

Premixed Combustion Phase
Combustion of the fuel which has mixed with air within flammability limits during ignition delay period, occurs rapidly in a few crank angle degrees - high heat release characteristics in this phase.
If the amount of fuel collected in the combustion chamber during the ignition delay is much - high heat release rate results in a rapid pressure rise which causes the diesel knock.
For fuels with low cetane number, with long ignition delay, ignition occurs late in the expansion stroke - incomplete combustion, reduced power output, poor fuel conversion efficiency.
If the pressure gradient is in the range 0.4 - 0.5 MPa/° CA, engine operation is not smooth and diesel knock starts. This value should be in the range 0.2 to 0.3 MPa/° CA for smooth operation (max allowable value is 1.0 MPa/° CA).

Physical Factors Affecting Ignition Delay
Injection timing At normal operating conditions min ignition delay (ID) occurs with start of injection at 10 to 15 °CA BTDC Cylinder temperature and pressure drops if injection is earlier or later (high at first but decrease as delay proceeds)
Injection quantity (load) Reducing engine load changes AFR, cools down the engine, reduces wall temperatures, reduces residual gas temperatures and inc ID
Droplet size, injection velocity and rate Ignition quality within practical limits do not have significant effect on ID Inc in injection p produces only modest dec in ID Injector nozzle diameter effects droplet size but has no significant effect on ID

Physical Factors Affecting Ignition Delay
Combustion chamber design Spray impingement on the walls effect fuel evaporation and ID Inc in compression ratio, inc p and T and reduces ID Reducing stroke volume, inc surface area to volume ratio, inc engine cooling and inc ID
 Swirl rate Change evap rate and air-fuel mixing - under normal operating conditions the effect is small. At start-up (low engine speed and temperature) more important, high rate of evaporation and mixing is obtained by swirl
Oxygen concentration Residual gases reduce O2 concentration and reducing oxygen concentration increases ID

