

SUMMARY

VHDL MODEL OF N(N BIT MULTIPLICATION CIRCUIT FOR DSP APPLICATIONS

With digital signal processing systems growing in size and complexity, designers require increasingly sophisticated development process. Traditional computer-aided engineering tools, which primarily support the development phase, do not perform effectively in the design of algorithms and architectures. In addition, they often lack facilities for exchange of designs and insertion of new technologies.

VHDL addresses these issues and offers the DSP designer a wide range of modelling capabilities for examining algorithms, architecture, and technologies. VHDL (VHSIC or Very High-Speed IC, Hardware Description Language) is IEEE standard language for the description of electronic circuits. It is the language of choice for the majority of ASIC (application-specific IC) designers, and most of the major CAD vendors have integrated VHDL tools into their product lines. These tools include simulators, debuggers, graphics interfaces, and synthesisers.

The effective use of VHDL in digital system design depends on the use of existing or off-the-shelf models for portions of the system. These models must not only interact with each other but also multivalue logic system must be compatible with existing and new models. There is a great need for models flexible enough to simulate using many multivalue logic systems.

Digital signal processing involves many calculations of the form:

	A=BC+D	(1)

This equation involves a multiply operation and an add operation. A machine which can perform the multiply and the add in just one clock cycle, is needed.

In real time signal processing, main concern is with the amount of processing can be done before the new item of data arrives which has to be dealt with. Early DSP systems were built using standard components to construct shift-registers, adders, and multipliers. The multiplication operation was rapidly seen as the limiting factor in the performance of these computers. Multiplier design advanced through the use of pipelining techniques and the first single-cycle multipliers were implemented in the early 1970s with standard high-speed emitter-coupled logic (ECL) components.

The methods used for writing VHDL model of the multiplier are given below. According to these methods the multiplier can be divided into three sub systems.

Partial products (PP) generation and conversion PPs from binary representation to redundant binary representation (RBPP).

Addition the RBPPs using Wallace tree with the improved redundant binary adders (RBAs)

Conversion RB final product to binary representation

N bit numbers A and B by sequences aN-1aN-2...a0 and bN-1bN-2...b0 respectively. The product of the two numbers can be written as,

	� EMBED Equation.2 ���	(2)

In a straightforward parallel multiplication operation of two N bit numbers, all the N partial products are generated simultaneously and the addition operation between them is carried out by an array of N(N-1) full adders. The multiplication speed is expressed by the delay time associated with the full adders. For the above multiplier, the delay is 2N-1 full adder delays because the longest carry chain that propagates in the array is through the right and bottom edges of the adder array. The algorithm used in this thesis generates a varying (at most N/2) number of partial products, depending on the bit pattern of the multiplier. The algorithm encodes 3-bit strings so the multiplier at a time with an overlapping bit. The multiplier can be written as,

	� EMBED Equation.2 ��� 	(3)

where

	Qi=-2b2i+1+bi+b2i-1	(4)

with b-1=0 and Qi({-2, -1, 0, +1, +2}. The product of the multiplication can be written as,

	� EMBED Equation.2 ���	(5)

An encoder accepts three-bit strings of the multiplier as input and outputs the appropriate control signals. The truth table for the encoder and the mathematical operations effected by each three-bit sequence of the multiplicand is shown in Table 1. The control signals generated by encoder are Z, ADD, 2ADD, 2SUB, SUB and NEG. Subtraction can be carried out using 2's complement addition. This involves adding one to the multiplicand at the LSB for SUB and 2SUB operations. The extra one is generated by encoding logic with NEG output. The example below illustrates the principle:

�

Table 1. Truth table for the encoder�
�
Multiplier bits�
Encoder output�
�
�
b2i+1�
b2i�
b2i-1�
Z�
ADD�
2ADD�
2SUB�
SUB�
NEG�
Multiplexer

Operation�
�
0�
0�
0�
1�
0�
0�
0�
0�
0�
+0�
�
0�
0�
1�
0�
1�
0�
0�
0�
0�
+A�
�
0�
1�
0�
0�
1�
0�
0�
0�
0�
+A�
�
0�
1�
1�
0�
0�
1�
0�
0�
0�
+2A�
�
1�
0�
0�
0�
0�
0�
1�
0�
1�
-2A�
�
1�
0�
1�
0�
0�
0�
0�
1�
1�
-A�
�
1�
1�
0�
0�
0�
0�
0�
1�
1�
-A�
�
1�
1�
1�
1�
0�
0�
0�
0�
0�
-0�
�

The subtract twice operation is performed by adding the 2's complement of the multiplicand shifted left by a single bit. The partial product terms are sign extended up to the most significant bit (MSB) of the result.

The partial products that are found as mentioned above are converted to RB representation. This is done according to the following consideration.

The addition of A and B is expressed as

	A+B=A-(-B)	(6)

where A and B are the binary partial products. Using the 2's complement representation, -B can be obtained by complementing all bits of B and then adding a bit "1" to the LSB. The procedure expressed as

	-B=� EMBED Equation.2 ���	(7)

where � EMBED Equation.2 ��� is obtained by complementing all bits of B. Substitution of (7) into (6) produces the following expression.

	A+B=A-� EMBED Equation.2 ���-1	(8)

If ai and bi are the ith digit of A and B, the following definitions are given

	(ai,� EMBED Equation.2 ���) (ai -� EMBED Equation.2 ��� 	(9)

	(A,� EMBED Equation.2 ���) (A -� EMBED Equation.2 ���	(10)

where � EMBED Equation.2 ��� is the complement of bi. Then the subtraction ai -� EMBED Equation.2 ��� becomes one of the following four forms whose values are 1, 0 or -1:

	(1,0)=1, (1,1)=(0,0)=0 and (0,1)= -1	(11)

This means that the pair of (A,� EMBED Equation.2 ���) can be regarded as an RB number having (ai,� EMBED Equation.2 ���)for each digit. The value of (A,� EMBED Equation.2 ���) is equal to A+B+1 from expression (8) and (10). That is

	A+B=(A,� EMBED Equation.2 ���) - 1=(A,� EMBED Equation.2 ���) + (0,1)	(12)

because -1 equal to (0,1) from (11). Thus, the RB partial product this equal to the sum of binary partial products, is generated by complementing one of the two partial products and adding (0,1) to the lowest digit. In this RB architecture, an RB partial product can be obtained from two binary partial product only bay complementing one of the pairs because the expression (11) is adopted. No additional hardware is needed.

Generated RB partial products are added up by Wallace-tree of redundant binary adders (RBAs). Because an RBA is used for addition of two RB numbers to make one RB number, four inputs are reduced to two output signals. By use of high speed RBA the operating speed can be increased. The addition of the ith digit of two redundant binary numbers � EMBED Equation.2 ��� and � EMBED Equation.2 ��� expressed by the definition (9)

	� EMBED Equation.2 ���	(13)

where � EMBED Equation.2 ��� is the sum. To simplify the consideration, both the inputs � EMBED Equation.2 ��� and � EMBED Equation.2 ��� are assumed that take one of the three forms (0,1), (0,0) and (1,0) and no (1,1). By this assumption there are nine kinds of combinations in the sum of � EMBED Equation.2 ��� and � EMBED Equation.2 ���. they are classified into the five cases by the different results of the addition as shown in Table 2. The table shows the intermediate sum � EMBED Equation.2 ��� and carry � EMBED Equation.2 ��� for each case. The carry is added to the sum of the higher digit. The cases 2 and 3 are further divided into two cases by the value of hi from the next lower digit, where hi is defined as follows,

	� EMBED Equation.2 ���	(14)

The hi is introduced to prevent the continuous carry propagation by eliminating the collision of the sum and the carry from the lower digit. The final sum � EMBED Equation.2 ��� can be expressed as follows:

		�EMBED Unknown���	(15)

		�EMBED Unknown���.	(16)

From (8)-(11) and the rule of Table 1. following equations are obtained

		�EMBED Unknown���		(17)

		�EMBED Unknown���		(18)

		�EMBED Unknown���	(19)

		�EMBED Unknown���	(20)

		�EMBED Unknown���,	(21)

		�EMBED Unknown���		(22)

		�EMBED Unknown���		(23)

Table 2. Rule for RB addition

�
�
�
�
�
� EMBED Equation.2 ����
�
�
�
�
�
�
case�
�
�
� EMBED Equation.2 ����
�
�
hi-1�
� EMBED Equation.2 ����
� EMBED Equation.2 ����
�
1�
(0,0)�
�
(1,0)�
�
(0,1)�
any�
(0,0)�
(0,0)�
�
�
(0,0)�
�
(0,1)�
�
(1,0)�
�
�
�
�
2�
�
(0,1)�
�
(0,0)�
�
0�
(0,0)�
(0,1)�
�
�
�
(0,0)�
�
(0,1)�
�
1�
(0,1)�
(1,0)�
�
3�
�
(1,0)�
�
(0,0)�
�
0�
(1,0)�
(0,1)�
�
�
�
(0,0)�
�
(1,0)�
�
1�
(0,0)�
(1,0�
�
4�
�
�
(0,1)�
�
�
any�
(0,1)�
(0,0)�
�
�
�
�
(0,1)�
�
�
�
�
�
�
5�
�
�
(1,0)�
�
�
any�
(1,0)�
(0,0)�
�
�
�
�
(1,0)�
�
�
�
�
�
�

Partial products are added until the final RB number � EMBED Equation.2 ��� is obtained by the Wallace-tree. Then the final RB number must be converted to an binary number Z, that is the product. The conversion is carried out by the addition of � EMBED Equation.2 ���to � EMBED Equation.2 ��� from the definition (10). That is

		Z = F+ - �EMBED Unknown��� = F+ +(- �EMBED Unknown���) = F+ + �EMBED Unknown���+1.	(24)

In the architecture used in this thesis, the RB to binary conversion is optimised so the carry propagation circuit comprises simple and high speed circuits. The following criteria was taken consideration in designing the new RB to binary converter. If each digit of the final RB partial product � EMBED Equation.2 ��� is � EMBED Equation.2 ��� and the carry in from the next lower digit is ci-1, the carry out signal ci is expressed from (24)as follows:

		�EMBED Unknown���	(25)

		c0 = 1.		(26)

Because, as mentioned above, the output RBA takes one of the three forms, (1,0), (0,0) or (0,1). � EMBED Equation.2 ��� and � EMBED Equation.2 ��� do not become "1" simultaneously. Then (25) can be rewritten as

		�EMBED Unknown���	(27)

This implies the carry propagation can be carried out by multiplexer circuits. The carry out ci is selected from the two signals � EMBED Equation.2 ��� and � EMBED Equation.2 ��� by carry in signal ci-1.

The product Z can be easily calculated using the carry out signal from the lower digit and the following relation.

		�EMBED Unknown���	(28)

zi is the ith digit of the product Z. This relation can be simplified by using the fact that � EMBED Equation.2 ��� and � EMBED Equation.2 ��� do not become "1" simultaneously. Then (28) becomes

		�EMBED Unknown���	(29)

The block diagram of the multiplier for 54(54 bit multiplication is shown in Fig. 1. There are three main blocks. The first is the RB partial product (RBPP) generation block, the second, the Wallace-tree block with the improved RBA's, and the third, the RB-to-NB converter block.

In this thesis, VHDL models was written for all blocks and using structural architecture the models was put together to have the model of multiplication circuit. The blocks were also divided into sub components. The sub component of the blocks are as follows:

RBPP generation: Booth encoders, Booth selectors, NB to RB converters.

Wallace-tree: RBAs, M-bit RBA

RB to NB converter: multiplexer

The VHDL model is written for N(N bit multiplication circuit. Which components and how many of them will be used, are decided according to the number N. In Wallace-tree maximum five levels can be used. So the maximum N number is 123.

�PAGE �xiv�

�PAGE �xiii�

		01101 (2's complement= 10011)

		01010 x

recoded multiplier	0 0 1 0 1 0 (0)

		

+1 -1 -2

		111100110	(subtract twice)

		1110011	(subtract once)

		01101	+	(add once)

		result	 010000010

