

Introduction

Blowdown phase

when exhaust valve opens towards the end of power stroke $(60 - 40^{\circ} \text{ BBDC})$ cylinder pressure is about 0.4 - 0.5 MPa and temperature up to 1000 K, while pressure in exhaust system is one atm.

pressure difference causes rapid flow of exhaust gases from cylinder – blowdown phase.

flow at first is choked and outflow will be sonic

With increasing engine speed, crank angle duration of blowdown phase increases

Introduction
Displacement phase (exhaust stroke) mass flow is controled by piston movement from BDC to TDC pressure is slightly above atm pressure
closing of the valve starts at or close to TDC and the total closing is at 8 – 50 $^\circ$ ATDC
Valve overlap intake valve starts to open 10 – 25 ° BTDC valve overlap 15 – 50 ° CA
there can be reverse flow into cylinder : inc residual gases, which is worst at low speeds and idle short circuit of intake air/fuel mixture – inc pollution

Exhaust Gas Treatment	
$\begin{array}{l} \text{Cm}\text{H}_{n} + [\text{m}+\text{n}/4] \ \text{O}_{2} \rightarrow \text{m} \ \text{CO}_{2} + \text{n}/2 \ \text{H}_{2}\text{O} \\ \text{CO} + 1/2 \ \text{O}_{2} \rightarrow \text{CO}_{2} \\ \text{H}_{2} + 1/2 \ \text{O}_{2} \rightarrow \text{H}_{2}\text{O} \\ \text{CO} + \text{NO} \rightarrow 1/2 \ \text{N}_{2} + \text{CO}_{2} \\ \text{Cm}\text{H}_{n} + 2 \ [\text{m}+\text{n}/4] \ \text{NO} \rightarrow [\text{m}+\text{n}/4] \ \text{N}_{2} + \text{n}/2 \ \text{H}_{2}\text{O} + \text{m} \ \text{CO}_{2} \\ \text{H}_{2} + \text{NO} \rightarrow 1/2 \ \text{N}_{2} + \text{H}_{2}\text{O} \\ \text{SO}_{2} + 1/2 \ \text{O}_{2} \rightarrow \text{SO}_{3} \\ \text{5/2} \ \text{H}_{2} + \text{NO} \rightarrow \text{NH}_{3} + \text{H}_{2}\text{O} \\ \text{SO}_{2} + 3 \ \text{H}_{2} \rightarrow \text{H}_{2}\text{S} + 2 \ \text{H}_{2}\text{O} \\ \text{NH}_{3} + \text{CH}_{4} \rightarrow \text{HCN} + 3 \ \text{H}_{2} \\ \text{CO} + \text{H}_{2}\text{O} \rightarrow \text{CO}_{2} + \text{H}_{2} \\ \text{CH}_{n} + 2 \ \text{H}_{2}\text{O} \rightarrow \text{CO}_{2} + [2+\text{n}/2] \ \text{H}_{2} \end{array}$	 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

