Internal Combustion Engines

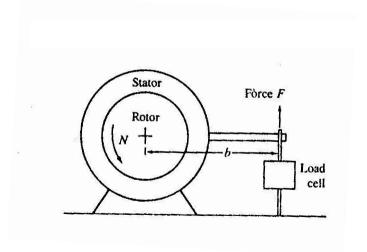
ENGINE CHARACTERISTICS

Prof.Dr. Cem Soruşbay Istanbul Technical University

Engine Performance Parameters

Engine performance parameters are power, torque and specific fuel consumption.

Brake torque is normally measured with a dynamometer – engine is mounted on a test bed and the shaft is connected to the dynamometer rotor. The rotor is coupled electromagnetically, hydraulically or by mechanical friction to a stator, which is supported in low friction bearings. Torque exerted on the stator with the rotor turning is measured by balancing the stator with weights, springs or pneumatic means.


The torque exerted by the engine is, T = Fh

The power delivered by engine is, product of torque and angular speed,

$$P = 2\pi NT$$

Brake power is P_b

1

Engine Performance Parameters

Indicated work per cycle

Cylinder pressure data is used to calculate the work transfer from the gas to the piston – cylinder pressure vs cylinder volume throughout the cycle gives p~V diagram.

Indicated work per cycle $W_{c,i}$ is obtained by integrating around the curve to obtain the area enclosed on the diagram

$$W_{c,i} = \oint p \ dV$$

Pumping work during gas exchange is substracted to obtain net indicated work per cycle.

Mechanical efficiency

Part of the gross indicated work per cycle or power is used to expel exhaust gases and to induct fresh charge. An additional portion is used to overcome the friction of bearings, pistons, and other mechanical components of the engine and to drive engine accessories. All these power req are called friction power, P_f

$$P_{ig} = P_b + P_f$$

Mechanical efficiency,

$$\eta_m = \frac{P_b}{P_{ig}} = 1 - \frac{P_f}{P_{ig}}$$

Engine Performance Parameters

Road load power

$$P_r = \left[C_R M_{\nu} g + \frac{1}{2} \rho_a C_D A_{\nu} S_{\nu}^2 \right] S_{\nu}$$

C_R Coefficient of rolling resistance, $(0.012 - 0.015)^3$

M_v Mass of vehicle

g Accn due to gravity

 C_D Drag coefficient $(0.3 - 0.5)^3$

A_v Frontal area of vehicle

S_v Vehicle speed

Mean effective pressure

work per cycle =
$$\frac{P \ n_R}{N}$$

Where n_{R} is the number of crank rev for each power stroke per cylinder Mean eff pressure is,

$$p_{me} = \frac{P \ n_R}{V_d N}$$

For naturally aspirated SI-engines, 850 – 1050 kPa at engine speed for max torque (around 3000 rpm), turbocharged SI engines, 1250 – 1700 kPa.

For CI-engines, 700 - 900 kPa

Engine Performance Parameters

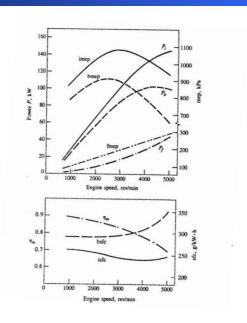
	Operating cycle	Compression ratio	Bore, m	Stroke/ bore	Rated maximum			Watakal	Anney
					Speed, rev/min	bmep, atm	Power per unit volume kW/dm ³	Weight/ power ratio, kg/kW	Approx. best bsfc, g/kW·h
Spark-ignition engines:									
Small (e.g., motorcycles)	25,45	6-11	0.05-0.085	1.2-0.9	4500-7500	4-10	20-60	5.5-2.5	350
Passenger cars	48	8-10	0.07 - 0.1	1.1-0.9	4500-6500	7-10	20-50	4-2	270
Trucks	4S	7-9	0.09-0.13	1.2 - 0.7	3600-5000	6.5-7	25-30	6.5-2.5	300
Large gas engines	25,45	8-12	0.22-0.45	1.1-1.4	300-900	6.8 - 12	3-7	23-35	200
Wankel engines	4S	≈ 9	0.57 dm ³ p	er chamber	6000-8000	9.5-10.5	35–45	1.6-0.9	300
Diesel engines:									
Passenger cars	45	17-23	0.075-0.1	1.2-0.9	4000-5000	5-7.5	18-22	5-2.5	250
Trucks (NA)	45	16-22	0.1-0.15	1.3-0.8	2100-4000	6-9	15-22	7-4	210
Trucks (TC)	45	14-20	0.1-0.15	1.3-0.8	2100-4000	12-18	18-26	7-3.5	200
Locomotive, industrial, marine	45,25	12-18	0.15-0.4	1.1-1.3	4251800	7–23	520	6–18	190
Large engines, marine and stationary	2S	10-12	0.4-1	1.2-3	110-400	9-17	2-8	12-50	180

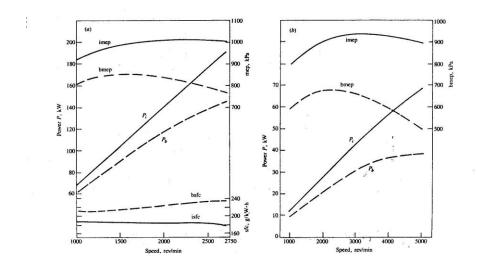
Indicated power

Forces acting on the piston, $P = p_{mi} \frac{\pi D^2}{4}$

piston,
$$P = p_{mi} \frac{\pi L}{4}$$

Work done is


$$W = p_{mi} \frac{\pi D^2}{4} . S$$


Indicated power, for n [rpm] and 4-stroke engine

Power_i =
$$z \frac{\pi D^2}{4} S p_{mi} \frac{n}{2 \times 60}$$

$$Power_i = zV_h \ p_{mi} \ \frac{n}{2 \times 60}$$

Engine Performance Parameters

Engine Performance Parameters

Effective power

$$P = p_{me}V_H \ n \frac{1}{2 \times 60}$$

Power can be increased by incresing stroke volume (increasing cylinder diameter or stroke, number of cylinders), engine speed or mean effective pressure.

Stroke volume

increasing the stroke, inc mean piston speed, inc wear and reduces volumetric efficiency

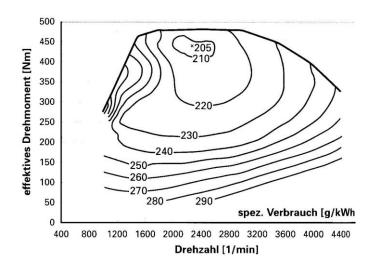
inc bore, inc cylinder temperatures

inc number of cylinders, easy start up, better balacing, inc weight, inc engine length and vibrations

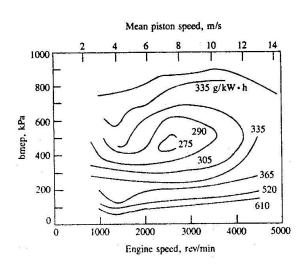
Engine speed

reduces volumetric efficiency, inc inertia forces – valves, inc cylinder temperatures, reduces time available for combustion (Diesel engines)

Mean effective pressure


advance technology required, inc of compression ratio requires wider wall thickness turbocharging

Engine Performance Parameters


Specific fuel consumption

$$sfc = \frac{\dot{m}_f}{P}$$

Low values of sfc are desirable, for SI-engines $250-270~{\rm g/kW.h}$ and for CI-engines, $200~{\rm g/kW.h}$

Engine Performance Parameters

