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Multiple Traveling Robot Problem: A Solution Based
on Dynamic Task Selection and Robust Execution
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Abstract—The multiple traveling robot problem (MTRP), the
real-world version of the well-known NP-hard multiple traveling
salesman problem (MTSP), asks for finding routes of robots to
visit a set of targets. Various objectives may be defined for this
problem (e.g., minimization of total path length, time, etc.). The
overall solution quality is dependent on both the quality of the solu-
tion constructed by the paths of robots and the efficient allocation
of the targets to robots. Unpredictability of the exact processing
times of tasks, unstable cost values during execution, and incon-
sistencies due to uncertain information further complicate MTRP.
This paper presents a multirobot cooperation framework employ-
ing a dynamic task selection scheme to solve MTRP. The proposed
framework carries out an incremental task allocation method that
dynamically adapts to current conditions of the environment, thus
handling diverse contingencies. Globally efficient solutions are ob-
tained through mechanisms that result in the allocation of the most
suitable tasks from dynamically generated priority-based rough
schedules. Since the presented approach is for real-world task ex-
ecution, computational requirements are kept at a minimum, and
the framework is designed to be applicable on real robots even with
limited capabilities. The efficiency and the robustness of the pro-
posed scheme is evaluated through experiments both in simulations
and on real robots.

Index Terms—Distributed multirobot task allocation, incre-
mental task selection, multiple traveling robot problem (MTRP),
robustness.

I. INTRODUCTION

THE USE OF a multirobot team is usually beneficial for
efficiency in search and rescue (SR), space, and recon-

naissance/surveillance operations. These application domains
have a high resemblance in problem formulation although their
overall optimization objectives may differ. In all these domains,
basically the targets, either determined previously or in runtime,
are visited by the robot team. The problem can be reduced to the
multirobot multi-target exploration problem in which a certain
objective is optimized. In SR operations, time is of the essence,
while in space exploration operations, it is better to reduce en-
ergy consumption, which is proportional to the total path length
traversed by all robots.
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This paper investigates the multirobot exploration prob-
lem and proposes a new framework, Distributed and Efficient
MultiRobot-Cooperation Framework (DEMiR-CF) [1] as a so-
lution. DEMiR-CF, designed for multirobot teams cooperating
to achieve a global mission, can be used to solve problems on
a wide variety of application domains. Team members cooper-
ate to fulfill a mission by dividing the labor of task execution
through individual decisions that coordinate their actions in a
distributed manner.

The single-robot multi-target exploration problem is NP-
hard [2]. In the multirobot case, besides route generation, al-
location of targets to robots also has a significant impact on the
solution quality. Although the problem domain considered in
this paper consists of a single type of task that can be executed
by a homogeneous team of robots, still it is NP-hard due to
the combinatorial structure of the problem. The problem area
is well studied in the field of operations research, and optimal
solutions can be obtained by integer programming (IP) formu-
lations. However, these approaches may become impractical
when the size of the mission is even moderate or the cost values
change frequently due to uncertain knowledge, changes in the
environment (including failures), or changing structure of the
mission (e.g., online generated tasks). Furthermore, robots have
continuous path planning burdens for target sets in dynamic en-
vironments. Expensive computational efforts for initial alloca-
tions may become redundant as conditions change. DEMiR-CF
eliminates these redundant efforts by means of incremental as-
signments based on the current state of the environment. It can
also handle contingencies by the precaution routines embedded
in its integrated structure. Communication failures may some-
times prevent allocations from being optimal. DEMiR-CF can
also detect these situations and maintains high solution quality
through a dynamic task selection/exchange scheme.

The contributions of this paper are twofold. First, it deeply in-
vestigates MTRP, and second, it introduces a robust, distributed
framework, DEMiR-CF, as a solution to this problem. Simula-
tion experiments and the real-world scenarios reveal both the
task allocation efficiency and the contingency handling perfor-
mance of DEMiR-CF.

II. MULTIPLE TRAVELING ROBOT PROBLEM:
PROBLEM STATEMENT

The single-robot exploration problem, a variation of the well-
known NP-hard Traveling Salesman Problem (TSP), is to find
the minimum cost traversal of a given number of targets (T )
without considering the return cost from the last target to the
initial location for a single robot. The problem can be stated as
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Fig. 1. Two different optimization objectives for MTRP with three targets. The
first row illustrates achievement of the total path length minimization objective.
In the second row, robots minimize time in achieving the mission.

finding the minimal Hamiltonian path on a given fully connected
graph with all nodes to be visited [2].

Multirobot multi-target exploration problem further extends
TSP. This problem is called the Multiple Traveling Robot
Problem (MTRP) and involves a team of robots (R) to visit
targets (ti ∈ MMTRP ) at least once (ideally at most once). The
overall solution quality is dependent on both the quality of the
solution constructed by the paths of robots and the efficient
allocation of the targets to robots.

A. Cooperation Objectives

Different objectives complementary to the main goal may
be selected to optimize the performance of the system, as in
scheduling problems. Examples of such objectives are total path
length minimization, time minimization, average energy min-
imization, makespan minimization, etc. Based on the selected
objective function, cost evaluation may need to be designed dif-
ferently. Fig. 1 illustrates the paths that robots traverse in order
to optimize target allocations for two different objectives. In the
initial configuration, the robots are located at the bottom of the
figure, facing the three targets (t1 , . . . , t3) to be visited. The first
row of the figures [(a1)–(a3)] illustrates the achievement of the
total path length minimization objective, whereas in the second
row of the figures [(b1)–(b3)], the objective is to minimize the
total time to complete the mission. When the total path length
is to be minimized, a single robot visits all targets. However,
for the time minimization objective, all robots are involved in
the target visiting process [1]. Related videos of these runs are
available online [3].

B. Application Domains for MTRP

MTRP forms an important basis for several domains such
as SR, Space exploration, object construction, pick-up/delivery,
etc. All these domains contain MTRP ingredients in their prob-
lem representations even though their implementations and the
complementary objectives may be different. In SR operations,
candidate locations that should be visited can be modeled as
MTRP targets. Recovery operations after SR operations can
also be modeled as MTRP. In space explorations, observation

locations can be modeled as MTRP targets. Instead of opti-
mizing time, battery/fuel life of robots may be optimized in
this domain. Multirobot systems are also used in nanoassem-
bly planning, where the main objective is to construct paths for
robots working to coordinate assembly tasks [4]. In this do-
main, path waypoints can also be treated as MTRP targets for
which efficient generation of paths is needed. The frontier-cell-
based exploration to cover unknown environments and creating
maps [5] is one of the related application domains to MTRP.
In this case, the coverage problem reduces to the assignment of
frontier cells to robots efficiently. In naval mine countermeasure
mission, the coverage problem is represented as visiting way-
points, which can also be formulated as MTRP [6]. Therefore,
although the coverage problem and MTRP seem to be different,
they share common structures when appropriately represented.

C. Treating MTRP From the Real-World Perspective

Even in the presence of attentively written orchestra scores
or playbooks, the real dynamics of physical task performance
enforce some unplanned actions to be taken. Since the world is
beyond the control of the robots and changes take place con-
tinuously in real-world applications, the difficulty of the mul-
tirobot task execution problem goes beyond the task allocation
problem. In particular, multirobot systems deal with difficulties
arising from noisy sensor information, unexpected outcomes of
actions, environmental limitations (especially in communica-
tion), and presence of hardware failures. All these factors may
influence the overall solution. The evolving circumstances that
may change the solution can be listed as follows.

1) Failure detection: Robots detect either their own failure
or the failure of another robot.

2) Change in the estimated cost: Environmental dynamics,
uncertain knowledge, or hardware problems may cause
delays in task execution or result in early achievements
of tasks. Uncertain sensor and/or localization information
may also result in incorrect estimations.

3) Change in the task definitions: Task dependencies, prior-
ities, or the overall objective (goal) may change. Some
tasks may become invalid during runtime.

4) New online tasks may be introduced by human operators
or discovered by the robots themselves.

5) New robots may be released, or some failed robots may
be repaired or may recover from trap-like threats.

6) Intervention and manual changes by external agents.

III. SOLUTION METHODS FOR MTRP

A. Operations Research Methods for MTRP

MTRP is studied as the multiple TSP problem or the Multi
Depot Vehicle Routing Problem (MDVRP) problem in the field
of operations research [7]. There are several methods to obtain
solutions with either exact optimal value or bounded optimality.
Optimal results can be obtained using IP formulations. How-
ever, these approaches may become impractical when the size
of the mission is even moderate or the cost values change fre-
quently due to uncertain knowledge, changes in the environment
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(including failures), or changing structure of the mission (e.g.,
online tasks) [8]. Furthermore, robots have continuous path
planning burdens for target sets in dynamic environments. Ex-
pensive computational efforts for initial allocations may become
redundant. MTRP can be solved by branch and bound algo-
rithms, the performance of which is dependent on the branching
and bounding algorithms [7]. This approach also suffers from the
solution time guarantees perspective. There are several heuris-
tic approaches to find approximate solutions. Classical heuristic
approaches perform limited exploration of the search space and
typically produce good results within modest computing times.
On the other hand, in metaheuristics approach, the quality of
the solution is much higher. However, time complexity worsens
dramatically and the applied procedures are usually context-
dependent and require finely tuned parameters [7].

B. Robotic Research Methods for MTRP

Operations research methods are applied and integrated into
robot systems in earlier work. Both combinatorial [9], [10] and
single-auction methods are studied for MTRP. In a combinato-
rial auction method, different combinations of tasks are offered
and allocated to robots by considering all tasks in these com-
binations. Thus, this method may become intractable for large
instances or for dynamic situations in which calculations should
be made frequently as in the case of IP method. Computational
requirements for combinatorial auctions increase drastically for
dynamic environments.

An extensive analysis of the multirobot exploration problem
is presented in [11] from the point of view of solution guaran-
tees. The Prim allocation method [12], based on the Prim’s algo-
rithm [13], [14], generates a minimum spanning forest (MSF)
of the targets and robots. An MSF consists of separate robot
trees constructed by adding each unallocated target to the clos-
est robot path containing the node with the minimum distance
to the target, until all targets are allocated. In other words, a
new target is added by considering the distances between the
target and the nodes of the robot tree instead of considering
the last position of the robot. Each robot offers an auction for
a target and one of the targets is allocated at each round. Be-
fore robots run and visit the targets, all targets are allocated.
Whenever the world knowledge changes, the remaining unvis-
ited targets are reallocated using the same algorithm. Since the
Prim allocation method is discussed with details necessary to
implement, it has been possible to compare the performance of
DEMiR-CF to that of the Prim allocation method and the results
are presented in Section V-B. Depth-first traversal solution of
an MST is bounded by 2×OPT, and the traversal and subtree
selection does not affect the solution quality in solving TSP.
However, for the open-loop version of TSP, as in MTRP, selec-
tion of the subtree that is traversed has an impact on the solution
quality. To improve the solutions generated by the Prim alloca-
tion method, the shortest depth subtree may be selected for the
next traversal. This improvement has been incorporated into the
Prim allocation method during the experiments presented in this
paper.

Fig. 2. Overall architecture of DEMiR-CF.

IV. DEMIR-CF

In practical applications, computing the true optimal solu-
tions is not always required due to several reasons [15] such as
the incorrect modeling of the underlying problem (targets) or
lack of sufficient time to find the optimal solution. These are
common cases in robot applications along with the real-time
issues presented in Section II. As a solution method to MTRP
that meets these limitations, a dynamic and distributed task allo-
cation scheme, DEMiR-CF [1], is proposed to coordinate robots
that cooperate to fulfill different parts of a mission. DEMiR-CF
combines The Dynamic Priority-Based Task Selection Scheme
(DPTSS), Distributed Task Allocation Procedures, and Coali-
tion Formation Schemes as cooperation components and The
Precaution Routines, some of which are implemented by The
Coalition Maintenance/Dynamic Task Selection Scheme. These
components are integrated into a single framework to provide
an overall system that finds efficient solutions for real-time task
execution. The modules that embody the framework and infor-
mation flow among them are given in Fig. 2. Each robot keeps
a model, up-to-date state information, of the other robots and
the mission tasks. The Model Update Module, The (System)
Consistency Checking Module, and The Dynamic Task Selec-
tor Module perform precaution routines by either updating the
model maintained by the robot or activating warning mecha-
nisms. Model updates are initiated by either incoming informa-
tion from the other robots or information perceived by the robot
itself. If a system inconsistency exists, The Consistency Check-
ing Module is responsible for initiating warning mechanisms
and informing the corresponding robots. The Dynamic Task Se-
lector Module employs DPTSS to select the most suitable task
by considering the model of the robot. The Distributed Task
Allocation Scheme ensures distributed task allocation by exe-
cuting the required negotiation procedures for the selected task.
The Execution/Coalition Scheme implements synchronized task
execution and coalition maintenance procedures. Task models
are updated according to the selected task and the task currently
in execution.
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A. Dynamic Task Selection and Distributed Allocation

There is a tight connection between route generation and al-
locations for MTRP. In the proposed heuristic approach, each
robot (rj ) initially generates its rough route (rough schedule),
and then, selects the most suitable target for itself among the
targets in its rough schedule (TRj ). Next, each robot proceeds to
announce its intention to execute the selected task. A Contract
Net Protocol (CNP) based allocation [16] is implemented to de-
termine the most appropriate robot among the team of robots to
perform the task (to visit the target). CNP is modeled on the con-
tracting mechanism used by businesses to govern the exchange
of goods and services. The contract net provides a solution to
find the most appropriate agent to work on a given task. In the
CNP, an agent that has a task to be solved announces the task
to the network, along with specifications for the assignment.
A recipient of the announcement decides whether it is eligible,
and if so, it formulates a bid. The manager collects bids, and
awards the task to the contractors with the best bid. DEMiR-CF
uses this mechanism to ensure distributed, robust, and scalable
allocations.

TRj is constructed by selecting targets close to the robot
rj , among unvisited targets (TU ) according to (1), where dist
function returns the Euclidean distance between two points.
Targets in TRj are considered as the candidate targets for robot
rj . Therefore, before selecting the most suitable target, each
robot constructs these rough route sets. This heuristic does not
compel an actual commitment, and the targets in the rough routes
are not necessarily assigned to the corresponding robots in future
auctions. Instead, it provides a global view to the problem from
a local perspective.

reldist(rj , ti) = dist(rj , ti) − min(dist(rk , ti))

{∀k �= j, rk is active}
TRj = ∪ti , reldist(rj , ti) < 0 ∀ti ∈ TU . (1)

Each robot executes Algorithm 1 to generate its rough schedule.
The robot then selects the most suitable candidate task (ts ,
the top most suitable target among the rough schedule targets) to

perform. Algorithm 2 forms the main loop of incremental task
allocation procedure, and it is called in the beginning of mission
execution and whenever the world knowledge of the robot
changes. Each robot executes the same algorithm concurrently
until the end of the mission, when all traversable targets are
visited. The given algorithm may be used to allocate all targets
from scratch. However, an incremental assignment approach
eliminates both the complexity of the decision on allocating
all targets to all robots at a time and the redundant allocations
for dynamic environments. The cost function design can be
determined based on the capabilities of the robot. Two heuristic
cost functions, details of which are explained in Section IV-B,
are proposed to be employed for the task selection strategy in

DEMiR-CF. After selecting the most suitable target for itself,
each robot announces its intention by a single-item auction. The
best robot–task match is determined using CNP. When robots
receive messages that reveal intention to execute a task (as an
auction), they either send their cost values as bids for the an-
nounced target or warning messages due to inconsistent situ-
ations. These warning messages are sent if the auction is for
an invalid target, or for a task that has already been achieved
or is being currently executed by another robot. Although CNP
presents the formalism on the relationships between managers
and contractors, some decisions are left to the designer. In most
auction-based multirobot task allocation schemes, allocations
of one/subset of tasks of the overall mission are detailed. How-
ever, some information regarding when task announcements and
reassignments are made is usually not reported. DEMiR-CF al-
lows for multiple auctioneers and winners for different tasks,
depending on the optimization objective. In the case of the total
path length minimization objective, ending one auction at a time
results in better performance since the decision is made step by
step. On the other hand, simultaneous auctions/executions are
canceled only if there exist relations between the targets in con-
sideration for the time minimization objective.

B. Cost Estimation and Evaluation

Although TSP problem is NP-hard, there are many efficient
heuristic methods in literature generating k-OPT solutions [2].
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Fig. 3. Target selection strategy by the FAC heuristic function. The dashed
arrows present the route generated for r1 by employing FAC. This heuristic
forwards r1 to t1 although t2 is closer to itself, resulting in a better route.

Based on the analysis of earlier methods, two heuristic cost
functions are designed [17] to be evaluated for the targets in TR

for each robot. These heuristic cost functions, namely, closest
cost (CC) and farthest addition cost (FAC) are integrated into
the proposed framework. The CC heuristic cost value for robot
rj and target ti is evaluated by (2). This heuristic cost func-
tion considers only the distance between targets in TRj and the
robot rj

cji = dist(rj , ti) ti ∈ TRj. (2)

The FAC heuristic function is designed to consider costs by
applying a penalty for not visiting the boundary targets in TRj

as in (3). Boundary targets, tb1 and tb2 , are the targets in TRj

with the maximum distance value. The FAC heuristic forwards
robots to these targets in TRj to some degree. The main motiva-
tion behind this approach is that the open-loop traversal should
contain both tb1 and tb2 . If the robot heads toward one of these
targets, if profitable (α), this maximum distance can be traversed
by traversing other targets on the path. A sample illustration of
this cost function is given in Fig. 3. In this figure, although t2
is closer to r1 than t1 , with the FAC heuristic applied, t1’s cost
value is smaller than that of t2 (3 < 3.6), hence forcing the robot
to t1 , the farther target, yet resulting in a better route shown by
the dashed arrows. After an empirical analysis of the various
values for α, the best results have been observed for a value
of 0.6

cji = α ∗ dist(rj , ti) + (1 − α) ∗ [dist(tb1 , tb2)

− max(dist(ti , tb1), dist(ti , tb2)]

{dist(tb1 , tb2) = max(dist(tk , tl)) ti,k ,l ∈ TRj}. (3)

C. System-Wide Contingency Handling Mechanism

In DEMiR-CF, information is not assumed to be complete.
However, the framework can take advantage of communication
when it is reliable. The consistency related with task states is
ensured by the precautions taken in a completely distributed
manner. The precaution routines are embedded into the frame-
work to enable the system to react dynamically to various failure
modes and to recover from them. The current implementation
uses explicit communication to detect conflicts and contingen-
cies. However, failures in communication can also be handled

by the precaution routines. Each robot keeps the models of
the system tasks and robots in its knowledge base. Models of
different robots may become inconsistent because of uncertain-
ties, incomplete knowledge, faulty assumptions, etc. It is not
always possible to share common world knowledge in decen-
tralized systems as in the case presented here. Related to the
contingent situations, appropriate precaution routines are acti-
vated to either correct the models, or to initiate recoveries. If
robots can observe each other implicitly, model updates can be
implemented in a similar manner. Recovery operations may in-
clude warning other robots about the problem or changing the
model accordingly. Inconsistencies usually arise in real-world
operations when robots are not informed about tasks that are
achieved, and that are still under execution or under auction. To
maintain system consistency, robots use explicit communication
and broadcast the following information:

1) tasks known to have been achieved in predefined time
periods to prevent redundant executions; this feature pro-
vides a bucket-brigade type of information sharing, which
handles communication range limitations;

2) newly discovered online tasks that are not yet achieved;
3) task execution message containing an updated cost value

and estimated task achievement deadline information act-
ing as clues for the executer robot to be still alive and the
task being under execution;

4) task achievement message when a task is over;
5) cancellation message if task execution is canceled;
6) task invalidation message when an invalid situation is

detected.
Details of the designed precautions are given in [1]. Most of

the contingencies are detected by checking models, and then,
corresponding model updates are carried out. One standard way
of detecting robot failures is sending heart-beat signals. How-
ever, in DEMiR-CF, messages from other robots are taken as
clues for their being in a running state. Some misleading ac-
tions such as setting the state of a robot as failed although it is
running properly may result in parallel executions. This is a de-
sired feature for the mission completion point of view. Designed
precautions resolve these kinds of inconsistencies if communi-
cation resources permit in later steps.

D. Computational Analysis of the Approach

DEMiR-CF for MTRP offers a polynomial time solu-
tion. Sorting the distances to find the boundary targets takes
O(nlog(n)) for all n number of tasks. Cost and queue initial-
ization is implemented each in O(n). Top element selection and
deletion is performed in O(logn). Therefore, the total complex-
ity is bounded by O(nlog(n)). In the worst case, where the
environment is dynamic and cost values change frequently in
the order of O(l), the total complexity becomes O(ln log(n))
for each robot.

V. EXPERIMENTS

MTRP experiments are designed in three sets. In the first
set, the performance of the proposed heuristic cost function
for MTRP is analyzed. In the second set of experiments, both
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Fig. 4. (a) Khepera II robot base. (b) Khepera II radio module.

DEMiR-CF and the Prim allocation method are evaluated to
measure their solution quality. The optimal solutions are gen-
erated on CPLEX by using the IP formulation given in [12].
In simulation experiments, the environment is represented as a
grid with 100 × 100 nodes; the number of robots change in the
range 1–50 and the number of targets in 10–50. Task allocation
procedures of the approaches are applied on distance matri-
ces. The third set of experiments is performed on real robots,
namely Khepera II. Khepera II [Fig. 4(a)] is a differential wheel
robot equipped with a 25 MHz MC68331 micro-controller,
512 K Flash and 512 K RAM memories and eight IR prox-
imity sensors with limited obstacle detection range [18].

The multirobot platform involves a team of Khepera II
robots. Self-controlled Khepera II robots coordinate their ac-
tions through the algorithms offered by DEMiR-CF. The BIOS
of Khepera II is designed to provide both low- and high-level
tasks running in parallel, eventually communicating together
and using shared resources. Each robot executes multithreaded
controller software that performs task selection/allocation algo-
rithms, along with contingency handling mechanisms to achieve
the functionality of DEMiR-CF. Different modules on the task
allocation layer are integrated with the low-level sensory inter-
face, motor interface, motion model, and mapping modules in
the multithreading structure.

Communication among robots is achieved through wireless
links by using radio modems [Fig. 4(b)] mounted on Khepera
II robots. These modules have their own local processors
(M68331) for the management of the emission and reception
procedures at 418 MHz radio frequency and 9600 b/s trans-
mission speed. The radio channel is a half-duplex channel, and
the messages transmitted through the channel are encapsulated
along with the information on the type of the message, the sender
ID, the destination ID, the length of data, and a checksum for
error correction.

A. Experiment 1: Evaluation of the FAC Function

In the first set of experiments, the performance of the FAC
heuristic is analyzed for the known TSP instances [19]. The
results are given in Table I as cost of visiting all nodes by a
single robot. These results reveal the near-optimal performance
of FAC heuristic function with at most 15.24% deviation from
the optimum (for a large TSP instance). Note that, these results
are for the open-loop TSP and present solutions without any
additional improvements applied on them. Open-loop routes
generated by the FAC heuristic function compared to the opti-
mum are given in [1]. Although it is arguable that better heuris-
tic cost functions would be designed, the proposed heuristic
cost functions together with the incremental assignment proce-

TABLE I
FAC PERFORMANCE RESULTS FOR THE TSP INSTANCES

Fig. 5. Performance results of the heuristic approaches are illustrated com-
pared to the optimal results. (a) Prim allocation method with in its original form
(PRIM-ORG). (b) Prim allocation method with the additional improvements
(PRIM-SD). (c) DEMiR-CF using FAC (DEMiR-CF + FAC). (d) DEMiR-CF
using CC. (DEMiR-CF + CC).

dures of DEMiR-CF ensure close to optimal results efficiently
in terms of both computation and memory requirements. This
also ensures DEMiR-CF to perfectly fit in robots with limited
computational capabilities.

B. Experiment 2: Overall Performance of DEMiR-CF

The objective of the second set of experiments is to com-
pare task allocation performance of DEMiR-CF with that of the
Prim allocation method and the IP approach. Two instances of
DEMiR-CF are considered; one implementing the CC heuris-
tic and the other implementing the FAC heuristic. Experiments
are conducted in simulations for randomly generated test sets
with different numbers of robots and targets. The overall perfor-
mance results are given in Fig. 5 as deviations from the optima
with standard deviation, averaged over 100 runs. Results are
presented in terms of the target allocation strategies of the two
heuristic methods compared to the optima. PRIM-ORG values
represent results of the Prim allocation method in its original
form ignoring subtree sizes on the traversal, while PRIM-SD
values represent the results with shortest subtree selection im-
provement. Results of DEMiR-CF with the FAC heuristic are
promising even for single-robot instances. The target alloca-
tion strategy has significant impact on the solution quality for
increasing number of robots. Therefore, results of DEMiR-CF
with both the CC and the FAC heuristics become closer to the
optima with a very small value of deviation. The decrease in
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Fig. 6. Routes by DEMiR-CF corresponding to different initial deployment
locations are illustrated for a single-robot six-target scenario.

target/robot proportion results in a decrease in the deviations of
the results from the optima. However, results obtained for the
Prim allocation method still deviate from the optima because of
the allocation method. This is prevented in DEMiR-CF by the
dynamic selection of TR s and integrating target allocation into
route construction.

C. Experiment 3: Real-World Experiments

In the last set of experiments, the system is ported to
Khepera II robots, and the contingency handling performance is
analyzed. Each robot is initially informed about the target loca-
tions to be visited before they are deployed in the environment
to run autonomously and to complete the mission cooperatively.

Depending on the initial location of the robot, the path con-
structed to traverse the targets differs for the single-robot case.
This is illustrated in Fig. 6 for a six-target case. In this figure,
each row [(a)–(c)] represents the illustration of an indepen-
dent run with a different initial deployment location for robots
r1 , r2 , and r3 . The continuous video frames [3] are divided into
episodes in which the images of the videos are overlapped and
the final overlapped image is illustrated (e.g., [(a1)–(a3)] in the
figure.

Fig. 7 illustrates a successful scenario (scenario 1) with three
robots for the same setting of the target set, where the objective
is time minimization. The target pairs t1–t2 , t3–t4 , and t5–t6
are visited by robots r1 , r2 , and r3 , respectively.

The failure of r3 and the rest of the run are illustrated in
Fig. 8 (scenario 2). In this scenario, r3 fails after completing its
assigned task (t6). The failure of the robot is enforced by the
human agent isolating the related robot. At the time of the failure,
the other robots are busy with their own target visiting tasks. The
failure of r3 does not block the execution. Since the allocations
are performed incrementally, t5 that is assigned to r3 in scenario
1 can no longer be allocated to this robot because of its failure

Fig. 7. Scenario 1: routes by DEMiR-CF in a three-robot six-target scenario.

Fig. 8. Scenario 2: routes by DEMiR-CF in a three-robot six-target scenario
including the failure of r3 after completing its task.

immediately after achieving its first task. After the failure, r2
selects t5 as an available target and completes the mission.
There is no failure detection and recovery in this scenario, but
it reveals how redundant reallocation procedures are eliminated
by the incremental task selection strategy of DEMiR-CF.

If the failure of r3 occurs before completing its assigned
task (t6), then a recovery is needed (Fig. 9, scenario 3). By
the precaution routines, DEMiR-CF can handle these types of
contingency cases. After detecting that the state of the task (t6)
assigned to r3 is not updated in the estimated time, the Model
Update Modules of the other robots set the state of the task as
uncertain, which, in this case, is treated as an available task.
Eventually, r2 contributes to the efficient completion of the
mission by visiting targets t5 and t6 as well. The other failure
scenarios are given in [1]. The videos of the presented scenarios
are available online [3].

VI. RELATED WORK AND DISCUSSION

Simplified or adopted versions of the MTRP problem are
studied in earlier work, some of which investigate the problem
focusing only on the task allocation dimension. The Prim allo-
cation method [12] ensures a mechanism to allocate targets to
robots based on Prim’s algorithm [13], [14]. An overall alloca-
tion/reallocation scheme is applied as opposed to assigning tasks
to robots incrementally as in the case of DEMiR-CF. This results
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Fig. 9. Scenario 3: routes by DEMiR-CF in a three-robot six-target scenario
including the failure of r3 before completing its task. The failure is handled
by the precaution routines. r2 completes the mission by visiting t5 and t6 ,
although the latter is assigned earlier to r3 .

in less efficient solutions from the point of view of task alloca-
tion performance. The Prim allocation method does not offer a
contingency handling mechanism. Lemaire et al. propose a task
allocation scheme for multi-unmanned air vehicle (UAV) coop-
eration with balanced workloads of robots [20]. Allocations are
performed whenever the world knowledge of robots changes. A
watch-out task is proposed to detect failures in communication.
In GRAMMPS [21], one of the earliest works to solve MTRP,
a mission planner works centrally either on one of the robots
or as an operator to select a robot for each target. The system
can regenerate plans when the environment changes. Although
initial allocations may be suboptimal, the system can find close
to optimal solutions in later steps by using simulated-annealing
approach. In their latest work, Dias and Stentz propose a market-
based scheme introducing the leader approach for combinatorial
task exchanges [9]. These leaders are responsible for multiparty
multitask optimizations for obtaining optimal results. A mar-
ket mechanism with a combinatorial-auction- based allocation
scheme [9], [10] may become intractable for real-world scenar-
ios either with large instances or in dynamic settings in which
calculations should be made frequently.

DEMiR-CF is different from earlier work as it ensures both in-
stantaneous assignment procedures incrementally and forming
rough schedules to consider the problem as a whole from global
perspectives. Combinatorial task exchange mechanisms as in
market-based approaches are not used in DEMiR-CF and the
rough schedule generation process uses polynomial time. Auc-
tions are used by robots to announce intentions about task execu-
tion and select appropriate task executers to deal with world in-
formation incompleteness. Contingency handling mechanisms
are directly integrated into the dynamic task selection mech-
anisms, which, in turn, facilitate recovering from failures dy-
namically and efficiently, reconfiguring robots during runtime,
and maintaining system consistency. These utilities are ensured
by autonomous robots using DEMiR-CF in a completely dis-
tributed manner without central authorities and/or complete
knowledge injected manually.

The proposed FAC heuristic function is evaluated for single-
robot route construction in the first set of experiments. The

performance of the FAC function is compared to the optimal re-
sults generated by using an Integer Programming formulation.
It has been observed that the DEMiR-CF results generated with
the use of the designed heuristic cost function deviate from the
optimal solutions by at most 15.24% for a large TSP instance.
Although it is arguable that better heuristic cost functions would
be designed, the proposed heuristic cost functions together with
the incremental assignment procedures of DEMiR-CF ensure
close to optimal results efficiently in terms of both computa-
tion and memory requirements. This also ensures DEMiR-CF
to perfectly fit in robots with limited computational capabil-
ities. In the second set of experiments, the task allocation ap-
proach of DEMiR-CF is compared with both the Prim allocation
method and the Integer Programming approach. As expected,
both DEMiR-CF and the Prim allocation methods have tractable
computational complexities compared to the Integer Program-
ming approach. However, as the results reveal, DEMiR-CF in-
tegrated with the proposed heuristic cost functions produces
results that are close to the optima for the multirobot case of the
problem. The third set of the experiments validates robustness of
DEMiR-CF in real-world scenarios which are prone to failures.

VII. CONCLUSION

The proposed solution for MTRP integrates dynamic and dis-
tributed task selection and allocation, simultaneous route con-
struction, real-time contingency handling, and low-level hard-
ware procedures to make robots contribute to the overall team
objective. The results of the experiments support the claim that
in real-world environments, an incremental task selection ap-
proach eliminates redundant efforts that are introduced by allo-
cating all tasks from scratch if there is an unexpected change.
The rough schedule generation scheme forms loose commit-
ments, which, if needed, can be canceled in the future. Thus,
it offers a way to reconsider the problem globally when it is
appropriate. The approach is efficient with its polynomial com-
putational complexity. Precaution routines ensure that the mis-
sion is successfully ended. If real resources permit, failures are
handled to maintain system consistency. Empirical evaluations
of the system are performed on real robots as well. Experiments
reveal the success of the approach as a whole with its integrated
components and its applicability on even very simple and small
robots like Khepera II.
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