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Abstract. In this work, we propose a dynamic task selection scheme for
allocating real-world tasks to the members of a multi-robot team. Tasks
in our research are subject to precedence constraints and simultaneous
execution requirements. This problem is similar to the Resource Con-
strained Project Scheduling Problem (RCPSP) in operations research.
Particularly, we also deal with the missions that may change their forms
by introducing new online tasks during execution making the problem
more challenging besides the real world dynamism. Unpredictability of
the exact processing times of tasks, unstable cost values during runtime
and inconsistencies due to uncertain information form the main difficul-
ties of the task allocation problem for robot systems. Since the processing
times of the tasks are not exactly known in advance, we propose a dy-
namic task selection scheme for the eligible tasks instead of scheduling
all of them to eliminate the redundant calculations. In our approach,
globally efficient solutions are attained by the mechanisms for forming
priority based rough schedules by tentative coalition commitments and
selecting the most suitable tasks from these schedules. The approach is
distributed and computationally efficient.

1 Introduction

In this work, we propose the Dynamic Priority-based Task Selection Scheme
(DPTSS) embedded in our framework, Distributed and Efficient Multi Robot -
Cooperation Framework (DEMiR-CF), for allocating complex tasks with prece-
dence constraints and simultaneous execution requirements by a multi robot
team. Robustness is provided through the integrated Plan B Precaution Rou-
tines [1]. DEMiR-CF is evaluated in three different domains, [2], [3], [4]. In this
article, we present the formal details of our task allocation approach and the
simulation scenarios on the US NAVY’s simulator for dynamic tasks and events.

M+ [5] is one of the earlier cooperation schemes addressing many real time
issues including plan merging paradigms. One of the latest works, Zlot’s [6]
task-tree auction method combined with the combinatorial auction based task
allocation scheme, TraderBots [7], is suitable for the complex tasks represented
as and/or trees. Lemarie et al. proposes a task allocation scheme for multi-
UAV cooperation by balancing workloads [8]. Gancet [9] proposes a coordination



framework addressing the planning and allocation issues. These systems use the
auction based task allocation approach which is scalable and robust. However as
Dias et al. report, still there are not certain procedures for re-planning, changing
decomposition of tasks, rescheduling during execution [10]. Our main objective
is to design the certain components in an integrated cooperation framework to
deal with these issues and make it usable for as many domains as possible.

We formulate the general multi-robot multi task allocation problem as a Re-
source Constrained Project Scheduling Problem (RCPSP) [11]. Unpredictability
of the exact processing times of tasks, the unstable cost values during runtime
and the inconsistencies due to the uncertain information form the main difficul-
ties of the task allocation problem for the robot systems. To cope with these
issues, we propose a dynamic task selection scheme for the eligible tasks instead
of scheduling all of them to eliminate the redundant efforts. Particularly, we also
deal with the real-world missions that may change their forms by introducing
new online tasks during the execution which makes the problem more challeng-
ing besides the real world dynamism. Our generic task representation is suitable
for multi-robot teams and relaxes many assumptions for the real world tasks.
DPTSS provides a way to find a solution to the problem from a global perspec-
tive by the mechanisms for forming priority based rough schedules and selecting
the most suitable tasks from these schedules. Rough schedules are formed by
the tentative coalition commitments which are agreed upon by the robots for
the tasks with simultaneous execution requirements. Therefore since the allo-
cations are not made from scratch, the scheduling costs are reduced and the
communication requirements are kept at minimum as much as possible.

2 Problem Statement

We formulate the multi-robot task allocation problem for complex missions as
a version of the well known NP-Hard Resource Constrained Project Scheduling
Problem (RCPSP) in operations research [11]. The adapted version of the for-
mulation for our multi robot task allocation problem on project tasks is given as
follows. A complex mission consists of a set of tasks T = {t1, ..., tn} which have
to be performed by a team of robots R = {r1, ..., rm}. The tasks are interrelated
by two type of constraints. First, the precedence constraints are defined between
activities. These are given by the relations ti ≺ tj , meaning that the task tj
cannot start before the task ti is completed. Second, a task ti requires a certain
set of capabilities reqcapi and certain number of robots (resources) reqnoi to be
performed. We relax the limitation on reqnoi by allowing its change during the
task execution based on the requirements which provides a more realistic way of
representing the real-world tasks. Therefore different alternative solutions may
be found to allocate the tasks to the robots based on the environmental factors.
Based on the given notation, the Scheduling Problem (ScP ) is defined as deter-
mining starting times of all the tasks in such a way that: the total reqnoi for each
task ti is less than or equal to the number of available robots (RSj = ∪rj) with
reqcapi ⊆ capj (Condition-1, C1). The given precedence conditions (Condition-



2, C2) are fulfilled , and the makespan Cmax = max(Ci), 1 ≤ i ≤ n (Objective,
O) is minimized, where Ci = Si + pi is assumed to be the completion of task ti,
where Si is the actual starting time and pi is the actual processing time respec-
tively. It’s not always possible to expect the exact processing times (p) of the
tasks of real world missions in which robots involve. However to form a complete
schedule, it is necessary to make an approximation in terms of the best knowl-
edge available. Since the schedules are subject to change, we propose a way to
allocate the tasks incrementally to the robots without ignoring the overall global
solution quality instead of scheduling all the tasks. Therefore the main objective
becomes determining which robot should do in a precedence and resource feasi-
ble manner whenever a new task needs to be assigned, instead of scheduling all
the tasks from scratch. Although it is not a concern during the assignments are
made, preemption (i.e. yielding) is possible to maintain the solution quality and
to handle the failures during the execution. The main problem that we try to
solve is given as follows: The Selection Problem (SlP ) is determining the next
action to select (either being idle or executing a task) for each robot in such a
way that the C1 and the C2 are fulfilled and the O is minimized.

Missions can be represented by directed acyclic graphs (DAG) where each
node represents a task (with requirements) and the directed arcs (conjunctive
arcs) represent the precedence constraints among them. A sample graph for a
small size mission for moving the boxes to a stamping machine and dropping
them in a given order, then cleaning the room is given in Figure 1. Before
dropping boxes into the mailbox, they should first be moved to the stamping
machine. The room can only be cleaned after both boxes are moved. Since the box
1 is heavy, two robots (reqno) are needed to move and drop the box. Although
this graph shows the relationships on the dependencies among tasks, it does not
show which robot performs which task in sequence.

The following definitions are needed for our formulation to the solution. In-
tuitively, robots do not deal with the ineligible tasks (Tφ) as a union of tasks
that are already achieved or that are not eligible from the capabilities perspec-
tive. The eligible tasks (TEj = T \ Tφ) for the robot rj consists of only the
considerable tasks that are neither in execution (Tie) nor achieved. Pi is de-
fined as the set of all predecessor tasks of the task ti. We define an active task
set as: TAj = {{ti} | reqcapi ⊆ capj , Pi is completed, 0 < i ≤ n}, (TAj ⊆ TEj),
whereas an inactive task set TIj = TEj \ TAj contains the tasks for which the
robot rj , reqcapi ⊆ capj , but the precedence constraints are not satisfied yet. In-
cremental allocation is achieved in our system by means of the dynamic selection
of a suitable task from TAj by taking into consideration of the TEj .

We call a multi-robot group (sub-team) formed to execute a particular task
simultaneously and synchronously as a coalition [12]. In this research, we partic-
ularly deal with the types of tasks that require same type of capabilities within a
coalition to execute a task although the overall mission requires a heterogeneous
team and diverse capabilities. Shehory and Krauss [13] present an algorithm
for coalition formation in cooperative multi agent systems. During the coali-
tion value calculations, the capabilities of agents are taken into consideration. In



multi robot systems, the cost values are a function of not only the capabilities
but also the physical conditions, which change during execution. Vig and Adams
[14] state the differences of the multi-robot and the multi-agent coalition forma-
tion issues from the sensor possessive point of view. Another important factor
in multi-robot systems is the changing cost values during runtime.

Move 1

Move 2

Drop 1

Drop 2

S

T

{Conjunctive Arc}

Clean

[reqno = 2] [reqno = 2]

[reqno = 1]

[reqno = 1]

[reqno = 1]

Fig. 1. The Directed Acyclic Mission Graph for dropping the stamped boxes into the
mailbox in an order. The boxes (1,2) are moved to the stamping machine and then
dropped. After the boxes are moved to the stamping machine, the room can be cleaned.

3 Proposed Approach

DEMiR-CF is for multi-robot teams that must cooperate/coordinate to achieve
complex missions including tightly coupled tasks that require diverse capabilities
and collective work [1]. It combines auctions, coalition maintenance and recovery
routines called Plan B precaution routines to provide an overall system that finds
(near-) optimal solutions in the face of noisy communication and robot failures.

3.1 The Dynamic Priority-based Task Selection Scheme (DPTSS)

In our approach, the instantaneous, precedence and resource feasible decisions
are made by the robots’ global time extended view of the problem from the
local perspectives. While completion of the mission is the highest priority goal
objective, additionally other performance objectives can also be achieved. The
time extended consideration is achieved through forming the rough schedules
by the robots. Since the schedules are highly probable to change in dynamic
environments and furthermore robots also have the real time burdens of path
planning, mapping etc., the schedules formed in our approach are tentative and
constructed by computationally cheap methods.

A critical task is a task that has inflexibility from the resources point of view
and the robot is suitable for that task. Level of a node (task) represents the depth
of the node in the mission graph in reversed order. The level of a node is assigned
as the value incrementing by one from the maximum level of the the succeeding
nodes (connected by the conjunctive arcs). The coalition reservation tables are



built for the critical tasks representing the committed robots for the execution.
Depending on the number of entries, the possibility of mission completion can be
attained. The reservation tables present the future commitments although they
are roughly determined. Each robot generates its rough schedule as a dynamic
priority queue by considering critical task set (TC), the coalition reservation
entries, the eligible tasks (TE), the conjunctive arcs and the requirements. Since
each robot rj has different capabilities, the eligible sets TEj and the priority
queue entries may be different. Sometimes the uncertain information (e.g. related
to a local online task) or the unexpected events (e.g. detection of the fuel leakage)
may result in this difference although the capabilities are the same. The rough
schedule generation is implemented by the Algorithm 1. curcsj represents the
remaining capacity of robot rj and reqcs(i) represents the required capacity
for task ti in terms of the consumable resources (e.g fuel). The priority queue

Algorithm 1 Rough Schedule Generation Algorithm

ts = φ; R = curcsj ; TRj = φ

C = TEj \ TAj prioritized by the level values in descending order (the tie breaking
rules: type priority and reqno)
for each ti ∈ C and ti ∈ TCj do

R = R − reqcs(i)
if R < 0 then

unachievable = true; break
else

TRj = TRj ∪ ti

end if

end for

if (unachievable ‖ R − reqcs(top(TAj)) > 0 ‖ top(TAj) ∈ TCj then

ts = top(TAj)
end if

is formed by first taking into consideration of the conjunctive arcs of the task
graph. If there are no online tasks, or invalidations, the order of the tasks which
are connected by the conjunctive arcs remains the same in the priority queue
although there may be additional intermediate entries in the queue. The dynamic
task selection is implemented by by using the requirements of the rough schedule
(Algorithm 2). The tie breaking rules while forming the active list (TA) is given
from the highest to the lowest importance as follows: The least flexibility (reqno),
the level value of the node, and the id. The fundamental decision that each robot
must make is selecting the most suitable action for a task from a set of active
tasks (TA) by considering TE . The four different decisions are: keeping execution
of the same task (if any), joining to a coalition, forming a new coalition to
perform a free task and being idle.

In DEMiR-CF, the standard auction steps of CNP [15] are implemented to
announce the intentions on the task execution and select the reqno number of
robots for a coalition in a cost-profitable, scalable and tractable way. Addition-



ally Plan B precaution routines are added to check validness in these negotiation
steps. Each robot intending to execute a task announces an auction after deter-
mining the rough schedules.

Maintaining the coalition reservation entries are implemented by negotia-
tions. The robots maintain the coalition reservation entries by proposing the
coalition commitment requests to the specific robots that can execute the cor-
responding task. The coalition reservations only show the tentative agreements
which can be canceled in future.

Each robot keeps the models of the tasks and the other robots in their world
knowledge to track the internal and external inconsistencies. The complete set
of precaution routines to handle several contingencies can be found in [1].

Algorithm 2 DPTSS Algorithm for robot rj

Determine the TEj , TAj ⊆ TEj and TCj ⊆ TEj

Maintain the coalition reservation entries for the tasks in TEj

Generate the Rough Schedule (TRj)
Select the active task tS from TAj to process and perform one of the following
if ts 6= φ then

if ts is the current task then

Continue to the current execution
else

Offer an auction for forming a new coalition or directly begin execution
end if

else

if R + top(Tie) ≤ curcsj and profitable to join a coalition then

Join a coalition
else

Be idle
end if

end if

4 Experimental Results

In our earlier work, we apply the rough schedule generation scheme for the
MTSP (open loop-Multiple Traveling Salesman Problem) on multi-robot systems
[3]. Since the rough schedules are generated tentatively, quality of the solution is
improved over time if the initial quality is degraded. Furthermore, an incremental
assignment approach saves a considerable computation overhead. In this work,
we evaluate our approach in the US NAVY’s realistic simulator [16]. Particularly
in this experiment, the mission consists of the online tasks, generation time
of which are not known in advance by the robots (Autonomous Underwater
Vehicles). The overall mission is searching a predefined area and protecting the
deployment ship from any hostile intents. The initial graph of the application



Table 1. The Cost Evaluations for the tasks of the application domain

Task Type Cost Function Taken Action

Search Task Distance to the region interest points [4] In depth analysis is needed.

Intercept

Task

Expected time to achieve the task:

tE = E[dist(rj , ti)]/E[speed− diff(rj , ti)]

Immediate response is needed. One step auc-

tion or direct execution is applied.

Search-1 Search - 3

SearchS T

[reqno = 1]

(a) Mission Graph

Search - 2

SearchS T

[reqno = 1]

(b) Allocation of the Mission Tasks

R1

R2

R3

Fig. 2. Initial Mission graph consists of only Search Task.

mission is given in Figure 2. Initially the mission consists of only the Search
Task. Although reqno = 1 for this task, since there are no other tasks and the
robots have enough fuel capacities, they execute the task as a coalition and
divide the area to search. The Search Task execution with three robots and the
corresponding search areas are illustrated in Figure 3. The robots patrol the sub-
areas which are determined after the negotiations [4]. Therefore, although there
is only one task on the higher level, the robots create instances of the Search
Task (Search 1-3) as if each instance is another separate task. If there are no
hostile intentions, the robots only search the area.

Whenever a hostile diver is detected by the robots, a related interception task
is generated. The execution trace after detection of the hostile diver is illustrated
in Figure 4. R2 chases performing the search task and immediately switches
to the Intercept Task. The hostile diver attacks to R2 by using its missiles.
Therefore R2 needs to return back to the deployment area while R1 takes control
of the Intercept Task. R1 can deter the diver but waits until the threat entirely
disappears. The evolving mission graph is illustrated in Figure 5. The robots may
need to generate local tasks (e.g. Repair/Refuel Task,) as in Figure 5 (d) making
the graphs different even when they work cooperatively for the same objective
(Figure 5 (c-d)). In Figure 5 (c), although executing the Intercept Task, R1
can make a coalition commitment assuming it will succeed in a predefined time
(described as TBD), R2 cannot make any coalition commitment for the search
task because its future operations depend on its recovery time.

Cost evaluation for the tasks are implemented accordingly depending on the
task. While the robots try to optimize the fuel levels for the Search Task, the
Intercept Task requires immediate response and time minimization (Table 1).
Cost evaluation for the search task is implemented by dividing the search area
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Fig. 3. (a) Mission execution begins. The overall area is divided into regions related to
the generated task instances. (b) Robots patrol the area in the corresponding regions.

into regions and evaluating the distance values for the interest points [4]. For
the intercept task, the expected time to achieve (intercept the diver) the task is
taken as the cost value. The Intercept Task is assumed to be achieved whenever
the hostile threat is believed to be disappeared. The emergency tasks are di-
rectly executed. However, in this case, parallel executions may occur and should
be resolved. This facility is provided in our framework by the Plan B precaution
routines. In a sample scenario with limited communication ranges, the parallel
executions arise for the Intercept Task as in Figure 6. However these inconsis-
tencies are resolved by the Plan B precaution routines whenever robots enter
into the communication range.

5 Conclusion

In this work, we present our dynamic and distributed task selection scheme
(DPTSS) embedded in our generic cooperation framework, DEMiR-CF. The
dynamic task selection scheme ensures that the instantaneous, precedence and
resource feasible decisions are made by the robots’ global time extended views of
the problem from the local perspectives. The framework combines a distributed
auction based allocation method and Plan B precaution routines to handle con-
tingencies and real world limitations and to maintain the high solution quality
with the available resources. The preliminary results on complex missions, as
presented in this paper, reveal the integration of real-world task allocation and
execution; immediate and effective handling of the online tasks and events and
the solution quality maintenance performance of DEMiR-CF is promising.
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