Engine Performance Calculations

1. Engine specifications

A single cylinder, 4-stroke SI engine has a stroke volume of $400 \mathrm{~cm}^{3}$. The cylinder bore (D) is equal to the stroke (S) of the engine $(\mathrm{S}=\mathrm{D})$.
i. For a compression ratio of $\varepsilon=10$ calculate values of D and S .
ii. Calculate compression volume (V_{c}) and clearance distance (x_{c}).
iii. Calculate mean piston speed for an engine speed of $n=3000$ [r.p.m.] .
iv. If combustion is completed at $45^{\circ} \mathrm{CA}$ at $\mathrm{n}=3000$ [r.p.m.] calculate piston speed at that instant.
Take connecting rod length as, $1=165[\mathrm{~mm}]$.
v. For the above conditions calculate distance of the piston from cylinder head in [mm] and total cylinder volume at that instant. Make assumptions for spark advance angle etc and obtain flame speed for those conditions. Indicate your assumptions and discuss your results.

2. Engine performance

Engine torque value is measured as $60[\mathrm{Nm}]$, at 2600 [r.p.m.] using a dynamometer. Take mechanical efficiency as $\eta_{\mathrm{m}}=0.80$.
i. Calculate engine effective power and indicated power.
ii. Calculate mean effective pressure.
iii. Calculate frictional losses.
iv. Calculate power output.

3. Volumetric efficiency

Air/fuel ratio is given as , $\mathrm{A} / \mathrm{F}=14.6$ and combustion efficiency is , $\eta_{\text {comb }}=0.96$. Calculate fuel flow rate, air flow rate, volumetric efficiency, and thermal efficiency. Take air entering the cylinder at pressure and temperature values of $83[\mathrm{kPa}]$ and $52^{\circ} \mathrm{C}$ respectively.
Lower heating value of the fuel is $\mathrm{Q}_{\mathrm{hv}}=44000[\mathrm{~kJ} / \mathrm{kg}]$.
Discuss parameters effecting volumetric efficiency and effect of volumetric efficiency on engine performance.

For any values not given above, make your own assumptions.

