The General Bearing Capacity Equation

• Meyerhof (1963)- take into account the shearing resistance along the failure surface in the soil above the bottom of the foundation.

$$q_{u} = c \cdot N_{c} F_{cs} F_{cd} F_{ci} + q N_{q} F_{qs} F_{qd} F_{qi} + \frac{1}{2} \gamma B N_{\gamma} F_{\gamma s} F_{\gamma d} F_{\gamma i}$$

 $F_{cs,}F_{qs,}F_{\gamma s}$: shape factors $F_{cd,}F_{qd,}F_{\gamma d}$: depth factors

 F_{ci} , F_{qi} , $F_{\gamma i}$: load inclination factors N_c , N_q , N_{γ} : bearing capacity factors

Bearing Capacity Factors

• Vesic (1973)

$$N_q = \tan^2\left(45 + \frac{\phi'}{2}\right)e^{\pi \tan \phi'}$$

$$N_c = (N_q - 1)\cot\phi'$$

$$N_{\gamma} = 2(N_q + 1) \tan \phi'$$

Bearing	Capacity	Factors
Doming	Cupacity	1 actors

	May 3.3 Rosein	Cobrody to	N.	4	Nc	N _q	N,
3	N.	Nz		26	22.25	11.85	12.54
	8	1.00	0.00	27	23.94	13.20	14.47
	0 5.14	1.09	0.07	28	25.80	14.72	16.72
		1.20	0.13	29	27.86	16.44	19.34
	5,90	1.31	0.34	30	30.14	18.40	22.40
	6.19	1.43	0.45	31	32.67	20.63	25.99
	6.49	1.57	0.57	32	35.49	23.18	30.22
8	6.81	1.88	0.71	33	38.64	26.09	35.19
7	7.16 7.53	2.06	0.86	34	42.16	29.44	41.06
8	7.92	2.25	1.03	35	46.12	33.30	48.03
9	8.35	2.47	1.22	36	50.59	37.75	56.31
	8.80	2.71	1.44	37	55.63	42.92	66.19
	9.28	2.97	1.69	38	61.35	48.93	78.03
	9.81	3.26	1.97	39	67.87	55.96	92.25
	10.37	3.59	2.29	40	75.31	64.20	109.41
	10.98	3.94	2.65	41	83.86	73.90	130.22
	11.63	4.34	3.06	42	93.71	85.38	155.55
	12.34	4.77	3.53	43	105.11	99.02	186.54
	13.10	5.26	4.07	44	118.37	115.31	224.64
	13.93	5.80	4.68	45	133.88	134.88	271.76
	14.83 15.82	6.40	5.39	46	152.10	158.51	330.35
	16.88	7.07	6.20	47	173.64	187.21	403.67
	18.05	7.82	7.13	48	199.26	222.31	496.01
	19.32	8.66	8.20	49	229.93	265.51	613.16
	20.72	9.60	9.44	50	266.89	319.07	762.89
-		10.66	10.88		200.09	319.07	

Shape, Depth, Inclination Factors

• Shape - DeBeer (1970)

$$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$$

$$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \phi'$$

$$F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$$

Shape, Depth, Inclination Factors

• Depth - Hansen (1970)

$$F_{cd} = 1$$
For $\phi = 0$:
$$F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right)$$

$$F_{qd} = 1$$

$$F_{\gamma d} = 1$$
For $\phi' > 0$:
$$F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N_c \tan \phi'}$$

$$F_{\gamma d} = 1$$

$$F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \left(\frac{D_f}{B}\right)$$

Shape, Depth, Inclination Factors

• Depth - Hansen (1970) φ=0;

$$F_{cd} = 1 + 0.4 \underbrace{\tan^{-1}\left(\frac{D_f}{B}\right)}_{\text{radians}}$$

$$F_{qd} = 1$$

$$F_{\gamma d} = 1$$
For $\phi' > 0$:
$$F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N_c \tan \phi'}$$

$$F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \underbrace{\tan^{-1}\left(\frac{D_f}{B}\right)}_{\text{radians}}$$

$$F_{\gamma d} = 1$$

Shape, Depth, Inclination Factors

• Inclination – Meyerhof (1963); Hanna and Meyerhof (1981)

$$F_{ci} = F_{qi} = \left(1 - \frac{\beta^{\circ}}{90^{\circ}}\right)^2$$

$$F_{\gamma i} = \left(1 - \frac{\beta}{\phi'}\right)$$

 β = inclination of the load on the foundation with respect to the vertical