constraints).  

min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 
s.t.  x1 + x2 + x3 + x4      ≥ 1 (city 1) 

 x1 + x2 + x3 +         x5                ≥ 1 (city 2) 
 x1 + x2 + x3 + x4 + x5 + x6     ≥  1 (city 3) 
 x1         + x3 + x4        + x6 + x7   ≥ 1 (city 4) 
         x2 + x3        + x5 + x6         + x8 + x9  ≥ 1 (city 5) 
        x3 + x4 + x5 + x6 + x7 + x8              ≥ 1 (city 6) 
               x4        + x6 + x7 + x8        ≥ 1 (city 7) 
                                         x5 + x6 + x7 + x8 + x9 + x10   ≥ 1 (city 8) 
                      x5                + x8 + x9 + x10 + x11 ≥ 1 (city 9) 
                                  x8 + x9 + x10 + x11 ≥ 1 (city 10) 
                                          x9 + x10 + x11 ≥ 1 (city 11) 
 All xj = 0 or 1 

Example 10. Timetable Scheduling 

In an IE department, on Monday, 4 classes have to be assigned to classrooms. There are 3 

classrooms devoted to the IE department. Each day is divided into 2 periods: morning and 

afternoon. Schedule a class timetable for the department.  

Answer 

xijk = 1 if class i is assigned to classroom j at time period k, 0 otherwise  

         i = 1, 2, 3, 4 (classes), j = 1, 2, 3 (rooms), k = 1, 2 (periods) 

Each class should be assigned to exactly one classroom at a specific time period (set 

partitioning constraints): 

x111 + x112 + x121 + x122 + x131 + x132 = 1  (class 1) 

x211 + x212 + x221 + x222 + x231 + x232 = 1  (class 2) 

x311 + x312 + x321 + x322 + x331 + x332 = 1  (class 3) 

x411 + x412 + x421 + x422 + x431 + x432 = 1  (class 4) 

At most one class can be held in each classroom at a specific time period (set packing 

constraints): 

x111 + x211 + x311 +  x411 ≤ 1   (room 1 – morning) 
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x112 + x212 + x312 +  x412 ≤ 1    (room 1 – afternoon) 

x121 + x221 + x321 +  x421 ≤ 1    (room 2 – morning) 

x122 + x222 + x322 +  x422 ≤ 1    (room 2 – afternoon) 

x131 + x231 + x331 +  x431 ≤ 1    (room 3 – morning) 

x132 + x232 + x332 +  x432 ≤ 1    (room 3 – afternoon) 

Therefore, the IP model that would be formulated to schedule the timetable will be: 

max f (or any other objective function) 

s.t.  x111 + x112 + x121 + x122 + x131 + x132 = 1  (class 1) 

x211 + x212 + x221 + x222 + x231 + x232 = 1  (class 2) 

x311 + x312 + x321 + x322 + x331 + x332 = 1  (class 3) 

x411 + x412 + x421 + x422 + x431 + x432 = 1  (class 4) 

x111 + x211 + x311 +  x411 ≤ 1     (room 1 – morning) 

x112 + x212 + x312 +  x412 ≤ 1     (room 1 – afternoon) 

x121 + x221 + x321 +  x421 ≤ 1     (room 2 – morning) 

x122 + x222 + x322 +  x422 ≤ 1     (room 2 – afternoon) 

x131 + x231 + x331 +  x431 ≤ 1     (room 3 – morning) 

x132 + x232 + x332 +  x432 ≤ 1     (room 3 – afternoon) 

All xijk = 0 or 1 

1.7 Traveling Salesperson Problems 

“Given a number of cities and the costs of traveling from any city to any other city, what is the 

cheapest round-trip route (tour) that visits each city once and then returns to the starting city?” 

This problem is called the traveling salesperson problem (TSP), not surprisingly. 

An itinerary that begins and ends at the same city and visits each city once is called a tour.  

Suppose there are N cities.  

Let cij = Distance from city i to city j (for ij) and  

Let cii = M (a very large number relative to actual distances) 

Also define xij as a 0-1 variable as follows: 

xij = 1 if s/he goes from city i to city j; 

xij = 0 otherwise 

The formulation of the TSP is: 

 min  ∑ ∑ 𝑐௜௝𝑥௜௝௝௜   

 s.t. ∑ 𝑥௜௝௜ ൌ 1           for all 𝑗 

  ∑ 𝑥௜௝௝ ൌ 1           for all 𝑖 

  𝑢௜ െ 𝑢௝ ൅ 𝑁𝑥௜௝ ൑ 𝑁 െ 1         for 𝑖 ് 𝑗;   𝑖, 𝑗 ൐ 1 

 All 𝑥௜௝ ൌ 0 𝑜𝑟 1 All 𝑢௜ ൒ 0 
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The first set of constraints ensures that s/he arrives once at each city. 

The second set of constraints ensures that s/he leaves each city once. 

The third set of constraints ensure the following: 

Any set of xij’s containing a subtour will be infeasible 

Any set of xij’s that forms a tour will be feasible 

𝑢௜ െ 𝑢௝ ൅ 𝑁𝑥௜௝ ൑ 𝑁 െ 1         for 𝑖 ് 𝑗;   𝑖, 𝑗 ൐ 1 

Assume N=5  

Subtours: 1-5-2-1, 3-4-3 ??? 

Choose the subtour that does not contain city 1: 

  u3 – u4 + 5 x34 ≤ 4   

  u4 – u3 + 5 x43 ≤ 4 

    5 (x34 + x43) ≤ 8 

This rules out the possibility that x34 = x43 = 1  

The formulation of an IP whose solution will solve a TSP becomes unwieldy and inefficient for 

large TSPs.  

When using branch and bound methods to solve TSPs with many cities, large amounts of 

computer time may be required. For this reason, heuristics, which quickly lead to a good (but 

not necessarily optimal) solution to a TSP, are often used.  

1.8 Piecewise Linear Function 

0-1 variables can be used to model optimization problems involving piecewise linear functions. 

A piecewise linear function consists of several straight-line segments. 

The points where the slope of the piecewise linear function changes are called the break points 

of the function. 

A piecewise linear function is not a linear function so linear programming can not be used to 

solve the optimization problem. 

By using 0-1 variables, however, a piecewise linear function can be represented in linear form. 

Suppose the piecewise linear function f(x) has break points b1, b2, ..., bn. 

Step 1   Wherever f(x) occurs in the optimization problem, replace f(x) by  

   z1f(b1)+ z2f(b2)+ ...+znf(bn).    

Step 2   Add the following constraints to the problem: 

 z1≤y1, z2≤y1+y2, z3≤y2+y3, ..., zn-1≤yn-2+yn-1, zn≤yn-1 

 y1 + y2 + ... + yn-1 = 1 

 z1 + z2 + ... + zn = 1 

 x = z1b1 + z2b2 + ... + znbn 

 yi = 0 or 1 (i=1,2,..., n-1); zi ≥ 0 (i=1,2,...,n) 
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Example 14. Euing Gas (Winston 9.2, p. 492) 

Euing Gas produces two types of gasoline (gas 1 and gas 2) from two types of oil (oil 1 and oil 

2). Each gallon of gas 1 must contain at least 50% of oil 1, and each gallon of gas 2 must 

contain at least 60% oil 1. Each gallon of gas 1 can be sold for 12¢, and each gallon of gas 2 

can be sold for 14¢. Currently, 500 gallons of oil 1 and 1000 gallons of oil 2 are available. As 

many as 1500 more gallons of oil 1 can be purchased at the following prices: first 500 gallons, 

25¢ per gallon; next 500 gallons, 20¢ per gallon; next 500 gallons, 15¢ per gallon.  

Formulate an IP that will maximize Euing’s profits (revenues – purchasing costs). 

Answer 

Except for the fact that the cost of purchasing additional oil 1 is a piecewise linear function, 

that is a straightforward blending problem:  

 x = amount of oil 1 purchased 

 xij = amount of oil i used to produce gas j (i,j=1,2) 

Total revenue – cost of purchasing oil 1 = 

 z = 12(x11 + x21) + 14(x12 + x22) – c(x) 

 where 


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Because c(x) is a piecewise linear function, the objective function is not a linear function of x, 

and this optimization is not an LP.  

However, we can transform this problem into an IP. After recalling that the break points for c(x) 

are 0, 500, 1000, and 1500, we replace c(x) and add additional constraints:  

 c(x) = z1 c(0) + z2 c(500) + z3 c(1000) + z4 c(1500) 

 x = 0 z1 + 500 z2 + 1000 z3 + 1500 z4 

 z1 ≤ y1, z2 ≤ y1 + y2, z3 ≤ y2 + y3 , z4 ≤ y3 

 z1 + z2 + z3 + z4 = 1,  

 y1 + y2 + y3 = 1 

 yi = 0 or 1 (i=1, 2, 3) ; zi ≥ 0 (i = 1, 2, 3, 4) 

Problem Constraints: 

Euing can use at most x + 500 gallons of oil 1: 

 x11 +  x12 ≤ x + 500   

Euing can use at most 1000 gallons of oil 2: 

 x21 +  x22 ≤ 1000  

The oil mixed to make gas 1 must be at least 50% oil 1: 

 x11 / (x11 + x21) ≥ 0.5   or   0.5x11 – 0.5x21 ≥ 0  
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The oil mixed to make gas 2 must be at least 60% oil 1: 

 x12 / (x12 + x22) ≥ 0.6   or   0.4x12 – 0.6x22 ≥ 0 

Also, all variables must be nonnegative.   

The final IP is as follows: 

max z  = 12x11 + 12x21 + 14x12 + 14x22 – z1c(0) – z2c(500) – z3c(1000) – z4c(1500) 
s.t. x11 +  x12 ≤ x + 500 
 x21 +  x22 ≤ 1000 
 0.5x11 – 0.5x21 ≥ 0 
 0.4x12 – 0.6x22 ≥ 0 
x = 0z1 + 500z2 + 1000z3 + 1500z4    
z1 ≤ y1     
z2 ≤ y1 + y2    
z3 ≤ y2 + y3     
z4 ≤ y3    
y1 + y2 + y3 = 1    
z1 + z2 + z3 + z4 = 1    
yi = 0 or 1 (i=1, 2, 3) ; zi ≥ 0 (i = 1, 2, 3, 4)  
xij ≥ 0  

Report 

The optimal solution to Euing’s problem is  

 z = 12,500,  

 x = 1000, x12 = 1500, x22 =1000, y2 = z3 = 1 

Thus, Euing should purchase 1000 gallons of oil 1 and produce 2500 gallons of gas 2.  

 Total profit would be $125. 

Review 

To see why this formulation works, observe that  

since y1 + y2 + y3 = 1 and yi = 0 or 1,  

exactly one of the yi’s will equal 1, and the others will equal 0.  

now, (1)-(7) imply that if yi = 1, then zi and zi+1 may be positive, but all the other zi’s must equal 

0.  

for instance, if y2 = 1, then y1 = y3 = 0.  

Then (2)-(5) become z1 ≤ 0, z2 ≤ 1, z3 ≤ 1 and z4 ≤ 0.  

These constraints force z1 = z4 = 0 and allow z2 and z3 to be any nonnegative 

number less than or equal to 1.  

We can now show that (1)-(7) correctly represent the piecewise linear function c(x): 

 Choose any value of x, say x = 800.  

 Note that b2 = 500 ≤ 800 ≤ 1000 = b3.  

 For x = 800, what value do our constraints assign to y1, y2 and y3?  

o The value of y1 = 1 is impossible, because if y1 = 1, then y2 = y3 = 0. Then (4)-(5) 

force z3 = z4 =0. Then (1) reduces to 800 = x = 500z2 which cannot be satisfied by 

z2 ≤ 1. 
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o Similarly, y3 = 1 is impossible.  

o If we try y2 = 1, (2) and (5) force z1 = z4 = 0. Then (3) and (4) imply z2 ≤ 1 and z3 ≤ 

1. Now (1) becomes 800 = x = 500z2 + 1000z3. Because z2 + z3 = 1, we obtain z2 

= 2/5 and z3 = 3/5.  

 Now the objective function reduces to 

 12 x11 + 12 x21 + 14 x12 + 14 x22 – 2 c(500) / 5 – 3 c(1000) / 5  

 because c(800) = 2 c(500) / 5 + 3 c(1000) / 5 

If a piecewise linear function f(x) involved in a formulation has the property that the slope of 

the f(x) becomes less favorable to the decision maker as x increases, then the tedious IP 

formulation is unnecessary. 

Example 12. Dorian Auto (Winston 9.2, p. 494)  

Dorian Auto has a $20,000 advertising budget. Dorian can purchase full page ads in two 

magazines: Inside Jocks (IJ) and Family Square (FS).  

An exposure occurs when a person reads a Dorian Auto ad for the first time.  

The number of exposures generated by each ad in IJ occurs as follows: ads 1-6, 10,000 

exposures; ads 7-10, 3,000 exposures; ads 11-15, 2,500 exposures; ads 16+, 0 exposures.  

For instance, 8 ads in IJ would generate 6 (10,000) + 2 (3,000) = 66,000 exposures.  

The number of exposures generated by each ad in FS is as follows: ads 1-4, 8,000 exposures; 

5-12, 6,000 exposures; ads 13-15, 2,000 exposures; ads 16+, 0 exposures.  

Thus, 13 ads in FS would generate 4 (8,000) + 8 (6,000) + 1 (2,000) = 82,000 exposures.  

Each full page ad in either magazine costs $1,000. 

Assume there is no overlap in the readership of the two magazines.  

Formulate an IP to maximize the number of exposures that Dorian can obtain with limited 

advertising funds.  

Answer 

If we define 

 x1 = number of IJ ads yielding 10,000 exposures 

 x2 = number of IJ ads yielding 3,000 exposures 

 x3 = number of IJ ads yielding 2,500 exposures 

 y1 = number of FS ads yielding 8,000 exposures 

 y2 = number of FS ads yielding 6,000 exposures 

 y3 = number of FS ads yielding 2,000 exposures 

then the total number of exposures (in thousands) is given by 

 10 x1 + 3 x2 + 2.5 x3 + 8 y1 + 6 y2 + 2 y3 = z 

Thus, Dorian wants to maximize z.  
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Because the total amount spent (in thousands) is just he total number of ads placed in both 

magazines, Dorian’s budget constraint may be written as  

 x1 + x2 + x3 + y1 + y2 + y3 ≤ 20 

The statement of the problem implies that  

x1 ≤ 6  
x2 ≤ 4  
x3 ≤ 5  
y1 ≤ 4  
y2 ≤ 8 
y3 ≤ 3  

Adding the sign restrictions on each variable and noting that the each variable must be an 

integer, we obtain the following IP: 

max z = 10x1 + 3x2 + 2.5x3 + 8y1 + 6y2 + 2y3 
s.t.     x1 + x2 + x3 + y1 + y2 +  y3 ≤ 20 
          x1                                       ≤ 6 
                 x2                                ≤ 4 
                        x3                         ≤ 5 
                                y1                 ≤ 4 
                                       y2         ≤ 8 
                                               y3 ≤ 3 
xi, yi integer (i = 1, 2, 3) 
xi, yi ≥ 0 (i = 1, 2, 3) 

Report  

The optimal solution to Dorian’s IP is  

 z = 146, x1 = 6, x2 = 2, y1 = 4, y2 = 8, x3 = 0, y3 = 0  

Thus, in order to have possible maximum number of 146,000 exposures,  

Dorian will place 8 ads in IJ and 12 ads in FS. 

Review  

Observe that the statement of the problem implies that x2 cannot be positive unless x1 assumes 

its maximum value of 6.  

Because x1 ads generate more exposures that x2 ads, however, the act of maximizing ensures 

that x2 will be positive only if x1 has been made as large as possible.  

Similarly, x3 cannot be positive unless x2 assumes its maximum value of 4.  

Also, y2 will be positive only if y1 = 4, and y3 will be positive only if y2 = 8. 

In this example, additional advertising in a magazine yielded diminishing returns.  

This ensured that xi (yi) would be positive only if xi-1 (yi-1) assumed its maximum value.  

If additional advertising generated increasing returns, this formulation would not yield the 

correct solution.  
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Example 13. Modified Dorian Auto 

Suppose that the number of exposures generated by each IJ ad was as follows: ads 1-6, 2,500 

exposures; ads 7-10, 3,000 exposures; ads 11-15, 10,000 exposures; and that the number of 

exposures generated by each FS is as follows: ads 1-4, 2,000 exposures; ads 5-12, 6,000 

exposures; ads 13-15; 8,000 exposures  

Answer 

If we define 

 x1 = number of IJ ads generating 2,500 exposures 

 x2 = number of IJ ads generating 3,000 exposures 

 x3 = number of IJ ads generating 10,000 exposures 

 y1 = number of FS ads generating 2,000 exposures 

 y2 = number of FS ads generating 6,000 exposures 

 y3 = number of FS ads generating 8,000 exposures 

then the reasoning used in the previous example would lead to the following formulation:  

max z = 2.5x1 + 3x2 + 10x3 + 2y1 + 6y2 + 8y3 
s.t.    x1 + x2 + x3 + y1 + y2 + y3 ≤ 20 
         x1                                      ≤ 6 
                x2                               ≤ 4 
                       x3                        ≤ 5 
                              y1                 ≤ 4 
                                     y2          ≤ 8 
                                             y3  ≤ 3 
xi, yi integer (i = 1, 2, 3) 
xi, yi ≥ 0 (i = 1, 2, 3) 

Report 

The optimal solution to this IP is  

 x3 = 5, x2 = 4, x1 = 0, y3 = 3, y2 = 8, y1 = 0  

which cannot be correct.  

Therefore, we see that the type of formulation used in the Dorian Auto example is correct if the 

piecewise linear objective function has a less favorable slope for larger values of x.  

In our second example (8’), the effectiveness of an ad increased as the number of ads in a 

magazine increased, and the act of maximizing will not ensure that xi can be positive only if xi-

1 assumes its maximum value.  

In this case, the approach used in the Euing Gas example would yield a correct formulation.  

Example 14. Machine tool design (Based on Bazaraa et al. (2010) p.33) 

A lathe is used to reduce the diameter of a steel shaft whose length is 36 in. from 14 in. to 12 

in. The speed x1 (in revolutions per minute), the depth feed x2 (in inches per minute), and the 

length feed x3 (in inches per minute) must be determined. The duration of the cut is given by 

36 𝑥ଶ𝑥ଷ⁄  . The compression and side stresses exerted on the cutting tool are given by 30𝑥ଵ ൅
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4500𝑥ଶ and 40𝑥ଵ ൅ 5000𝑥ଶ ൅ 5000𝑥ଷ pounds per square inch, respectively. The temperature 

(in degrees Fahrenheit) at the tip of the cutting tool is 200 ൅ 0.5𝑥ଵଶ ൅ 70𝑥ଶଷ ൅ 150𝑥ଷ. The 

maximum compression stress, side stress, and temperature allowed are 150,000 psi, 100,000 

psi, and 800°F, respectively. It is desired to determine the speed (which must be in the range 

from 600 rpm to 800 rpm), the depth feed, and the length feed such that the duration of the cut 

is minimized.  

In order to use a linear model, the following approximation is made.  

 Since 36 𝑥ଶ𝑥ଷ⁄  is minimized if and only if 𝑥ଶ𝑥ଷ is maximized, it was decided to replace 

the objective by the maximization of the minimum of 𝑥ଶ and 𝑥ଷ.  

 It is decided to convert non-linear function of the temperature to piecewise linear 

functions of 𝑥ଵ and 𝑥ଶ. 

Formulate the problem as a linear model and comment on the validity of the approximations 

used. 

Answer 

Maximization of the minimum of 𝑥ଶ and 𝑥ଷ: 

The objective would be 𝑀𝑎𝑥 𝑀𝑖𝑛 ሺ𝑥ଶ, 𝑥ଷሻ. To add this objective in a linear model, a new 

variable  is defined, where  = 𝑀𝑖𝑛 ሺ𝑥ଶ, 𝑥ଷሻ. And the following constraints are added in the 

model: 

𝑥ଶ ൒ 𝛿 

𝑥ଷ ൒ 𝛿 

The objective function will be 𝑀𝑎𝑥 𝛿. 

Linearization of the nonlinear functions: 

The temperature function the non-linear parts are separated as follows: 𝑓ଵ ൌ 0.5𝑥ଵଶ, 𝑓ଶ ൌ

70𝑥ଶଷ. 

These functions (𝑓ଵ and 𝑓ଶ) are converted to piecewise linear function for an approximate 

modeling.  

According to the given information in the question 600 ൑ 𝑥ଵ ൑ 800. This interval is divided in 

to 4 pieces as follows (For more accurate representation the interval can be divided into 

more pieces), and corresponding 𝑓ଵ values are calculated: 

𝑥ଵ  600  650  700  750  800 

𝑓ଵ  180000  211250  245000  281250  320000 

Then the following constraints are proposed for adding the piecewise linear function to the 

model: 

𝑓ଵ ൌ 180000𝜆ଵ ൅ 211250𝜆ଶ ൅ 245000𝜆ଷ ൅ 281250𝜆ସ ൅ 320000𝜆ହ 

𝑥ଵ ൌ 600𝜆ଵ ൅ 650𝜆ଶ ൅ 700𝜆ଷ ൅ 750𝜆ସ ൅ 800𝜆ହ 
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𝜆ଵ ൅ 𝜆ଶ ൅ 𝜆ଷ ൅ 𝜆ସ ൅ 𝜆ହ ൌ 1 

𝜆ଵ ൑ 𝑧ଵ 

𝜆ଶ ൑ 𝑧ଵ ൅ 𝑧ଶ 

𝜆ଷ ൑ 𝑧ଶ ൅ 𝑧ଷ 

𝜆ସ ൑ 𝑧ଷ ൅ 𝑧ସ 

𝜆ହ ൑ 𝑧ସ 

𝑧ଵ ൅ 𝑧ଶ ൅ 𝑧ଷ ൅ 𝑧ସ ൌ 1 

𝑧ଵ, 𝑧ଶ, 𝑧ଷ,𝑧ସ ∈ ሼ0,1ሽ 

𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 𝜆ସ, 𝜆ହ ൒ 0 

According to the given information in the question, the maximum value of 𝑥ଶ can be 2.252 

(from the temperature function: [800/70]1/3 ), and its minimum value is 0. So,  0 ൑ 𝑥ଶ ൑ 2.26. 

This interval is divided in to 4 pieces as follows and corresponding 𝑓ଶ values are calculated: 

𝒙𝟐 0 0.565 1.130 3.390 2.26 

𝑓ଶ 0 12.63 101.00 2727.08 808.02 

Then the following constraints are added as the piecewise linear function to the model: 

𝑓ଶ ൌ 0𝛼ଵ ൅ 12.63𝛼ଶ ൅ 101𝛼ଷ ൅ 2727.08𝛼ସ ൅ 808.02𝛼ହ 

𝑥ଶ ൌ 0𝛼ଵ ൅ 0.565 ൅ 1.13𝛼ଷ ൅ 3.39𝛼ସ ൅ 2.26𝛼ହ 

𝛼ଵ ൅ 𝛼ଶ ൅ 𝛼ଷ ൅ 𝛼ସ ൅ 𝛼ହ ൌ 1 

𝛼ଵ ൑ 𝑘ଵ 

𝛼ଶ ൑ 𝑘ଵ ൅ 𝑘ଶ 

𝛼ଷ ൑ 𝑘ଶ ൅ 𝑘ଷ 

𝛼ସ ൑ 𝑘ଷ ൅ 𝑘ସ 

𝛼ହ ൑ 𝑘ସ 

𝑘ଵ ൅ 𝑘ଶ ൅ 𝑘ଷ ൅ 𝑘ସ ൌ 1 

𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ ∈ ሼ0,1ሽ  

𝛼ଵ,𝛼ଶ,𝛼ଷ,𝛼ସ,𝛼ହ ൒ 0 

There are also other constraints in the model: 

The maximum compression stress: 30𝑥ଵ ൅ 4500𝑥ଶ ൑ 150000 

The maximum side stress: 40𝑥ଵ ൅ 5000𝑥ଶ ൅ 5000𝑥ଷ ൑ 100000 

As a result, the following IP is developed: 

𝑀𝑎𝑥 𝛿 

Subject to 

𝑥ଶ ൒ 𝛿 

𝑥ଷ ൒ 𝛿 

30𝑥ଵ ൅ 4500𝑥ଶ ൑ 150000 
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40𝑥ଵ ൅ 5000𝑥ଶ ൅ 5000𝑥ଷ ൑ 100000 

200 ൅ ሺ180000𝜆ଵ ൅ 211250𝜆ଶ ൅ 245000𝜆ଷ ൅ 281250𝜆ସ ൅ 320000𝜆ହሻ

൅ ሺ0𝛼ଵ ൅ 12.63𝛼ଶ ൅ 101𝛼ଷ ൅ 2727.08𝛼ସ ൅ 808.02𝛼ହሻ ൅ 150𝑥ଷ ൑ 800 

𝑥ଵ ൌ 600𝜆ଵ ൅ 650𝜆ଶ ൅ 700𝜆ଷ ൅ 750𝜆ସ ൅ 800𝜆ହ 

𝜆ଵ ൅ 𝜆ଶ ൅ 𝜆ଷ ൅ 𝜆ସ ൅ 𝜆ହ ൌ 1 

𝜆ଵ ൑ 𝑧ଵ 

𝜆ଶ ൑ 𝑧ଵ ൅ 𝑧ଶ 

𝜆ଷ ൑ 𝑧ଶ ൅ 𝑧ଷ 

𝜆ସ ൑ 𝑧ଷ ൅ 𝑧ସ 

𝜆ହ ൑ 𝑧ସ 

𝑧ଵ ൅ 𝑧ଶ ൅ 𝑧ଷ ൅ 𝑧ସ ൌ 1 

𝑥ଶ ൌ 0𝛼ଵ ൅ 0.565 ൅ 1.13𝛼ଷ ൅ 3.39𝛼ସ ൅ 2.26𝛼ହ 

𝛼ଵ ൅ 𝛼ଶ ൅ 𝛼ଷ ൅ 𝛼ସ ൅ 𝛼ହ ൌ 1 

𝛼ଵ ൑ 𝑘ଵ 

𝛼ଶ ൑ 𝑘ଵ ൅ 𝑘ଶ 

𝛼ଷ ൑ 𝑘ଶ ൅ 𝑘ଷ 

𝛼ସ ൑ 𝑘ଷ ൅ 𝑘ସ 

𝛼ହ ൑ 𝑘ସ 

𝑘ଵ ൅ 𝑘ଶ ൅ 𝑘ଷ ൅ 𝑘ସ ൌ 1 

Sign restrictions and variable definitions: 

, x1 , x2 , x3  0 

𝑧ଵ, 𝑧ଶ, 𝑧ଷ,𝑧ସ ∈ ሼ0,1ሽ 

𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 𝜆ସ, 𝜆ହ ൒ 0 

𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ ∈ ሼ0,1ሽ  

𝛼ଵ,𝛼ଶ,𝛼ଷ,𝛼ସ,𝛼ହ ൒ 0 
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2. INTEGER PROGRAMMING - SOLVING IPs 

We have gone through a number of examples of IPs at the “Formulating IP Problems” 

section. “How can we get solutions to these models?” There are two common approaches:  

The technique based on dividing the problem into a number of smaller problems in a tree 

search method called branch and bound.  

The method based on cutting planes (adding constraints to force integrality).  

Actually, all these approaches involve solving a series of LP.  

For solving LPs we have general purpose (independent of the LP being solved) and 

computationally effective (able to solve large LP's) algorithms (simplex or interior point). For 

solving IP's no similar general purpose and computationally effective algorithms exist.   

2.1 Categorization  

Categorization (w.r.t. Purpose) 

 General purpose methods will solve any IP but potentially computationally ineffective (will 

only solve relatively small problems); or  

 Special purpose methods are designed for one particular type of IP problem but 

potentially computationally more effective.  

Categorization (w.r.t. Algorithm) 

 Optimal algorithms mathematically guarantee to find the optimal solution  

 Heuristic algorithms are used to solve a problem by trial and error when an optimal 

algorithm approach is impractical. They hopefully find a good feasible solution that, in 

objective function terms, is close to the optimal solution.  

Why Heuristics? 

Because the size of problem that we want to solve is beyond the computational limit of 

known optimal algorithms within the computer time we have available. We could solve 

optimally but feel that this is not worth the effort (time, money, etc) we would expend in 

finding the optimal solution. In fact, it is often the case that a well-designed heuristic 

algorithm can give good quality (near-optimal) results.  

Solution Algorithms Categories  

 General Purpose, Optimal 

Enumeration, branch and bound, cutting plane 

 General Purpose, Heuristic  

Running a general-purpose optimal algorithm and terminating after a specified time 

 Special Purpose, Optimal 

Tree search approaches based upon generating bounds via dual ascent, lagrangean 

relaxation 
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 Special Purpose, Heuristic  

Bound based heuristics, tabu search, simulated annealing, population heuristics (e.g. 

genetic algorithms), interchange 

2.2 LP Relaxation 

For any IP we can generate an LP by taking the same objective function and same 

constraints but with the requirement that variables are integer replaced by appropriate 

continuous constraints: 

“xi = 0 or 1”  xi >= 0 and xi <= 1 

“xi > 0 and integer”  xi >= 0 

The LP obtained by omitting all integer and 0-1 constraints on variables is called the LP 

Relaxation of the IP (LR). We can then solve this LR of the original IP.  

Example 1. IP 

Write the LR of the following IP: 

Maximize  8 x1 + 5 x2  

Subject to          x1 +    x2 ≤ 6  

                       9 x1 + 5 x2 ≤ 45 

x1, x2 ≥ 0 and integer  

Answer 

Maximize  8 x1 + 5 x2  

Subject to          x1 +    x2 ≤ 6  

                       9 x1 + 5 x2 ≤ 45 

x1, x2 ≥ 0  

Example 2. Binary IP 

Write the LR of the following IP: 

Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Answer 

Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 
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  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

   x1 ≤ 1     

   x2 ≤ 1 

   x3 ≤ 1 

   x4 ≤ 1 

   All xi ≥ 0  

Example 3. Mixed IP 

Write the LR of the following IP: 

max z = x1+ x2+x3 

s.t.   x1 + 6x2+ x3 ≤ 8 

    x1 + 2x2+1,5x3 ≤ 2 

  2x1 + x2+ 5x3 ≤ 8 

  x1  0, x2  0 and integer, x3 binary 

Answer 

max z = x1+ x2+x3 

s.t.   x1 + 6x2+ x3 ≤ 8 

    x1 + 2x2+1,5x3 ≤ 2 

  2x1 + x2+ 5x3 ≤ 8 

     x3 ≤ 1 

 x1, x2 , x3  0 

Naturally Integer LP 

If LR is optimized by integer variables then that solution is feasible and optimal for IP. In 

other words, if the solution is turned out to have all variables taking integer values at the 

optimal solution, it is also optimal solution for IP: 

LR – IP Relation  

Since LR is less constrained than IP:  

 If IP is a maximization problem, the optimal objective value for LR is greater than or equal 

to that of IP.  

 If IP is a minimization problem, the optimal objective value for LR is less than or equal to 

that of IP.  

 If LR is infeasible, then so is IP.  

So, solving LR does give some information. It gives a bound on the optimal value, and, if we 

are lucky, may give the optimal solution to IP.  
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2.3 Enumeration 

Unlike LP (where variables took continuous values) in IP's (where all variables are integers) 

each variable can only take a finite number of discrete (integer) values. 

Hence the obvious solution approach is simply to enumerate all these possibilities - 

calculating the value of the objective function at each one and choosing the (feasible) one 

with the optimal value.  

Example 4. Multi-period Capital Budgeting  

Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Possible Solutions  

There are 24=16 possible solutions: 

0 0 0 0   do no projects 

0 0 0 1   do one project 

0 0 1 0 

0 1 0 0 

1 0 0 0  

0 0 1 1    do two projects 

0 1 0 1 

1 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 0 0  

1 1 1 0     do three projects 

1 1 0 1  

1 0 1 1  

0 1 1 1 

1 1 1 1     do four projects 

Review 

Hence for our example, we merely have to examine 16 possibilities before we know precisely 

what the best possible solution is. This example illustrates a general truth about integer 

programming. 

What makes solving the problem easy when it is small is precisely what makes it hard very 

quickly as the problem size increases. 

This is simply illustrated: suppose we have 100 integer variables each with two possible 

integer values then there are 2x2x2x ... x2 = 2100 (approximately 1030) possibilities which we 

have to enumerate (obviously many of these possibilities will be infeasible, but until we 

generate one, we cannot check it against the constraints to see if it is feasible). 

For 100 integer variable - conceptually there is not a problem - simply enumerate all 

possibilities and choose the best one. But computationally (numerically) this is just 

impossible. 
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2.4 The Branch-and-Bound Method 

The most effective general purpose optimal algorithm is an LP-based tree search approach 

called as branch and bound (B&B). The method was first put forward in the early 1960's by 

Land and Doig. This is a way of systematically (implicitly) enumerating feasible solutions 

such that the optimal integer solution is found. 

Where this method differs from the enumeration method is that not all the feasible solutions 

are enumerated but only a part (hopefully a small part) of them. However, we can still 

guarantee that we will find the optimal integer solution. By solving a single subproblem, many 

possible solutions may be eliminated from consideration. Subproblems are generated by 

branching on an appropriately chosen fractional-valued variable.  

Suppose that in a given subproblem (call it subp.1), assumes a fractional value between the 

integers i and i+1. Then the two newly generated subproblems: 

Subp.2 = Subp.1 + Constraint “xi ≥ i+1” 

Subp.3 = Subp.1 + Constraint “xi ≤ I” 

If all variables have integer values in the optimal solution to the subproblem then the solution 

is a feasible solution for the original IP. 

If the current feasible solution for the IP has a better z-value than any previously obtained 

feasible solution, then it becomes a candidate solution, and its z-value becomes the current 

Lower Bound (LB) on the optimal z-value (for a max problem). 

If it is unnecessary to branch on a subproblem, we say that it is fathomed (inactive):  

 The subproblem is infeasible 

 The subproblem yields an optimal solution in which all variables have integer values 

 The optimal z-value for the subproblem does not exceed the current LB, so it cannot yield 

the optimal solution of the IP 

Two general approaches are used to determine which subproblem should be solved next: 

 Backtracking (LIFO) 

Leads us down one side of the B&B tree and finds a candidate solution. Then we 

backtrack our way up to the top of the other side of the tree. 

 Jumptracking 

Solves all the problems created by branching. Then it branches again on the node with 

the best z-value. Often jumps from one side of the tree to the other. 

A display of the subproblems that have been created is called a tree.  

Each subproblem is referred to as a node of the tree. 

Each additional constraint is referred to as a line (arc) connecting two nodes (old subproblem 

and one of the new subproblems) of the tree. 
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2.5 B&B for Solving Pure IP Problems 

Example 5. Pure IP (Winston 9.3., p. 513) 

Solve the following IP using Branch and Bound method. 

max z = 8 x1 + 5 x2  

s.t.           x1 +    x2 ≤ 6  

             9 x1 + 5 x2 ≤ 45 

 x1, x2 ≥ 0 and integer  

Answer 

Suppose that we were to solve the LR of the problem [replace “x1, x2 ≥ 0 and integer” by “x1, 

x2 ≥ 0”]. Then using any LP package or utilizing simplex or graphical solution method we get  

 z = 165/4, x1 = 15/4, x2=9/4 

As a result of this we now know something about the optimal integer solution, namely that it 

is <= 165/4, i.e. this value of 165/4 is an Upper Bound on the optimal integer solution. This 

is because when we relax the integrality constraint we (as we are maximizing) end up with a 

solution value at least that of the optimal integer solution (and maybe better).   

We arbitrarily choose a variable that is fractional in the optimal solution to the LR (subp.1): 

say x1.  

We need x1 to be integer. We branch on x1 and create two new subproblems:  

Subp.2: LR +  “x1 ≥ 4” 

Subp.3: LR +  “x1 ≤ 3” 

Observe that neither subp.2 nor subp.3 includes any points with x1 = 15/4. This means that 

the optimal solution to LR can not recur when we solve these new subproblems. 

We now arbitrarily choose to solve subp.2.  

We see that the optimal solution to subp.2 is 

 z = 41, x1 = 4, x2 = 9/5 

We choose x2 that is fractional in the optimal solution to subp.2. 

We need x2 to be integer. We branch on x2 and create two new subproblems:  

Subp.4: LR + x1 ≥ 4 and x2 ≥ 2 = Subp.2 + x2 ≥ 2 

Subp.5: LR + x1 ≥ 4 and x2 ≤ 1 = Subp.2 + x2 ≤ 1 

The set of unsolved subproblems are consists of subp.3, 4, and 5.  

We choose to solve the most recently created subproblem (This is called LIFO): The LIFO 

rule implies that we should next solve subp.4 or 5. 

We now arbitrarily choose to solve subp.4.  

We see that subp.4 is infeasible. Thus subp.4 cannot yield optimal solution to the IP.  

Because any branches emanating from subp.4 will yield no useful information, it is fruitless to 

create them. 
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LIFO rule implies that we should next solve subp.5. 

The optimal solution to subp.5 is 

 z = 365/9, x1 = 40/9, x2 = 1 

We branch on fractional-valued x1: 

Subp.6: Subp.5 + x1 ≥ 5 

Subp.7: Subp.5 + x1 ≤ 4 

Subp.3, 6, and 7 are now unsolved. 

The LIFO rule implies that we next solve subp.6 or 7. 

We now arbitrarily choose to solve subp.7. 

The optimal solution to subp.7 is 

 z = 37, x1 = 4, x2 = 1 

As both variables assume integer values, this solution is feasible for the original IP  this 

solution is a candidate solution 

We must keep this candidate solution until a better feasible solution to the IP (if any exists) is 

found. 

We may conclude that the optimal z-value for the IP ≥ 37  Lower Bound (LB) 

LIFO rule implies that we should next solve subp.6. 

The optimal solution to subp.6 is 

 z = 40, x1 = 5, x2 = 0 

It’s z-value of 40 is larger than LB. Thus subp.7 cannot yield the optimal solution of the IP. 

We update our LB to 40. 

Subp.3 is the only remaining unsolved problem. 

The optimal solution to subp.3 is 

 z = 39, x1 = 3, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal 

solution to the IP. 

Optimal Solution 

Thus, the optimal solution to the IP 

 z = 40, x1 = 5, x2 = 0 
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Final B&B Tree 

 

2.5.1 B&B for Solving Mixed IP Problems 

In MIP, some variables are required to be integers and others are allowed to be either integer 

or non-integers. To solve a MIP by B&B method, modify the method by branching only on 

variables that are required to be integers. For a solution to a subproblem to be a candidate 

solution, it need only assign integer values to those variables that are required to be integers 

Example 6. Mixed IP (Winston 9.4., p. 523) 

Solve the following IP using Branch and Bound method. 

max z = 2 x1 +   x2  

s.t.        5 x1 + 2 x2 ≤ 8  

                x1 +    x2 ≤ 3 

 x1, x2 ≥ 0; x1 integer 

Answer 

We solve the LR (subp.1) of the problem  
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 [replace “x1≥ 0 and integer” by “x1 ≥ 0”] 

Then using any LP package or utilizing simplex or graphical solution method we get  

 z = 11/3, x1 = 2/3, x2=7/3 

Because x2 is allowed to be fractional, we do not branch on x2. 

We branch on x1 and create two new subproblems:  

Subp.2: LR + x1 ≥ 1 

Subp.3: LR + x1 ≤ 0 

We see that the optimal solution to subp.2 is 

 z = 7/2, x1 = 1, x2 = 3/2 

As only x1 assume integer value, this solution is feasible for the original MIP  Candidate 

solution; LB = 7/2 

The optimal solution to subp.3 is 

 z = 3, x1 = 0, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal 

solution to the MIP. 

Optimal Solution 

Thus, the optimal solution to the MIP 

  z = 7/2, x1 = 1, x2 = 3/2 

2.5.2 B&B for Solving Binary IP Problems 

One aspect of the B&B method greatly simplify: 

Due to each variable equaling 0 or 1, branching on xi will yield in  

 xi = 0   and   xi = 1 

Example 7. Binary IP  

Solve the following IP using Branch and Bound method. 

max z = 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

s.t.  0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Answer  

Replace “xj = 0 or 1 (j=1,...,4)” by “0 ≤ xj ≤ 1 (j=1,...,4)”   LR of the problem 

Optimal solution to the LR: 

 z=0.65, x2=0.5, x3=1, x1=x4=0 

The variable x2 is fractional. To resolve this we can generate two new problems: 

P1: LR + x2=0  
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P2: LR + x2=1  

We now have two new subproblem to solve (jumptracking). 

If we do this we get  

P1 solution: z=0.6, x1=0.5, x3=1, x2=x4=0  

P2 solution: z=0.63, x2=1, x3=0.67, x1=x4=0 

Choosing subproblem P2 (the best z–value), we branch on x3 and get 

P3 (P2 + x3=0) Solution: z=0.5, x1=x2=1, x3=x4=0  

P4 (P2 + x3=1) Solution: infeasible 

P3 solution is feasible for the original binary IP   Candidate solution; LB = 0.5 

Choosing the only remaining subproblem P1, we branch on x1 and get 

P5 (P1 + x1=0) Solution: z=0.6, x3=x4=1, x1=x2=0 

P6 (P1 + x1=1) Solution: z=0.53, x1=1, x3=0.67, x2=x4=0  

P5 solution is feasible for the original binary IP  New candidate solution; updated LB = 0.6 

P6 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal solution to 

the binary IP.  

Thus, the optimal solution to the binary IP 

 z = 0.6, x1 = 0, x2 = 0, x3 = 1, x4 = 1 

 

Review 

Note here that B&B, like complete enumeration, also involves powers of 2 as we progress 

down the (binary) tree. However also note that we did not enumerate all possible integer 

solutions (of which there are 16). Instead, here we solved 7 LP's.  

This is an important point, and indeed why tree search works at all. We do not need to 

examine as many LPs as there are possible solutions.  
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While the computational efficiency of tree search differs for different problems, it is this basic 

fact that enables us to solve problems that would be completely beyond us where we to try 

complete enumeration  

2.5.3 B&B for Solving Knapsack Problems 

Please recall that a knapsack problem is an IP, in which each variable must be equal to 0 or 

1, with a single constraint: 

max z = c1x1 + c2x2 + ∙∙∙ + cnxn 

s.t.        a1x1 + a2x2 + ∙∙∙ + anxn ≤ b 

        xi = 0 or 1   (i = 1, 2, …, n) 

Two aspects of the B&B method greatly simplify: 

 Due to each variable equaling 0 or 1, branching on xi will yield in xi =0 and xi =1 

 The LP relaxation may be solved by inspection instead of using any LP package or 

utilizing simplex or graphical solution method  

Inspection 

Recall that 

ci is the benefit obtained if item i is chosen 

b is the total amount of an available resource 

ai is the amount of the available resource used by item i 

Observe that ratio ri (ci/ai) may be interpreted as the benefit item i earns for each unit of the 

resource used by item i. Thus, the best items have the largest value of r and the worst items 

have the smallest values of r. 

To solve any subproblem resulting from a knapsack problem, compute all the ratios. 

Then put the best item in the knapsack. 

Then put the second-best item in the knapsack. 

Continue in this fashion until the best remaining item will overfill the knapsack.  

Then fill the knapsack with as much of this item as possible. 

Example 8. Knapsack 

Solve the following Knapsack problem using Branch and Bound method. 

max z =  8 x1 + 11 x2 + 6 x3 + 4 x4  

s.t.  5 x1 +  7 x2  + 4 x3 + 3 x4 ≤ 14 

    xj = 0 or 1 j = 1, … 4 

Answer 

We compute the ratios: 

 r1 = 8 / 5 = 1.6 

 r2 = 11 / 7 = 1.57 
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 r3 = 6 / 4 = 1.5 

 r4 = 4 / 3 = 1.33 

Using the ratios, LR solution is 

 x1 = 1, x2 = 1, x3 = 0.5, x4 = 0, z = 22 

We branch on x3 and get 

P1 (LR + x3=0) Solution: x3=0, x1=x2=1, x4=2/3, z=21.67 

P2 (LR + x3=1) Solution: x3=x1=1, x2=5/7, x4=0, z=21.85 

Choosing subproblem P2 (the best z–value), we branch on x2 and get  

P3 (P2 + x2=0) Solution: x3=1, x2=0, x1=1, x4=1, z=18 

P4 (P2 + x2=1) Solution: x3=x2=1, x1=3/5, x4=0, z=21.8 

P3 solution is feasible for the original knapsack problem   Candidate solution; LB = 18 

Choosing subproblem P4, we branch on x1 and get  

P5 (P4 + x1=0) Solution: x3=x2=1, x1=0, x4=1, z=21 

P6 (P4 + x1=1) Solution: Infeasible (x3=x2=x1=1: LHS=16) 

P5 solution is feasible for the original knapsack problem  New candidate solution; updated 

LB = 21 

The only remaining subproblem is P1 with solution value 21.67 

There is no better solution for this subproblem than 21. But we already have a solution with 

value 21. 

It is not useful to search for another such solution. We can fathom P1 based on this bounding 

argument and mark P1 as inactive. 

Optimal solution and Report 

Thus, the optimal solution is  z=21, x1=0, x2=1, x3=1, x4=1 

Items 2, 3, and 4 should be put in the knapsack. In this case, the total value would be 21. 
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2.6 Combinatorial Optimization Problems 

A combinatorial (discrete) optimization problem is any optimization problem that has a 

finite number of feasible solutions.  

Examples of combinatorial optimization problems: 

 Ten jobs must be processed on a single machine. It is known how long it takes to complete 

each job and the time at which each job must be completed (the job’s due date). What 

ordering of the jobs minimizes the total delay of the 10 jobs?  

 A salesperson must visit each of the 10 cities before returning to her/his home. What 

ordering of the cities minimizes the total distance the salesperson must travel before 

returning home? (TSP). 

In each of these problems, many possible solutions must be considered. 

A B&B approach is often an efficient way to solve them. 

2.6.1 Job Shop Scheduling 

Scheduling theory is one of the significant research areas in OR. It has been the subject of 

research with techniques ranging from simple dispatching rules to sophisticated learning 

algorithms. Job shop scheduling problem (JSP) is one of the most studied topics in scheduling 

theory which is known to be difficult to solve. Although the name job shop scheduling seems 



Y. Ilker Topcu, Ph.D. (www.ilkertopcu.net) & Özgür Kabak, Ph.D. (akademi.itu.edu.tr/kabak/ ) 34

to refer to an industrial problem, the structure of JSP is related to various applications, such as 

management, computing, and public services.  

In JSP, there are n jobs planned to be scheduled on m machines. Each machine can process 

only one job and each job can be processed by only one machine at a given time (capacity 

constraints). The duration in which all operations for all jobs are completed is referred to as the 

makespan Cmax. The scheduling costs may be the makespan, maximum lateness, maximum 

tardiness, maximum weighted completion time, total (weighted) completion time, and total 

(weighted) number of tardy jobs.  

In the single machine scheduling problem, there are n jobs to be processed on a single 

machine. Each job has a processing time and a due date. The machine can process at most 

one job at a time. No preemption is allowed. The objective is to find a sequence of 

processing (i.e. an ordering of the jobs on the machine) to minimize the scheduling cost. 

Example 9. Single Machine Scheduling 

Please refer to Winston 9.6., p. 528 

2.6.2 TSP 

Please recall that 

We define xij as a 0-1 variable: 

xij = 1 if TS goes from city i to city j; 

xij = 0 otherwise 

cij = distance form city i to city j (for ij) 

cii = M (a very large number relative to actual distances) 

An itinerary that begins and ends at the same city and visits each city once is called a 

tour. 

It seems reasonable that we might be able to find the answer to TSP by solving an assignment 

problem having a cost matrix whose ijth is cij. 

If the optimal solution to the assignment problem yields a tour, it is the optimal solution to the 

TSP. Unfortunately, the optimal solution to the assignment problem need not be a tour (may 

yield subtours). 

If we could exclude all feasible solutions that contain subtours and then solve the assignment 

problem, we would obtain the optimal solution to TSP  Not easy to do... 

Several B&B approaches have been developed for solving TSPs. 

One approach starts with solving the preceding assignment problem (subproblem 1). 

Because this subproblem contains no provisions to prevent subtours, it is a relaxation of the 

original TSP. 

Thus, if the optimal solution to the subp.1 is feasible for the TSP (no subtours), then it is also 

optimal for the TSP. 
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If it is infeasible (contain subtours), we branch on the subp.1 in a way that will prevent one of 

subp.1’s subtours from recurring in solutions to subsequent subproblems. 

Example 10. TSP (Winston 9.6., p. 530) 

Joe State lives in Gary, Indiana and owns insurance agencies in Gary, Fort Wayne, Evansville, 

Terre Haute, and South Bend. 

Each December, he visits each of his insurance agencies. 

The distance between each agency: 

 (1) (2) (3) (4) (5) 

Gary (1) - 132 217 164 58 

Fort Wayne (2) 132 - 290 201 79 

Evansville (3) 217 290 - 113 303 

Terre Haute (4) 164 201 113 - 196 

South Bend (5) 58 79 303 196 - 

 

What order of visiting his agencies will minimize the total distance traveled? 

 

 

Answer 

We first solve the assignment problem (subp.1) applying the Hungarian method to the cost 

matrix shown: 

 (1) (2) (3) (4) (5) 

(1) M 132 217 164 58 

(2) 132 M 290 201 79 

(3) 217 290 M 113 303 

(4) 164 201 113 M 196 

(5) 58 79 303 196 M 
 

The optimal solution will be: 

 x15=x21=x34=x43=x52=1, z=495   

The optimal solution to subp.1 contains two subtours: 

 recommends going from Gary (1) to South Bend (5), then to Fort Wayne (2), and then back 

to Gary (1–5–2–1).  

 also suggests that if Joe is in Evansville (3), he should go to Terre Haute (4) and then to 

Evansville (3–4–3). 
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Thus, the optimal solution cannot be the optimal solution to Joe’s problem. 

We arbitrarily choose to exclude the subtour 3-4-3. 

Observe that the optimal solution to Joe’s problem must have either x34=0 or x43=0. 

Thus, we can branch on subp.1 by creating two new subproblems.  

Subp.2: Subp.1 + (x34=0, or c34=M) 

Subp.3: Subp.1 + (x43=0, or c43=M) 

Now arbitrarily choose subp.2 to solve. 

 (1) (2) (3) (4) (5) 

(1) M 132 217 164 58 

(2) 132 M 290 201 79 

(3) 217 290 M M 303 

(4) 164 201 113 M 196 

(5) 58 79 303 196 M 
 

The optimal solution will be: 

 x14=x25=x31=x43=x52=1, z=652  

This solution includes the subtours 1–4–3–1 and 2–5–2. 

Thus, it cannot be the optimal solution to Joe’s problem. 

Following the LIFO approach, now branch subproblem 2 in an effort to exclude the subtour 2-

5-2. Thus, we add two additional subproblems. 

Subp.4: Subp.2 + (x25=0, or c25=M) 

Subp.5: Subp.2 + (x52=0, or c52=M) 

The assignment table for Subp.4: 

 (1) (2) (3) (4) (5) 

(1) M 132 217 164 58 

(2) 132 M 290 201 M 

(3) 217 290 M M 303 

(4) 164 201 113 M 196 

(5) 58 79 303 196 M 
 

By using the Hungarian method on subp.4, we obtain the optimal solution 

 x15=x24=x31=x43=x52=1, z=668  

This solution contains no subtours and yields the tour 1–5–2–4–3–1 

It is a candidate solution and any node that cannot yield a z-value < 668 may be eliminated 

from consideration. 

We next solve subp.5.  
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 x14=x43=x32=x25=x51=1, z=704  

This solution also yields a tour 1–4–3–2–5–1 

But z=704 is not as good as the subp.4 candidate’s z=668 

Thus this subp.5 may be eliminated from consideration. 

Only subp.3 remains.  

The optimal solution  

 x13=x25=x34=x41=x52=1, z =652.  

This solution includes the subtours 1–3–4–1 and 2–5–2. 

However, it is still possible for this subproblem to yield a solution with no subtours that beats 

z=668. 

Next branch on subproblem 3 creating new subproblems. 

Subp.6: Subp.3 + (x25=0, or c25=M) 

Subp.7: Subp.3 + (x52=0, or c52=M) 

Both of these subproblems have a z-value that is not smaller than 668. 

Optimal solution and Report 

Subp.4 thus yields the optimal solution: 

 x15=x24=x31=x43=x52=1, z=668  

Joe should travel from Gary (1) to South Bend (5), from South Bend to Fort Wayne (2), from 

Fort Wayne to Terre Haute (4), from Terre Haute to Evansville (3), and then back to Gary. 

He will travel a total distance of 668 miles. 

2.7 Heuristics for TSP 

An IP formulation can be used to solve a TSP but can become unwieldy and inefficient for 

large TSPs. When using B&B methods to solve TSPs with many cities, large amounts of 

computer time is needed. Heuristic methods, or heuristics, can be used to quickly lead to a 

good (but not necessarily optimal) solution. 

Two types of heuristic methods can be used to solve TSP: 

 The Nearest-Neighbor 

 The Cheapest-Insertion 

Evaluation of Heuristics 

Performance guarantees 

Gives a worse-case bound on how far away from optimality a tour constructed by the 

heuristic can be 

Probabilistic analysis 

A heuristic is evaluated by assuming that the location of cities follows some known 

probability distribution 
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Empirical analysis 

Heuristics are compared to the optimal solution for a number of problems for which the 

optimal tour is known 

2.7.1 The Nearest-Neighbor Heuristic 

STEPS: 

1. Begin at any city and then “visit” the nearest city.  

2. Then go to the unvisited city closest to the city we have most recently visited.  

3. Continue in this fashion until a tour is obtained. 

4. Apply this procedure beginning at every city, 

5. Take the best tour found. 

Example 11. Applying the NNH to TSP 

We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1   Generate the arc 1–5  

Of the cities 2, 3, and 4, city 2 is the closest city to city 5   1–5–2 

Of the cities 3 and 4, city 4 is the closest city to city 2   1–5–2–4 

Joe must next visit city 3 and then return to city 1   1–5–2–4–3–1 (668 miles).  

Begin at city 2: 

Of the cities 1, 3, 4, and 5, city 5 is the closest city to city 2   Generate the arc 2–5  

Of the cities 1, 3, and 4, city 1 is the closest city to city 5   2–5–1 

Of the cities 3 and 4, city 4 is the closest city to city 2   2–5–1–4 

Joe must next visit city 3 and then return to city 2   2–5–1–4–3–2 (704 miles).  

Begin at city 3:  3-4-1-5-2-3 (704 miles) 

Begin at city 4:  4-3-1-5-2-4 (668 miles) 

Begin at city 5:  5-1-2-4-3-5 (807 miles) 

Among the above-found tours, 668 miles that is found by beginning at city 1 and city 4 is the 

optimal solution. Notice that both tours are the same. 

In this case, the NNH yields the optimal tour. However, for other problems it may not give the 

optimal solution.  

2.7.2 The Cheapest-Insertion Heuristic 

1. Begin at any city and find its closest neighbor.  

2. Then create a subtour joining those two cities.  

3. Next, replace an arc in the subtour (say, arc (i, j)) by the combinations of two arcs (i, k) and 

(k, j), where k is not in the current subtour that will increase the length of the subtour by the 

smallest (or cheapest) amount.  

4. Continue with this procedure until a tour is obtained.  
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5. Apply this procedure beginning at every city, 

6. Take the best tour found. 

Example 12. Applying the CIH to TSP 

Solution of Example 10. using CIH: 

We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1  Generate the arc 1–5 

We create a subtour (1, 5)–(5, 1) 

We could replace arc (1, 5) by (1, 2)–(2, 5), (1, 3)–(3, 5), or (1, 4)–(4, 5) 

We could also replace (5, 1) by (5, 2)–(2, 1), (5, 3)–(3, 1), or (5, 4)–(4, 1) 

The computations used to determine which arc of (1, 5)–(5, 1) should be replaced are given in 

the Table: 

 

* indicates the correct replacement: either (1, 5) or (5, 1)  

We arbitrarily choose to replace arc (1, 5) by arcs (1, 2) and (2, 5)  New subtour: (1, 2)–(2, 

5)–(5, 1) 

We then determine which arc should be replaced  

 

We now replace arc (1, 2) by arcs (1, 4) and (4, 2)  New subtour: (1, 4)–(4, 2)–(2, 5)–(5, 1) 

Which arc should be replaced? 

 

We now replace arc (1, 4) by arcs (1, 3) and (3, 4) 

This yields the tour (1, 3)–(3, 4)–(4, 2)–(2, 5)–(5, 1) 

In this case, the CIH yields the optimal tour. 

But, in general, the CIH does not necessarily do so. 

Arc replaced Arcs added Added length
(1, 5)* (1, 2)–(2, 5) c 12+c 25–c 15=153
(1, 5) (1, 3)–(3, 5) c 13+c3 5–c 15=462
(1, 5) (1, 4)–(4, 5) c 14+c 45–c 15=302
(5, 1)* (5, 2)–(2, 1) c 52+c 21–c 51=153
(5, 1) (5, 3)–(3, 1) c 53+c3 1–c 51=462
(5, 1) (5, 4)–(4, 1) c 54+c4 1–c 51=302

Arc replaced Arcs added Added length
(1, 2) (1, 3)–(3, 2) 375
(1, 2)* (1, 4)–(4, 2) 233
(2, 5) (2, 3)–(3, 5) 514
(2, 5) (2, 4)–(4, 5) 318
(5, 1) (5, 3)–(3, 1) 462
(5, 1) (5, 4)–(4, 1) 302

Arc replaced Arcs added Added length
(1, 4)* (1, 3)–(3, 4) 166
(4, 2) (4, 3)–(3, 2) 202
(2, 5) (2, 3)–(3, 5) 514
(5, 1) (5, 3)–(3, 1) 462
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This procedure should be applied beginning at each city, and then the best tour found should 

be taken as solution. 

2.8 Implicit Enumeration 

The method of implicit enumeration is often used to solve 0-1 IPs. 

Implicit enumeration uses the fact that each variable must be equal to 0 or 1 to simplify both 

the branching and bounding components of the B&B process and to determine efficiently 

when a node is infeasible. 

The tree used in the implicit enumeration method is similar to those used to solve 0-1 knapsack 

problems. 

Some nodes have variable that are specified called fixed variables.  

All variables whose values are unspecified at a node are called free variables. 

For any node, a specification of the values of all the free variables is called a completion of 

the node. 

Three main ideas used in implicit enumeration: 

 Suppose we are at ay node with fixed variables, is there an easy way to find a good 

completion of the node that is feasible in the original 0-1 TSP? 

 Even is the best completion of a node is not feasible, the best completion gives us a bound 

on the best objective function value that can be obtained via feasible completion of the 

node. This bound can be used to eliminate a node from consideration. 

 At any node, is there an easy way to determine if all completions of the node are infeasible?  

In general, check whether a node has a feasible completion by looking at each constraint 

and assigning each free variable the best value for satisfying the constraint. 

2.9 Cutting Planes 

A linear inequality is a valid inequality for a given IP problem if it holds for all integer 

feasible solutions to the model. 

Relaxations can often be strengthened dramatically by including valid inequalities that are 

not needed by a correct discrete model. 

To strengthen a relaxation, a valid inequality must cut off (render infeasible) some feasible 

solutions to current LR that are not feasible in the IP model. 

This need to cut off non-integer relaxation solutions is why valid inequalities are sometimes 

called cutting planes. 

Example 13. Cutting Plane - Conceptualization 

Consider the following problem in the figure. 
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To solve this problem, the idea is to add constraints that eliminate fractional solutions to the 

LP without eliminating any integer solutions. 

add    “y 1” 

add  “y  x –1” 

These constraints were obtained by inspection. We will develop techniques later. 

 

If we add exactly the right inequalities, then every corner point of the LP will be integer, and 

the IP can be solved by solving the LP. We call this minimal LP, the convex hull of the IP 

solutions. For large problems, these constraints are hard to find. The tightest possible 

constraints are very useful, and are called facets 

Example: min. x + 10y 
s.t. x, y are in P
x, y integer

P

x

y

Optimum 
fractional 
solution

Optimum 
(integer) 
solution

Example: min. x + 10y 
s.t. x, y are in P
x, y integer

P

x

y

Optimum 
fractional 
solution

Optimum 
fractional 
solution

Optimum 
(integer) 
solution
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Cut Classification 

 General purpose 

A fractional extreme point can always be separated (LP-based approach, that works for IP) 

o Disjunctive cuts 

o Gomory cutting planes 

 Problem specific 

Derived from problem structure, generally facets. (Knapsack, Set Packing... ) 

 

0-1 Disjunctive Cuts 

  

  

The LP relaxationThe LP relaxation The optimal “fractional” solution

x

The optimal “fractional” solution

x

One side of the
disjunction

0ix
x

One side of the
disjunction

0ix
x

1ixThe other side of
the disjunction

x
1ixThe other side of

the disjunction
x
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2.9.1 Cutting Plane Algorithm (Gomory cut) 

Steps of the Gomory Cut Algorithm: 

1. Find the optimal tableau for the IP’s LR (LP Relaxation).  

2. If all variables in the optimal solution assume integer values, we have found an optimal 

solution! Otherwise proceed to next step. 

3. Pick a constraint in the optimal tableau whose RHS has the fractional part closest to ½.  

4. For the constraint identified, put all of the integer parts on the left side (round down), and 

all the fractional parts on the right. 

5. Generate the cut as:  

 “RHS of the modified constraint” < 0 

6. Use the dual simplex to find the optimal solution to the LR, with the cut as an additional 

constraint.  

7. If all variables assume integer values in the optimal solution, we have found an optimal 

solution to the IP. 

8. Otherwise, proceed from step 3. 

We continue this process until we obtain a solution in which all variables are integers. This will 

be an optimal solution to the IP. 

Dual Simplex Method 

Please recall that at dual simplex: 

o We choose the most negative RHS.  

o BV of this pivot row leaves the basis. 

The convex-hull of the
union of the disjunctive sets

x

The convex-hull of the
union of the disjunctive sets

x

One facet of the convex-hull
but it is also a cut!

x

One facet of the convex-hull
but it is also a cut!

x

x

The new “feasible” solution!

x

The new “feasible” solution!
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o For the variables that have a negative coefficient in the pivot row, we calculate the 

ratios (coefficient in R0 / coefficient in pivot row).  

o Variable with the smallest ratio (absolute value) enters basis. 

Example 14. Telfa Co. (Winston 9.8., p. 546) 

Solve the following IP using Gomory Cut algorithm. 

max z = 8 x1 + 5 x2 

 s.t.       x1 +   x2 ≤ 6 

   9 x1 + 5 x2 ≤ 45 

 x1, x2 > 0 and integer 

Answer 

If we ignore integrality, we get the following optimal tableau:  

 

Let's choose the constraint whose RHS has the fractional part closest to ½ (Arbitrarily choose 

the second constraint): 

 x1 – 1.25 s1 + 0.25 s2 =3.75 

We can manipulate this to put all of the integer parts on the left side (round down), and all the 

fractional parts on the right to get:  

 x1 – 2 s1 + 0 s2 – 3 = 0.75 – 0.75 s1 – 0.25 s2 

Now, note that the LHS consists only of integers, so the right-hand side must add up to an 

integer. It consists of some positive fraction minus a series of positive values. Therefore, the 

right-hand side cannot be a positive value. Therefore, we have derived the following constraint:  

 0.75 – 0.75 s1 – 0.25 s2 ≤ 0 

This constraint is satisfied by every feasible integer solution to our original problem. But, in our 

current solution, s1 and s2 both equal 0, which is infeasible to the above constraint. This means 

the above constraint is a cut, called the Gomory cut after its discoverer.  

We can now add this constraint to the linear program and be guaranteed to find a different 

solution, one that might be integer. 

 

The dual simplex ratio test indicates that s1 should enter the basis instead of s3.  

The optimal solution is an IP solution: 

z x 1 x 2 s 1 s 2 RHS
1 0 0 1.25 0.75 41.25
0 0 1 2.25 -0.25 2.25
0 1 0 -1.25 0.25 3.75

z x 1 x 2 s 1 s 2 s 3 RHS
1 0 0 1.25 0.75 0 41.25
0 0 1 2.25 -0.25 0 2.25
0 1 0 -1.25 0.25 0 3.75
0 0 0 -0.75 -0.25 1 -0.75
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 z = 40, x1 = 5, x2 = 0  

Example 15. Supplementary Problem 

Solve the following IP using Gomory Cut algorithm. 

min z = 6 x1 + 8 x2 

s.t.   3 x1 +    x2 ≥ 4 

      x1 + 2 x2 ≥ 4 

 x1, x2 > 0 and integer 

Answer 

Optimal tableau for LR 

 

Choose the second constraint 

 x2 + 0.2 e1 – 0.6 e2 = 1.6 

Manipulate this: 

 x2 – e2 – 1 = 0.6 – 0.2 e1 – 0.4 e2 

Cut: 

  0.6 – 0.2 e1 – 0.4 e2 ≤ 0  

New LP tableau 

 

The dual simplex ratio test indicates that e1 should enter the basis instead of s3.  

The optimal solution is an IP solution: 

 z = 20, x1 = 2, x2 = 1 

2.10 Branch & Cut 

A variation of B&B termed Branch & Cut (B&C) takes advantage of valid inequalities to speed 

computation. 

B&C algorithms modify the basic B&B strategy by attempting to strengthen relaxations with 

new inequalities before branching a partial solution. 

Added constraints should hold for all feasible solutions to IP model, but they should cut off 

(render infeasible) the last relaxation optimum. 

z x 1 x 2 e 1 e 2 RHS
1 0 0 -0.80 -3.60 17.60
0 1 0 -0.40 0.20 0.80
0 0 1 0.20 -0.60 1.60

z x 1 x 2 e 1 e 2 s 3 RHS
1 0 0 -0.8 -3.6 0 17.6
0 1 0 -0.4 0.2 0 0.8
0 0 1 0.2 -0.6 0 1.6
0 0 0 -0.2 -0.4 1 -0.6
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Example 16. Branch & Cut 

Please refer to Rardin 12.5, p.676 

2.11 Branch & Price 

Branch & Price (B&P) is a generalization of LP based B&B specifically designed to handle 

IPs that contain a huge number of variables. 

Columns are left out of the LR because there are too many to handle efficiently and most of 

them will have their associated variable equal to zero in an optimal solution anyway. 

To check the optimality of an LP solution, a pricing problem is solved to try to identify columns 

with profitable reduced cost. 

If profitable reduced cost columns are found, they are added and the LR is resolved. 

If no profitable columns are found, the LP solution is optimal. 

Branching occurs when the optimal LP solution does not satisfy the integrality conditions. 

B&P applies column generation at every node of the B&B tree.  
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3. GOAL PROGRAMMING 

In some situations, a decision maker may face multiple objectives, and there may be no point 

in an LP’s feasible region satisfying all objectives. 

In such a case, how can the decision maker choose a satisfactory decision? 

Goal Programming, a variation of LP considering more than one objective (goals) in the 

objective function, is one technique that can be used in such situations. 

Example 1. Priceler 

The Leon Burnit Adveritsing Agency is trying to determine a TV advertising schedule for 

Priceler Auto Company. 

Priceler has three goals: 

 Its ads should be seen by at least 40 million high-income men (HIM). 

 Its ads should be seen by at least 60 million low-income people (LIP). 

 Its ads should be seen by at least 35 million high-income women (HIW). 

Leon Burnit can purchase two types of ads: those shown during football games and those 

shown during soap operas. 

At most, $600,000 can be spent on ads. 

The advertising costs and potential audiences of a one-minute ad of each type are shown. 

Millions of Viewers 

Ad HIM LIP HIW Cost (S) 

Football 7 10 5 100,000 

Soap Opera 3 5 4 60,000 

Leon Burnit must determine how many football ads and soap opera ads to purchase for 

Priceler. 

Answer 

Let x1 = # of minutes of ads shown during football games 

 x2 = # of minutes of ads shown during soap operas 

Then any feasible solution to the following LP would meet Priceler’s goals: 

min (or max) z=0x1 + 0x2   

s.t.        7x1 +  3x2 ≥ 40  (HIM constraint) 

      10x1 +  5x2 ≥ 60  (LIP constraint) 

        5x1 +  4x2 ≥ 35  (HIW constraint) 

    100x1 + 60x2 ≤ 600 (Budget constraint) 

      x1, x2 ≥ 0 
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No point that satisfies the budget constraint meets all three of Priceler’s goals  LP is 

infeasible  

Since it is impossible to meet all of Priceler’s goals, Burnit might ask Priceler to identify, for 

each goal, a cost that is incurred for failing to meet the goal. 

Penalties 

Each million exposures by which Priceler falls short of 

 the HIM goal costs Priceler a $200,000 penalty 

 the LIP goal costs Priceler a $100,000 penalty 

 the HIW goal costs Priceler a $50,000 penalty 

because of lost sales 

Revised Answer 

Burnit can then formulate an LP that minimizes the cost incurred in deviating from Priceler’s 

three goals. 

The trick is to transform each inequality constraint that represents one of Priceler’s goals into 

an equality constraint. 

Because it is not known whether a given solution will undersatisfy or oversatisfy a given goal, 

we need to define the following variables. 

si
+ = amount by which the ith goal level is exceeded. 

si
- = amount by which the ith goal level is underachieved 

The si
+ and si

- are referred to as deviational variables. 

At least one or both deviational variables in a goal constraint must equal zero. 

Burnit can minimize the penalty from Priceler’s lost sales by solving the following LP. 

min  z = 200s1
- + 100s2

- + 50s3
-   

s.t.     7x1 +   3x2 + s1
- - s1

+  = 40 (HIM constraint) 

   10x1 +   5x2 + s2
- - s2

+  = 60 (LIP constraint) 
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     5x1 +   4x2 + s3
- - s3

+  = 35 (HIW constraint) 

 100x1 + 60x2                  ≤ 600 (Budget constraint) 

 All variables nonnegative 

Optimal Solution and Report 

The optimal solution to this LP is 

 z=250, x1=6, x2=0,  

 s1
+=2, s2

+=0, s3
+=0, s1

-=0, s2
-=0,  s3

-=5 

6 minutes of ads should be shown during football games. 

This meets goal 1 and goal 2 but fails to meet the least important goal (goal 3). 30 mio HIW 

sees Priceler’s ads. 

3.1 Deviational Variables 

If failure to meet goal i occurs when the attained value of an attribute is numerically smaller 

than the desired value of goal i, then a term involving si
- will appear in the objective function. 

If failure to meet goal i occurs when the attained value of an attribute is numerically larger than 

the desired value of goal i, then a term involving si
+ will appear in the objective function. 

Also, if we want to meet a goal exactly and a penalty is assessed for going both over and under 

a goal, then terms involving si
-, si

+ will appear in the objective function. 

Example 2. Modified Priceler 

Suppose Priceler regards the budget restriction as a goal. 

Priceler identifies a $1 penalty for each dollar by which this goal is unmet. 

Answer 

Then the appropriate goal programming formulation would be: 

min  z = 200s1
- + 100s2

- + 50s3
- + s4

+   

s.t.     7x1 +   3x2 + s1
- - s1

+  = 40 (HIM constraint) 

   10x1 +   5x2 + s2
- - s2

+  = 60 (LIP constraint) 

     5x1 +   4x2 + s3
- - s3

+  = 35 (HIW constraint) 

 100x1 + 60x2 + s4
- - s4

+  = 600 (Budget constraint) 

 All variables nonnegative 

Optimal Solution & Report 

The optimal solution to this LP is 

z=100/3, x1=13/3, x2=10/3,  

s1
+=1/3, s2

+=0, s3
+=0, s4

+=100/3, s1
-=0, s2

-=0, s3
-=0, s4

-=0 

13/3 minutes of ads should be shown during football games and 10/3 minutes of ads should 

be shown during soap operas 

This meets all three advertising goals by going $100/3 thousand over budget. 
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3.2 Preemptive Goal Programming 

In many situations, a decision maker may not be able to determine precisely the relative 

importance of the goals. 

When this is the case, preemptive goal programming (PGP) may prove to be a useful tool. 

To apply PGP, the decision maker must rank her or his goals from the most important (goal 1) 

to least important (goal n). 

The objective function coefficient Pi represents the weight of goal i:  

  P1 >>> P2 >>> ... >>> Pn 

This definition ensures that the decision maker first tries to satisfy the most important goal. 

Then among all points that satisfy goal 1, the decision maker tries to come as close as possible 

to satisfying goal 2, and so forth. 

We continue in this fashion until the only way we can come closer to satisfying a goal is to 

increase the deviation from a higher priority goal. 

3.2.1 Graphical Solution 

When a PGP problem involves only two decision variables, the optimal solution can be found 

graphically. 

Example 3. Beaver Creek Pottery (Taylor, p. 358) 

Beaver Creek manufactures two products: Bowl, mug. Five workers (40 hours in total) 

process clay. They have 120 pounds of clay available for production. 

 Labor Clay Unit profit 

Bowl 1 hour 4 pounds $40 
Mug 2 hours 3 pounds $50 

If no other objective is stated, the problem can be formulated as follows: 

maximize z=40x1 + 50x2 

subject to 

                x1 + 2x2  40 hours of labor 

              4x1 + 3x2  120 pounds of clay 

                    x1, x2  0 

            where     x1 = number of bowls produced 

                           x2 = number of mugs produced 

Now suppose that the company states the following objectives (goals) in order of importance. 

The company: 

 does not want to use fewer than 40 hours of labor per day; 

 would like to achieve a satisfactory profit level of $1,600 per day; 

 prefers not to keep more than 120 pounds of clay on hand each day; 

 would like to minimize the amount of overtime 

Formulate and solve a goal programming model for the company. 
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Answer 

Labor goal constraint (1, not less than 40 hours labor): minimize  P1d1
- 

Add profit goal constraint (2, achieve profit of $1,600): minimize P1d1
-, P2d2

- 

Add material goal constraint (3, avoid keeping more than 120 pounds of clay on hand): 

         minimize P1d1
-, P2d2

-, P3d3
+ 

Labor goal constraint (4, minimum overtime):  minimize P1d1
-, P2d2

-, P3d3
+, P4d1

+ 

Complete goal programming model: 

 minimize  P1d1
-, P2d2

-, P3d3
+, P4d1

+ 

 subject to 

                                x1 +  2x2 + d1
- - d1

+ = 40 

                           40x1 + 50x2 + d2
- - d2

+ = 1600 

                              4x1 +  3x2 + d3
- - d3

+ = 120 

                     x1, x2, d1
-, d1

+, d2
-, d2

+, d3
-, d3

+  0 

Goal constraints: 

 

The first-priority goal: Minimize d1
- 

 

The second-priority goal: Minimize d2
- 

  

The third-priority goal: Minimize d3
+ 

  



Y. Ilker Topcu, Ph.D. (www.ilkertopcu.net) & Özgür Kabak, Ph.D. (akademi.itu.edu.tr/kabak/ ) 52

 

The fourth-priority goal: Minimize d1
+ 

 

Optimal Solution & Report 

x1 = 15, x2 = 20, d1
+ = 15 

15 bowls, 20 mugs should be produced. 

This meets the first three goals by having 15 hours overtime labor. 

3.2.2 Goal Programming Simplex 

PGP problems can be solved by an extension of the simplex known as the goal programming 

simplex. 

The differences between the goal programming simplex and the ordinary simplex are: 

 The ordinary simplex has a single row 0, whereas the goal programming simplex requires 

n row 0’s (one for each goal). 

 In the goal programming simplex, the entering variable is determined as follows (PGP is a 

min problem): 

o Find the highest priority goal (goal i’) that has not been met  

o Find the variable with the most positive coefficient in row 0 (goal i’) and enter this 

variable (subject to the following restriction) into the basis. 

o If, however, a variable has a negative coefficient in row 0 (goal i’) associated with 

a goal having a higher priority than i’, then the variable cannot enter the basis. In 

this case, try to find another variable with a positive coefficient in row 0 (goal i’). If 

no variable can enter the basis move on to row 0 (goal i’+1).  

 When a pivot is performed, row 0 for each goal must be updated. 

 A tableau will yield the optimal solution if all goals are satisfied, or if each variable that can 

enter the basis and reduce the value of zi’ for an unsatisfied goal i’ will increase the 

deviation from some goal i having a higher priority than goal i’. 
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Example 4. Preemptive Priceler 

Solve the following model using Goal Programming Simplex. 

min  z =  P1s1
- + P2s2

- + P3s3
-   

s.t.     7x1 +   3x2 + s1
- - s1

+  = 40 (HIM constraint) 

   10x1 +   5x2 + s2
- - s2

+  = 60 (LIP constraint) 

     5x1 +   4x2 + s3
- - s3

+  = 35 (HIW constraint) 

 100x1 + 60x2                  ≤ 600 (Budget constraint) 

 All variables nonnegative 

Answer 

We must separate the objective function into n components 

min  z1 =  P1s1
-    

min  z2 =  P2s2
-   

min  z3 =  P3s3
-   

We have three Row 0’s. 

Row 0 (goal 1): z1 - P1s1
- = 0 

Row 0 (goal 2): z2 - P2s2
- = 0 

Row 0 (goal 3): z3 - P3s3
- = 0 

We find that BV = {s1
-, s2

-, s3
-, s4} (s4 is the slack variable) is a starting bfs that could be used 

to solve Priceler problem 

z1                       - P1s1
-                                              = 0   

   z2                             - P2s2
-                                     = 0   

      z3                                    - P3s3
-                           = 0   

          7x1 +  3x2   + s1
-                    - s1

+                    = 40  

        10x1 +  5x2             + s2
-                 - s2

+             = 60  

          5x1 +  4x2                      + s3
-               - s3

+      = 35  

       100x1 + 60x2                                             + s4 = 600 

We must eliminate all variables in the starting basis from each row 0. 

Add “P1×Row 1” to “Row 0 (goal 1)” 

Add “P2×Row 2” to “Row 0 (goal 2)” 

Add “P3×Row 3” to “Row 0 (goal 3)” 

 

x 1 x 2 s 1
+ s 2

+ s 3
+ s 1

- s 2
- s 3

- s 4 RHS Ratio
Row 0 (HIM) 7P 1 3P 1 -P 1 0 0 0 0 0 0 40P 1

Row 0 (LIP) 10P 2 5P 2 0 -P 2 0 0 0 0 0 60P 2

Row 0 (HIW) 5P 3 4P 3 0 0 -P 3 0 0 0 0 35P 3
HIM 7 3 -1 0 0 1 0 0 0 40 5.7143
LIP 10 5 0 -1 0 0 1 0 0 60 6
HIW 5 4 0 0 -1 0 0 1 0 35 7
Budget 100 60 0 0 0 0 0 0 1 600 6
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Optimal Solution & Report 

The optimal solution to this LP is 

 z3=5P3, x1=6, x2=0,  

 s1
+=2, s2

+=0, s3
+=0, s1

-=0, s2
-=0, s3

-=5 

6 minutes of ads should be shown during football games. 

This meets goal 1 and goal 2 but fails to meet the least important goal (goal 3). 30 mio HIW 

sees Priceler’s ads. 

  

x 1 x 2 s 1
+ s 2

+ s 3
+ s 1

- s 2
- s 3

- s 4 RHS Ratio
Row 0 (HIM) 0 0 0 0 0 -P 1 0 0 0 0
Row 0 (LIP) 0 5P 2/7 10P 2/7 -P 2 0 -10P 2/7 0 0 0 20P 2/7
Row 0 (HIW) 0 13P 3/7 5P 3/7 0 -P 3 -5P 3/7 0 0 0 45P 3/7
HIM 1 3/7 -1/7 0 0 1/7 0 0 0 40/7
LIP 0 5/7 10/7 -1 0 -10/7 1 0 0 20/7 2
HIW 0 13/7 5/7 0 -1 -5/7 0 1 0 45/7 9
Budget 0 120/7 100/7 0 0 -100/7 0 0 1 200/7 2

x 1 x 2 s 1
+ s 2

+ s 3
+ s 1

- s 2
- s 3

- s 4 RHS
Row 0 (HIM) 0 0 0 0 0 -P 1 0 0 0 0
Row 0 (LIP) 0 -P 2 0 -P 2 0 0 0 0 -P 2/10 0
Row 0 (HIW) 0 P 3 0 0 -P 3 0 0 0 -P 3/20 5P 3
HIM 1 3/5 0 0 0 0 0 0 1/100 6
LIP 0 -1 0 -1 0 0 1 0 -1/10 0
HIW 0 1 0 0 -1 0 0 1 -1/20 5
Budget 0 6/5 1 0 0 -1 0 0 7/100 2
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4. INTRODUCTION TO NONLINEAR PROGRAMMING 

If the objective function and/or any constraint of a mathematical programming model is not 

linear then it is called Non-linear programming. 

A general nonlinear program (NLP) can be expressed as follows: 

Find the values of decision variables x1, x2,…xn that 

max (or min) z = f(x1, x2,…, xn) 

s.t.       gi(x1, x2,…, xn) (≤, =, or ≥) bi I = 1, 2, …, m 

An LP is a special case of nonlinear programming! 

As in LP, f(x1, x2,…,xn) is the NLP’s objective function, and  

g1(x1, x2,…,xn) (≤, =, or ≥)b1,  

g2(x1, x2,…,xn) (≤, =, or ≥)b2,  

…,  

gm(x1, x2,…,xn) (≤, =, or ≥)bm  

are the NLP’s constraints.  

An NLP is permitted to have non-linear objective and/or constraints. 

An NLP with no constraints is an unconstrained NLP.  

The feasible region for NLP is the set of points (x1, x2,…,xn) that satisfy the m constraints in 

the NLP.  

If the NLP is a maximization problem, then any point x* in the feasible region for which f(x*) ≥ 

f(x) holds true for all points x in the feasible region is an optimal solution to the NLP.  

If the NLP is a minimization problem, then any point x* in the feasible region for which f(x*) ≤ 

f(x) holds true for all points x in the feasible region is an optimal solution to the NLP. 

A point that is a local maximum or a local minimum is called a local extremum (or relative 

extremum) 

Even if the feasible region for an NLP is a convex set, the optimal solution need not be an 

extreme point of the NLP’s feasible region. 

Let x = (x1, x2, ..., xn) be a feasible solution, then  

x is a local maximum if f(x)≥f(x’) for all feasible x’ that are sufficiently close to x (i.e., xj-

<xj’<xj+ for all j and some small e). 
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Notice that the optimal solution is 

not at a corner point. It is where 

the isocontour first hits the 

feasible region. 

 

There may be several locally optimal solutions: A, B, and C are all local maxima, but C is the 

unique optimal solution (global maximum) to NLP 

4.1 Graphical Analysis 

Similar to LP, NLPs with two decision variables can be solved graphically. Notice that it may 

not be possible to analyze all NLP problems bacuse of the complicated objective functions.  

 

Example 4.1. Graphical Analysis 

Solve the following NLP graphically. 

minimize  [(x - 14)2 + (y - 15)2]1/2  

subject to     (x - 8)2  +  (y - 9)2      49 

                        x               2     

                        x             13 

                        x  + y      24 

Answer 

 

x 

z 

z = f(x) 

 

max f(x) 
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Example 4.2. Graphical Analysis 

Solve the following NLP graphically. 

minimize  [(x - 8)2 + (y - 8)2]1/2  

subject to     (x - 8)2  +  (y - 9)2      49 

                        x               2     

                        x             13 

                        x  + y      24 

Answer 

  

4.2 Formulating NLP 

NLPs are formulated similar to LPs and IPs. Decision variables are defined, objective function 

is formulated and constraints are stated. Notice that in some NLPs there is no constraint at all. 

Most common applications of NLP are location problems, portfolio management, regression... 

NLP is very general and very hard to solve 

 

Example 4.3. Unconstrained Facility Location 

This is the warehouse location problem with a single warehouse that can be located anywhere 

in the plane.  

The location of the points A, B, C, and D are (8,2), (3,10), (8,15), and (14,13), respectively. 

The daily demands of these points are 19, 7, 2, and 5. Costs are proportional to the distance.  

Where should be the warehouse? 

0 2 4 6 8 10 12 14 16 18 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

y 

x 

The optimal solution is not on the 

boundary of the feasible region. 

It is inside the feasible region. 
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Answer 

Define (x,y) as the coordinates of the warehouse.  

The objective is to minimize the total weighted distance of the points to the warehouse. 

Distances can be calculated as d(P,A) = [(x - 8)2 + (y - 2)2]1/2 ; d(P,B) = [(x - 3)2 + (y - 10)2]1/2 ; 

d(P,C) = [(x - 8)2 + (y - 15)2]1/2 ; d(P,D) = [(x - 14)2 + (y - 13)2]1/2 

Then NLP would be 

 minimize  19[(x - 8)2 + (y - 2)2]1/2  + 7[(x - 3)2 + (y - 10)2]1/2 + 2[(x - 8)2 + (y - 15)2]1/2 + 5[(x 

- 14)2 + (y - 13)2]1/2 

subject to:   P is unconstrained 

 

Example 4.4. Constrained Facility Location 

What happens if P must be within a specified region? 
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Answer 

 minimize  19[(x - 8)2 + (y - 2)2]1/2  + 7[(x - 3)2 + (y - 10)2]1/2 + 2[(x - 8)2 + (y - 15)2]1/2 + 5[(x 

- 14)2 + (y - 13)2]1/2 

subject to:    x    7 

   5  y   11 

   x  +  y    24 

 

Example 4.5. Tire Production (Winston 11.2, p. 624) 

Firerock produces rubber used for tires by combining three ingredients: rubber, oil, and carbon 

black. The cost in cents per pound of each ingredient is 4, 1, and 7, respectively. 

The rubber used in automobile tires must have a hardness of between 25 and 35, an elasticity 

of at 16, a tensile strength of at least 12.  

To manufacture a set of four automobile tires, 100 pounds of product is needed. The rubber to 

make a set of tires must contain between 25 and 60 pounds of rubber and at least 50 pounds 

of carbon black. 

If we define:  

R as pounds of rubber in mixture used to produce four tires,  

O as pounds of oil in mixture used to produce four tires; and  

C as pounds of carbon black used to produce four tires;  

then the statistical analysis has shown that the hardness, elasticity, and tensile strength of a 

100-pound mixture of rubber, oil, and carbon black is: 

 Tensile strength = 12.5 - .10O - .001O2 

 Elasticity = 17 + .35R - .04O - .002R2 

 Hardness = 34 + .1R + .06O -.3C + .001RO + .005O2 + .001C2 

Formulate an NLP whose solution will tell Firerock how to minimize the cost of producing the 

rubber product needed to manufacture a set of automobile tires. 

Answer  

After defining TS (Tensile Strength), E (Elasticity), H (Hardness of mixture), NLP would be: 

 min    4R + O + 7C 

 s.t.  TS = 12.5 - .10O - .001O2 

 E = 17 + .35R - .04O - .002R2 

 H = 34 + .1R + .06O - .3C + .001RO + .005O2 + .001C2 

 R + O + C = 100 

 25 < R < 60 

 O > 0 

 C > 50 
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 TS > 12 

 E > 16 

 25 < H < 35 

 

Example 4.6. Engineering Design (Rardin 14.1, p. 794) 

A closed cylindrical tank is being designed to carry at least 20 cubic feet of chemicals. Metal 

for the top and sides costs $2 per square foot, but the heavier metal of  the base costs $8 per 

square foot. Also, the height of the tank can be no more than twice its diameter to keep it from 

being top heavy. Formulate an NLP to a design of minimum cost. 

Answer 

The decision variables: 

d: diameter of the tank 

h: height of the tank 

NLP: 

 min    2(dh+d2/4) + 8(d2/4) [metal cost] 

 s.t. hd2/4 ≥ 20   [volume] 

       h ≤ 2d    [height to diameter ratio] 

      h, d ≥ 0 

0-1 IPs as NLPs 

minimize     j cj xj 

subject to   j aij xj = bi   for all i 

                    xj is 0 or 1 for all j 

is “nearly” equivalent to 

minimize     j cj xj  + 106 j xj (1 – xj). 

subject to   j aij xj = bi   for all i 

                     0  xj  1 for all j 

4.3 Review of Differential Calculus 

The idea of limit: 

The equation  

 

means that as x gets closer to a (but not equal to a), the value of f(x) gets arbitrarily close to c. 

A function f(x) is continuous at a point if 

 

If f(x) is not continuous at x=a, we say that f(x) is discontinuous (or has a discontinuity) at a. 
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The derivative of a function f(x) at x = a [written f’(a)] is defined to be  

 

We may think of f’(a) as the slope of f(x) at x = a 

If we begin at x = a and increase x by a small amount Δ (Δ may be positive or negative), then 

f(x) will increase by an amount approximately equal to Δf’(a). 

 If f’(a)>0 then f(x) is increasing at x = a  

 If f’(a)<0 then f(x) is decreasing at x = a  

We define f(2)(a) = f’’(a) to be the derivative of function f’(x) at x = a (if it exists)  

Similarly we can define higher derivative f(n)(a) to be the derivative of f(n-1)(x) at x =a.  

In the Taylor series expansion of a function f(x), given that f(n+1)(x) exists for every point on the 

interval [a,b], we can write n-th order Taylor series expansion of f(x) about a for any h 

satisfying 0≤h≤b–a: 
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This equation holds will hold for some number p between a and a+h 

The partial derivative of f(x1, x2,…xn) with respect to the variable xi is written as 
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We will also use second-order partial derivatives and use the notation 

ji xx

f


2

 

To find second-order partial derivative, we first find partial derivative of f(x1, x2,…xn) with 

respect to the variable xi, and then take its partial derivative with respect to xj. 

If the second-order partials exist and are everywhere continuous, then   

ijji xx

f

xx

f







 22

 

4.4 Convexity and Extreme Points 

A set S is a convex set, if for every two points x and y in S, and for every real number [0,1],  

x + (1 – ) y  is in S. 

For all x and y, the entire line segment is always in S  Set is convex 

We say that an element vS is an extreme point (vertex), if v is not the midpoint of any line 

segment contained in S. 
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afxaf
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If all constraints are linear, then the feasible region is convex (Hence, the feasible region of an 

LP is convex). 

 

Example 4.7. Which are convex set? 

 

4.4.1 Convex and Concave Functions 

A function f(x1, x2,…,xn) is a convex function on a convex set S if for any x’S and x’’S  

 f[x’+(1-)x’’] ≤ f(x’) + (1-)f(x’’) 

holds for 0≤≤1. 

A function f(x1, x2,…,xn) is a concave function on a convex set S if for any x’S and x’’S  

 f[x’+(1-)x’’] ≥ f(x’) + (1-)f(x’’) 

holds for 0≤≤1. 

We say strict convexity if sign is “<”and strict concavity if sign is “>”. 

 

SINGLE VARIABLE CASE 

Line joining any two points of the convex function is above the curve. 

 

f(x) 

x 
y z 

f(y) 

f(z) 

(y+z)/2 

f(y)/2+f(z)/2 
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Line joining any two points of the concave function is below the curve. 

 

Suppose f’’(x) exists for all x in a convex set S. Then f(x) is convex function on S if and only if 

f’’(x) ≥ 0 for all x in S. We say strict convexity if sign is  “>”. 

Suppose f’’(x) exists for all x in a convex set S. Then f(x) is concave function on S if and only 

if f’’(x) ≤ 0 for all x in S. We say strict concavity if sign is  “<”. 

 

Example 4.8. Convexity/Concavity  

 f(x) = x2     f”(x) = 2 > 0 

 f(x) = - ln(x)  for x > 0  f”(x) = 1/x2 

 

NECESSARY DEFINITIONS FOR n-VARIABLE CASE 

The Hessian of f(x1, x2,…, xn) is the n x n matrix whose ijth entry is 
ji xx

f


2

. 

An ith principal minor of an n×n matrix is the determinant of any i×i matrix obtained by 

deleting n – i rows and the corresponding n – i columns of the matrix. 

The kth leading principal minor of an n x n matrix is the determinant of the k x k matrix 

obtained by deleting the last n – k rows and columns of the matrix. 

We let Hk(x1,x2...,xn) be the kth leading principal minor of the Hessian matrix evaluated at the 

point (x1,x2...,xn)  

A symmetric n×n matrix is positive definite if the determinants of all its principal minors are 

positive (>0).  

A symmetric n×n matrix is positive semidefinite if the determinants of all its principal minors 

are nonnegative (≥0). 

A symmetric n×n matrix is negative definite if the determinants of the principal minors are 

nonzero and alternating in sign with the first negative. 

A symmetric n×n matrix is negative semidefinite if the determinants of the principal minors 

are alternating in sign with the first nonpositive (allows zeros). 

f(x) 

x 
y z 

f(y) 

f(z) 

(y+z)/2 

f(y)/2+f(z)/2 
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Example 4.9. Finding Hessian Matrix and principal minors 

If f(x1,x2) = x1
3 + 2x1x2 + x2

2, then the value of the Hessian at (x1,x2):  

 H(x1,x2) = 







22

26 1x
 

Principal minors of H: 

 The 1st principal minors are 6x1,  and 2 

 The 2nd principal minor is = 6x1(2) – 2(2) = 12x1 – 4 

 

Example 4.10. Finding principal minors 

For the matrix 

 










41

12
 

The 1st principal minors are –2 and –4 

The 2nd principal minor is (–2)(–4)–(–1)(–1) = 7. 

For the matrix ൥
െ2 1 3
5 െ4 2
6 3 7

൩ 

The 1st principal minors are –2, –4, 7 

The 2nd principal minors are det ቀቂെ2 1
5 െ4

ቃቁ ,  det ቀቂെ2 3
6 7

ቃቁ , det ቀቂെ4 2
3 7

ቃቁ 

The 3rd principal minor is det൭൥
െ2 1 3
5 െ4 2
6 3 7

൩൱. 

Conditions for Convexity 

Suppose f(x1, x2,…, xn) has continuous second-order partial derivatives for each point x=(x1, 

x2,…, xn)S=Rn.  

Then f(x1, x2,…, xn) is a convex function on S if and only if for each xS, all principal minors 

of Hessian matrix are nonnegative. 

 f11≥0,   
2221

1211

ff

ff
≥0, ..., 

nnnn

n

n

fff

fff

fff

...

.........

...

...

21

22221

11211

 ≥0  
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Suppose f(x1, x2,…, xn) has continuous second-order partial derivatives for each point. 

Then f(x1, x2,…, xn) is a strict convex function on S if and only if for each xS, all principal 

minors of Hessian matrix are positive. 

 f11>0,   
2221

1211

ff

ff
  >0, ...,

nnnn

n

n

fff

fff

fff

...

.........

...

...

21

22221

11211

 >0  

Conditions for Concavity 

Suppose f(x1, x2,…, xn) has continuous second-order partial derivatives for each point. 

Then f(x1, x2,…, xn) is a concave function on S if and only if for each xS and k=1, 2,…n, all 

nonzero principal minors have the same sign as (-1)k. 

 f11≤0, 
2221

1211

ff

ff
≥0, …., 

nnnn

n

n

fff

fff

fff

...

.........

...

...

21

22221

11211

 ≤0 (n odd) 

Suppose f(x1, x2,…, xn) has continuous second-order partial derivatives for each point. 

Then f(x1, x2,…, xn) is a strict concave function on S if and only if for each xS and k=1, 2,…n, 

all principal minors have the same sign as   (-1)k. 

 f11<0, 
2221

1211

ff

ff
 >0, ...,

nnnn

n

n

fff

fff

fff

...

.........

...

...

21

22221

11211

 <0 (n odd) 

 

Example 4.11. Using the Hessian to Ascertain Convexity or Concavity 

Show that f(x1,x2) = x1
2 + 2x1x2 + x2

2 is a convex function on S = R2. 

 

Answer 

 H(x1,x2) = 







22

22
 

The first principal minors of H are 2, and 2 > 0. 

The second principal minor is (2)(2)–(2)(2) = 0 

All principal minors of H are nonnegative so f(x1,x2) is a convex function on R2.  
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Example 4.12. Using the Hessian  

Is 𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ 2𝑥ଷ
ଶ െ 𝑥ଵ𝑥ଶ െ 𝑥ଵ𝑥ଷ െ 𝑥ଶ𝑥ଷ a convex function on S = R3? 

Answer 

 H(x1,x2,x3) = 





















411

121

112

 

The first principal minors of H are 2, 2, and 4 > 0.  

The second principal minors: 

By deleting row 1 and column 1 of H:  𝑑𝑒𝑡 ቂ 2 െ1
െ1 4

ቃ = 7 > 0.  

By deleting row 2 and column 2 of H:  𝑑𝑒𝑡 ቂ 2 െ1
െ1 4

ቃ = 7 > 0.   

By deleting row 3 and column 3 of H:  𝑑𝑒𝑡 ቂ 2 െ1
െ1 2

ቃ = 3 > 0. 

The third principal minor is simply the determinant of H itself: 

 2[(2)(4)-(-1)(-1)] -(-1)[(-1)(4) -(-1)(-1)] +(-1)[(-1)(-1)-(-1)(2)] = 14 - 5 - 3 = 6 > 0 

As all principal minors of H are positive, f(x1,x2,x3) is a strict convex function. 

 

Example 4.13.  

Determine the given function is convex, concave, or neither? 

𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ െ𝑥ଵ
ଶ െ 𝑥ଶ

ଶ െ 2𝑥ଷ
ଶ ൅ 0.5𝑥ଵ𝑥ଶ,   𝑆 ൌ 𝑅ଷ 

Example 4.14.  

Show that for 𝑆 ൌ 𝑅ଶ, 𝑓ሺ𝑥ଵ, 𝑥ଶ ሻ ൌ 𝑥ଵ
ଶ ൅ 2𝑥ଶ

ଶ െ 3𝑥ଵ𝑥ଶ is not a convex or a concave function.  

4.4.2 Local Optima & Saddle Points 

The stationary points are solutions where all first partial derivatives equal zero (The gradient 

of f(x): f(x)=0).  

If a function f has continuous second partial derivatives on a neighborhood of a critical point a; 

then at a, f has: 

A local maximum if H(a) is negative definite 

A local minimum if H(a) is positive definite 

A saddle point is a stationary point that is neither a local maximum nor a local minimum. 
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Example 4.15. Verifying Saddle Points 

Verify that function f(x1,x2)=x1
2–2x1–x2

2 has a saddle point at x = (1, 0) 

Answer 

02  ,022 2
2

1
1









x
x

f
x

x

f
 

Computing the Hessian gives 

 H(1,0) = 







 20

02
 

The principal minors are 2 and –4  H is neither positive semidefinite nor negative 

semidefinite. 

Thus, x violates requirements for both a local maximum and a local minimum  it is a saddle 

point 

4.4.3 The Importance of Convex and Concave Function 

Suppose the feasible region S for NLP is a convex set. If the objective function is concave 

on S, then any local maximum for the NLP is an optimal solution (global maximum) to the 

NLP 

Strict concavity implies that the global maximum is unique.  

A local minimum of a convex objective function on a convex feasible region is an optimal 

solution (global minimum) 

Strict convexity implies that the global minimum is unique. 

4.5 Solving NLPs with One Variable 

A NLP with one variable can be formulated as follows: 

],[  s.t.

)(min)(max

bax

xfor

  

To find the optimal solution the local extremums can be analyzed or numerical analysis 

methods such as Golden Section Search can be used. 

4.5.1 Analyzing Local Extremums 

All the local maxima (or minima) are found to find the optimal solution. A point that is a local 

maximum or a local minimum for the NLP is called a local extremum. The optimal solution is 

the local maximum (or minimum) having the largest (or smallest) value of f(x). 

There are three types of points for which the NLP can have a local maximum or minimum 

(these points are often called extremum candidates). 
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 CASE 1: Points where a < x < b, f’(x) = 0 [called a stationary point of f(x)]. 

 CASE 2: Points where f’(x) does not exist 

 CASE 3: Endpoints a and b of the interval [a,b] 

 

Example 4.16. Analyzing local extremums to solve one-variable NLP 

Let     𝑓ሺ𝑥ሻ ൌ 2 െ ሺ𝑥 െ 1ሻଶ     𝑓𝑜𝑟     0 ൑ 𝑥 ൏ 3 

𝑓ሺ𝑥ሻ ൌ െ3 ൅ ሺ𝑥 െ 4ሻଶ     𝑓𝑜𝑟     3 ൑ 𝑥 ൑ 6 

Find 

max 𝑓ሺ𝑥ሻ 

s.t. 0 ൑ 𝑥 ൑ 6 

4.5.2 Golden Section Search 

It may be that f’(x) does not exist, or it may be difficult to solve the equation f’(x) = 0. 

In this case, the Golden Section Method (GSS) can be used to solve NLP if the function is a 

unimodal function.  

 

Unimodal Function 

A single variable function f is unimodal if there is at most one local maximum (or at most one 

local minimum) 

Unimodality is a weaker requirement than convexity or concavity. 

A unimodal objective function need not be either convex or concave  

Both strict convex objective function in minimize problems and strict concave objective function 

in maximize problems are unimodal 

A function f(x) is unimodal on [a,b] if for some point x’ on [a,b], f(x) is strictly increasing on [a,x’] 

and strictly decreasing on [x’,b] (maximization problem): x’ denote the optimal solution to NLP. 

The optimal solution of the NLP is some point on the interval [a,b].  

By evaluating f(x) at two points x1 and x2 on [a,b] (assume x1<x2), we may reduce the size of 

the interval in which the solution to the NLP must lie. 

After evaluating f(x1) and f(x2), it can be shown that the optimal solution will lie in a subset of 

[a,b].  

Case 1: f(x1) < f(x2) and x’  (x1,b] 

Case 2: f(x1) = f(x2) and x’  [a,x2]  

Case 3: f(x1) > f(x2) and x’  [a,x2)  

The interval in which x’ must lie – either [a,x2) or (x1, b] - is called the interval of uncertainty. 

Many search algorithms use these ideas to reduce the interval of uncertainty.  

Most of these algorithms proceed as follows: 
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1. Begin with the region of uncertainty for x being [a,b]. Evaluate f(x) at two judiciously 

chosen points x1 and x2. 

2. Determine which of Cases 1-3 holds, and find a reduced interval of uncertainty. 

3. Evaluate f(x) at two new points (the algorithm specifies how the two new points are 

chosen). Return to step 2 unless the length of the interval of uncertainty is sufficiently 

small. 

GSS begins reducing the interval of uncertainty by evaluating f(x) at two points x1 and x2 

 x1 = b – r (b – a) 

 x2 = a + r (b – a) 

where r = 0.618 [unique positive root of r2+r=1] 

Then GSS generates two new points with the following moves 

 New LH point: Move a distance equal to a fraction r of the current interval of uncertainty 

from the right endpoint of the interval of uncertainty. 

 New RH point: Move a distance equal to a fraction r of the current interval of uncertainty 

from the left endpoint of the interval of uncertainty. 

 

Example 4.17. GSS (Winston 11.5, p. 652) 

Use GSS to find 

 max –x2 – 1 

 s.t. –1 ≤ x ≤ 0.75 

with the final interval of uncertainty having a length less than 0.25. 

Answer  

a = –1, b = 0.75, and b – a = 1.75 

To determine the number k of iterations of GSS that must be performed, we solve for k using 

1.75(0.618k)<0.25. 

Taking logarithms to base e of both sides: k>4.06 

Thus, five iterations of GSS must be performed 

Please refer to Winston for iterations  

Optimal solution must lie within the interval (–0.0762,0.0815] 

(The actual maximum occurs for x = 0) 

4.6 Solving Unconstrained NLP 

In an unconstraint NLP, it is the objective function to be analyzed. For this, analytic approaches 

as well as numerical analysis methods can be used.  
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4.6.1 Analyzing Local Extremums 

First Order Necessary Condition 

Every unconstrained local optimum of a smooth (differentiable) objective function must be a 

stationary point. 

0
)(





ix

xf
 

Second Order Necessary Condition 

The Hessian matrix of a smooth function f is a negative semidefinite at every unconstrained 

local maximum. 

The Hessian matrix is a positive semidefinite at every unconstrained local minimum. 

 

Sufficient Condition for Local Optima 

A stationary point of a smooth function f is an unconstrained local maximum if the Hessian 

matrix is negative definite. 

A stationary point is an unconstrained local minimum if the Hessian matrix is positive definite. 

 

Sufficient Condition for Global Optima 

If f is a convex function, every unconstrained local minimum of f is an unconstrained global 

minimum.  

If f is concave, every unconstrained local maximum is an unconstrained global maximum. 

 

Example 4.18. Verifying Global Optima 

Find the unconstrained global optimum for f(x) = 20 - x2 + 6x 

Answer 

Differentiating 

 f’(x) = -2x + 6 = 0   x = 3 is a stationary point  

 f’’(x) = -2 < 0   f(x) is strictly concave 

Thus, x = 3 is the unconstrained global maximum. 

 

Example 4.19.  

Find all local maxima, local minima, and saddle points for 𝑓ሺ𝑥,𝑦ሻ ൌ 𝑥ଶ െ 𝑥ଶ𝑦 ൅ ሺ𝑦 ൅ 1ሻଶ 

Answer 

Find points where 
డ௙ሺ௫,௬ሻ

డ௫
ൌ 0 and 

డ௙ሺ௫,௬ሻ

డ௬
ൌ 0. 

(x, y) = (0, -1)     local min 

(x, y) = (2, 1)      not local extremum 
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(x, y) = (-2, 1)     not local extremum 

 

Example 4.20. Monopolistic Pricing (Winston 11.6., p. 656) 

A monopolist producing a single product has two types of customers. If q1 units are produced 

for customer 1, then customer 1 is willing to pay a price of 70 – 4q1 dollars. If q2 units are 

produced for customer 2, then customer 2 is willing to pay a price of 150 – 15q2 dollars. For q 

> 0, the cost of manufacturing q units is 100 + 15q dollars. To maximize profit, how much 

should the monopolist sell to each customer? 

 

4.6.2 Gradient Search 

Consider a function f(x1, x2,…xn), all of whose partial derivatives exist at every point. 

A gradient vector for f(x1, x2,…xn), written f(x), is given by 



















nx

xf

x

xf

x

xf
xf

)(
,,

)(
,

)(
)(

21

  

In many problems, it may be difficult to find a stationary point where all first partial derivatives 

equal zero (The gradient of f(x): f(x)=0). 

Gradient search can be used to approximate a function’s stationary point by using the following 

principle: 

 When objective function gradient f(x)≠0, 

 Δx= f(x) is an improving direction for a maximize objective f, and 

 Δx= -f(x) is an improving direction for a minimizing f. 

First order Taylor series computations of expression guarantee improvement with sufficiently 

small steps in direction Δx. 

Gradient search is sometimes called the method of steepest ascent for maximize (steepest 

descent for minimize) problems. 

Although gradient search may produce good initial progress, zigzagging as it approaches a 

stationary point makes the method too slow and unreliable to provide satisfactory results in 

many unconstrained NLP applications. 

 

The Method of Steepest Ascent (Descent) 

Given a vector x = (x1, x2,…, xn)  Rn, the length of x (written ||x||) is (x1
2+x2 

2+…+xn 
2)1/2. For 

any vector x, the unit vector x/||x|| is called the normalized version of x. 

Suppose we are at a point v and we move from v a small distance  in a direction d. 

Then for a given , the maximal increase in the value of f(x) will occur if d=f(x)/||f(x)|| 
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If we move a small distance away from v and we want f(x) to increase as quickly as possible, 

then we should move in the direction of f(v).  

 

STEPS 

1. Begin at any point v0. 

2. The maximum possible improvement in the value of f (for a max problem) that can be 

attained by moving away from v0 in the direction of f(v0) results from moving to 

v1=v0+t0f(v0) where t0 solves the following one variable optimization problem 

 max f(v0+t0f(v0)) 

 s.t.   t0≥0 

3. If ||f(v1)|| is small, terminate the algorithm (v1 is near a stationary point). 

4. If ||f(v1)|| is not sufficiently small (i.e. not less than 0.01), then move away from v1 a 

distance t1 in the direction of ||f(v1)||.  

5. Continue in this fashion until reaching a point va having ||f(va)|| sufficiently small. 

  

Example 4.21. Steepest Ascent (Winston 11.7., p. 663) 

Use the method of steepest ascent to approximate the solution to 

𝑀𝑎𝑥 𝑧 ൌ െሺ𝑥ଵ െ 3ሻଶ െ ሺ𝑥ଶ െ 2ሻଶ ൌ 𝑓ሺ𝑥ଵ, 𝑥ଶሻ 

𝑠. 𝑡.  ሺ𝑥ଵ, 𝑥ଶሻ ∈ 𝑅ଶ 

Consider v0 = (1, 1). 

 

4.6.3 Newton’s Method  

Newton’s method, also known as the Newton–Raphson method, uses Newton step to find a 

new point. To improve on the slow zigzagging progress characteristics of gradient search, an 

obvious possibility is extending to the second order Taylor approximation  Newton Step 

Newton steps Δx, which move to a stationary point (if there is one), of the second order Taylor 

series approximation to f(x) at the current point x(t) are obtained by solving the linear equation 

system: 

 H(x(t)) Δx = –f(x(t)) 

If Newton’s method converges to a local optimum, it usually does so in many fewer steps than 

first order procedures such as gradient search. 

Computing both first and second partial derivatives plus solving a linear system of equations 

at each iteration makes Newton’s method computationally burdensome as the dimension of 

the decision vector becomes large. 

Notice that if there is single variable, Δx can be found as ∆𝑥 ൌ
௙ᇲሺ௫ሻ

௙ᇲᇲሺ௫ሻ
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STEPS 

Newton’s method proceeds by repeating the process: 

 Uses 1st and 2nd partial derivatives at the current point to compute a Newton step 

 Updates the solution with that step:  

 x(k+1) = x(k) + Δx 

Algorithm stops if gradient norm at that point is less than stopping tolerance  

 ||f(x(t))||<t 

 

Example 4.22. Newton’s method 

Solve the following NLP using Newton’s method starting from the point x0 = (0,1) 

𝑀𝑖𝑛 𝑓ሺ𝑥, 𝑦ሻ ൌ ሺ𝑥 ൅ 1ሻସ ൅ 𝑥𝑦 ൅ ሺ𝑦 ൅ 1ሻସ 

4.7 Solving Constrained NLP 

There are various methods in the literature and in practice to solve Constrained NLPs such as  

 Lagrange Multiplier Methods 

 KKT Optimality Conditions 

 Penalty and Barrier Methods 

 Reduced Gradient Algorithms 

 Quadratic Programming Methods 

 Separable Programming Methods 

We will cover fundamentals ones in the course. 

4.7.1 Lagrange Multipliers 

Lagrange multiplier solution techniques are most easily applied to models in equality 

constrained format: 

min or max  f(x) 

s.t.         gi(x) = bi   for all i=1, 2, ..., m 

These techniques address NLPs in pure equality form. 

That is they consider only a set of constraints assumed active, which can be taken as 

equalities. 

 

Lagrangian Function 

The Lagrangian function associated with an NLP  over equality constraints gi(x) = bi is 

 L(x, v) = f(x) + i i [bi – gi (x)]  

where i is the Lagrange multiplier for constraint i. 
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Lagrangian Stationary Points 

Points where gradient L(x*, *) = 0 are stationary points of the Lagrangian. Therefore solution 

(x*, *) is a stationary point of Lagrangian function L(x, ) if it satisfies  

 gi(x*) = bi   for all i   

 i gi(x*) i* = f(x*)   for all j or ∑ డ௚೔
డ௫ೕ

𝜆௜ ൌ
ఋ௙

ఋ௫ೕ
௜    for all j. 

 
Optimum Point 

If (x*, *) is a stationary point of the Lagrangian function L(x, ) and x* is  an unconstrained 

optimum of L(x, *), then x* is an optimum of the corresponding equality constrained NLP. 

Interpretation of Lagrange Multipliers 

The optimal Lagrange multiplier, i* associated with constraint gi(x) = bi can be interpreted as 

the rate of change in optimal value per unit increase in RHS bi. 

 
Limitations of the Lagrangian Approach 

Stationary point conditions can be solved only if they are linear or very simple nonlinear 

functions. In other cases, solving these conditions may be more difficult than directly searching 

for an optimal solution to the original model. 

 
Example 4.23. Lagrange Multiplier Method (Winston 11.8, p.667) 

A company is planning to spend $10,000 on advertising. It costs $3,000 per minute to advertise 

on television and $1,000 per minute to advertise on radio. If the firm buys x minutes of television 

advertising and y minutes of radio advertising, then its revenue in thousands of dollars is given 

by f(x,y) = -2x2 – y2 + xy + 8x + 3y. How can the firm maximize its revenue?  

 

4.7.2 KKT Optimality Conditions 

Historically, W. Karush was the first to develop the KKT conditions in 1939 as part of his M.S. 

thesis. The same conditions were developed independently in 1951 by W. Kuhn and A. 

Tucker. 

Lagrangian Approach deals only with equality constraints. KKT conditions address the full 

differentiable NLP. 

Full Differentiable NLPs have the general form: 

min or max f(x) 

s.t.  gi(x) ≥ bi   for all iG 

   gi(x) ≤ bi   for all iL 

   gi(x) = bi   for all iE 

where f and all gi are differentiable functions. 
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Complementary Slackness 

Either inequality constraints should be active at a local optimum or the corresponding Lagrange 

variable should be 0: 

  i [bi – gi (x)] = 0    for all inequalities i 

 
Lagrange Multiplier Sign Restrictions 

Lagrange multipliers i on constraints i of full differentiable NLP should satisfy the following 

sign restrictions: 

Objective i is ≤ i is ≥ i is = 

Minimize i ≤ 0 i ≥ 0 urs 

Maximize i ≥ 0 i ≤ 0 urs 

 

KKT Points 

Solutions x and  satisfy the KKT conditions for differentiable NLP if they fulfill  

 complementary slackness conditions  

 sign restrictions 

 gradient equation ( i gi(x) i = f(x) ) 

 primal constraints of the original NLP model 

Any x for which there exist a corresponding  satisfying these conditions is called a KKT point. 

Necessity of KKT Conditions for Optimality 

A local optimum solution of a constrained differentiable NLP must be a KKT point if 

 All constraints are linear or 

 The gradients of all constraints active at the local optimum are linearly independent  

LICQ (Linear Independence Constraint Qualification):  

A collection of vectors x1, x2, ..., xk is considered LI if ∑iixi=0 implies that i=0 for all i’s. 

 

Sufficiency of KKT Conditions for Optimality 

If x is a KKT point of a convex program, x is a global optimum. 

 
CONVEX PROGRAM 

A constrained NLP is a convex program if  

 f is convex for a min. or concave for a max. 

 each gi of a ≥ constraint is concave 

 each gi of a ≤ constraint is convex 

 each gi of a ≥ constraint is linear    
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Example 4.24. KKT (Winston 11.9, p.676) 

A monopolist can purchase up to 20 oz of a chemical for $10/oz. At a cost of $3/oz, the 

chemical can be processed into an ounce of product 1; or, at a cost of $5/oz, the chemical can 

be processed into an ounce of product 2. If x1 oz of product 1 are produced, it sells for a price 

of $30-x1 per ounce. If x2 oz of product 2 are produced, it sells for a price of $50-2x2 per ounce. 

Determine how the monopolist can maximize profits.    

Answer 

Define x1 = ounces of product 1 produced, x2 = ounces of product 2 produced, x3 = ounces of 

chemical processed. The following NLP can be used to solve the problem: 

𝑀𝑎𝑥 𝑧 ൌ  𝑥ଵሺ30 െ 𝑥ଵሻ ൅ 𝑥ଶሺ50 െ 2𝑥ଶሻ െ 3𝑥ଵ െ 5𝑥ଶ െ 10𝑥ଷ 

𝑠𝑡        𝑥ଵ ൅ 𝑥ଶ െ 𝑥ଷ ൑ 0 

𝑥ଷ ൑ 20 

KKT conditions for the given NLP: 

30 െ 2𝑥ଵ െ 3 െ 𝜆ଵ ൌ 0 

50 െ 4𝑥ଶ െ 5 െ 𝜆ଵ ൌ 0 

െ10 ൅ 𝜆ଵ െ 𝜆ଶ ൌ 0 

𝜆ଵሺെ𝑥ଵ െ 𝑥ଶ ൅ 𝑥ଷሻ ൌ 0 

𝜆ଶሺ20 െ 𝑥ଷሻ ൌ 0 

𝜆ଵ ൒ 0 

𝜆ଶ ൒ 0 

There are four cases to consider: 

Case 1: 1= 2= 0 

Case 2: 1=0, 2> 0 

Case 3: 1>0, 2= 0 

Case 4: 1>0, 2> 0 

In order to find the optimal solution, we have to analyze all the cases to find out which one 

satisfy the KKT conditions. 

 

4.8 Solving NLP on a PC  

LINGO may be used to solve NLPs. Excel Solver may also be used to solve NLPs. 

LINGO and Solver use calculus-based methods. 

For NLPs having multiple local optimal solutions, LINGO and Solver may fail to find the optimal 

solution as they may pick a local extremum that is not a global extremum. 
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5. INTRODUCTION TO INTERIOR POINT METHODS 

Interior Point Methods (IPM) still follow the improving search paradigm for LP, but they 

employ moves quite different from those in simplex method. 

Much more effort turns out to be required per move (iteration) with IPM but the number of 

moves decreases dramatically.  

The simplex algorithm is an exponential time algorithm for solving LPs. If an LP of size n is 

solved by the simplex, then there exists a positive number a such that for any n, the simplex 

algorithm will find the optimal solution in a time of at most a2n. 

IPM, on the other hand, is a polynomial time algorithm. This implies that if an LP of size n is 

solved by an IPM, then there exist positive numbers b and c such that for any n, LP can be 

solved in a time of at most bnc 

Instead of staying on the boundary of the feasible region and passing from extreme point to 

extreme point, IPM proceed directly across the interior.  

IPM begin at and move through a sequence of interior feasible solutions, converging to the 

boundary of the feasible region only at an optimal solution.  

 

Popular methods 

 Karmarkar’s Projective Transformation 

 Affine Scaling 

 Log Barrier 

 

Interior in LP Standard Form 

IPM are applied to an LP in the following standard form: 

max   cx 

s.t.   Ax = b 

       x ≥ 0 

 

A feasible solution for an LP in standard form is an interior point if every component (variable) 

of the solution that can be positive in any feasible solution is strictly positive in the given point. 

 

Projecting to Deal with Equality Constraints 

A move direction Δx is feasible for equality constraints Ax=b if it satisfies AΔx=0. 

The projection of a move vector d on a given system of equalities is a direction preserving 

those constraints and minimizing the total squared difference between its components and 

those of d. 
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The projection of direction d onto conditions AΔx=0 preserving linear inequalities Ax=b can 

be computed as Δx=Pd where projection matrix  P = I – AT (AAT)–1 A  

 

Improvement with Projected Directions 

For maximization problems, the projection Δx=Pc of (nonzero) objective function vector c onto 

equality constraints Ax=b is an improving direction at every x. 

For minimization problems, the projection Δx = -Pc of (nonzero) objective function vector c 

onto equality constraints Ax=b is an improving direction at every x. 

 

Affine Scaling Approach 

(x1’, x2’, x3’): initial solution  

Diagonal matrix D =
















'00

0'0

00'

3

2

1

x

x

x

 

 

such that xDx ~  

Rescaled variable: xDx 1~    [Centering scheme (1, 1, 1)] 

For new coordinates 

ADA 
~

 

  Dcc ~
 

Projection matrix: A)AA(AIP
~~~~ 1TT   

Projected gradient: cPc ~
P   

Update  Pnew
~~ cxx

v


  

where v is the absolute value of the negative component of cp having largest absolute value 

and a is arbitrarily chosen as 0.8 

 measures the fraction used of the distance that could be moved before the feasible region 

is left. An  value close to upper bound of 1 is good for giving a relatively large step toward 

optimality on the current iteration. However, the problem with a value too close to 1 is that 

the next trial solution then is jammed against a constraint boundary, thereby making it difficult 

to take large improving steps during subsequent iterations. 
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In original coordinates: newnew
~ xDx   

When the solution value is no longer changing very much, algorithm stops  

 

Example 5.1.  Frannie’s Firewood (Rardin 6.1., p. 274) 

Solve the following LP using Affine Scaling Approach.  

max 90 x1 + 150 x2 

 s.t.   0.5 x1 + x2 ≤ 3 

  x1, x2 ≥ 0 

 

Standard form: 

max 90 x1 + 150 x2 

 s.t    0.5 x1 + x2 + s1 = 3 

  x1, x2 , s1 ≥ 0 

consider x(0)= (1, 0.5, 2)T 

 

Answer to the question will be uploaded to Ninova as an Excel file. 
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6. DETERMINISTIC DYNAMIC PROGRAMMING 

Dynamic Programming (DP) is a technique that can be used to solve many optimization 

problems. In most applications, DP obtains solutions by working backward from the end of a 

problem toward the beginning, thus breaking up a large, unwieldy problem into a series of 

smaller, more tractable problems.  

6.1 Two Puzzles 

In this section, it is shown how working backward can make a seemingly difficult problem 

almost trivial to solve. 

 

Example 6.1. Match Puzzle (Winston 18.1, p.961) 

30 matches on a table 

Two players: my opponent and me 

Pick up 1, 2, or 3 matches 

I begin, my opponent continues, I continue, … 

The player who picks up the last match is “loser” 

How can I be sure of winning the game? 

 

Answer 

If I can ensure that it will be my opponent’s turn when 1 match remain, I’ll certainly win! Working 

backward one step, if I can ensure that it will be my opponent’s turn when 5 matches remain, 

I’ll win: e.g., if he picks up 2 matches, I will pick up 2 matches. 

Similarly, if I can force my opponent to play when 5, 9, 13, …. 29 matches remain, I’m sure of 

victory. 

Therefore, I should pick up 1 match. 

We have solved this puzzle by working backward from the end of the problem toward the 

beginning. 

 

Example 6.2. Milk Puzzle (Winston 18.1, p.961) 

I have a 9-liter cup and a 4-liter cup. My mother has ordered me to bring home exactly 6 liters 

of milk. How can I accomplish this goal? 

Answer 

By starting near the end of the problem, I clearly realize that I can solve this problem if I can 

somehow get 1 liter of milk into 4-liter cup. Then I can fill 9-liter cup and empty 3 liter from this 

cup into partially filled 4-liter: I’ll be left with 6 liter of milk. 
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The problem may easily be described as in the table (the initial solution is written last, the final 

solution is written first) 

Liters in 9-liter cup Liters in 4-liter cup 

6 0 

6 4 

9 1 

0 1 

1 0 

1 4 

5 0 

5 4 

9 0 

0 0 

6.2 A Network Problem 

Many applications of DP reduce to finding the shortest (or longest) path that joins two points 

in a given network. The following example illustrates how DP (working backward) can be used 

to find the shortest path in a network.  

 

Example 6.3. Shortest Path (Winston 18.2, p.963) 

Joe Cougar lives in New York City, but he plans to drive to Los Angeles to seek fame and 

fortune. Joe’s funds are limited, so he has decided to spend each night on his trip at a friend’s 

house. Joe has friends in Columbus, Nashville, Louisville, Kansas City, Omaha, Dallas, San 

Antonio, and Denver. Joe knows that after one day’s drive he can reach Columbus, Nashville, 

or Louisville. After two days of driving, he can reach Kansas City, Omaha, or Dallas. After three 

days of driving, he can reach San Antonio or Denver. Finally, after four days of driving, he can 

reach Los Angeles. To minimize the number of miles traveled, where should Joe spend each 

night of the trip? The actual road mileages between cities are given in the following Figure. 
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Answer 

Joe needs to know the shortest path between New York and Los Angeles in the network. We 

will find it by working backward. We have classified all the cities that Joe can be in at the 

beginning of nth day of his trip as stage n cities. For example, because Joe can only be in 

San Antonio or Denver at the beginning of the fourth day (day 1 begins when Joe leaves 

New York), we classify San Antonio and Denver as stage 4 cities. The reason for classifying 

cities according to stages will become apparent later.  

The idea of working backward implies that we should begin by solving an easy problem that 

will eventually help us to solve a complex problem. Hence, we begin by finding the shortest 

path to Los Angeles from each city in which there is only one day of driving left (Stage 4 

cities). Then we use this information to find the shortest path to Los Angeles from each city 

for which only two days of driving remain (Stage 3 cities). With this information in hand, we 

are able to find the shortest path to Los Angeles from each city that is three days distant 

(Stage 2 cities). Finally, we find the shortest path to Los Angeles from each city (there is only 

one: New York) that is four days away. 

To simplify the exposition, we use the numbers 1, 2,..., 10 given in the figure to label the 10 

cities. We also define cij to be the road mileage between city i and city j. For example, 

c35=580 is the road mileage between Nashville (3) and Kansas City (5). We let ft(i) be the 

length or the shortest path from city i to Los Angeles, given that city i is a stage t city.  
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STAGE 4 COMPUTATIONS 

We first determine the shortest path to Los Angeles from each stage 4 city. Since there is 

only one path from each stage 4 city to Los Angeles, we immediately see that f4(8)=1030, the 

shortest path from Denver to Los Angeles simply being the only path from Denver to Los 

Angeles. Similarly, f4(9)=1390, the shortest (and only) path from San Antonio to Los Angeles.   

STAGE 3 COMPUTATIONS 

We now work backward one stage (to stage 3 cities) and find the shortest path to Los 

Angeles from each stage 3 city. For example, to determine f3(5), we note that the shortest 

path from city 5 to Los Angeles must be one of the following: 

Path 1: Go from city 5 to city 8 and take the shortest path from city 8 to city 10.  

Path 2: Go from city 5 to city 9 and take the shortest path from city 9 to city 10. 

The length of path 1 may be written as c58+f4(8), and the length of path 2 may be written as 

c59+f4(9). Hence, the shortest distance from city 5 to city 10 may be written as 

   
 








218013907909

*164010306108
min5

459

458
3 fc

fc
f  

[The * indicates the choice of arc that attains the f3(5)] 

Thus, we have shown that the shortest path from city 5 to city 10 is the path 5-8-10. Note that 

to obtain this result, we made use of our knowledge of f4(8) and f4(9).  

Similarly, to find f3(6), we note that the shortest path to Los Angeles from city 6 must begin by 

going to city 8 or city 9. This leads us to the following equation: 

   
 








233013909409

*157010305408
min6

469

468
3

fc

fc
f  

Thus, f3(6)=1570, and the shortest path from city 6 to city 10 is the path 6-8-10, to find f3(7), 

we note that 

   
 








*166013902709

182010307908
min7

479

478
3 fc

fc
f  

Therefore, f3(7)=1660, and the shortest path from city 7 to city 10 is the path 7-9-10.   

STAGE 2 COMPUTATIONS 

Given our knowledge of f3(5), f3(6), and f3(7), it is now easy to work backward one more 

stage and compute f2(2), f2(3), and f2(4) and thus the shortest paths to Los Angeles from city 

2, city 3, and city 4. To illustrate how this is done, we find the shortest path (and its length) 

from city 2 to city 10. The shortest path from city 2 to city 10 must begin by going from city 2 

to city 5, city 6, or city 7. Once the shortest path gets to city 5, city 6, or city 7, then it must 

follow a shortest path from that city to Los Angeles. This reasoning shows that the shortest 

path from city 2 to city 10 must be one of the following: 
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Path 1: Go from city 2 to city 5. Then follow a shortest path from city 5 to city 10. A 

path of this type has a total length of c25+f3(5). 

Path 2: Go from city 2 to city 6. Then follow a shortest path from city 6 to city 10. A 

path of this type has a total length of c26+f3(6). 

Path 3: Go from city 2 to city 7. Then follow a shortest path from city 7 to city 10. A 

path of this type has a total length of c27+f3(7). We may conclude that 

 
 
 
 













2710166010507

236015707906

*232016406805

min2

327

326

325

2

fc

fc

fc

f  

Thus, f2(2)=2320, and the shortest path from city 2 to city 10 is to go from city 2 to city 5 and 

then follow the shortest path from city 5 to city 10 (5-8-10). Similarly,  

 
 
 
 













232016606607

233015707606

*222016405805

min3

337

336

335

2

fc

fc

fc

f  

Thus, f2(3)=2220, and the shortest path from city 3 to city 10 consists of arc 3-5 and the 

shortest path from city 5 to city 10 (5-8-10).  

In similar fashion,  

 
 
 
 













249016608307

227015707006

*215016405105

min4

347

346

345

2

fc

fc

fc

f  

Thus, f2(4)=2150, and the shortest path from city 4 to city 10 consists of arc 4-5 and the 

shortest path from city 5 to city 10 (5-8-10). 

STAGE 1 COMPUTATIONS 

We can now use our knowledge of f2(2), f2(3), and f2(4) to work backward one more stage to 

find f1(1) and the shortest path from city 1 to 10. Note that the shortest path from city 1 to city 

10 must be one of the following: 

Path 1: Go from city 1 to city 2 and then follow a shortest path from city 2 to city 10. 

The length of such a path is c12+f2(2). 

Path 2: Go from city 1 to city 3 and then follow a shortest path from city 3 to city 10. 

The length of such a path is c13+f2(3). 

Path 3: Go from city 1 to city 4 and then follow a shortest path from city 4 to city 10. 

The length of such a path is c14+f2(4). It now follows that 

 
 
 
 













292021507704

312022209003

*287023205502

min1

214

213

212

1

fc

fc

fc

f  
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Optimal Solution and Report 

Thus, f1(1) = 2870, and the shortest path from city 1 to city 10 goes from city 1 to city 2 and 

then follows the shortest path from city 2 to city 10. Checking back to the f2(2) calculations, 

we see that the shortest path from city 2 to city 10 is 2-5-8-10.  

The shortest path from New York to Los Angeles passes through New York, Columbus, 

Kansas City, Denver, and Los Angeles. 

 

6.3 Characteristics of DP Applications 

The characteristics of Network Problem are common to most applications of DP: 

1. The problem can be divided into stages with a decision required at each stage. In 

Network Problem, stage t consisted of those cities where Joe could be at the beginning of 

day t of his trip. As we will see, in many DP problems, the stage is the amount of time 

that has elapsed since the beginning of the problem. We note that in some situations, 

decisions are not required at every stage. 

2. Each stage has a number of states associated with it. By a state, we mean the 

information that is needed at any stage to make an optimal decision. In Network Problem, 

the state at stage t is simply the city where Joe is at the beginning of day t. For example, 

in stage 3, the possible states are Kansas City, Omaha, and Dallas. Note that to make 

the correct decision at any stage, Joe doesn’t need to know how he got to his current 

location. For example, if Joe is in Kansas City, then his remaining decisions don’t depend 

on how he goes to Kansas City; his future decisions depend on the fact that he is now in 

Kansas City.  

3. The decision chosen at any stage describes how the state at the current stage is 

transformed into the state at the next stage. In Network Problem, Joe’s decision at any 

stage is simply the next city to visit. This determines the state at the next stage in an 

obvious fashion. In many problems, however, a decision does not determine the next 

stage’s state with certainty; instead, the current decision only determines the probability 

distribution of the state at the next stage.  

4. Given the current state, the optimal decision for each of the remaining stages must not 

depend on previously reached states or previously chosen decisions. This idea is known 

as the principle of optimality. In the context of Network Problem, the principle of 

optimality reduces to the following: Suppose the shortest path (call it R) from city 1 to city 

10 is known to pass through city i. Then the portion of R that goes from city i to city 10 

must be shortest path from city i to city 10. If this were not the case, then we could create 

a path from city 1 to city 10 that was shorter than R by appending a shortest path from 

city i to city 10 to the portion of R leading from city 1 to city i. This would create a path 
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from city 1 to city 10 that is shorter than R, thereby contradicting the fact that R is the 

shortest path from city 1 to city 10. For example, if the shortest path city 1 to city 10 must 

include a shortest path from city 2 than the shortest path from city 1 to city 10 must 

include a shortest path from city 2 to city 10 (2-5-8-10). This follows because any path 

from city 1 to city 10 that passes through city 2 and does not contain a shortest path from 

city 2 to city 10 will have a length of c12 + [something bigger than f2(2)]. Of course, such 

a path cannot be shortest path from city 1 to city 10.   

5. If the states for the problem have been classified into one of T stages, there must be a 

recursion that relates the cost or reward earned during stages t, t+1, …, T to the cost or 

reward earned from stages t+1, t+2,…, T. In essence, the recursion formalizes the 

working backward procedure. In Network Problem, our recursion could have been written 

as  

    jfcif tijjt 1min   

where j must be a stage t+1 city and f5(10)=0. 

 

6.4 An Inventory Problem 

In this section, we illustrate how DP can be used to solve an inventory problem with the 

following characteristics: 

1. Time is broken up into periods, the present period being period 1, the next period 2, and 

the final period T. At the beginning of period 1, the demand during each period is known.  

2. At the beginning of each period, the firm must determine how many units should be 

produced. Production capacity during each period is limited. 

3. Each period’s demand must be met on time from inventory or current production. During 

any period in which production takes place, a fixed cost of production as well as a 

variable per-unit cost is incurred.  

4. The firm has limited storage capacity. This is reflected by a limit on end-of-period 

inventory. A per-unit holding cost is incurred on each period’s ending inventory. 

5. The firm’s goal is to minimize the total cost of meeting on time the demands for periods 1, 

2, …, T. 

In this model, the firm’s inventory position is reviewed at the end of each period (say, at the 

end of each month), and then the production decision is made. Such a model is called a 

periodic review model. This model is in contrast to the continuous review models in which 

the firm knows its inventory position at all times and may place an order or begin production 

at any time.  
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If we exclude the setup cost for producing any units, the inventory problem just described is 

similar to the Sailco inventory problem that is solved by linear programming in Section 3.10. 

Here, we illustrate how DP can be used to determine a production schedule that minimizes 

the total cost incurred in an inventory problem that meets the preceding description.  

 

Example 6.4. Inventory (Winston 18.3, p.970) 

A company knows that the demand for its product during each of the next four months will be 

as follows: month 1, 1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units. At the 

beginning of each month, the company must determine how many units should be produced 

during current month. During a month in which any units are produced, a setup cost of $3 is 

incurred. In addition, there is a variable cost of $1 for every unit produced. At the end of each 

month, a holding cost of 50¢ per unit on hand is incurred. Capacity limitations allow a 

maximum of 5 units to be produced during each month. The size of the company’s 

warehouse restricts the ending inventory for each month to 4 units at most. The company 

wants to determine a production schedule that will meet all demands on time and will 

minimize the sum of production and holding costs during the four months. Assume that 0 

units are on hand at the beginning of the first month.  

 

Answer 

We can ensure that all demands are met on time be restricting each month’s inventory to be 

nonnegative. To use DP to solve this problem, we need to identify the appropriate state, 

stage, and decision. The stage should be defined so that when one stage remains, the 

problem will be trivial to solve. If we are at the beginning of month 4, then the firm would 

meet demand at minimum cost by simply producing just enough units to ensure that (month 

4 production) + (month 3 ending inventory) = (month 4 demand). Thus, when one month 

remains, the firm’s problem is easy to solve. Hence, we let time represent the stage. In most 

DP problems, the stage has something to do with time.  

At each stage (or month), the company must decide how many units to produce. To make 

this decision, the company need only know the inventory level at the beginning of the current 

month (or at the end of the previous month). Therefore, we let the state at any stage be the 

beginning inventory level.  

Before writing a recursive relation that can be used to “build up” the optimal production 

schedule, we must first define ft(i) to be the minimum cost of meeting demands for months t, 

t+1, ..., 4 if i units are on hand at the beginning of month t. We define c(x) to be the cost of 

producing x units during a period. Then c(0)=0, and for x>0, c(x)=3+x. Because of the limited 

storage capacity and the fact that all demand must be met on time, the possible states during 
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each period are 0, 1, 2, 3 and 4. Thus, we begin by determining f4(0), f4(1), f4(2), f4(3), and 

f4(4). Then we use this information to determine f3(0), f3(1), f3(2), f3(3) and f3(4). Then we 

determine f2(0), f2(1), f2(2), f2(3) and f2(4). Finally, we determine f1(0). Then we determine an 

optimal production level for each month. We define  

xt(i) to be a production level during month t that minimizes the total cost during months t, t+1, 

..., 4 if i units are on hand at the beginning of month t. We now begin to work backward.  

MONTH 4 COMPUTATIONS 

During month 4, the firm will produce just enough units to ensure that the month 4 demand of 

4 units is met. This yields 

f4(0)= cost of producing 4 – 0 units = c(4)= 3 + 4= $7 and x4(0)= 4 – 0 = 4 

f4(1)= cost of producing 4 – 1 units = c(3)= 3 + 3= $6 and x4(1)= 4 – 1 = 3 

f4(2)= cost of producing 4 – 2 units = c(2)= 3 + 2= $5 and x4(2)= 4 – 2 = 2 

f4(3)= cost of producing 4 – 3 units = c(1)= 3 + 1= $4 and x4(3)= 4 – 3 = 1 

f4(4)= cost of producing 4 – 4 units = c(0)= $0 and x4(4)= 4 – 4 = 0 

 

MONTH 3 COMPUTATIONS 

How can we now determine f3(i) for i = 0, 1, 2, 3, 4? The cost f3(i) is the minimum cost 

incurred during months 3 and 4 if the inventory at the beginning of month 3 is i. For each 

possible production level x during month 3, total cost during months 3 and 4 is 

( ½ ) (i + x – 2) + c(x) + f4(i + x – 2)           (1) 

This follows because if x units are produced during month 3, the ending inventory for month 

3 will be i + x – 2. Then the month 3 holding cost will be ( ½ ) (i + x – 2), and the month 3 

production cost will be c(x). Then we enter month 4 with (i + x – 2) units on hand. Since we 

proceed optimally from this point onward (remember the principle of optimality), the cost for 

month 4 will be f4(i + x – 2). We want to choose the month 3 production level to minimize (1), 

so we write  

       














 22
2

1
min 43 xifxcxiif

x
          (2) 

In (2), x must be a member of {0, 1, 2, 3, 4, 5}, and x must satisfy 4 ≥ i + x – 2 ≥ 0. This 

reflects the fact that the current month’s demand must be met (i + x – 2 ≥ 0), and ending 

inventory cannot exceed the capacity of 4 (i + x – 2 ≤ 4). Recall that x3(i) is any value of x 

attaining f3(i). The computations for f3(0), f3(1), f3(2), f3(3), and f3(4): 
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i x (½) (i+x – 2) + c(x) f4(i + x – 2) 
Total cost 

Months 3, 4 

f3(i) 

x3(i) 

0 2 0 + 5 = 5 7 5 + 7 =12*  

f3(0)=12 

x3(0)=2 

0 3 0.5+6 = 6.5
 

6 6.5+6 = 12.5
 

0 4 871   5 1358   

0 5 1.5 + 8 = 9.5
 

4 9.5 +4 =13.5
 

1 1 440   7 1174   

f3(1)=10 

x3(1)=5 

1 2 0.5 + 5 = 5.5
 

6 5.5 + 6 = 11.5
 

1 3 761   5 1257   

1 4 1.5 + 7 = 8.5
 

4 8.5 + 4 = 12.5
 

1 5 1082   0 *10010   

2 0 000   7 *770   

f3(2)=7 

x3(2)=0 

2 1 0.5+4 =4.5
 

6 4.5 + 6 =10.5
 

2 2 651   5 1156   

2 3 1.5 + 6 = 7.5
 

4 7.5 + 4 =11.5
 

2 4 972   0 909   

3 0 0.5 + 0 = 0.5
 

6 0.5 + 6 = 6.5*
 

f3(3)=6.5 

x3(3)=0 

3 1 541   5 1055   

3 2 1.5 + 5 = 6.5
 

4 6.5 + 4 = 10.5
 

3 3 862   0 808   

4 0 101   5 *651   
f3(4)=6 

x3(4)=0 
4 1 1.5+4=5.5

 
4 5.5+4 =9.5

 

4 2 752   0 707   

MONTH 2 COMPUTATIONS 

We can now determine f2(i), the minimum cost incurred during months 2, 3, and 4 given that 

at the beginning of month 2, the on-hand inventory is i units. Suppose that month 2 

production = x. Because month 2 demand is 3 units, a holding cost of (½) (i + x – 3) is 

incurred at the end of month 2. Thus, the total cost incurred during month 2 is (½) (i+x – 3) + 

c(x). During months 3 and 4, we follow an optimal policy. Since month 3 begins with an 

inventory of (i + x – 3), the cost incurred during months 3 and 4 is f3(i + x – 3). In analogy to 

(2), we now write  

       














 33
2

1
min 32 xifxcxiif

x
          (3) 
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where x must be a member of {0, 1, 2, 3, 4, 5} and x must satisfy 0 ≤ (i+x – 3) ≤ 4. The 

computations for f2(0), f2(1), f2(2), f2(3), and f2(4) are given in the following Table: 

i x (½) (i+x – 3) + c(x) f3(i + x – 3) 
Total cost  

Months 2-4 

f2(i) 

x2(i) 

0 3 660   12 18126   
f2(0)=16 

x2(0)=5 
0 4 0.5+7=7.5

 
10 7.5 + 10=17.5

 

0 5 981   7 *1679   

1 2 550   12 17125   

f2(1)=15 

x2(1)=4 

1 3 0.5+6=6.5
 

10 6.5+10=16.5
 

1 4 871   7 *1578   

1 5 1.5+8=9.5
 

6.5
 

9.5+6.5=16
 

2 1 440   12 16124   

f2(2)=14 

x2(2)=3 

2 2 0.5+5=5.5
 

10 5.5+10=15.5
 

2 3 761   7 *1477   

2 4 1.5+7=8.5
 

6.5
 

8.5+6.5=15
 

2 5 1082   6 16610   

3 0 000   12 *12120   

f2(3)=12 

x3(3)=0 

3 1 0.5+4=4.5
 

10 4.5+10=14.5
 

3 2 651   7 1376   

3 3 1.5+6=7.5
 

6.5
 

7.5+6.5=14
 

3 4 972   6 1569   

4 0 0.5+0=0.5
 

10 0.5+10=10.5*
 

f2(4)=10.5 

x2(4)=0 

4 1 651   7 1275   

4 2 1.5+5=6.5
 

6.5
 

6.5+6.5=13
 

4 3 862   6 1468   

 

MONTH 1 COMPUTATIONS 

f1(i)’s can be determined via the following recursive relation:  

       














 11

2

1
min 21 xifxcxiif

x
          (4) 

where x must be a member of {0, 1, 2, 3, 4, 5} and x must satisfy 0 ≤ (i+x – 1) ≤ 4. Since the 

inventory at the beginning of month 1 is 0 units, we actually need only determine f1(0) and 

x1(0).  
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i x (½) (i+x – 1) + c(x) f2(i + x – 1) Total cost 
f1(i) 

x1(i) 

0 1 440   16 *20164   

f1(0)=20 

x1(0)=1 

0 2 0.5+5=5.5
 

15 5.5+15=20.5
 

0 3 761   14 21147   

0 4 1.5+7=8.5
 

12 8.5+12=20.5
 

0 5 1082   10.5
 

10+10.5=20.5
 

 

Optimal Solution and Report 

We can now determine a production schedule that minimizes the total cost of meeting the 

demand for all four months on time. Since our initial inventory is 0 units, the minimum cost for 

the four months will be f1(0)=$20. To attain f1(0), we must produce x1(0)=1 unit during month 

1. Then the inventory at the beginning of month 2 will be 0 + 1 – 1 = 0. Thus, in month 2, we 

should produce x2(0)=5 units. Then at the beginning of month 3, our beginning inventory will 

be 0 + 5 – 3 = 2. Hence, during month 3, we need to produce x3(2)=0 units. Then month 4 

will begin with 2 – 2 + 0 = 0 units on hand. Thus, x4(0)=4 units should be produced during 

month 4.  

In summary, the optimal production schedule incurs a total cost of $20 and produces 1 unit 

during month 1, 5 units during month 2, 0 units during month 3, and 4 units during month 4.  

6.5 Resource Allocation Problems 

Resource allocation problems, in which limited resources must be allocated among several 

activities, are often solved by DP. Recall that we have solved such problems by linear 

programming (for instance, the Giapetto problem). To use linear programming to do resource 

allocation, three assumptions must be made: 

1. The amount of a resource assigned to an activity may be any nonnegative number.  

2. The benefit obtained from each activity is proportional to the amount of resource 

assigned to this activity.  

3. The benefit obtained from more than one activity is the sum of the benefits from the 

individual activities.  

Even if assumptions 1 and 2 do not hold, DP can be used to solve resource allocation 

problems efficiently when assumption 3 is valid and when the amount of the resource 

allocated to each activity is a member of a finite set.  
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Example 6.5. Resource Allocation (Winston 18.4, p.975) 

Finco has $6000 to invest, and three investments are available. If dj dollars (in thousands) 

are invested in investment j, then a net present value (in thousands) of rj(dj) is obtained, 

where the rj(dj)’s are as follows: 

   
   
   
      0000

054

073

027

321

3333

2222

1111







rrr

dddr

dddr

dddr

 

The amount placed in each investment must be an exact multiple of $1000. To maximize the 

net present value obtained from these investments, how should Finco allocate the $6000? 

Answer 

The return on each investment is not proportional to the amount invested in it [for example, 

16=r1(2)≠2r1(1)=18]. Thus, linear programming cannot be used to find an optimal solution to 

this problem.  

Mathematically, Finco’s problem may be expressed as 

max {r1(d1) + r2(d2) + r3(d3)} 

s.t. d1 + d2 + d3 = 6 

dj > 0 and integer (j=1,2,3) 

Of course, if rj(dj)’s were linear, then we would have a knapsack problem.  

To formulate Finco’s problem as a DP problem, we begin by identifying the stage. As in the 

inventory and shortest-route examples, the stage should be chosen so that when one stage 

remains the problem is easy to solve. Then, given that the problem has been solved for the 

case where one stage remains, it should be easy to solve the problem where two stages 

remain, and so forth. Clearly, it would be easy to solve when only one investment was 

available, so we define stage t to represent a case where funds must be allocated to 

investments t, t+1, ..., 3.  

For a given stage, what must we know to determine the optimal investment amount? Simply 

how much money is available for investments t, t+1, ..., 3.  Thus, we define the state at any 

stage to be the amount of Money (in thousands) available for investments t,  t+1, ..., 3. We 

can never have more than $6000 available, so the possible states at any stage are 0, 1, 2, 3, 

4, 5, and 6. We define ft(dt) to be the maximum net present value (NPV) that can be obtained 

by investing dt thousand dollars in investments t, t+1,..., 3. Also define xt(dt) to be the amount 

that should be invested in investment t to attain ft(dt). We start to work backward by 

computing f3(0), f3(1), ..., f3(6) and then determine f2(0), f2(1),...,f2(6). Since $6000 is available 

for investment in investments 1, 2, and 3, we terminate our computations by computing f1(6). 

Then we retrace our steps and determine the amount that should be allocated to each 
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investment (just as we retraced our steps to determine the optimal production level for each 

month in inventory example).  

STAGE 3 COMPUTATIONS 

We first determine f3(0), f3(1),…, f3(6). We see that f3(d3) is attained by investing all available 

money (d3) in investment 3. Thus,  

f3(0) = 0  x3(0) = 0 

f3(1) = 9  x3(1) = 1 

f3(2) = 13  x3(2) = 2 

f3(3) = 17  x3(3) = 3 

f3(4) = 21  x3(4) = 4 

f3(5) = 25  x3(5) = 5 

f3(6) = 29  x3(6) = 6 

 

STAGE 2 COMPUTATIONS 

To determine f2(0), f2(1),...,f2(6), we look at the possible amounts that can be placed in 

investment 2. To find f2(d2), let x2 be the amount invested in investment 2. Then an NPV of 

r2(x2) will be obtained from investment 2, and an NPV of f3(d2–x2) will be obtained from 

investment 3 (remember the principle of optimality). Since x2 should be chosen to maximize 

the net present value earned from investments 2 and 3, we write  

      2232222
2

max xdfxrdf
x

             (5) 

where x2 must be a member of {0,1,...,d2}. The computations for f2(0), f2(1), ..., f2(6) and x2(0), 

x2(1), ..., x2(6) are given in the following Table: 

d2 x2 r2(x2) f3(d2–x2) 
NPV from 

investments 2, 3 

f2(d2) 

x2(d2) 

0 0 0 0 0* 
f2(0)=0 

x2(0)=0 

1 0 0 9 9 f2(1)=10 

x2(1)=1 1 1 10 0 10* 

2 0 0 13 13 
f2(2)=19 

x2(2)=1 
2 1 10 9 19* 

2 2 13 0 13 

3 0 0 17 17 

f2(3)=23 

x2(3)=1 

3 1 10 13 23* 

3 2 13 9 22 

3 3 16 0 16 

4 0 0 21 21 f2(4)=27 
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4 1 10 17 27* x2(4)=1 

4 2 13 13 26 

4 3 16 9 25 

4 4 19 0 19 

5 0 0 25 25 

f2(5)=31 

x2(5)=1 

5 1 10 21 31* 

5 2 13 17 30 

5 3 16 13 29 

5 4 19 9 28 

5 5 22 0 22 

6 0 0 29 29 

f2(6)=35 

x2(6)=1 

6 1 10 25 35* 

6 2 13 21 34 

6 3 16 17 33 

6 4 19 13 32 

6 5 22 9 31 

6 6 25 0 25 

 

STAGE 1 COMPUTATIONS 

Following (5), we write  

      12111 6max6
1

xfxrf
x

              

where x1 must be a member of {0, 1, 2, 3, 4, 5, 6}. The computations for f1(6) are given in the 

following Table: 

d1 x1 r1(x1) f2(6–x1) 
NPV from 

investments 1-3 

f1(6) 

x1(6) 

6 0 0 35 35 

f1(6)=49 

x1(6)=4 

6 1 9 31 40 

6 2 16 27 43 

6 3 23 23 46 

6 4 30 19 49* 

6 5 37 10 47 

6 6 44 0 44 

Optimal Solution and Report 

Since x1(6)=4, Finco invests $4000 in investment 1. This leaves $6000 – $4000 = $2000 for 

investments 2 and 3. Hence, Finco should invest x2(2)=$1000 in investment 2. Then $1000 is 

left for investment 3, so Finco chooses to invest x3(1)=$1000 in investment 3. 
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Finco can attain a maximum net present value of f1(6)=$49000 by investing $4000 in 

investment 1, $1000 in investment 2, and $1000 in investment 3. 

6.5.1 Generalized Resource Allocation Problem 

We now consider a generalized version of resource allocation example. Suppose we have w 

units of a resource available and T activities to which the resource can be allocated. If activity 

t is implemented at a level xt (we assume xt must be a nonnegative integer), then gt(xt) units 

of the resource are used by activity t, and a benefit rt(xt) is obtained. The problem of 

determining the allocation of resources that maximizes total benefit subject to the limited 

resource availability may be written as  

 

  wxg

xr

Tt

tt

Tt

t
tt












1t

1

s.t.

max
              (6) 

where xt must be a member of {0, 1, 2,...}.  

Some possible interpretations of rt(xt), gt(xt), and w are given in the Table given below: 

rt(xt) gt(xt) w 

Benefit from placing xt type  t 

items in a knapsack  

Weight of xt type t items Maximum weight that 

knapsack can hold 

Grade obtained in course t if we 

study course t for xt hours per 

week  

Number of hours per week xt 

spent studying course t 

Total number of study hours 

available each week 

Sales of a product in region t if 

xt sales reps are assigned to 

region t  

Cost of assigning xt sales 

reps to region t  

Total sales force budget 

Number of fire alarms per week 

responded to within one minute 

if precinct t is assigned xt 

engines  

Cost per week of maintaining 

xt fire engines in precinct t  

Total weekly budget for 

maintaining fire engines 

 

To solve the given LP by DP, define ft(d) to be the maximum benefit that can be obtained 

from activities t, t+1, ..., T if d units of the resource may be allocated to activities t, t+1, ..., T. 

We may generalize the recursions of resource allocation example to this situation by writing  

fT+1(d)=0     for all d 

ft(d)=
tx

max {rt(xt) + ft+1(d – gt(xt))             (7) 

where xt must be a nonnegative integer satisfying gt(xt)≤d. Let xt(d) be any value of xt that 

attains ft(d). To use the formula to determine an optimal allocation of resources to activities 1, 
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2, ..., T, we begin by determining all fT(ꞏ) and xT(ꞏ). Then we use (7) to determine all fT–1(ꞏ) 

and xT–1(ꞏ), continuing to work backward in this fashion until all f2(ꞏ) and x2(ꞏ) have been 

determined. To wind things up, we now calculate f1(w) and x1(w). Then we implement activity 

1 at a level x1(w). At this point, we have w–g1(x1(w)) units of the resource available for 

activities 2, 3, ..., T. Then activity 2 should be implemented at a level of x2[w–g1(x1(w))]. We 

continue in this fashion until we have determined the level at which all activities should be 

implemented.  

6.5.2 Solution of Knapsack Problems by DP 

The Knapsack problem can be solved by dynamic programming. 

Example 6.6. Knapsack (Winston 18.4, p.979) 

Suppose a 10-lb knapsack is to be filled with items listed in the following Table. To maximize 

total benefit, how should the knapsack be filled? 

Item  Weight Benefit  

1 4 11 

2 3 7 

3 5 12 

 

Answer 

We have r1(x1) = 11x1, r2(x2) = 7x2, r3(x3) = 12x3, g1(x1) = 4x1, g2(x2) = 3x2, and g3(x3) = 5x3. 

Define ft(d) to be the maximum benefit that can be earned from a d-pound knapsack that is 

filled with items of Type t, t+1, ..., 3.  

STAGE 3 COMPUTATIONS 

Now (7) yields  

   33 12max
3

xdf
x

  

where 5x3 ≤ d and x3 is a nonnegative integer. These yields  

f3(10) = 24 

f3(5) = f3(6) = f3(7) = f3(8) = f3(9) = 12 

f3(0) = f3(1) = f3(2) = f3(3) = f3(4) = 0 

x3(10) = 2 

x3(9) = x3(8) = x3(7) = x3(6) = x3(5) = 1 

x3(0) = x3(1) = x3(2) = x3(3) = x3(4) = 0 

STAGE 2 COMPUTATIONS 

Now (7) yields 

    2322 37max
2

xdfxdf
x

  

where x2 must be a nonnegative integer satisfying 3x2≤d. We now obtain  



Y. Ilker Topcu, Ph.D. (www.ilkertopcu.net) & Özgür Kabak, Ph.D. (akademi.itu.edu.tr/kabak/ ) 97

 

 
 
 
 

 
 
 
 



























3

2

1

0
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1

4

7

10
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27
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07

max10

2

2

2

2

3

3

3

3

2

x

x

x

x

f

f

f

f

f  

Thus, f2(10)=24 and x2(10)=0 

 

 
 
 
 

 
 
 
 





























3

2

1

0

*21
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0

3

8

9
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max9

2

2
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3
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x
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f

f

f

f

f  

Thus, f2(9)=21 and x2(9)=3 

 
 
 
 

 
 
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2

5

8

27

17

07
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2
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2
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f
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Thus, f2(8)=19 and x2(8)=1 

 
 
 
 

 
 
 







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

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







2

1

0
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1

4

7
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07

max7

2

2
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3
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x

x
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f
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f
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Thus, f2(7)=14 and x2(7)=2 

 
 
 
 

 
 
 











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

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
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f
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Thus, f2(6)=14 and x2(6)=2 

   
 

 
 














1

0

7

*12

2

5

17

07
max5

2

2

3

3

2 x

x

f

f
f  

Thus, f2(5)=12 and x2(5)=0 

   
 

 
 














1

0

*7

0
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4
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07
max4
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2 x

x

f

f
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Thus, f2(4)=7 and x2(4)=1 

   
 

 
 














1

0

*7

0
0

3

17

07
max3

2

2

3

3

2 x

x

f

f
f  

Thus, f2(3)=7 and x2(3)=1 

     


  00207max2 232 xff  
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Thus, f2(2)=0 and x2(2)=0 

     


  00107max1 232 xff  

Thus, f2(1)=0 and x2(1)=0 

      000070 232  xff  

Thus, f2(0)=0 and x2(0)=0 

 

STAGE 1 COMPUTATIONS 

Finally, we determine f1(10) from  

 
 
 
 

 
 
 










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


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


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max10
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1

2

2

2

1

x

x

x

f

f

f

f  

Optimal Solution and Report 

We have f1(10) = 25 and x1(10) = 1. Hence, we should include one Type 1 item in the 

knapsack. Then we have 10 – 4 = 6 lb left for Type 2 and Type 3 items, so we should include 

x2(6) = 2 Type 2 items. Finally we have 6 – 2(3) = 0 lb left for Type 3 items, and we include 

x3(0)=0 Type 3 items. In summary, the maximum benefit that can be gained from a 10-lb 

knapsack is f3(10)=25.  

To obtain a benefit of 25, one Type 1 and two Type 2 items should be included. 

 

Alternative formulation to Knapsack Problem 

If we define g(w) as maximum benefit from w weight knapsack, the following recursion can 

be used to solve the knapsack problem: 

𝑔ሺ𝑤ሻ ൌ maks
௝

൛𝑏௝ ൅ 𝑔ሺ𝑤 െ 𝑤௝ሻൟ            (8) 

where j: items, bj: benefit of item j, wj: weight of item j . 

 

6.6 Equipment Replacement Problems 

Many companies and customers face the problem of determining how long a machine should 

be utilized before it should be traded in for a new one. Problems of this type are called 

equipment-replacement problems and can often be solved by DP. 

 

Example 6.7. Equipment Replacement (Winston 18.5, p.985) 

An auto repair always needs to have an engine analyzer available. A new engine analyzer 

cost $1,000. The cost mi of maintaining an engine analyzer during its ith year of operation is 
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as follows: m1 = $60, m2 = $80, m3 = $120. An analyzer may be kept for 1, 2, or 3 years; after 

i years of use (i=1, 2, 3), it may be traded in for a new one. If an i-year-old engine analyzer is 

traded in’ a salvage value si is obtained, where s1=$800, s2=$600, s3=$500. Given that a new 

machine must be purchased now (time 0; see the following figure), the shop wants to 

determine a replacement and trade-in policy that minimizes net costs =(maintenance costs) + 

(replacement costs) – (salvage value received) during the next 5 years. 

 

Answer 

We note that after a new machine is purchased, the firm must decide when the newly 

purchased machine should be traded in for a new one. With this in mind, we define g(t) to be 

the minimum net cost incurred from time t until time 5 (including the purchase cost and 

salvage value for the newly purchased machine) given that a new machine has been 

purchased at time t. We also define ctx to be the net cost (including purchase cost and 

salvage value) of purchasing a machine at time t and operating it until time x. Then the 

appropriate recursion is 

      4,3,2,1,0min  txgctg txx
         (9) 

where x must satisfy the inequalities t+1 ≤ x ≤ t+3 and x≤5. Because the problem is over at 

time 5, no cost incurred from time 5 onward, so we may write g(5)=0. 

To justify (9), note that after a new machine is purchased at time t, we must decide when to 

replace the machine. Let x be the time at which the replacement must be after time t but 

within 3 years of time t. This explains the restriction that t+1 ≤ x ≤ t+3. Since the problem 

ends at time 5, we must also have x≤5. If we choose to replace the machine at time x, then 

what will be the cost from time t to time 5? Simply the sum of the cost incurred from the 

purchase of the machine to the sale of the machine at time x (which is by definition ctx) and 

the total cost incurred from time x to time 5 (given that a new machine has just been 

purchased at time x). By the principle of optimality, the latter cost is, of course, g(x). Hence, if 

we keep the machine that was purchased at time t until time x, then from time t to time 5, we 

incur a cost of ctx+ g(x). Thus, x should be chosen to minimize this sum, and this is exactly 

what (9) does. We have assumed that maintenance costs, salvage value, and purchase price 

remain unchanged over time, so each ctx will depend only on how long the machine is kept; 

that is, each ctx depends only on x-t. More specifically, 

Year 2 Year 4 Year3 

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 

Year 1 Year 5 
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ctx =$1000 + m1 + ... + mx-t – sx–t  

This yields 
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We begin computing g(4) and work backward until we have computed g(0). Then we use our 

knowledge of the values of x attaining g(0), g(1), g(2), g(3) and g(4) to determine the optimal 

replacement strategy. The calculations follow. 

At time 4, there is only one sensible decision (keep the machine until time 5 and sell it for its 

salvage value), so we find 

    *260$026054 45  gcg  

Thus, if a new machine is purchased at time 4, it should be traded in at time 5. 

If a new machine is purchased at time 3, we keep it until time 4 or time 5. Hence, 

   
 
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Thus, if a new machine is purchased at time 3, we should trade it in at time 4. 

If a new machine is purchased at time 2, we trade it in at time 3, 4, or 5. This yields 
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Thus, if we purchase a new machine at time 2, we should keep it until time 5 and then trade 

it in. 

If a new machine is purchased at time 1, we trade it in at time 2, time 3, or time 4. Then 
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Thus, if we purchase a new machine at time 1, it should be traded in at time 2 or 4. 

The new machine that was purchased at time 0 may be traded in at time 1, time 3, or time 4. 

Thus, 
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Optimal Solution and Report 

Thus, the new machine purchased at time 0 should be replaced at time 1 or time 3. Let’s 

arbitrarily choose to replace the time 0 machine at time 1. Then the new time 1 machine may 

be traded in at time 2 or time 4. Again, we make an arbitrary choice and replace the time 1 

machine at time 2. Then the time 2 machine should be kept until time 5, when it is sold for 

salvage value. With this replacement policy, we will incur a net cost of g(0)=$1,280.  

The reader should verify that the following replacement policies are also optimal: trading in at 

times 1, 4, and 5 as well as trading in at times 3, 4, and 5. 

Review 

We have assumed that all costs remain stationary over time. This assumption was made 

solely to simplify the computation of the ctx‘s. If we had relaxed the assumption of stationary 

costs, then the only complication would have been that the ctx‘s would have been messier to 

compute. We also note that if a short planning horizon is used, the optimal replacement 

policy may be extremely sensitive to the length of the planning horizon. Thus, more 

meaningful results can be obtained by using a longer planning horizon. 

 

6.7 Formulating DP Recursions 

In many DP problems (such as the inventory and shortest path examples), a given stage 

simply consists of all the possible states that the system can occupy at that stage. If this is 

the case, then the DP recursion (for a min problem) can often be written in the following form: 

ft(i)=min{(cost during stage t) + ft+1(new state at stage t + 1)}      (10) 

where the minimum in (10) is over all decisions that are allowable, or feasible, when the state 

at stage t is i. In (10), ft(i) is the minimum cost incurred from stage t to the end of the problem 

(say, the problem ends at stage T), given that at stage t the state is i.   

Equation (10) reflects the fact that the minimum cost incurred from stage t to the end of the 

problem must be attained by choosing at stage t an allowable decision that minimizes the 

sum of the costs incurred during the current stage (stage t) plus the minimum cost that can 

be incurred from stage t + 1 to the end of the problem. Correct formulation of a recursion of 

the form (10) requires that we identify three important aspects of the problem: 

1. The set of decisions that is allowable, or feasible, for the given state and stage. Often, the 

set of feasible decisions depends on both t and i. For instance, in the inventory example, 

let  

dt = demand during month t 

it = inventory at beginning of month t 

In this case, the set of allowable month t decisions (let xt represent an allowable 

production level) consists of the members of {0, 1, 2, 3, 4, 5} that satisfy 0 ≤ (it + xt – dt) ≤ 
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4. Note how the set of allowable decisions at time t depends on the stage t and the state 

at time t, which is it.  

2. We must specify how the cost during the current time period (stage t) depends on the 

value of t, the current state, and the decision chosen at stage t. For instance, in the 

inventory example, suppose a production level xt is chosen during month t. Then the cost 

during month t is given by c(xt) + (½ ) (it + xt – dt). 

3. We must specify how the state at stage t + 1 depends on the value of t, the state at stage 

t, and the decision chosen at stage t. Again referring to the inventory example, the month t 

+ 1 state is it + xt – dt. 

If you have properly identified the state, stage, and decision, then aspects 1 – 3 shouldn’t be 

too hard to handle. A word of caution, however: Not all recursions are of the form of (10).  

 

Example 6.8. A Fishery (Winston 18.6, p.990) 

The owner of a lake must decide how many bass to catch and sell each year. If she sells x 

bass during year t, then a revenue of r(x) is earned. The cost of catching x bass during a 

year is a function c(x, b) of the number of bass caught during the year and of b, the number 

of bass in the lake at the beginning of the year. Of course, bass do reproduce. To model this, 

we assume that the number of bass in the lake at the beginning of a year is 20% more than 

the number of bass left in the lake at the end of the previous year. Develop a DP recursion 

that can be used to maximize the owner’s net profits over a T-year horizon.  

Answer 

In problems where decisions must be made at several points in time, there is often a trade-

off of current benefits against future benefits. For example, we could catch may bass early in 

the problem, but then the lake would be depleted in later years, and there would be very few 

bass to catch. On the other hand, if we catch very few bass now, we won’t make much 

money early, but we can make a lot of money near the end of the horizon. In intertemporal 

optimization problems, DP is often used to analyze these complex trade-offs.  

At the beginning of year T, the owner of the lake needs no worry about the effect that the 

capture of bass will have on the future population of the lake. (At time T, there is no future!) 

So at the beginning of year T, the problem is relatively easy to solve. For this reason, we let 

time be the stage.  At each stage, the owner of the lake must decide how many bass to 

catch. We define xt to be the number of bass caught during year t. To determine an optimal 

value of xt, the owner of the lake need only know the number of bass (call it bt) in the lake at 

the beginning of the year t. Therefore, the state at the beginning of year t is bt.  
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We define ft(bt) to be the maximum net profit that can be earned from bass caught during 

years t, t+1,...,T given that bt bass are in the lake at the beginning of year t. We may dispose 

of aspects 1 – 3 of the recursion. 

1. What are the allowable decisions? During any year, we can’t catch more bass than there 

are in the lake. Thus, in each state and for all t, 0≤ xt ≤ bt must hold. 

2. What is the net profit earned during year t? If xt bass are caught during a year that begins 

with bt bass in the lake, then the net profit is r(xt)-c(xt, bt).  

3. What will be the state during year t+1? At the end of year t, there will be bt – xt bass in the 

lake. By the beginning of year t + 1, these bass will have multiplied by 20%. This implies 

that at the beginning of year t+1, 1.2(bt – xt) bass will be in the lake. Thus, the year t+1 

state will be 1.2(bt – xt). 

We can now use (10) to develop the appropriate recursion. After year T, there are no future 

profits to consider, so  

      TTTTxTT bxcxrbf
T

,max         

where 0≤ xT ≤ bT. Applying (10), we obtain  

         ttttttttt xbfbxcxrbf   2.1,max 1           (11) 

where 0≤ xt ≤ bt.  

6.7.1 Incorporating the Time Value of Money into DP Formulations 

A weakness of the current formulation is that profits received during later years are weighted 

the same as profits received during earlier years. As mentioned in the discussion of 

discounting, later profits should be weighted less than the earlier profits. Suppose that for 

some β<1, $1 received in at the beginning of year t+1 is equivalent to β dollars received at 

the beginning of year t. We can incorporate this idea into the DP recursion by replacing (12) 

with  

         ttttttttt xbfbxcxrbf   2.1,max 1           (12) 

where 0≤ xt ≤ bt. 

 

Example 6.9. Power Plant (Winston 18.6, p.991) 

An electric power utility forecasts that rt kilowatt-hours (kWh) of generating capacity will be 

needed during year t (the present year is year 1). Each year, the utility must decide by how 

much generating capacity should be expanded. It costs ct(x) dollars to increase generating 

capacity by x kWh during year t. Since it may be desirable to reduce capacity, x need not be 

nonnegative. During each year, 10% of the old generating capacity becomes obsolete and 

unusable (capacity does not become obsolete during its first year of operation). It costs the 
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utility mt(i) dollars to maintain i units of capacity during year t. At the beginning of year 1, 

100,000 kWh of generating capacity are available. Formulate a DP recursion that will enable 

the utility to minimize the total cost of meeting power requirements for the next T years.  

Answer 

Again, we let the time be the stage. At the beginning of year t, the utility must determine the 

amount of capacity (call it xt) to add during year t. To choose xt properly, all the utility needs 

to know is the amount of available capacity at the beginning of year t (call it it). Hence, we 

define the state at the beginning of year t to be the current capacity level. We may now 

dispose of aspects 1-3 of the formulation.  

1. What values of xt are feasible? To meet year t’s requirement of rt, we must have it+xt≥rt, 

or xt≥rt – it. So the feasible xt’s are those values of xt satisfying xt≥rt – it. 

2. What cost is incurred during year t? If xt kWh are added during a year that begins with it 

kWh of available capacity, then during year t, a cost ct(xt)+mt(xt+it) is incurred.  

3. What will be the state at the beginning of year t+1? At the beginning of year t+1, the utility 

will have 0,9it+xt kWh of old capacity plus the xt kWh that have been added during year t. 

thus, the state at the beginning of year t+1 will be 0.9it+xt.  

ft(it), is the minimum cost incurred by the utility during years t, t+1,...,T.  

      TTTTTxTT ximxcif
T

 min             (13) 

xT≥rT – iT 

For t<T, 

        ttttttttxtt xifximxcif
t

  9.0min 1           (14) 

xt≥rt – it  

 

Example 6.10. Wheat Sale (Winston 18.6, p.992) 

Farmer Jones now possesses $5000 in cash and 1000 bushels of wheat. During month t, the 

price of wheat is pt. During each month, the must decide how many bushels of wheat to buy 

(or sell). There are three restrictions on each month’s wheat transactions: (1) During any 

month the amount of money spent on wheat cannot exceed the cash on hand at the 

beginning of the month; (2) during any month, he cannot sell more wheat than he has at the 

beginning of the month; and (3) because of limited warehouse capacity, the ending inventory 

of wheat for each month cannot exceed 1000 bushels.  

Show how DP can be used to maximize the amount of cash that farmer Jones has on hand 

at the end of six months.  
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Answer 

Again, we let time be the stage. At the beginning of month t (the present is the beginning of 

month 1), farmer Jones must decide by how much to change the amount of wheat on hand. 

We define Δwt to be the change in farmer Jones’s wheat position during month t; Δwt≥0 

corresponds to a month t wheat purchase, and Δwt≤0 corresponds to a month t sale of 

wheat. To determine an optimal value for Δwt, we must know two things: the amount of 

wheat on hand at the beginning of month t (call it wt) and the cash on hand at the beginning 

of month t, (call this ct). We define ft(ct, wt) to be the maximum cash that farmer Jones can 

obtain at the end of month 6, given that farmer Jones has ct dollars and wt bushels of wheat 

at the beginning of month t. We now discuss aspects 1–3 of the formulation.   

ASPECT1  

pt(Δwt)≤ct ensures that we won’t run out of money at the end of month t. 

Δwt≥-wt ensures that during month t, we will not sell more wheat than we had at the 

beginning of month t.  

wt + Δwt≤1000 ensures that we will end month t with at most 1000 bushels of wheat. 

Putting these three restrictions together, we see that  









 t

t

t
tt w

p

c
ww 1000,min  

will ensure that restrictions 1-3 are satisfied during month t.  

ASPECT 2 

Since farmer Jones wants to maximize his cash on hand at the end of month 6, no benefit is 

earned during months 1 through 5. In effect, during months 1-5, we are doing bookkeeping to 

keep track of farmer Jones’s position. Then, during month 6, we turn all of farmer Jones’s 

assets into cash.  

ASPECT 3 

If the current state is (ct, wt) and farmer Jones changes his month t wheat position by an 

amount of Δwt, what will be the new state at the beginning of month t+1? Cash on hand will 

increase by –(Δwt)pt, and farmer Jones’s wheat position will increase by Δwt. Hence, the 

month t+1 state will be 

[ct – (Δwt)pt, wt+ Δwt]. 

At the end of month 6, farmer Jones should convert his month 6 wheat into cash by selling all 

of it. This means Δw6 = – wt. 

f6(c6, w6) = c6 + w6p6              (15) 

for t<6,  

     ttttttwttt wwpwcfwcf
t

 
,0max, 1           (16) 
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and 








 t

t

t
tt w

p

c
ww 1000,min  

 

Example 6.11. Refinery Capacity (Winston 18.6, p.993) 

Sunco Oil needs to enough refinery capacity to refine 5000 barrels of oil per day and 10,000 

barrels of gasoline per day. Sunco can build refinery capacity at four locations. The cost of 

building a refinery at site t that has the capacity to refine x barrels of oil per day and y barrels 

of gasoline per day is ct (x, y). Use DP to determine how much capacity should be located at 

each site.   

Answer 

If Sunco had only one possible refinery site, then the problem would be easy to solve. Sunco 

could solve a problem in which there were two possible refinery sites, and finally, a problem 

in which there were four refinery sites. For this reason, we let the stage represent the number 

of available oil sites. At any stage, Sunco must determine how much oil and gas capacity 

should be built at the available sites. We now define ft(ot, gt) to be the minimum cost of 

building ot barrels per day of oil refinery capacity and gt barrels per day of gasoline refinery 

capacity at sites t, t+1,...,4.  

To determine f4(o4, g4), note that if only site 4 is available, Sunco must build a refinery at site 

4 with o4 barrels of oil capacity and g4 barrels per day of gasoline capacity. This implies f4(o4, 

g4)= c4(o4, g4). For t=1, 2, 3, we can determine ft(ot, gt) by noting that if we build a refinery at 

site t that can refine xt barrels of oil per day and yt barrels of gasoline per day, then we incur 

a cost of ct(xt, yt) at site t. Then we will need to build a total refinery capacity of ot-xt and a 

gas refinery capacity of gt-yt at sites t+1, t+2,...,4. By principle of optimality, the cost of doing 

this will be ft+1(ot-xt, gt-yt). Since 0≤xt≤ot and 0≤yt≤gt must hold, we obtain the following 

recursion: 

      ttttttttttt ygxofgocgof   ,,min, 1           (17) 

0≤xt≤ot and 0≤yt≤gt 

 

Example 6.12. Cash Registers (Winston 18.6., p. 1000 q.3) 

Assume that during minute t, the following sequence of events occurs: (1) at the beginning of 

the minute, xt customers arrive at the cash register; (2) the store manager decides how many 

cash registers should be operated during the current minute; (3) if s cash registers are 

operated and i customers are present (including the current minute’s arrivals), g(s,i) 

customers complete service; and (4) the next minute begins.  
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A cost of 10 cent is assessed for each minute a customer spends waiting to check out. 

Assume that it costs c(s) cents to operate s cash registers for 1 minute. Formulate a dynamic 

programming recursion that minimizes the sum of holding and service costs during the next 

60 minutes. Assume that before the first minute’s arrivals, no customers are present and that 

holding cost is assessed at the end of each minute. 

6.7.2 Solving Recursions 

A dynamin programming formulation can be solved by using any programming language 

such as python, Matlab, C++, etc. The parameters and the functions defined in the problem 

should be provided for solution. 

 Example 6.13. Solution of the Fishery Example 

Write a Python code to solve the Fisher example for the given functions and parameters: 

𝑟ሺ𝑥ሻ ൌ 40𝑥଴.ହ                  𝑐ሺ𝑥, 𝑏ሻ ൌ
120𝑥
𝑏

                      𝛽 ൌ 0.95 

Assume that 𝑥 is determined in thousands and next year’s bass is calculated by the function 

𝑅𝑜𝑢𝑛𝑑(1.2∗(𝑏−𝑥)). 

Answer 

#DEFINE RECURSION 
 
def bassprofit(t,b,T,beta): 
    if t == T + 1 : 
#        print(t,b,'T+1 degeri =', 0)  
        return 0 
    if fonk[t,b] is not None: 
#        print(t,b,'previously found =', fonk[t,b])  
        return fonk[t,b] 
    else: 
       fonk[t,b] = -1 
       for x in range(b+1):   
           deger = (revenue(x)-cost(x,b)+ beta*bassprofit(t+1,round(1.2*(b-x)),T,beta)) 
           if deger > fonk[t,b]: 
               fonk[t,b]= deger 
               decision[t,b]="x="+str(x)+" t="+str(t+1)+" b=" + str(round(1.2*(b-x)))  
               decisionx[t,b] = x 
               nextb[t,b] = round(1.2*(b-x)) 
       print('f(',t,b,') =', fonk[t,b], '-- Decision = ', decision[t,b])  
       return fonk[t,b] 
 
#DEFINE Revenue and Cost functions 
def revenue(x): 
    return 40*(x**0.5) 
 
def cost(x,b): 
    if b == 0 or x == 0: 
        return 0 
    else:  
        return x*120/b  
 
#DEFINE parameters     
t = 1 
b = 20 
T = 10 
beta = 0.95 
 
#DEFINE LISTs to store data 
TT = list(tp for tp in range(T+1) ) 
B = list(bp for bp in range(round(b*(1.2)**T)+2)) 
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fonk = {(tp,bp):None for tp in TT for bp in B} 
decision ={(tp,bp):None for tp in TT for bp in B} 
decisionx ={(tp,bp):None for tp in TT for bp in B} 
nextb ={(tp,bp):None for tp in TT for bp in B} 
 
# RUN 
maxprofit = bassprofit(t,b,T,beta) 
 
#PRINT SOLUTION 
print('------------------------------------') 
print('---------------SOLUTION-------------') 
print('------------------------------------') 
 
print('Maximum Profit is : ',maxprofit) 
print('------------------------------------') 
 
bb = b 
for t in range(T): 
    print('year ',t+1,': Initial bass:', bb, '// Catch',decisionx[t+1,bb],' bass') 
    bb = nextb[t+1,bb] 

 

6.7.3 Nonadditive Recursions 

Example 6.14. Multiplicative Recursion 

Solve the following mathematical program using dynamic programming. 

𝑀𝑎𝑥 𝑔ଵሺ𝑥ଵሻ𝑔ଶሺ𝑥ଶሻ𝑔ଷሺ𝑥ଷሻ 

Subject to 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൌ 4 

All variables are non-negative and integer, the functions are defined as follows: 

𝑔ଵሺ𝑥ሻ ൌ 𝑥,      𝑔ଶሺ𝑥ሻ ൌ 2 െ 𝑥,        𝑔ଷሺ𝑥ሻ ൌ 𝑥ଶ 

 

Answer 

To solve the given model using dynamic programming the following recursion can be used: 

𝑓௧ሺ𝑖ሻ ൌ 𝑚𝑎𝑥௫ሾ𝑔௧ሺ𝑥ሻ𝑓௧ାଵሺ𝑖 െ 𝑥ሻሿ 

Stage 3 calculations: 

𝑓ଷሺ0ሻ ൌ 0 𝑓ଷሺ1ሻ ൌ 1 𝑓ଷሺ2ሻ ൌ 4 𝑓ଷሺ3ሻ ൌ 9 𝑓ଷሺ4ሻ ൌ 16 

Stage 2 calculations: 

𝑓ଶሺ4ሻ ൌ 32 𝑓ଶሺ3ሻ ൌ 18 𝑓ଶሺ2ሻ ൌ 8 𝑓ଶሺ1ሻ ൌ 2 𝑓ଶሺ0ሻ ൌ 0 

Stage 2 calculation: 

 𝑓ଵሺ4ሻ ൌ 18 

Solution: 𝑥ଵ ൌ 1, 𝑥ଶ ൌ 0, 𝑥ଷ ൌ 3 

 

Example 6.15. Minimax Shortest Route (Winston 18.6, p.997) 

Joe Cougar needs to drive from city 1 to city 10. He is no longer interested in minimizing the 

length of his trip, but he is interested in minimizing the maximum altitude above sea level that 

he will encounter during his drive. To get from city 1 to city 10, he must follow a path in 

Figure 1. The length cij of the arc connecting city i and city j represents the maximum altitude 
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(in thousands of feet above the sea level) encountered when driving from city i to city j. Use 

DP to determine how Joe should proceed from city 1 to city 10.  

 

 

Answer 

To solve this problem by DP, note that for a trip that begins in a city i and goes through 

stages t, t+1,...,5, the maximum altitude that Joe encounters will be the maximum of the 

following two quantities: (1) the maximum altitude encountered on stages t+1, t+2,...,5 or (2) 

the altitude encountered when traversing the arc that begins in stage t. Of course, if we are in 

a stage 4 state, quantity 1 does not exist. 

After defining ft(i) as the smallest maximum altitude that Joe can encounter in a trip from a 

city i in stage t to city 10, this reasoning leads us to the following recursion: 

f4(i)=ci , 10               (18) 

       3,2,1,maxmin 1   tjfcif tijjt  

where j may be any city such that there is an arc connecting city i and city j. 

We first compute f4(7), f4(8), and f4(9) and than use (18) to work backward until f1(1) has been 

computed. We obtain the following results: 
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10 
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To determine the optimal strategy, note that Joe can begin by going from city 1 to city 3 or 

from city 1 to city 4. Suppose Joe begins by traveling to city 3. Then he should choose the 

arc attaining f2(3), which means he should next travel to city 5. Then Joe must choose the arc 

that attains f3(5), driving next to city 8. Then, of course, he must drive to city 10. Thus, the 

path 1-3-5-8-10 is optimal, and Joe will encounter a maximum altitude equal to f1(1)=8,000 ft. 

You can verify that the path 1-4-6-8-10 is also optimal. 

 

6.8 Wagner-Within Algorithm and Silver-Meal Heuristic 

The inventory example is a special case of the dynamic lot-size model. 

6.8.1 Description of Dynamic Lot-Size Model 

1. Demand dt during period t (t=1, 2, …, T) is known at the beginning of period 1. 

2. Demand for period t must be met on time from inventory or from period t production. The 

cost c(x) of producing x units during any period is given by c(0)=0, and for x>0, 

c(x)=K+cx, where K is a fixed cost for setting up production during a period, and c is the 

variable per-unit cost of production. 

3. At the end of period t, the inventory level it is observed, and a holding cost hit is incurred. 

We let i0 denote the inventory level before period 1 production occurs. 

4. The goal is to determine a production level xi for each period t that minimizes the total 

cost of meeting (on time) the demands for periods 1, 2, …, T. 

5. There is a limit ct placed on period t’s ending inventory. 

6. There is a limit rt placed on period t’s production. 
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Example 6.16. Dynamic Lot-Size Model (Winston 18.7, p.1002) 

We now determine an optimal production schedule for a five-period dynamic lot-size model 

with K = $30, c = $5, h= $1, d1 = 40, d2 = 60, d3 = 10, d4 = 20 and d5 = 25. We assume that 

the initial inventory level is zero.  

6.8.2 Discussion of the Wagner-Whitin Algorithm 

If the DP approach were used to find an optimal production policy, we would have to 

consider the possibility of producing any amount between 0 and d1+d2+d3+d4+d5 = 155 units 

during period 1. Thus, it would be possible for the period 2 state (period 2’s entering 

inventory) to be 0, 1, ..., 155 – d1 = 115, and we would have to determine f2(0), f2(1), ..., 

f2(115). Using the DP approach to find an optimal production schedule would therefore 

require a great deal of computational effort. Fortunately, however, Wagner and Whitin (1958) 

have developed a method that greatly simplifies the computation of optimal production 

schedules for dynamic lot-size models. Lemmas 1 and 2 are necessary for the development 

of the Wagner-Whitin algorithm. 

LEMMA 1 

Suppose it is optimal to produce a positive quantity during a period t. Then for some j = 0, 1, 

..., T – t, the amount produced during period t must be such that after period t’s production, a 

quantity dt + dt+1 + ... + dt+j will be in stock. In other words, if production occurs during period 

t, we must (for some j) produce an amount that exactly suffices to meet the demands for 

periods t, t+1, ..., t+j. 

 

LEMMA 2  

If it is optimal to produce anything during period t, then it-1 < dt. In other words, production 

cannot occur during period t unless there is insufficient stock to meet period t demand.  

Please see Winston (2004) Section 18.4 for proof of lemmas. 

Wagner and Whitin Algorithm Recursion 

 We assume that the initial inventory level is zero. Let ft is the minimum cost incurred during 

periods t, t+1,…, T  given that at the beginning of period t, the inventory level is zero. Notice 

that if the inventory level at the beginning of period t is zero we have to produce at least as 

much as the demand of period t, which means that we make production on period t.  Then ft 

(t=1,…,T) is calculated as 

 1
,...2,1,0

min 
 jttj

tTj
t fcf             (20) 

where )*...*2()...( 211 jtttjttttj djddhdddcKc   .  
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To find an optimal production schedule by the Wagner–Whitin algorithm, begin by f T+1 = 0, 

and use the given recursion to compute fT, fT-1, …,f1.  Once f1 has been found, an optimal 

production schedule may be easily obtained. 

 

Example 6.17. Dynamic Lot-Size Model (continued) 

Answer 

To illustrate the Wagner-Whitin algorithm, we find an optimal production schedule. The 

computations follow.  

f6 = 0 

f5 = 30 + 5(25) + f6 = 155 (Produce for period 5) 

If we begin period 5 with zero inventory, we have to produce for period 5, and we can only 

produce for meeting the demand of period 5.  
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min

f

f
f  

If we begin period 4 with zero inventory, we have to produce at least for period 4. We may 

produce for period 4 only or for periods 4 and 5. As the result of the above given calculations, 

if we produce on period 4, it costs less to produce for periods 4 and 5 to meet the demands 

of periods 4 and 5. 
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If we begin period 3 with zero inventory, we have to produce at least for period 3. However, 

we may produce for periods 3 and 4 or for periods 3,4, and 5.  Calculations show that it costs 

less to produce for periods 3 and 4 if we produce on period 3.    
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If we begin period 2 with zero inventory, we should produce enough during period 2 to meet 

the demand for period 2. We may also produce for period 2 and 3, or for periods 2,3, and 4 

or for periods 2, 3, 4, and 5. Results show that it costs less to produce for periods 2 and 3 if 

we produce on period 2. 
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f

f

f

f

f

f  

If we begin period 1 with zero inventory, there are 5 options as given above. The optimal 

option is to produce only for period 1. 

Optimal production schedule 

We go forward to starting from period 1 (f1) to find the optimal schedule.  It is optimal to 

produce x1 = d1 = 40 units during period 1; then we begin period 2 with zero inventory. Since 

f2 is attained by producing demand of period 2 and 3, we should produce x2 = d2 + d3 =70 

units during period 2; then we enter period 4 with zero inventory (notice that since we meet 

the demand of period 3 by the production of period 2, we skip period 3). Since f4 is attained 

by meeting the demands for periods 4 and 5, we produce x4 = d4 + d5 = 45 units during period 

4. Since we don’t produce on periods 3 and 5,  x3 = x5 = 0. The optimal production schedule 

will incur a total cost of f1 = $900. Any optimal production schedule must produce exactly 

d1+d2+d3+d4+d5 = 155 units,  

Incurring variable production costs of 5(155)=$775. Thus, in computing the optimal 

production schedule, we may always ignore the variable production costs. This substantially 

simplifies the calculations.  

6.8.3 The Silver-Meal Heuristic 

The Silver-Meal (S-M) heuristic involves less work than the Wagner-Whitin algorithm and can 

be used to find a near-optimal production schedule. The S-M heuristic is based on the fact 

that our goal is to minimize the average cost per period (for the reasons stated, variable 

production costs may be ignored). Suppose we are at the beginning of period 1 and are 

trying to determine how many periods of demand should be satisfied by period 1’s 

production. During period 1, if we produce an amount sufficient to meet demand for the next t 

periods, then a cost of TC(t)=K+HC(t) will be incurred (ignoring variable production costs). 

Here HC(t) is the holding cost incurred during the next t periods (including the current period) 

if production during the current period is sufficient to meet demand for the next t periods. 

Let 𝐴𝐶ሺ𝑡ሻ ൌ
்஼ሺ௧ሻ

௧
 be the average per-period cost incurred during the next t periods. Since 

ଵ

௧
 is a decreasing convex function of t, as t increases 

௄

௧
 decreases at a decreasing rate. In 

most cases, 
ு஼ሺ௧ሻ

௧
 tends to be an increasing function of t. Thus, in most situations, an integer 
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t* can be found such that for t<t*, AC(t+1)≤AC(t) and AC(t*+1)≥AC(t*). The S-M heuristic 

recommends that period 1’s production be sufficient to meet the demands for periods 1, 2, 

…, t* (if no t* exists, period 1 production should satisfy the demand for periods 1, 2, …, T). 

Since t* is a local (and perhaps global) minimum for AC(t), it seems reasonable that 

producing d1 + d2 + … + dt* units during period 1 will come close to minimizing the average 

per-period cost incurred during periods 1, 2, …, t*. Next we apply the S-M heuristic while 

considering period t*+1 as the initial period. We find that during period t*+1, the demand for 

the next *
1t  periods should be produced. Continue in this fashion until the demand for period 

T has been produced.  

To illustrate, we apply the S-M heuristic to the lot-size question. We have 

TC(1) = 30    AC(1) = 30 / 1 = 30 

TC(2) = 30 + 60 = 90   AC(2) = 90 / 2 = 45 

Since AC(2) > AC(1), t*=1, and the S-M heuristic dictates that we produce d1 = 40 units 

during period 1. Then  for period 2; 

TC(1) = 30    AC(1) = 30 / 1 = 30 

TC(2) = 30 + 10 = 40   AC(2) = 40 / 2 = 20 

TC(3) = 30 + 10 + 2(20) = 80  AC(3) = 80 / 3 = 26,67 

Since AC(3) > AC(2), the S-M heuristic recommends producing d2 + d3  = 60 + 10 = 70  units 

during period 2. Then for period 4; 

TC(1) = 30    AC(1) = 30 / 1 = 30 

TC(2) = 30 + 25 = 55   AC(2) = 55 / 2 = 27,5 

Since we cannot produce for more than 2 periods on period 4 (i.e., there is no period 6) we 

stop. Since AC(2)  AC(1), period 4 production should meet the demand for the next two 

periods (periods 4 and 5). During period 4, we should produce d4 + d5 = 45 units. Notice that 

the schedule found by S-M heuristic is exactly the same with the one of Wagner- Whitin 

algorithm.  

For many dynamic lot-size problems, the S-M heuristic yields an optimal production 

schedule. In extensive testing, the S-M heuristic usually yielded a production schedule 

costing less than 1% above the optimal policy obtained by the Wagner-Whitin algorithm (see 

Peterson and Silver (1998)).  
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7. PROBABILISTIC DYNAMIC PROGRAMMING 

In deterministic dynamic programming, a specification of the current state and current 

decision was enough to tell us with certainty the new state and the costs during the current 

stage. In many practical problems, these factors may not be known with certainty, even if the 

current state and decision are known. 

In this part, we explain how to use dynamic programming to solve problems in which the 

current period’s cost or the next period’s state are random. These problems are called 

probabilistic dynamic programming problems (or PDPs). In a PDP, the decision maker’s goal 

is usually to minimize expected (or expected discounted) cost incurred or to maximize 

expected (or expected discounted) reward earned over a given time horizon. 

7.1 Current Stage Costs are Uncertain and Next Period’s State is Certain 

For this kind of problems, the next period’s state is known with certainty, but the reward 

earned during the current stage is not known with certainty (given the current state and 

decision). 

 

Example 7.1. Milk Distribution (Winston 19.1, p. 1016) 

For a price of $1/gallon, the Safeco Supermarket chain has purchased 6 gallons of milk from 

a local dairy. Each gallon of milk is sold in the chain’s three stores for $2/gallon. The dairy 

must buy back for 50¢/gallon any milk that is left at the end of the day. Unfortunately for 

Safeco, demand for each of the chain’s three stores is uncertain. Past data indicate that the 

daily demand at each store is as shown in the following Table. Safeco wants to allocate the 6 

gallons of milk to the three stores so as to maximize the expected net daily profit (revenues 

less costs) earned from milk.  

Probability Distributions for Daily Milk Demand 

 Daily Demand (gallons) Probability 
Store 1 1 .60 
 2 0 
 3 .40 
Store 2 1 .50 
 2 .10 
 3 .40 
Store 3 1 .40 
 2 .30 
 3 .30 

Use dynamic programming to determine how Safeco should allocate the 6 gallons of milk 

among the three stores. 
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Answer 

Define; 

rt(gt) = expected revenue earned from gt gallons assigned to store t 

ft(x) = maximum expected revenue earned from x gallons assigned to stores t, t+1,…,3. 

For t = 3;  𝑓ଷሺ𝑥ሻ ൌ 𝑟ଷሺ𝑥ሻ 

For t = 1,2;  𝑓௧ሺ𝑥ሻ ൌ max
௚೟

ሼ𝑟௧ሺ𝑔௧ሻ ൅ 𝑓௧ାଵሺ𝑥 െ 𝑔௧ሻሽ 

where gt must be a member of {0,1,…,x}. 

We begin by computing the rt (gt )’s: 

r3(0) = $0 r2(0) = $0 r1(0) = $0 

r3(1) = $2.00 r2(1) = $2.00 r1(1) = $2.00 

r3(2) = $3.40 r2(2) = $3.25 r1(2) = $3.10 

r3(3) = $4.35 r2(3) = $4.35 r1(3) = $4.20 

We determine an optimal allocation of milk to stores. First compute f3(x): 

f3(0) = r3(0) = 0 g3(0) = 0 

f3(1) = r3(1) = 2.00 g3(1) = 1 

f3(2) = r3(2) = 3.40 g3(2) = 2 

f3(3) = r3(3) = 4.35 g3(3) = 3 

 

Work backward and obtain f2(x): 

𝑓ଶሺ0ሻ ൌ 𝑟ଶሺ0ሻ ൅ 𝑓ଶሺ0 െ 0ሻ ൌ 0              𝑔ଶሺ0ሻ ൌ 0  

𝑓ଶሺ1ሻ ൌ max ൜
𝑟ଶሺ0ሻ ൅ 𝑓ଷሺ1 െ 0ሻ ൌ 2 ∗
𝑟ଶሺ1ሻ ൅ 𝑓ଷሺ1 െ 1ሻ ൌ 2 ∗

           𝑔ଶሺ1ሻ ൌ 0  𝑜𝑟 1  

𝑓ଶሺ2ሻ ൌ maxቐ
𝑟ଶሺ0ሻ ൅ 𝑓ଷሺ2 െ 0ሻ ൌ 0 ൅ 3.4 ൌ 3.4
𝑟ଶሺ1ሻ ൅ 𝑓ଷሺ2 െ 1ሻ ൌ 2 ൅ 2 ൌ 4 ∗
𝑟ଶሺ2ሻ ൅ 𝑓ଷሺ2 െ 2ሻ ൌ 3.25 ൅ 0 ൌ 3.25

           𝑔ଶሺ2ሻ ൌ 1  

𝑓ଶሺ3ሻ ൌ max

⎩
⎨

⎧
𝑟ଶሺ0ሻ ൅ 𝑓ଷሺ3 െ 0ሻ ൌ 0 ൅ 4.35 ൌ 4.35
𝑟ଶሺ1ሻ ൅ 𝑓ଷሺ3 െ 1ሻ ൌ 2 ൅ 3.4 ൌ 5.4 ∗
𝑟ଶሺ2ሻ ൅ 𝑓ଷሺ3 െ 2ሻ ൌ 3.25 ൅ 2 ൌ 5.25
𝑟ଶሺ3ሻ ൅ 𝑓ଷሺ3 െ 3ሻ ൌ 4.35 ൅ 0 ൌ 4.35

            𝑔ଶሺ3ሻ ൌ 1  

𝑓ଶሺ4ሻ ൌ maxቐ
𝑟ଶሺ1ሻ ൅ 𝑓ଷሺ4 െ 1ሻ ൌ 2 ൅ 4.35 ൌ 6.35
𝑟ଶሺ2ሻ ൅ 𝑓ଷሺ4 െ 2ሻ ൌ 3.25 ൅ 3.4 ൌ 6.65 ∗
𝑟ଶሺ3ሻ ൅ 𝑓ଷሺ4 െ 3ሻ ൌ 4.35 ൅ 2 ൌ 6.35

           𝑔ଶሺ4ሻ ൌ 2  

𝑓ଶሺ5ሻ ൌ max ൜
𝑟ଶሺ2ሻ ൅ 𝑓ଷሺ5 െ 2ሻ ൌ 3.25 ൅ 4.35 ൌ 7.6
𝑟ଶሺ3ሻ ൅ 𝑓ଷሺ5 െ 3ሻ ൌ 4.35 ൅ 3.4 ൌ 7.75 ∗

           𝑔ଶሺ5ሻ ൌ 3   

𝑓ଶሺ6ሻ ൌ 𝑟ଶሺ3ሻ ൅ 𝑓ଷሺ6 െ 3ሻ ൌ 4.35 ൅ 4.35 ൌ 8.7              𝑔ଶሺ6ሻ ൌ 3  

Finally, 
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𝑓ଵሺ6ሻ ൌ max

⎩
⎨

⎧
𝑟ଵሺ0ሻ ൅ 𝑓ଶሺ6 െ 0ሻ ൌ 0 ൅ 8.7 ൌ 8.7
𝑟ଵሺ1ሻ ൅ 𝑓ଶሺ6 െ 1ሻ ൌ 2 ൅ 7.75 ൌ 9.75 ∗
𝑟ଵሺ2ሻ ൅ 𝑓ଶሺ6 െ 2ሻ ൌ 3.1 ൅ 6.65 ൌ 9.75 ∗
𝑟ଵሺ3ሻ ൅ 𝑓ଶሺ6 െ 3ሻ ൌ 4.2 ൅ 5.4 ൌ 9.6

            𝑔ଵሺ6ሻ ൌ 1 𝑜𝑟 2  

Thus, we can either assign 1 or 2 gallons to store 1. Suppose we arbitrarily choose to assign 

1 gallon to store 1. Then we have 6 – 1 = 5 gallons for stores 2 and 3. Since f2(5) is attained 

by g2(5) = 3, we assign 3 gallons to store 2. Then 5 – 3 = 2 gallons are available for store 3. 

Since g3(2) = 2, we assign 2 gallons to store 3. Note that although this policy obtains the 

maximum expected revenue, f1(6) = $9.75, the total revenue actually received on a given day 

may be more or less than $9.75. For example, if demand at each store were 1 gallon, total 

revenue would be 3(2.00) + 3(0.50) = $7.50, whereas if demand at each store were 3 

gallons, all the milk would be sold at $2/gallon, and the total revenue would be 6(2.00) = 

$12.00. 

7.2 A Probabilistic Inventory Model 

When the demand is uncertain in an inventory model it can be solved using a PDP for which 

the state during the next period is uncertain (given the current state and current decision). 

 

Example 7.2. Three-Period Production Policy (Winston 19.2, p. 1019) 

At the beginning of each period, a firm must determine how many units should be produced 

during the current period. During a period in which x units are produced, a production cost 

c(x) is incurred, where c(0)=0, and for x > 0, c(x) =3 + 2x. Production during each period is 

limited to at most 4 units. After production occurs, the period’s random demand is observed. 

Each period’s demand is equally likely to be 1 or 2 units. After meeting the current period’s 

demand out of current production and inventory, the firm’s end-of-period inventory is 

evaluated, and a holding cost of $1 per unit is assessed. Because of limited capacity, the 

inventory at the end of each period cannot exceed 3 units. It is required that all demand be 

met on time. Any inventory on hand at the end of period 3 can be sold at $2 per unit. At the 

beginning of period 1, the firm has 1 unit of inventory. Use dynamic programming to 

determine a production policy that minimizes the expected net cost incurred during the three 

periods. 

 

Answer 

Define ft(i) to be the minimum expected net cost incurred during periods t, t+1,...,3 when the 

inventory at the beginning of period t is i units. Then 

𝑓ଷሺ𝑖ሻ ൌ min
௫
൜𝑐ሺ𝑥ሻ ൅ ൬

1
2
൰ ሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ൬

1
2
൰ ሺ𝑖 ൅ 𝑥 െ 2ሻ െ ൬

1
2
൰ 2ሺ𝑖 ൅ 𝑥 െ 1ሻ െ ൬

1
2
൰ 2ሺ𝑖 ൅ 𝑥 െ 2ሻൠ 

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 - i)  x  (4 - i). 
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The given Equation follows, because if x units are produced during period 3, the net cost 

during period 3 is (expected production cost) + (expected holding cost) - (expected salvage 

value). If x units are produced, the expected production cost is c(x), and there is a 1/2 

chance that the period 3 holding cost will be i + x – 1 and a 1/2 chance that it will be i + x – 2. 

Hence, the period 3 expected holding cost will be ቀ
ଵ

ଶ
ቁ ሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ቀଵ

ଶ
ቁ ሺ𝑖 ൅ 𝑥 െ 2ሻ ൌ 𝑖 ൅ 𝑥 െ

ଷ

ଶ
. 

Similar reasoning shows that the expected salvage value (a negative cost) at the end of 

period 3 will be ቀ
ଵ

ଶ
ቁ2ሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ቀଵ

ଶ
ቁ2ሺ𝑖 ൅ 𝑥 െ 2ሻ ൌ 2𝑖 ൅ 2𝑥 െ 3. To ensure that period 3 

demand is met, we must have i + x  2, or x   2 - i. Similarly, to ensure that ending period 

three inventory does not exceed 3 units, we must have i + x –1  3, or x  4 – i. 

For t = 1, 2, we can derive the recursive relation for ft(i) by noting that for any month t 

production level x, the expected costs incurred during periods t, t + 1,..., 3 are the sum of the 

expected costs incurred during period t and the expected costs incurred during periods t+1, 

t+2,...,3. As before, if x units are produced during month t, the expected cost during month t 

will be 𝑐ሺ𝑥ሻ ൅ ቀଵ
ଶ
ቁ ሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ቀଵ

ଶ
ቁ ሺ𝑖 ൅ 𝑥 െ 2ሻ. (Note that during periods 1 and 2, no salvage 

value is received.) If x units are produced during month t, the expected cost during periods t 

+1, t +2,…, 3 is computed as follows. Half of the time, the demand during period t will be 1 

unit, and the inventory at the beginning of period t + 1 will be i + x – 1. In this situation, the 

expected costs incurred during periods t+1, t+2,...,3 (assuming we act optimally during these 

periods) is ft+1(i+x–1). Similarly, there is a 1/2 chance that the inventory at the beginning of 

period t+1 will be i+x– 2. In this case, the expected cost incurred during periods t+1, t+2,...,3 

will be ft+1(i+x–2). In summary, the expected cost during periods t+1, t+2,...,3 will be 

ቀଵ
ଶ
ቁ 𝑓௧ାଵሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ቀଵ

ଶ
ቁ 𝑓௧ାଵሺ𝑖 ൅ 𝑥 െ 2ሻ. With this in mind, we may write for t = 1, 2, 

𝑓௧ሺ𝑖ሻ ൌ min
௫
൜𝑐ሺ𝑥ሻ ൅ ൬

1
2
൰ ሺ𝑖 ൅ 𝑥 െ 1ሻ ൅ ൬

1
2
൰ ሺ𝑖 ൅ 𝑥 െ 2ሻ ൅ ൬

1
2
൰ 𝑓௧ାଵሺ𝑖 ൅ 𝑥 െ 1ሻ

െ ൬
1
2
൰ 𝑓௧ାଵሺ𝑖 ൅ 𝑥 െ 2ሻൠ 

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 - i)  x  (4 - i). 

We define xt (i) to be a period t production level attaining the minimum in the previous 

equation for ft(i). We now work backward until f1(1) is determined. The relevant computations 

are summarized in the following Tables. Since each period’s ending inventory must be 

nonnegative and cannot exceed 3 units, the state during each period must be 0, 1, 2, or 3. 

 

Computations for f3(i) 

i x c(x) Expected holding 

cost 𝑖 ൅ 𝑥 െ
ଷ

ଶ
 

Expected Salvage 

Value 2𝑖 ൅ 2𝑥 െ 3 

Total Expected 

cost 

f3(i) 

x3(i) 
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3 0 0 1.5 3 -1.5* f3(3) = -1.5 

3 1 5 2.5 5 2.5 x3(3)= 0 

2 0 0 0.5 1 -0.5* 
f3(2) = -0.5 

x3(2)= 0 
2 1 5 1.5 3 3.5 

2 2 7 2.5 5 4.5 

1 1 5 0.5 1 4.5* 
f3(1) = 4.5 

x3(1)= 1 
1 2 7 1.5 3 5.5 

1 3 9 2.5 5 6.5 

0 2 7 0.5 1 6.5* 
f3(0) = 6.5 

x3(0)= 2 
0 3 9 1.5 3 7.5 

0 4 11 2.5 5 8.5 

 

 

Computations for f2(i) 

i x c(x) Expected holding 

cost 𝑖 ൅ 𝑥 െ
ଷ

ଶ
 

Expected Future Cost 

 ቀ
ଵ

ଶ
ቁ 𝑓ଷሺ𝑖 ൅ 𝑥 െ 1ሻ ൅

ቀ
ଵ

ଶ
ቁ 𝑓ଷሺ𝑖 ൅ 𝑥 െ 2ሻ. 

Total Expected 

cost 

Periods 2,3 

f2(i) 

x2(i) 

3 0 0 1.5 2 3.5* f2(3) = 3.5 

3 1 5 2.5 -1 6.5 x2(3)= 0 

2 0 0 0.5 5.5 6* 
f2(2) = 6 

x2(2)= 0 
2 1 5 1.5 2 8.5 

2 2 7 2.5 -1 8.5 

1 1 5 0.5 5.5 11 
f2(1) = 10.5 

x2(1)= 2 or 3 
1 2 7 1.5 2 10.5* 

1 3 9 2.5 -1 10.5* 

0 2 7 0.5 5.5 13 
f2(0) = 12.5 

x2(0)= 3 or 4 
0 3 9 1.5 2 12.5* 

0 4 11 2.5 -1 12.5* 

 

 

Computations for f1(1) 

i x c(x) Expected holding 

cost 𝑖 ൅ 𝑥 െ
ଷ

ଶ
 

Expected Future Cost 

 ቀ
ଵ

ଶ
ቁ 𝑓ଶሺ𝑖 ൅ 𝑥 െ 1ሻ ൅

ቀ
ଵ

ଶ
ቁ 𝑓ଶሺ𝑖 ൅ 𝑥 െ 2ሻ. 

Total Expected 

cost 

Periods 1,3 

f1(i) 

x1(i) 

1 1 5 0.5 11.5 17 
f1(1) = 16.25 

x1(1)= 3 
1 2 7 1.5 8.25 16.75 

1 3 9 2.5 4.75 16.25* 
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We begin by producing x1(1) = 3 units during period 1. We cannot, however, determine 

period 2’s production level until period 1’s demand is observed. Also, period 3’s production 

level cannot be determined until period 2’s demand is observed. To illustrate the idea, we 

determine the optimal production schedule if period 1 and period 2 demands are both 2 units. 

Since x1(1)= 3, 3 units will be produced during period 1. Then period 2 will begin with an 

inventory of 1 + 3 – 2 = 2 units, so x2(2) = 0 units should be produced. After period 2’s 

demand of 2 units is met, period 3 will begin with 2 –  2 = 0 units on hand. Thus, x3(0) = 2 

units will be produced during period 3. 

In contrast, suppose that period 1 and period 2 demands are both 1 unit. As before, x1(1) = 3 

units will be produced during period 1. Then period 2 will begin with 1 + 3 - 1 = 3 units, and 

x2(3) = 0 units will be produced during period 2. Then period 3 will begin with 3 - 1 = 2 units 

on hand, and x3(2) = 0 units will be produced during period 3. Note that the optimal 

production policy has adapted to the low demand by reducing period 3 production.  

This example illustrates an important aspect of dynamic programming solutions for problems 

in which future states are not known with certainty at the beginning of the problem: If a 

random factor (such as random demand) influences transitions from the period t state to the 

period t + 1 state, the optimal action for period t cannot be determined until period t’s state is 

known. 

7.3 How to Maximize the Probability of a Favorable Event Occurring 

There are many occasions on which the decision maker’s goal is to maximize the probability 

of a favorable event occurring. For instance, a company may want to maximize its probability 

of reaching a specified level of annual profits. To solve such a problem, we assign a reward 

of 1 if the favorable event occurs and a reward of 0 if it does not occur. Then the 

maximization of expected reward will be equivalent to maximizing the probability that the 

favorable event will occur. Also, the maximum expected reward will equal the maximum 

probability of the favorable event occurring. 

 

Example 7.3. Sales Allocation (Winston 18.6, p.998) 

Glueco is planning to introduce a new product in three different regions. Current estimates 

are that the product will sell well in each region with respective probabilities. .6, .5, and .3. 

The firm has available two top sales representatives that it can send to any of the three 

regions. The estimated probabilities that the product will sell well in each region when 0, 1, or 

2 additional sales reps are sent to a region are given in Table 16. If Glueco wants to 

maximize the probability that its new product will sell well in all three regions, than where 
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should it assign sales representatives? You may assume that sales in the three regions are 

independent.  

Number of Additional 

Sales Representatives 

Probability of Selling Well 

Region 1 Region 2 Region 3 

0 0.6 0.5 0.3 

1 0.8 0.7 0.55 

2 0.85 0.85 0.7 

 

Answers 

If Glueco had just one region to worry about and wanted to maximize the probability that the 

new product would sell in that region, then the proper strategy would be clear: Assign both 

sales reps to the region. We could then work backward and solve a problem in which 

Glueco’s goal is to maximize the probability that the product will sell in two regions. Finally, 

we could work backward and solve a problem with three regions. We define ft(s) as the 

probability that the new product will sell in regions t, t+1,...3 if s sales reps are optimally 

assigned to these regions. Then 

f3(2)=0.7                   (2 reps allocated to region 3. ) 

f3(1)=0.55           (1 rep allocated to region 3. )           

f3(0)=0.3                   (0 rep allocated to region 3. )    

Also, f1(2) will be the maximum probability that the product will sell well in all three regions. 

To develop a recursion for f2(-) and f1(-), we define ptx to be the probability that the new 

product sells well in region t if x sales reps are assigned to region t. For example,  p21= 0.7. 

For t=1 and t=2, we then write 

    xsfpsf ttx
x

t  1max              (19) 

where x must be a member of {0,1,...,s}. To justify (19), observe that if s sales reps are 

available for regions t, t+1,...3 and x sales reps are assigned to region t, then 

ptx= probability that products sells in region t 

ft+1(s-x)= probability that product sells well in regions t+1,..., 3  

Note that the sales in each region are independent. This implies that if x sales reps are 

assigned to region t, then the probability that the new product sells well in regions t, t, t+1,..., 

3 is  xsfp ttx 1 . We want to maximize this probability, so we obtain (19). Applying (19) 

yields the following results: 

 
 
 
 

















225,0

*385,0

35,0

2285,0

127,0

025,0

max2

3

3

3

2

f

f

f

f    

Thus f2(2)=0,385 and 1 sales rep should be assigned to region 2.  
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   
 








21,0115,0

275,0015,0
max1

3

3
2 f

f
f  

Thus f2(2)=0,275 and no sales reps should be assigned to region 2. 

     15,0005,00 32  ff  

Finally, we are back to the original problem, which is to find f1(2). Equation (19) yields 

 
  
  
  

















1275,0

220,0

*231,0

2285,0

128,0

026,0

max2

2

2

2

1

f

f

f

f  

Thus f1(2)=.231, and no sales reps should be assigned to region 1. Then Glueco needs to 

attain f2(2-0), which requires that 1 sales rep be assigned to region 2. Glueco must next 

attain  f3(2-1), which requires that 1 sales rep be assigned to region 3. In summary’ Glueco 

can obtain a .231 probability of the new product selling well in all three regions by assigning 

1 sales rep to region 2 and 1 sales rep to region 3 

 

Example 7.4. Tennis Serves (Winston 19.3, p. 1026) 

Martina McEnroe has two types of serves: a hard serve (H) and a soft serve (S). The 

probability that Martina’s hard serve will land in bounds is pH, and the probability that her soft 

serve will land in bounds is pS. If Martina’s hard serve lands in bounds, there is a probability 

wH that Martina will win the point. If Martina’s soft serve lands in bounds, there is a probability 

wS  that Martina will win the point. We assume that pH < pS and wH > wS. Martina’s goal is to 

maximize the probability of winning a point on which she serves. Use dynamic programming 

to help Martina select an optimal serving strategy. Remember that if both serves are out of 

bounds, Martina loses the point. 

 

Example 7.5. Chess game (Winston 19.3, p.1028) 

Vladimir Ulanowsky is playing Keith Smithson in a three-game chess match. Winning a game 

scores 1 match point.  Drawing a game scores 0.5 match point. After three games are 

played, the player with more match points is declared the champion. If the two players are 

tied after two games, they continue until someone wins a game.  

During each game, Ulanowsky can play one of two ways: boldly – (45% chance of winning 

the game and a 55% chance of losing the game) or conservatively (90% chance of drawing 

the game and a 10% chance of losing the game.) 

Ulanowsky’s goal is to maximize his probability of winning the match. Use dynamic 

programming to help him accomplish this goal. 
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Answer 

The DP recursion is defined as follows: 

 Stages (t): Games (t=1,2,3,4) 

 State (i): points of Ulanowsky at the beginning of game t. 

 Decision: Playing boldly or conservatively 

 𝑓௧ሺ𝑖ሻ: Maximum probability of winning the match if Ulanowsky has I points at the 

beginning of game t. 

  𝑓௧ሺ𝑖ሻ ൌ 𝑀𝑎𝑥 ൜
𝐵𝑜𝑙𝑑 0.45 ∙ 𝑓௧ାଵሺ𝑖 ൅ 1ሻ ൅ 0.55 ∙ 𝑓௧ାଵሺ𝑖ሻ 

𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 0.9 ∙ 𝑓௧ାଵሺ𝑖 ൅ 0.5ሻ ൅ 0.1 ∙ 𝑓௧ାଵሺ𝑖ሻ
ൠ 

 Given:  

o 𝑓ସሺ0ሻ ൌ 𝑓ସሺ0.5ሻ ൌ 𝑓ସሺ1ሻ ൌ 0 

o 𝑓ସሺ1.5ሻ ൌ 0.45 

o 𝑓ସሺ2ሻ ൌ 𝑓ସሺ2.5ሻ ൌ 𝑓ସሺ3ሻ ൌ 1 

 Find 𝑓ଵሺ0ሻ 

A decision tree can be built to illustrate the model: 

 

The probabilities of winning the match can be calculated starting from the last stage.  

 

Chance nodes

Decision nodes nodes
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7.4 Further Examples of Probabilistic Dynamic Programming Formulations 

Many probabilistic dynamic programming problems can be solved using recursions of the 

following form (for max problems): 

𝑓௧ሺ𝑖ሻ ൌ max
௔

ቐሺexpected reward during stage 𝑡|𝑖,𝑎ሻ ൅෍𝑝ሺ𝑗|𝑖,𝑎, 𝑡ሻ𝑓௧ାଵሺ𝑗ሻ
௝

ቑ 

Where ft(i) is the maximum expected reward that can be earned during stages t, t+1,… end 

of the problem, given that the state at the beginning of stage t is i. The max in the formula is 

taken over all actions a that are feasible when the state at the beginning of stage t is i. p(j|i, a, 

t) is the probability that the next period’s state will be j, given that the current (stage t) state is 

i and action a is chosen. Hence, the summation in the formula represents the expected 

reward from stage t+1 to the end of the problem. By choosing a to maximize the right-hand 

side of equation we are choosing a to maximize the expected reward earned from stage t to 

the end of the problem, and this is what we want to do. 

 

Example 7.6. Sunco Oil Drilling (Winston 19.4, p. 1029) 

Sunco Oil has D dollars to allocate for drilling at sites 1,2,…,T. If x dollars are allocated to 

site t, the probability is qt(x) that oil will be found on site t. Sunco estimates that if site t has 

any oil, it is worth rt dollars. Formulate a recursion that could be used to enable Sunco to 

maximize the expected value of all oil found on sites 1,2,…,T. 

Answer 

The stage should represent the number of sites, the decision for site t is how many dollars to 

allocate to site t, and the state is the number of dollars available to allocate to sites t, 

t+1,…,T. We therefore define ft(d) to be the maximum expected value of the oil that can be 

found on sites t, t+1,…,T  if d dollars are available to allocate to sites t, t+1,…,T. We make 

the reasonable assumption that qT(x) is a nondecreasing function of x. If this is the case, then 

at stage T, all the money should be allocated to site T. This yields; 

For t = T 𝑓 ሺ𝑑ሻ ൌ 𝑟 𝑞்ሺ𝑑ሻ ൅ ൫1 െ 𝑞்ሺ𝑑ሻ൯0 ൌ 𝑟 𝑞்ሺ𝑑ሻ  

For t < T,   𝑓௧ሺ𝑑ሻ ൌ max
௫
ሼ𝑟௧𝑞௧ሺ𝑥ሻ ൅ 𝑓௧ାଵሺ𝑑 െ 𝑥ሻሽ 

 

where x must satisfy 0  x  d. The last recursion follows, because rtqt(x) is the expected 

value of the reward for stage t, and since Sunco will have d – x dollars available for sites t+1, 

t+2,…,T, ft+1(d – x) is the expected value of the oil that can be found by optimally drilling at 

sites t+1, t+2,…,T. To solve the problem, we would work backward until f1(D) had been 

determined. 
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Example 7.7. Waiting in Line (Winston 19.4, p. 1030) 

When Sally Mutton arrives at the bank, 30 minutes remain on her lunch break. If Sally makes 

it to the head of the line and enters service before the end of her lunch break, she earns 

reward r. However, Sally does not enjoy waiting in lines, so to reflect her dislike for waiting in 

line, she incurs a cost c for each minute she waits. During a minute in which n people are 

ahead of Sally, there is a probability p(x|n) that x people will complete their transactions. 

Suppose that when Sally arrives, 20 people are ahead of her in line. Use dynamic 

programming to determine a strategy for Sally that will maximize her expected net revenue 

(reward – waiting costs). 

Answer 

When Sally arrives at the bank, she must decide whether to join the line or to give up and 

leave. At any later time, she may also decide to leave if it is unlikely that she will be served 

by the end of her lunch break. If 1 minute remained, Sally’s decision would be simple: She 

should stay in line if and only if her expected reward exceeds the cost of waiting for 1 minute 

(c). Then we can work backward to a problem with 2 minutes left, and so on. We define ft(n) 

to be the maximum expected net reward that Sally can receive from time t to the end of her 

lunch break if at time t, n people are ahead of her. We let t = 0 be the present and t = 30 be 

the end of the problem. Since t = 29 is the beginning of the last minute of the problem, we 

write 

𝑓ଶଽሺ𝑛ሻ ൌ 𝑚𝑎𝑥 ൜
0 ሺ𝐿𝑒𝑎𝑣𝑒ሻ

𝑟𝑝ሺ𝑛|𝑛ሻ െ 𝑐 ሺ𝑆𝑡𝑎𝑦ሻ
ൠ 

 

This follows because if Sally chooses to leave at time 29, she earns no reward and incurs no 

more costs. On the other hand, if she stays at time 29, she will incur a waiting cost of c (a 

revenue of – c) and with probability p(n|n) will enter service and receive a reward r. Thus, if 

Sally stays, her expected net reward is rp(n|n) – c. 

For t < 29, we write 

𝑓௧ሺ𝑛ሻ ൌ 𝑚𝑎𝑥 ቐ
0 ሺ𝐿𝑒𝑎𝑣𝑒ሻ

𝑟𝑝ሺ𝑛|𝑛ሻ െ 𝑐 ൅ ෍ 𝑝ሺ𝑘|𝑛ሻ𝑓௧ାଵሺ𝑛 െ 𝑘ሻ
௞ழ௡

ሺ𝑆𝑡𝑎𝑦ሻ ቑ 

 

The last recursion follows, because if Sally stays, she will earn an expected reward (as in the 

t = 29 case) of rp(n|n) – c during the current minute, and with probability p(k|n), there will be n 

– k people ahead of her; in this case, her expected net reward from time t + 1 to time 30 will 

be ft+1(n – k). If Sally stays, her overall expected reward received from time t+1, t+2,…, 30 

will be 
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෍𝑝ሺ𝑘|𝑛ሻ𝑓௧ାଵሺ𝑛 െ 𝑘ሻ
௞ழ௡

 

 

Of course, if n people complete their transactions during the current minute, the problem 

ends, and Sally’s future net revenue will be zero. 

To determine Sally’s optimal waiting policy, we work backward until f0(20) is computed. If 

f0(20) is attained by “stay,” Sally stays and sees how many people are ahead of her at time 1. 

She continues to stay until a situation arises for which the optimal action is “leave” or she 

begins to be served. In either case, the problem terminates. 

Problems in which the decision maker can terminate the problem by choosing a particular 

action are known as stopping rule problems; they often have a special structure that 

simplifies the determination of optimal policies. 

 

Example 7.8. Cash Management Policy (Winston 19.4, p .1031) 

E. J. Korvair Department Store is trying to determine an optimal cash management policy. 

During each day, the demand for cash may be described by a random variable D, where p(D 

= d) = p(d). At the beginning of each day, the store sends an employee to the bank to deposit 

or withdraw funds. Each bank transaction costs K dollars. Then E. J.’s demand for cash is 

met by cash left from the previous day plus money withdrawn (or minus money deposited). 

At the end of the day, the store determines its cash balance at the store. If the cash balance 

is negative, a shortage cost of s dollars per dollar short is incurred. If the ending balance is 

positive, a cost of i dollars per dollar held is incurred (be-cause of loss of interest that could 

have been earned by depositing cash in the bank). At the beginning of day 1, the store has 

$10,000 cash on hand and a bank balance of $100,000. Formulate a dynamic programming 

model that can be used to minimize the expected cost of filling the store’s cash needs for the 

next 30 days. 

Answer 

To determine how much money should be withdrawn or deposited, E. J. needs to know its 

cash on hand and bank balance at the beginning of the day. As usual, we let time be the 

stage. At the beginning of each stage (or day), E. J. must decide how much to withdraw from 

or deposit in the bank. We let ft (c, b) be the minimum expected cost incurred by the store 

during days t, t+1,…,30, given that at the beginning of day t, the store has c dollars cash at 

the store and b dollars in the bank. 

We observe that 

𝑓ଷ଴ሺ𝑐, 𝑏ሻ ൌ min
௫
൝𝐾𝛿ሺ𝑥ሻ ൅ ෍ 𝑝ሺ𝑑ሻሺ𝑐 ൅ 𝑥 െ 𝑑ሻ𝑖

ௗஸ௖ା௫

൅ ෍ 𝑝ሺ𝑑ሻሺ𝑑 െ 𝑐 െ 𝑥ሻ𝑠
ௗஹ௖ା௫

ൡ 
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Here, x is the amount of money transferred from the bank to the store (if x < 0 money is 

transferred from the store to the bank). Since the store cannot withdraw more than b dollars 

from the bank or deposit more than c dollars in the bank, x must satisfy b  x  -c. Also, in the 

equation, (0) = 0 and (x) = 1 for x  0. In short, K(x) picks up the transaction cost (if there 

is a transaction). If d  c + x, the store will end the day with c + x – d dollars, so a cost of i(c + 

x – d) is incurred (because of lost interest). Since this occurs with probability p(d), the first 

sum in the equation represents the expected interest costs incurred during day 30. Also note 

that if d  c + x, the store will be d – c – x dollars short, and a shortage cost of s(d – c – x) will 

be incurred. Again, this cost is incurred with probability p(d). Hence, the second sum in the 

equation is the expected shortage cost incurred during day 30. 

For t < 30, we write 

𝑓௧ሺ𝑐, 𝑏ሻ ൌ min
௫
൝𝐾𝛿ሺ𝑥ሻ ൅ ෍ 𝑝ሺ𝑑ሻሺ𝑐 ൅ 𝑥 െ 𝑑ሻ𝑖

ௗஸ௖ା௫

൅ ෍ 𝑝ሺ𝑑ሻሺ𝑑 െ 𝑐 െ 𝑥ሻ𝑠
ௗஹ௖ା௫

൅෍𝑝ሺ𝑑ሻ𝑓௧ାଵሺ𝑐 ൅ 𝑥 െ 𝑑, 𝑏 െ 𝑥ሻ
ௗ

ൡ 

 

As in the previous equation, x must satisfy b  x  -c. Also, the term K(x) and the first two 

summations yield the expected cost incurred during day t. If day t demand is d, then at the 

beginning of day t + 1, the store will have c + x – d dollars cash on hand and a bank balance 

of b – x. Thus, with probability p(d), the store’s expected cost during days t+1, t+2,…,30 will 

be ft+1(c + x – d, b – x). Weighting ft+1(c + x – d, b – x) by the probability that day t demand will 

be d, we see that the last sum in the formula is the expected cost incurred during days t+1, 

t+2,…,30. Hence, the formula is correct. To determine the optimal cash management policy, 

we would use both equations to work backward until f1(10,000, 100,000) has been computed. 
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