

Induction
IVOinlet valve opening $0 - 40 (10 - 25)$ •CA BTDCwhen intake valve is closed, the p behind the valve is the sum of static and dynamic pressures. When the valve is opened, the pressure p_r is greater than cylinder pressure and gases flow into the cylinder. This early opening depends on the gas velocities and the geometry of the intake manifold (cross section area etc)
To be able to use the pressure wave action, IV can be opened up to 5 - 10 °CA ATDC in some engines.
With the movement of the piston from TDC to BDC, p in cylinder drops and generally is lower than the reference pressure, p_0 - gas flow is obtained by this pressure difference, Δp_e

Descue Drop at InductionBernoulli equation,
$$p_o + \frac{1}{2} \rho_o v_o^2 = p_e + \frac{1}{2} \rho_e v_e^2 + \frac{1}{2} \rho_e \zeta v_e^2$$
here v_o gas velocity at inlet position of the valve, [m/s] v_e gas velocity at exit position of the valve, [m/s] ζ coefficient indicating pressure drop at the valve ρ_o density of gases entering the cylinder, [kg/m³] ρ_e density of gases in the cylinder, [kg/m³] ρ_e $\rho_o = 10 - 20$ m/s and $v_e = 100 - 150$ m/sincompressible gases, $\rho_o = \rho_e$

Pressure Drop at InductionIn comparison to
$$v_e^2$$
, v_o^2 is negligable, so $v_o^2 = 0$ Bernoulli eqn becomes, $\Delta p_e = \frac{1}{2} \rho_e v_e^2 (1 + \zeta)$ indicating that the pressure drop is proportional to gas velocity
squared at the valve, and the coefficient of KE loss.Average velocity at the valve can be given by, $v_e \approx c_m \frac{A}{a} = c_m \left(\frac{D}{d}\right)^2$ $A = \pi \frac{D^2}{4}$ $c_m = \frac{Sn}{30}$

Pressure Drop at Induction

The pressure drop will then be,

$$\Delta p_{e} \approx \frac{1}{2} \rho_{e} \left(1 + \zeta \right) c_{m}^{2} \left(\frac{D}{d} \right)^{4} = \frac{1}{2} \rho_{e} \left(1 + \zeta \right) S^{2} n^{2} \frac{D^{4}}{900 d^{4}}$$

here	Α	piston surface area,	[m ²]
------	---	----------------------	-------------------

- a valve opening, [m²]
 - c_m mean piston speed, [m/s]
 - D cylinder diameter, [m]
 - d valve diameter, [m]
- S stroke, [m]
- n engine speed, [r.p.m.]

Pesidual Cas Fraction						
Residual Gas	Пасцоп					
4-stroke engines						
CI engines	$\gamma = 0.03 - 0.06$	5				
SI engines	$\gamma = 0.06 - 0.10$)				
2-stroke engines uniflow scavenged eng cross scavenged eng crankcase scavenged	engines gines d engines	$\begin{aligned} \gamma &= 0.03 - 0.05 \\ \gamma &= 0.06 - 0.12 \\ \gamma &= 0.20 - 0.30 \end{aligned}$				

Volumetric Efficiency					
In 2-stroke engines, $p_1 > p_o$ therefore volumetric efficiency can be greater than 1.0					
uniflow scavenged engines cross scavenged engines crankcase scavenged engines	$\begin{array}{l} \eta_{v} = 0.97 - 1.05 \\ \eta_{v} = 0.80 - 0.85 \\ \eta_{v} = 0.50 - 0.70 \end{array}$				

Volumetric Efficiency
Compression ratio
 When CR is increased with all other parameters being kept constant, volumetric efficiency should be reduced theoratically. In practice, increasing CR increases temperatures - reduces vol eff, and decreases the mass of residual gases - inc vol eff. So in some engines these two effects cancel out each other - there is no apparent effect of CR on volumetric efficiency.

Volumetric Efficiency

Scavenging system

In two-stroke engines, volumetric eff is influenced by the scavenging pump.

Effective scavenging can even increase the volumetric eff to a value greater than $1.0\,$