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Abstract

In this thesis, we present FPGA implementations of the Montgomery modular
multiplication over GF (2m) and GF (p). The designs have systolic array archi-
tectures to allow pipelining and to make the clock frequency independent of m
and the bit-length of p. In this way, the clock frequency does not change when
the bit-length is enlarged for security reasons. We describe efficient implemen-
tations of elliptic curve processors over GF (p) and GF (2m). The processors
can be programmed to execute a modular multiplication, addition/subtraction,
modular multiplicative inversion, elliptic curve point addition/doubling and
multiplication. It is desirable to use the resulting FPGA implementations also
for an evaluation of the designed circuits against power analysis attacks. In
order to configure the FPGA, to communicate with it, and to conduct mea-
surements on it during the execution of the cryptographic algorithms, we have
designed our own FPGA board. Then we were free to design it such that
gives us the best information about the dynamic power consumption of the
FPGA. We conduct timing, power and electromagnetic analysis attacks on our
FPGA implementations of elliptic curve cryptosystems over GF (p). We con-
clude that our initial design was vulnerable to simple attacks: by using only
timing information it is possible to find the Hamming weight of the key. More
drastically, by using simple power and electromagnetic analysis attacks it was
possible to find all the key bits. Next we present an improved design such
that they become immune to timing and simple power and electromagnetic
analysis attacks. We conduct differential power and electromagnetic analysis
attacks on our improved FPGA implementation of elliptic curve processor. To
our knowledge, there exists no previous publication on practical implemen-
tations of power analysis attacks on dedicated hardware implementations of
the Advanced Encryption Standard (AES). In this thesis we demonstrate the
feasibility of power analysis attacks against hardware implementations of the
AES. Our attacks target an ASIC implementation of the AES developed by
the ETH Zürich and an FPGA implementation of the AES developed by the
UCL Crypto group. In this thesis we describe a power analysis attack against
an FPGA implementation of the Data Encryption Standard (DES) developed
by the UCL Crypto group.
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Chapter 1

Introduction

1.1 Motivation

Cryptography is the science of information integrity [239]. The best known use
of cryptography is providing secrecy of information. Until the mid seventies
this was indeed its main purpose. The cryptosystems used were so-called sym-
metric key systems. In these systems secure communication requires that all
parties share the same key that has to remain secret to others. In 1976 Diffie
and Hellman published an article [58] where a fundamental new approach to
cryptography was introduced: public key cryptography. Here the key is split
into two parts: a public key and a private key. This has the following conse-
quences: many people can encrypt messages that only can be decrypted by one
person and one person can sign messages that many people can verify. The
first property makes key management significantly ‘easier’. The second has its
merits in producing digital signatures.

The security of any cryptosystem is based on a mathematical problem that is
hard to solve. Since its introduction many problems have been proposed for
use in public key cryptography. Until now the two most popular ones are:

• factorization of a composite number, like RSA;

• discrete logarithm problem in a group, like Diffie-Hellman, ElGamal.

The group in the second problem is typically a finite field. However, one can
define a group structure on an elliptic curve. The first elliptic curve cryptosys-
tems (ECCs) were independently proposed by Koblitz [126] and Miller [165] in
1985. Since its inception elliptic curve cryptography has been the subject of
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extensive cryptanalysis. Today, elliptic curve cryptosystems are deemed secure
for commercial [12, 13, 108] as well as government use [174].

Elliptic curve cryptosystems (ECCs) offer security comparable to that of tradi-
tional public-key cryptosystems (PKCs), such as those based on the RSA [220]
and ElGamal [61, 62] encryption and digital signature algorithms and those
based on the Diffie-Hellman key agreement algorithm [58], with shorter key-
length and computationally more efficient algorithms. Because of these ad-
vantages over traditional public key algorithms elliptic curve cryptography is
becoming popular for use in constrained environments such as cellular phones
and smart cards.

Software implementations have the great advantage that they are portable to
multiple hardware platforms. Their disadvantages are their high power con-
sumption and lower speed when compared to specialized hardware architectures
and their inability to protect private keys from disclosure with the same degree
of security that is achievable in hardware. These disadvantages are some of
the reasons motivating the study of efficient hardware architectures. Two of
the contributions of this thesis are elliptic curve processors over GF (2m) and
GF (p) published in [159, 197, 198].

Unlike traditional very large scale integration (VLSI) hardware, field pro-
grammable gate arrays (FPGAs) do not possess fixed functionality after fab-
rication. FPGAs are reconfigurable hardware devices, that is, devices whose
functionality is programmable. This reconfigurability allows us to try different
architectures for our elliptic curve processor designs. As part of a modern de-
sign flow, FPGAs are gaining more importance. The reasons for this include
their relatively low cost and the available tools. Register transfer level de-
scriptions for a circuit can easily be ported, if not directly used, for an FPGA
implementation of the circuit. These motivate our choice for an FPGA as
a hardware platform. In order to verify the functionality and perform some
experiments, we have designed our own FPGA board.

The performance of an ECC and of several other PKCs is mostly determined
by the efficient implementation of finite field arithmetic. The most critical op-
eration for latency is modular multiplication. In 1985 Montgomery introduced
a new method for modular multiplication [168]. The approach of Montgomery
avoids the time consuming trial division that is a bottleneck for most other al-
gorithms. His method is very efficient and is the basis of many implementations
of modular multiplication, both in software and hardware [19].

In this thesis, we present our FPGA implementations of the Montgomery modu-
lar multiplication (MMM) over GF (2m) and GF (p). The designs have systolic
array architectures to allow pipelining and to make the clock frequency inde-
pendent of m and the bit-length of p. In this way, the clock frequency does
not change when the bit-length is enlarged for security reasons. These results
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were published in [196, 198] for GF (p) and in [157, 158] for GF (2m). We have
described efficient implementations of elliptic curve processors over GF (p) and
GF (2m). The processors can be programmed to execute a modular multipli-
cation, addition/subtraction, modular multiplicative inversion, EC point addi-
tion/doubling and multiplication. These results were published in [197, 198]
for GF (p) and in [159] for GF (2m).

A cryptographic primitive can be viewed as an abstract mathematical object (a
transformation, possibly parameterized by a key, transforming some input into
some output); on the other hand, this primitive will have to be implemented in
software or hardware, in a specific environment and will therefore have specific
properties. It can be attacked at two levels. The first point of view is that of
“classical” cryptanalysis; the second one is that of side-channel analysis attack.
Side-channel analysis (SCA) attack takes advantage of implementation-specific
characteristics to recover the secret parameters involved in the computation.
It is therefore less general, but often much more powerful than classical crypt-
analysis.

Side-channel analysis attacks can be divided into two groups according to the
ability of the attacker; active and passive attacks . Active attacks targeting
the keys in cryptographic devices are commonly referred to as tamper attacks ;
they have a long history in the field of cryptography [11]. The attacker has
to reach the internal circuitry of the cryptographic device. One distinguishes
between probing attacks [135] and fault induction attacks [26, 119]. Probing
attacks consist inserting sensors into the device, in order to directly examine
the content of memory zones or the data circulating on a bus. Fault induction
attacks work by disturbing the device’s behavior in order to induce errors in
the computation.

Passive attacks were recognized in the cryptographic community as a major
threat in 1996, when the first article about timing analysis (TA) [132] was pub-
lished. In a passive attack, the adversary uses the standard functionality of the
cryptographic device. The physical and/or electrical effects of the functionality
on the device are then used for the attack. There are many different types of
effects. If these effects unintentionally deliver information about the key which
is used inside the device, then they deliver side-channel information and are
called side-channels.

Passive attacks are divided into four groups according to the side-channel in-
formation that they exploit. Timing analysis attacks exploit the timing in-
formation on the cryptographic hardware. Power analysis (PA) attacks [133]
use the dynamic power consumption of the cryptographic hardware during the
execution of the cryptographic algorithm. Electromagnetic analysis (EMA) at-
tacks [215, 72] use the electromagnetic radiation of the cryptographic hardware
during the execution of the cryptographic algorithm. Acoustic (sound) analy-
sis attacks [236] exploit the sound coming out of the cryptographic hardware
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during the execution of the cryptographic algorithm.

All the groups of the passive attacks have two variations. In a simple analysis,
an attacker uses the side-channel information from one measurement directly to
determine (parts of) the secret key. In differential analysis, many measurements
are used in order to filter out noise. While a simple analysis exploits the
relationship between the executed operations and the side-channel information,
differential analysis attack exploits the relationship between the processed data
and the side-channel information.

It is desirable to use the resulting FPGA implementation also for an evaluation
of the designed circuit against power-analysis attacks. In order to configure
the FPGA, to communicate with it, and to conduct measurements on it during
the execution of the cryptographic algorithms, we need an evaluation board.
There are many commercial FPGA evaluation boards which provide the ability
of configuration of the FPGA and communication with it. In order to make
the power consumption measurements, we have to interrupt the power line
of the FPGA with a resistor or the line has to pass through a hole in the
current probe. The only power line that can be reached is the power line of
the evaluation board which shows the power consumption of all the devices on
the board such as the FPGA, microcontroller, leds, etc. Hence, we can not
make the FPGA board ready for measurements without damaging the board.
Because of this reason we have designed our own FPGA board. Then we were
free to design it such that gives us the best information about the dynamic
power consumption of the FPGA.

As explained in Chapter 3, side-channel analysis attacks form important threats
against hardware implementations of cryptographic algorithms. Hence it is nat-
ural to study the weaknesses of our circuits, presented in Chapter 4, against
these attacks. We have implemented timing, power and electromagnetic analy-
sis attacks on our FPGA implementations of elliptic curve cryptosystems over
GF (p). We conclude that our initial design was vulnerable to simple attacks:
by using only timing information it is possible to find the Hamming weight of
the key. More drastically, by using simple power and electromagnetic analysis
attacks it was possible to find all the key bits. Next we improved our circuits
such that they become immune to timing and simple power and electromag-
netic analysis attacks. We showed that this improved design is vulnerable to
differential attacks. We conduct differential power (DPA) and electromagnetic
(DEMA) analysis attacks on our improved FPGA implementation of elliptic
curve processor. We use two well known techniques for DPA and DEMA;
correlation analysis and distance of mean test.

During the Advanced Encryption Standard (AES) [175] selection process, the
security of Rijndael implementations [48] was evaluated with respect to all
types of attacks. While being resistant to the classical cryptanalytic methods,
it turned out that side channel attacks are a serious threat against naive im-
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plementations of the Rijndael algorithm. To our knowledge, there exists no
previous publication on practical implementations of power analysis attacks on
dedicated hardware implementations of the AES. In this thesis we demonstrate
the feasibility of power analysis attacks against hardware implementations of
the AES. Our attacks target an ASIC implementation of the AES developed
by the ETH Zürich [90] and an FPGA implementation of the AES developed
by the UCL Crypto group [246].

In 1977, the Data Encryption Standard (DES) Algorithm [176] was adopted as
a Federal Information Processing Standard for unclassified government com-
munication. Although a AES was selected in October 2000, triple-DES is still
widely used, particularly in the financial sector. In this thesis we describe a
power analysis attack against an FPGA implementation of the DES developed
by the UCL Crypto group [222].

1.2 Thesis Outline and Contributions

In Chapter 2 we introduce the notation and mathematical background on el-
liptic curves (ECs) and elliptic curve cryptosystems (ECCs). We also briefly
introduce the block ciphers Data Encryption standard (DES) [176] and Ad-
vanced Encryption Standard (AES) [175].

In Chapter 3 we introduce the side-channel analysis attacks that we conduct
on the hardware implementations of an ECC, the AES and the DES. We also
summarize the previous work on the following side-channel attacks; TA attacks,
PA attacks and EMA attacks.

In Chapter 4, we briefly explain the arithmetic operations over GF (2m) and
GF (p), respectively. The elements of GF (2m) can be represented in three
different ways which are called bases. The performance of the most time and
area consuming operation, multiplication, depends on the representation of the
elements in GF (2m). Hence, we give an overview of these representations.
Then, we present the most used multiplication architectures for different basis.
Then, we summarize the pervious work on multiplications over GF (2m). We
present our Montgomery modular multiplier designs over GF (2m) and GF (p).
Then, we use these implementations in our EC processors over GF (2m) and
GF (p). The results of this chapter are published in [196, 157, 159, 197, 198].

In Chapter 5 we describe the first realization of power-analysis attacks on a
Virtex FPGA [201]. We can prove that this FPGA leaks a significant amount
of information about its internal computations through the power supply lines.
We can even provide evidence that the power consumption characteristics are
comparable with the power consumption characteristics of ordinary application
specific integrated circuits (ASICs).
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In Chapter 6 we show a timing analysis attack against an FPGA implementa-
tion of ECC over GF (p). Our initial design was vulnerable and it was possible
to deduce the Hamming weight of the key by using the timing information.
Then we improved our circuit and present the TA attacks on it. It is not
possible to find out any information about the key by a TA attack on the im-
proved design. We give the results of the simple power analysis attack on the
same initial circuit. The SPA attack was successful and we could obtain all
the bits of the key by using only one measurement. After improving our initial
design, our elliptic curve processor became resistant against a SPA attack. We
implemented a more powerful DPA attack on the improved implementation
mentioned above and showed that it is possible to find the value of the MSB
of the key. By using this information of the previous key bit we can implement
the DPA attack targeting the next MSB. Hence, the DPA attack presented in
this chapter reveals all the bits of the key. Also we present simple and differen-
tial electromagnetic analysis attacks on the same circuits. The SEMA attack
is as successful as the SPA attack. In order to succeed with the DEMA attack
we need more measurements for the DEMA attack than the DPA attack, be-
cause in our measurement setup the noise level of the electromagnetic radiation
measurements is higher than for the power consumption measurements.

In Chapter 7 we demonstrate the feasibility of power analysis attacks against
hardware implementations of the AES. Our attacks target against an ASIC
implementation of the AES developed by the ETH Zürich [90] and an FPGA
implementation of the AES developed by the UCL Crypto group [246]. In this
chapter we describe a power analysis attack against an FPGA implementation
of the DES developed by the UCL Crypto group [222]. These results allow us to
compare the alternative ways of implementing the same algorithm with respect
to side-channel attacks. The results of this chapter are published in [200, 199,
244, 245].



Chapter 2

Overview of Cryptographic
Primitives

In this chapter, we introduce the notation and mathematical background on
elliptic curves (ECs) and elliptic curve cryptosystems (ECCs). For a detailed
exposure we refer to the cited literature [165, 126, 156, 53, 24]. We also briefly
introduce the block ciphers Data Encryption Standard (DES) [176] and Ad-
vanced Encryption Standard (AES) [175].

In Section 2.1 we define ECCs. In order to explain how these cryptosystems
work we explain the hard problem behind it and the mathematical principles of
ECs. A major contribution of this thesis is the hardware design of two elliptic
curve processors presented in Chapter 4. It is important that all the mathe-
matical background is clear before introducing the hardware architectures that
compute them. Section 2.1 forms the background information for the side-
channel analysis (SCA) attacks on the field programmable gate array (FPGA)
implementations of the elliptic curve processors presented in Chapter 6. In
Section 2.3 and 2.4 we introduce the DES and AES block ciphers, respectively.
We use the FPGA implementations of these block ciphers in our power analysis
(PA) attacks in Chapter 7.

2.1 Elliptic Curve Cryptosystems

Elliptic curves were first proposed for use in public-key cryptography (PKC)
by Koblitz in [126] and Miller in [165]. In order to introduce a public key
cryptosystem based on elliptic curves, we first describe the elliptic curve group
and then define the Elliptic Curve Discrete Logarithm Problem (ECDLP) which
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is similar to the Discrete Logarithm Problem (DLP) for an arbitrary cyclic
group.

2.1.1 Discrete Logarithm Problem

The security of many cryptographic techniques depends on the intractability
of the discrete logarithm problem. A partial list of these is Diffie-Hellman
key agreement and its derivatives [58], ElGamal encryption, and the ElGamal
signature scheme and its variants [61, 62].

Definition 2.1 Let G be a finite cyclic group of order n. Let α be a generator
of G, and let β ∈ G. The discrete logarithm (DL) of β to the base α, denoted
logα β, is the unique integer x, 0 ≤ x ≤ n− 1, such that β = αx. 2

Definition 2.2 The discrete logarithm problem (DLP) is the following prob-
lem: given a prime p, a generator α of Z

∗
p, and an element β ∈ Z

∗
p, find the

integer x, 0 ≤ x ≤ p− 2, such that β = αx mod p. 2

2.1.2 The Diffie-Hellman Problem

The Computational Diffie-Hellman (CDH) problem is closely related to the
DLP given in Section 2.1.1. It is important for public-key cryptography be-
cause its apparent intractability forms the basis for the security of many crypto-
graphic schemes including Diffie-Hellman key agreement and its derivatives [58],
and ElGamal public-key encryption [61, 62].

Definition 2.3 The Computational Diffie-Hellman problem (CDHP) is the
following problem: given a prime p, a generator α of Z

∗
p, and elements αa mod p

and αb mod p, find αab mod p. 2

2.1.3 Diffie-Hellman Key Agreement

In 1976, Diffie and Hellman described a protocol whereby two people, A and
B, can derive and share a common piece of secret information over an insecure
communications channel in [58]. This protocol known as Diffie-Hellman key
agreement can be described as follows:

1. A and B publicly select a finite group G and an element α ∈ G.

2. A generates a random integer a, computes αa in G and transmits αa to
B over a public communications channel.
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3. B generates a random integer b, computes αb in G and transmits αb to
A over the same channel.

4. A receives αb and computes
(
αb
)a

.

5. B receives αa and computes (αa)
b
.

A and B now share the common group element αab. Suppose that the DLP in
Z
∗
p could be efficiently solved. Then given α, p, αa mod p and αb mod p, one

could first find a from α, p, and αa mod p by solving a DLP, and then compute(
αb
)a

= αab mod p. This means the CDHP is solved which results that the
third party C knows the common element shared between A and B.

2.1.4 Principles of Elliptic Curves

Definition 2.4 An elliptic curve (EC) over a field K is the set of solutions of
the Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

over this field and the point at infinity O. 2

This set of solutions form an additive Abelian group with point addition as a
group operation [156, 128, 24].

Let P1 and P2 be two points on an elliptic curve E. The line which goes
through P1 and P2 intersects the curve in a third point Q. The point P1 + P2

is obtained by intersecting the line joining Q and the point at infinity O with
E. If P1 = P2 the line between P1 and P2 is replaced by the tangent on E in
P1. Fig. 2.1 and Fig. 2.2 illustrate the group operation when E is given over
R.

Let P = (x, y) be a point on the curve, its inverse −P is given by −P =
(x,−y − a1x− a3).

Given two points P1 = (x1, y1) and P2 = (x2, y2), P1 6= P2, the sum P3 =
P1 + P2 = (x3, y3) can be computed as

λ =

{
y1−y2

x1−x2

P1 6= P2

3x2

1
+2a2x1+a4−a1y1

2y1+a1x1+a3
P1 = P2

x3 = λ2 − a1λ− a2 − x1 − x2, y3 = (x1 − x3) λ− y1 − a1x3 − a3 .

Let E over K be an elliptic curve given by the Weierstrass equation 2.1. If
characteristic K is not 2 (char(K) 6= 2), then the admissible change of variables

(x, y)→
(
x, y −

a1

2
x−

a3

2

)
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Figure 2.1: Adding two points on the elliptic curve over R given by the Weier-
strass equation y2 = x3 − 100 · x + 6000
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Figure 2.2: Doubling a point on the elliptic curve over R given by the Weier-
strass equation y2 = x3 − 100 · x + 6000
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transforms E over K to the curve

E′ : y2 = x3 + b2 + b4 + b6.

Note that E is isomorphic to E ′ (E ∼= E′) over K which applies that E and E ′

can be mapped onto each other, in such a way that to each point on E there
is a corresponding point on E ′. Formally, an isomorphism is a bijective map f
such that both f and its inverse f−1 are structure-preserving mappings.

If char(K) 6= 2, 3, then the admissible change of variables

(x, y)→

(
x− 3b2

36
,

y

216

)

further transforms E′ to the curve

y2 = x3 + ax + b, (2.2)

where a, b ∈ K with 4a3 + 27b2 6= 0.

Let K be a field of characteristic 2, a quantity known as the j-invariant of E
is defined as

j(E) =
2833a3

3

4a3
3 + 27a2

2

.

If j-invariant of E (j(E)) is not 0, then the admissible change of variables

(x, y)→

(
a2
1x +

a3

a1
, a3

1y +
a2
1a4 + a2

3

a3
1

)

transforms E to the curve

y2 + xy = x3 + a2x
2 + a6 . (2.3)

The basic operation for ECC algorithms is point or scalar multiplication, de-
noted as Q = [k]P , k is an integer, P and Q are EC points. The efficiency of
point multiplication is mostly determined by the implementation of the finite
field arithmetic. This operation can be calculated by using the double-and-add
algorithm as shown in Algorithm 2.1.

There are many types of coordinates in which an elliptic curve can be repre-
sented. In the above equation affine coordinates are used, but so-called projec-
tive coordinates have some implementation advantages. The main conclusion is
that point addition can be done in projective coordinates using only field multi-
plications, with no inversions required. Thus, inversions are deferred, and only
one needs to be performed at the end of a point multiplication operation when
converting back to affine coordinates [165, 126, 156, 24, 108]. Detailed informa-
tion about projective coordinates can be found in Section 2.1.4.2 and 2.1.4.3.



12 Overview of Cryptographic Primitives

Algorithm 2.1: Elliptic curve point multiplication

Require: EC point P = (x, y), integer k, 0 < k < M ,
k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1 and M

Ensure: Q = [k]P = (x′, y′)
1: Q← P
2: for i from l − 2 downto 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q + P
6: end if
7: end for

2.1.4.1 Point Multiplication

One can visualize this operation in a hierarchical structure as follows. At the
top is point multiplication. It is realized by means of repeated point additions
and doublings. At the next (lower) level are these operations which are closely
related to the coordinates used to represent the points. At the bottom level are
finite field operations such as addition, subtraction, multiplication and inversion
required to perform the group operation. Some results on implementation of
elliptic curve point multiplication algorithm can be found in [166, 88, 43].

Point multiplication in elliptic curves is a special case of the general problem of
exponentiation in Abelian groups. As such, it benefits from all the techniques
available for the shortest addition chain problem [125].

Certain properties of elliptic curve can be taken into account to obtain faster
algorithms. These properties are as follows:

1. Elliptic curve subtraction has the same cost as addition, hence the search
space for fast algorithms can be expanded to include shortest addition-
subtraction chains and signed representations (see Blake et al. [24]).

2. The relative complexities of general point addition and doubling have to
be considered.

3. For certain families of elliptic curves, specific shortcuts are available that
can significantly reduce the computational cost.

Specific work on elliptic curve point multiplication algorithms can be found
in [170] by Morain and Olivos. Solinas explained how to use the non-adjacent
form (NAF) for an elliptic curve point multiplication in [241].
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2.1.4.2 Projective coordinates over GF (2m)

A projective plane, denoted by P 2, is defined to be the set of equivalence classes
of triples (X, Y, Z), not all zero. (X1, Y1, Z1) and (X2, Y2, Z2) are said to be
equivalent if there exists a λ 6= 0 ∈ GF (2m) such that X1 = λX2, Y1 = λ2Y2

and Z1 = λZ2. Each equivalence class is called a projective point (x, y, 1),
where x = X/Z and y = Y/Z2. The projective equation derived from the affine
equation Eq. (2.3) is given by Y 2 + XY Z = X3Z + aX2Z2 + bZ4.

To convert an affine point (x, y) to a projective point, one sets X = x, Y = y,
Z = 1. To convert a projective point (X, Y, Z) to an affine point, we compute
x = X/Z, y = Y/Z2. The formulae for elliptic curve point addition and
doubling are given by López and Dahab in [143].

Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = R = (X3, Y3, Z3). The
addition formulas are the following (P 6= ±Q):

A1 = Y2 · Z
2
1 , A2 = Y1 · Z

2
2 , B1 = X2 · Z1 ,

B2 = X1 · Z2 , C = A1 + A2 , D = B1 + B2 ,
E = Z1 · Z2 , F = D · E , Z3 = F 2 ,
G = D2 ·

(
F + aE2

)
, H = C · F , X3 = C2 + H + G ,

I = D2 ·B1 ·E + X3 , J = D2 ·A1 + X3 , Y3 = H · I + Z3 · J .

These formulas can be improved for the special case Z1 = 1 as follows:

A2 = Y1 · Z
2
2 , B2 = X1 · Z2 , C = Y2 + A2 ,

D = X2 + B2 , F = D · Z2 , Z3 = F 2 ,
G = D2 ·

(
F + aZ2

2

)
, H = C · F , X3 = C2 + H + G ,

I = D2 ·X2 · Z2 + X3 , J = D2 · Y2 + X3 , Y3 = H · I + Z3 · J .

The doubling formulas are the following (R = 2P ):

Z3 = Z2
1 ·X

2
1 , X3 = X4

1 + b · Z4
1 , Y3 = bZ4

1 · Z3 + X3 ·
(
aZ3 + Y 2

1 + bZ4
1

)
.

2.1.4.3 Projective Coordinates over GF (p)

We use the modified Jacobian coordinates as proposed by Cohen et al. in [43],
because EC point doubling is the fastest in this representation. They repre-
sent internally the Jacobian coordinates as a quadruple

(
X, Y, Z, aZ4

)
. This

representation is called the modified Jacobian coordinate system and denoted
by the authors as Jm. The algorithms for EC point addition and doubling are
as follows [43].

Let P =
(
X1, Y1, Z1, aZ4

1

)
, Q =

(
X2, Y2, Z2, aZ4

2

)
and P + Q = R = (X3, Y3,
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Z3, aZ4
3

)
. The addition formulas in Jm are the following (P 6= ±Q):

U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1,

r = S2 − S1, X3 = −H3 − 2U1H
2 + r2,

Y3 = −S1H
3 + r

(
U1H

2 −X3

)
, Z3 = Z1Z2H, aZ4

3 = aZ4
3 .

(2.4)

The doubling formulas in Jm are the following (R = 2P ):

S = 4X1Y
2
1 , U = 8Y 4

1 , M = 3X2
1 +

(
aZ4

1

)
, X3 = −2S + M2,

Y3 = M(S −X3)− U, Z3 = 2Y1Z1, aZ4
3 = 2U

(
aZ4

1

)
.

2.1.5 Elliptic Curve Discrete Logarithm Problem

Now we introduce the Elliptic Curve Discrete Logarithm Problem (ECDLP);
the ECC protocols are based on the difficulty of this problem. Let E(GF (q))
be an elliptic curve over GF (q) and let P ∈ E(GF (q)) be a point of order n
with q = pm, p is prime. A point is of order n if [n]P = O and n is the smallest
integer satisfying this equation. Let Q ∈ E(GF (q)), so that Q = [k]P for some
integer k, 0 ≤ k < n. The Elliptic Curve Discrete Logarithm Problem
(ECDLP) is defined to be the problem of finding the number k for a given
P and Q. This problem is believed to be hard i.e., it is still unknown if there
exists an algorithm to solve it in less than exponential time. Pollard’s ρ method
is the best general purpose algorithm known for solving the ECDLP [214]. The
algorithm has an expected running time of

√
πn/2 elliptic curve operations.

State of the art suggest that EC in a subgroup of m-bit size is equivalent
to m/2 bits symmetric key [78]. This will provide some protection against
unforeseen developments in cryptanalysis of elliptic curves, without serious
impact on performance. Curves over binary fields are often recommended to
use slightly larger keys to mitigate certain hardware attacks [270]. Also, the
generic attacks are in the binary case sometimes a bit more efficient. Curves
over binary fields generally also require other forms of special attention when
selecting parameters.

According to state of the art, the difficulty of solving DL in prime order fields
of size 2n is, up to constants, asymptotically equivalent to that of breaking
n-bit RSA. In practice though, DL is noticeably more difficult. Moreover, DL
is in most standardized algorithms performed in a smaller subgroup and it is
then the size of this subgroup that matters, in which case the symmetric key
equivalent is theoretically half of the bit-size of said subgroup, again according
to the same generic attacks applicable also in the EC case. This would imply
DL subgroups of the same size as a corresponding EC group. Note though
that performing exponentiations over a finite field noticeably more expensive
than on an elliptic curve of equivalent security. (The difference can be on the
order 10-40 times, depending on security level.) Implementations which are
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Table 2.1: NESSIE recommendations
Equivalent symmetric key size 56 64 80 112 128 160
Elliptic curve key size 112 128 160 224 256 320
Modulus length (pq) 512 768 1536 4096 6000 10000
Modulus length (p2q) 570 800 1536 4096 6000 10000

concerned with performance could therefore, if required, reduce subgroup size
by a few bits without lowering the security compared to the EC case.

Recently the NESSIE consortium, in [177], for “medium term” (5-10 years)
security recommends the use of 1536-bit keys for RSA and DL based public
key schemes, and 160-bit for elliptic curve discrete logarithms, suggesting a
1536/80 equivalence (depending cost model; HW/general purpose computer).
This recommendation is based on an assumed equivalence between 512-bit RSA
keys and 56-bit keys, and an extrapolation of that.

2.2 Elliptic Curve Digital Signature Algorithm

ElGamal first described how this DHP could be utilized in public-key encryp-
tion and digital signature schemes [62]. ElGamal’s methods have been refined
and incorporated into various protocols to meet a variety of applications, and
one of its extensions forms the basis for the U.S. government Digital Signature
Algorithm (DSA).

The DSA was proposed in August 1991 by the U.S. National Institute of Stan-
dards and Technology (NIST) and became a U.S. Federal Information Process-
ing Standard (FIPS 186) in 1993. The FIPS 186 standard is also referred to as
the Digital Signature Standard (DSS). It exploits small subgroups in Z

∗
p in or-

der to decrease the size of signatures. The key generation, signature generation,
and signature verification procedures for DSA are given next.

DSA key generation. Each entity A does the following:

1. Select a prime q such that 2159 < q < 2160.

2. Select a 1024-bit prime number p with the property that q|p − 1. (The
DSS mandates that p be a prime such that 2511+64t < p < 2512+64t where
0 ≤ t ≤ 8. If t = 8 then p is a 1024-bit prime.)

3. Select an element h ∈ Z
∗
p and compute g = h(p−1)/q mod p; repeat until

g 6= 1. (g is a generator of the unique cyclic group of order q in Z
∗
p.)

4. Select a random integer x in the interval [1, q − 1].
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5. Compute y = gx mod p.

6. A’s public key is (p, q, g, y); A’s private key is x.

DSA signature generation. To sign a message m, A does the following:

1. Select a random integer k in the interval [1, q − 1].

2. Compute r =
(
gk mod p

)
mod q.

3. Compute k−1 mod q.

4. Compute s = k−1 {h(m) + xr} mod q, where h is the Secure Hash Algo-
rithm (SHA-1).

5. If s = 0 then go to step 1.

6. The signature for the message m is the pair of integers (r, s).

DSA signature verification. To verify A’s signature (r, s) on m, B should:

1. Obtain an authentic copy of A’s public key (p, q, g, y).

2. Verify that r and s are integers in the interval [1, q − 1].

3. Compute ω = s−1 mod q and h(m).

4. Compute u1 = h(m)ω mod q and u2 = rω mod q.

5. Compute v = (gu1yu2 mod p) mod q.

6. Accept the signature if and only if v = r.

Since r and s are each integers less than q, DSA signatures are 320 bits in size.
The security of the DSA relies on two distinct but related discrete logarithm
problems.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve
analogue of the DSA [117, 12]. That is, instead of working in a subgroup
of order q in Z

∗
p, we work in an elliptic curve group E (Zp). The ECDSA is

currently being standardized within the ANSI X9F1, IEEE P1363, and ISO
SC27 standards committees.

The key generation, signature generation, and signature verification procedures
for ECDSA are given next.

ECDSA key generation. Each entity A does the following:
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1. Select an elliptic curve E defined over Zp. The number of points in E (Zp)
should be divisible by a large prime n.

2. Select a point P ∈ E (Zp) of order n.

3. Select a statistically unique and unpredictable integer d in the interval
[1, n− 1].

4. Compute Q = [d]P .

5. A’s public key is (E, P, n, Q); A’s private key is d.

ECDSA Signature Generation. To sign a message m, an entity A with
domain parameters D = (q, FR, a, b, G, n, h) and associated key pair (d, Q)
does the following:

1. Select a random or pseudo-random integer k, 1 ≤ k ≤ n− 1.

2. Compute kG =(x1,y1) and r = x1 mod n. If r = 0 then go to step 1.

3. Compute k−1 mod n.

4. Compute e = SHA− 1(m).

5. Compute s = k−1(e + dr) mod n. If s=0 then go to step 1.

6. A’s signature for the message is (r, s).

ECDSA Signature Verification. To verify A’s signature (r,s) on m, B
obtains an authentic copy of A’s domain parameters D = (q, FR, a, b, G, n,
h) and associated public key Q. It is recommended that B also validates D
and Q. B then does the following:

1. Verify that r and s are integers in the interval [1, n− 1].

2. Compute e = SHA− 1(m).

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n and u2 = rw mod n.

5. Compute X = u1G + u2Q. If X = O, then reject the signature. Other-
wise, compute ϑ = x1 mod n where X = (x1, y1).

6. Accept the signature if and only if ϑ = r

ANSI X9.62 mandates that n > 2160. To obtain a security level similar to that
of the DSA (with 160-bit q and 1024-bit p), the parameter n should have about
160 bits. If this is the case, then DSA and ECDSA signatures have the same
size (320 bits).
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2.3 Data Encryption Standard

In 1977, the Data Encryption Standard (DES) algorithm [176] was adopted as
a Federal Information Processing Standard for unclassified government com-
munication. Although a new Advanced Encryption Standard (AES, [175]) was
selected in October 2000, triple-DES is still widely used, particularly in the
financial sector. DES encrypts 64-bit blocks with a 56-bit key; its main opera-
tions are permutations, substitutions and XOR operations. DES is an iterated
block cipher that applies 16 key-dependent transformations called rounds to the
plaintext. This structure allows for very efficient hardware implementations.

The plaintext is first permuted by a fixed permutation initial permutation.
Next the result is split into two 32-bit halves, denoted with L (left) and R (right)
to which a round function is applied 16 times. The ciphertext is calculated by
applying the inverse of the initial permutation to the result of the 16th round.

The secret key is expanded by the key schedule algorithm from 56 bits to sixteen
48-bit subkeys Ki; each round uses a different subkey Ki. The key schedule
consists of bit permutations and rotations. As a consequence, if one can find
any subkey, one can derive the complete key immediately (the missing 8 bits
can be found by exhaustive search over 256 values).

Finally, the round function is represented in the grey part of Fig. 2.3(a); it can
be described as follows:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki), i = 0, . . . 15 .

Here L16‖R16 is the ciphertext. The details of the nonlinear function f are
provided in Fig. 2.3(b): the right part Ri is first expanded to 48 bits with the
Expansion, E(x), box, which duplicates some bits. Next, the 48-bit subkey
Ki is added bitwise modulo 2 (XORed) to E(Ri) and the result of the XOR
function is sent to eight non-linear S-boxes (S). Each of them has six input bits
and four output bits. The resulting 32 bits are permuted by the bit permutation
P .

We have performed our experiments on a sequential DES implementation of
that takes one clock cycle to perform one round [222]. It is represented in
Fig. 2.3(a).

2.4 Advanced Encryption Standard

Rijndael is an iterated block cipher with a variable block length and a vari-
able key length [48, 50, 52, 51]. The block length and the key length can be
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Figure 2.3: Block diagram of the Data Encryption Standard (DES)

independently specified to 128, 192 and 256 bits. Rijndael was chosen as the
AES in October 2000. The AES has been published by the US government in
November 2001 in [175]. Rijndael was designed to handle additional block sizes
and key lengths, however the standard adopted only a 128 bit block length and
key length of 128, 192 and 256 bits.

2.4.1 The State

Internally, the AES algorithm’s operations are performed on a two-dimensional
array of bytes called the State. The State consists of four rows of bytes, each
containing Nb bytes, where Nb is the block length divided by 32.

At the start of the Cipher and Inverse Cipher, the input is copied into the
State array. The Cipher or Inverse Cipher operations are then conducted on
this State array, after which its final value is copied to the output.

2.4.2 Algorithm Specification

For both its Cipher and Inverse Cipher, the AES algorithm uses a round func-
tion that is composed of four different byte-oriented transformations: 1) byte
substitution using a substitution table (S-box), 2) shifting rows of the State
array by different offsets, 3) mixing the data within each column of the State
array, and 4) adding a Round Key to the State.
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Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]
state = in
AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr1

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
out = state

end

Figure 2.4: Pseudo code for the Advanced Encryption Standard (AES)

2.4.3 Cipher

At the start of the Cipher, the input is copied to the State array. After an
initial Round Key addition, the State array is transformed by implementing a
round function 10, 12, or 14 times (depending on the key length), with the final
round differing slightly from the first Nr − 1 rounds. The final State is then
copied to the output. The round function is parameterized using a key schedule
that consists of a one-dimensional array of four-byte words derived using the
Key Expansion routine. The Cipher is described in the pseudo-code in Fig. 2.4.
The individual transformations – SubBytes(), ShiftRows(), MixColumns(),
and AddRoundKey() - process the State. In Fig. 2.4, the array w[] contains
the key schedule.

We focus on the 128-bit version. The algorithm consists of initial round which
is adding the plaintext and the key and a series of 10 applications of a key-
dependent round transformation to the cipher state and the round is composed
of four different operations.

SubBytes is a non-linear byte substitution operating on each byte of the state
independently. ShiftRows is a cyclic shift of the bytes of the state. In Mix-
Columns, the columns (1 column = 4 bytes) of the state are considered as
polynomials over GF

(
28
)

and multiplied modulo x4 + 1 with a fixed polyno-
mial. Finally, AddRoundKey is a bitwise XOR with the bits of the key. AES’s
initial 128-bit key is expanded to eleven 128-bit round keys by means of a key
scheduling algorithm.
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2.5 Conclusions

One of the aims of this thesis is to present the hardware architectures for el-
liptic curve cryptosystems. In order to design a circuit which operates several
operations, the mathematical background should be well understood. Hence,
in this chapter we have introduced the notation and mathematical background
on elliptic curves (ECs) and elliptic curve cryptosystems (ECCs). We have
implemented several side channel attacks on our FPGA implementations of
ECCs, that are described in Chapter 6. In order to compare the side channel
resistance of our FPGA implementations of ECC and other systems, we have
also implemented power analysis attacks on an ASIC and an FPGA implemen-
tations of the AES and an FPGA implementation of the DES. This chapter
gives the mathematical background for these attacks.
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Chapter 3

Side-Channel Analysis
Attacks

Traditionally, the main task of cryptographic hardware is the acceleration of
operations frequently used in cryptosystems or the acceleration of a complete
cryptographic algorithm. In applications, hardware devices are also required
to store secret or private keys securely. Hence, a cryptographic device must
prevent the extraction of any sensitive information. A side-channel analysis
(SCA) attack takes advantage of implementation specific characteristics to re-
cover the secret parameters involved in the computation. It is therefore less
general, but often more powerful than classical cryptanalysis.

Side-channel analysis attacks can be divided into two groups as active and
passive attacks according to the ability of the attacker. Active attacks targeting
the keys in cryptographic devices are commonly referred to as tamper attacks ;
they have a long history in the field of cryptography [11]. In these attacks the
attacker has to reach the internal circuitry of the cryptographic device. There
are two kinds: probing attack [135] and fault induction attack [26, 119]. A
probing attack consists in inserting sensors into the device, in order to directly
examine the content of memory zones or the data circulating on a bus. A fault
induction attack works by disturbing the device’s behavior in order to induce
errors in the computation.

Passive attacks were recognized in the cryptographic community as a major
threat in 1996, when the first article about timing analysis (TA) attacks [132]
was published. In a passive attack, the adversary uses the standard func-
tionality of the cryptographic device. The physical and/or electrical effects of
the functionality of the device are then used for the attack. There are many
different types of effects. If these effects unintentionally deliver information

23
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about the key which is used inside the device, then they deliver side-channel
information and are called side-channels.

Passive attacks are divided in four groups according to the side-channel in-
formation that they exploit. Timing analysis attacks exploit the timing infor-
mation on the cryptographic hardware. Power analysis (PA) attacks use the
dynamic power consumption of the cryptographic hardware during the execu-
tion of the cryptographic algorithm. Electromagnetic analysis (EMA) attacks
use the electromagnetic radiation of the cryptographic hardware during the
execution of the cryptographic algorithm. Acoustic (sound) analysis attacks
exploit the sound coming out of the cryptographic hardware during the execu-
tion of the cryptographic algorithm [236].

All the groups of the passive attacks have two types. In a simple analysis
attack, an attacker uses the side-channel information from one measurement
directly to determine (parts of) the secret key. In differential analysis attack,
many measurements are used in order to filter out noise. While a simple anal-
ysis attack exploits the relationship between the executed operations and the
side-channel information, a differential analysis attack exploits the relationship
between the processed data and the side-channel information.

In this chapter we introduce the passive attacks that we have conducted on
the hardware implementations of an ECC, the AES and the DES. We also
summarize the previous work on these side-channel attacks. We introduce and
summarize the previous work on TA attacks in Section 3.2, on PA attacks in
Section 3.3 and on EMA attacks in Section 3.4.

3.1 Theoretical Background

In differential analysis attacks, an attacker uses a so-called hypothetical model
of the attacked device. The quality of this model is dependent on the knowledge
of the attacker. The model is used to predict several values for the side-channel
information of a device.

These predictions are compared to the real, measured side-channel information
of the device. Comparisons are performed by applying statistical methods on
the data. Among others, the most popular are the distance-of-mean test and
the correlation analysis. We decided to use the correlation analysis in our
attacks given in Chapter 6 and 7.

The frequency of the function generator in our measurement setup was changing
during our measurements. In order to find the real clock frequency we have
computed the discrete Fourier transform of each measurement. In the following
sections we explain the basic mathematical tools used in SCA.
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More theoretical considerations related to all side-channel attacks, but mainly
inspired by work on EMA, are also given by Chari et al. in [40]. They discuss
so-called template attacks in which the attacker uses a device that is identical
to the target device. The only difference is that this replica is programmable
which makes it possible to handle the noise in each measurement sample. Un-
like previous considerations, which all try to eliminate noise, this approach
attempts to model the noise in order to extract more useful information. As an
example, they detail the template attack on RC4 using only one single measure-
ment sample. Other case studies listed include DES and RSA exponentiation.
At that moment, template attacks were considered to be the strongest possible
SCA attacks from an information theoretical point of view, but the authors
themselves came up with an even stronger approach afterwards. Namely, be-
sides carefully exploring all available EM radiations an attacker can also focus
on a combination of two or more side-channels. Agrawal et al. defined these
so-called multi-channel attacks in which the side-channels are not necessarily
of a different kind [8]. For example, they discussed combined power and EM
analysis but also multi-channel DPA attacks. The former uses a CMOS leak-
age model and the maximum-likelihood principle for performing and analyzing.
Agrawal et al. showed that it is even more effective than template attacks. An-
other example of a multi-channel attack is introduced by Walter and Thompson
in [264]. They were the first to combine power and timing analysis.

3.1.1 Correlation Analysis

For the correlation analysis, the model predicts the amount of side-channel
information for a certain moment of the execution. These predictions are cor-
related to the real side-channel information. This correlation can be measured
with the Pearson correlation coefficient [42]. Let ti denote the ith measurement
data and T the set of measurements. Let pi denote the prediction of the model
for the ith measurement and P the set of such predictions. Then we calculate

C(T, P ) =
E(T · P )−E(T ) · E(P )√

V ar(T ) · V ar(P )
− 1 ≤ C(T, P ) ≤ 1. (3.1)

In Eq. (3.1), E(T ) denotes the expected (average) measurement data of the set
of measurements T and V ar(T ) denotes the variance of the set of measurements
T . T and P are said to be uncorrelated, if C(T, P ) equals zero. Otherwise,
they are said to be correlated. If their correlation is high, i.e., if C(T, P ) is
close to +1 or −1, it is usually assumed that the prediction of the model, and
thus the key hypothesis, is correct.

3.1.2 Distance of Mean Test

A distance of mean test begins by running the cryptographic algorithm for N
random values of input. For each of the N inputs, Ii, a discrete time side-
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channel signal, Si[j], is collected and the corresponding output, Oi, may also
be collected. The side-channel signal Si[j] is a sampled version of the side-
channel output of the device during the portion of the algorithm that is being
attacked. The index i corresponds to the Ii that produced the signal and the
index j corresponds to the time of the sample. The Si[j] are split into two sets
using a partitioning function, D(·):

S0 = {Si[j] |D(·) = 0}
S1 = {Si[j] |D(·) = 1} .

The next step is to compute the average side-channel signal for each set:

A0[j] = 1
|S0|

∑
Si[j]∈S0

Si[j]

A1[j] = 1
|S1|

∑
Si[j]∈S1

Si[j] ,

where |S0| + |S1| = N . By subtracting the two averages, a discrete time
differential side-channel bias signal, T [j], is obtained:

T [j] = A0[j]−A1[j].

Selecting an appropriate D function results in a differential side channel bias
signal that can be used to verify guessed portions of the secret key.

3.1.3 Practical Challenges

When conducting power analysis attacks in practice, we need to deal with sev-
eral technical difficulties. One of the most important issues is how to obtain
good, i.e., relatively noise free, measurements. The more noisy the obtained
measurements are, the worse the statistical evaluation work and the more mea-
surements are needed.

Another practical challenge is the complexity of the measurement setup. Such
a setup typically consists of the attacked device, some monitoring tool (i.e.,
the scope) and some tools to operate the attacked device (for example a smart
card reader or a chip tester). In addition to the hardware components, we need
several software tools that handle the communication between the hardware
devices.

Hence, if one performs such an attack in practice, one needs to be sure that, if
the analysis fails, this is because there is not enough side-channel information
and not because there is a bug in one of the components of the measurement
setup. Therefore, the first step in evaluating a device against side-channel
attacks is to simulate attacks. As they are noise free, and they only involve
some of the parts of the complete system, they allow to estimate how difficult
a real attack will be.
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3.1.4 Signal to Noise Ratio

In analog and digital communications, signal-to-noise ratio, often written S/N
or SNR, is a measure of signal strength relative to background noise. The ratio
is usually measured in decibels (dB).

If the incoming signal strength in µV is Vs, and the noise level, also in µV, is
Vn, then the signal-to-noise ratio, SNR, in decibels is given by the formula

SNR = 20 log10(
Vs

Vn
) (3.2)

If Vs = Vn, then SNR = 0. In this situation, the signal borders on unreadable,
because the noise level severely competes with it. In digital communications,
this will probably cause a reduction in data speed because of frequent errors
that require the source (transmitting) computer or terminal to resend some
packets of data.

Ideally, Vs is greater than Vn, so SNR is positive. SNR = 20.0 dB results in
the signal being clearly readable. If the signal is much weaker but still above
the noise for example SNR = 2.28 dB which is a marginal situation. There
might be some reduction in data speed under these conditions.

If Vs is less than Vn, then SNR is negative. In this type of situation, reli-
able communication is generally not possible unless steps are taken to increase
the signal level and/or decrease the noise level at the destination (receiving)
computer or terminal.

3.1.5 Discrete Fourier Transform

Let x be a complex series with N samples of the form x = x0, x1, . . . , xN−1

where xi is a complex number. The series outside the range 0, N−1 is extended
in an N -periodic way, that is, xi = xi+N for all i. Figure 3.1 shows the function
f(t) = sin(2π·2t)+2 sin(2π·10t)+4 sin(2π·100t)+6 sin(2π·200t)+8 sin(2π·300t),
0 ≤ t ≤ 0.5 in the time domain. The function is sampled with a frequency of
1000 Hz. Hence the Nyquist frequency is 500 Hz [46]. The discrete Fourier
transform (DFT) of x will be denoted as X ; it will also have N samples. The
forward transform is defined as

Xn =
1

N

N−1∑

i=0

xie
−jk2πn/N for n = 0 · · ·N − 1

The DFT of f(t) is shown in Fig. 3.2. The five different frequencies (2, 10, 100,
200 and 300 Hz) are clearly visible on this figure.



28 Side-Channel Analysis Attacks

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−20

−15

−10

−5

0

5

10

15

20

time (sec)

Figure 3.1: A sum of some sinus functions

3.2 Timing Analysis Attacks

It is not only the power consumption of a hardware or software system that
may vary with the code sequence and processed data sets. Checking the dif-
ferences in the processing time may in unsecured systems also retrieve secret
information [132, 115].

An unsecured hardware or software system shows data dependencies due to
differences in timing according to different operations executed. Addition and
multiplication may be distinguished. Assume that we want to calculate the fol-
lowing operations z = x+y and z = x×y, with x and y which are m-bit binary
numbers. The execution time of one of the implementations of the addition
operation will take TA = m clock cycles. If we use this addition implementa-
tion as the basis for a multiplication implementation, then its execution time

will be TM = 3(m−1)m
2 . Hence, for the same bit-length operands, the one with

shorter execution time will be an addition operation.

As the timing depends on the bit-length of the operands, by just using the
timing information of one operation, even the big values with higher bit-length
will be distinguished from the smaller ones with smaller bit-length. The same
problem arises if the test of specific values and a following dependent branch
in the program code is not secured.
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Figure 3.2: Discrete Fourier Transform (DFT) of the function in Fig. 3.1

3.2.1 Timing Analysis Attacks on Public Key Cryptosys-
tems

TA attacks have been important significantly in the last few years. In June
1998, a TA attack could be performed on a smart card, compromising a software
test code for the RSA [220] public key cryptosystem. After analyzing 300000
timing tests, a 512-bit RSA key could be determined. The overall time for
this attack has been specified to only a few minutes [56]. In this study, the
individual bits of the RSA key were tested sequentially.

Schindler demonstrated a further evolution of TA attack, breaking the barriers
of the RSA Chinese Remainder Theorem (CRT) [155] applications [229]. The
attack can only be effectively performed if the so-called “Montgomery Algo-
rithm” [168] is used for calculation of the RSA, and if CRT is used. This attack
is improved by using an error-correction strategy in [93, 230].

Muir showed a TA attack on the function NN-ModExp for implementing modu-
lar exponentiation in RSAREF 2.0 [223] in [171]. He used the timing variation
in the multiplications and the squares.

Cathalo et al. proposed a TA attack on the Girault, Poupard, Stern (GPS)
signature scheme [79] in [37]. Their attack allows recovering the prover’s pri-
vate key provided the running time the exponentiation is dependent on the
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Hamming weight of the exponent. In this scenario, the attacker imperson-
ates the verifier and is able to measure precisely the computation time for the
commitment step. Apart from this, the attacker has no knowledge of the im-
plementation, such as the multiplication algorithm and the time needed for an
individual multiplication.

3.2.2 Timing Analysis Attacks on Block Ciphers

Handschuh and Heys showed that the implementations of Rivest’s RC5 [219]
that take time for a rotation that is linear in the number of left shifts, are
vulnerable to a TA attack [96]. The attack recovers the extended secret key
table with only 220 ciphertexts from the sole knowledge of the total amount of
rotations carried out during the encryption.

Hevia and Kiwi studied the vulnerability of two implementations of the DES
cryptosystem under a TA attack in [105]. They showed that a TA attack yields
the Hamming weight of the key used by the DES implementations and that all
the design characteristics of the target system could be inferred from timing
measurements.

Koeune and Quisquater explained how to perform a TA attack on Rijndael
in [134]. They used the fact that MixColumn operation can be implemented
very efficiently and the execution time can be depend on the data processed.

The International Data Encryption Algorithm (IDEA) is a product block cipher
designed by Lai, Massey, and Murphy [136]. IDEA can be cryptanalyzed with
a piece of side-channel information: whether one of the inputs into one of the
multiplications is zero. Since the multiplication is done modulo 216 + 1, a
zero operand is treated as a special case. Some implementations bypass the
multiplication completely and simply patch in the correct value. Kelsey et al.
used this information and the ciphertexts for attacking the IDEA block cipher
in [123].

3.2.3 Timing Analysis Attacks on Other Systems

While using Secure Shell (SSH) in interactive mode, every individual keystroke
that a user types is sent to the remote machine in a separate internet proto-
col (IP) packet immediately after the key is pressed. Song et al. show that
this property can enable the eavesdropper to learn the exact length of user’s
passwords in [242]. They have verified that the time it takes for the operat-
ing system to send out the packet after the key press is in general negligible
comparing to the inter-keystroke timing. Hence an eavesdropper can learn the
precise inter-keystroke timings from the arrival times of packets.

Brumley and Boneh developed a remote TA attack against open secure sockets
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layer (OpenSSL) [189] in [32]. They measure the time an OpenSSL server takes
to respond to decryption queries in their attack. They are able to extract the
private key stored on the server.

3.2.4 Countermeasures

Most timing attacks exploit the modular reduction occurring in a Montgomery
multiplication [168]. Therefore, Dhem in [55], Walter in [258, 261] and Hachez
and Quisquater in [94] propose several countermeasures that typically consist
of removing the time variation in this multiplication.

Kocher suggests a countermeasure consist of randomizing the exponent in RSA
by adding a random multiple of ϕ(n), a modification that does not effect the
final result in [132].

Using square and multiply always algorithm during the exponentiation allows to
hide the Hamming weight of the keys. Using double and add always algorithm
proposed by Coron in [44] during the elliptic curve point multiplication allows
to hide the Hamming weight of the keys. This countermeasure increases the
computation time by about 30%.

As a second countermeasure against timing analysis attack on elliptic curve
cryptosystems, Izu and Takagi propose the binary right to left point multiplica-
tion algorithm by executing point addition and doubling in parallel in [112, 113].

3.3 Power Analysis Attacks

Nowadays, complementary metal oxide semiconductor (CMOS) is by far the
most commonly used technology to implement digital integrated circuits. The
dominating factor for the power consumption of a CMOS gate is the dynamic
power consumption [122]. For a single CMOS gate, we can express it as follows:

PD = CLV 2
DDP0→1f , (3.3)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0→ 1 output transition and f the clock frequency. Eq. (3.3) speci-
fies that the power consumption of CMOS circuits is data-dependent. However,
for the attacker, the relevant question is to know whether this data-dependent
behavior is observable.

In order to show the effect of output transition on the power consumption of a
gate, we have conducted experiments on some gates in a plastic package. We
used a proto-board, a power supply, a function generator and an oscilloscope
for these experiments. We have measured the power consumption of an inverter
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of its output

and a D-flip flop while we changed the input from 0 to 1 and vice versa. The
resulting power consumption traces of these experiments can be seen in Fig. 3.3
and Fig. 3.4. This (very partially) explains why information leaks when data
bits change and why the power consumption trace is correlated with the number
of transitions.

Two types of power consumption leakage that can be observed are the transition
count leakage and the Hamming weight leakage. Transition count information
leaks when the dominant source of the current is due to the switching of the
gates. Thus, the more gates that change state, the more power that is dissi-
pated. This effect can be seen on both falling and rising edges of the output of
the inverter in Fig. 3.3. The power consumption seen by the measurement from
the total power source of a hardware will depend on the total number of gates
that change their states. As it can be seen from Fig. 3.3, 0 → 1 transitions
have less effect than 1 → 0 transitions on the total power consumption of the
hardware. Hence, this has to be taken account when a prediction for power
consumption is calculated.

A situation where Hamming weight information leaks is when a pre-charged
bus design is used. In this case, the number of zeros driven onto the pre-charged
bus directly determines the amount of current that is being discharged. This
effect can be seen on the falling edges of the output of the inverter shown
in Fig. 3.3. As in the pre-charged bus, if the previous states of the outputs
of some gates in the circuit are known and constant for every data, then the
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Figure 3.4: Current consumption trace of a D-flipflop during some transitions
of its output

power consumption measured from the total power source will give information
about the Hamming weight of the current state of these gates.

Two types of power analysis attacks are distinguished. In a simple power
analysis (SPA) attack, an attacker uses the side-channel information from one
measurement directly to determine (parts of) the secret key. In differential
power analysis (DPA) attack, many measurements are used in order to filter
out noise. While SPA exploits the relationship between the executed operations
and the power leakage, DPA exploits the relationship between the processed
data and the power leakage.

The first practical implementation of a power analysis attack on the DES was
reported in [133] by Kocher et al.. Since then, several companies and uni-
versities have developed the skills to conduct these measurements in practice;
these skills include knowledge about statistics, the properties of the attacked
cryptographic algorithm, and the measurement setup.

3.3.1 Attacks and Countermeasures for Symmetric Key
Cryptosystems

3.3.1.1 Attacks

Daemen et al. present power analysis results on bitslice ciphers in [47]. Man-
gard describes how to determine the complete secret key in Rijndael by using
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Hamming weight information from a few sub-keys in [145]. Novak shows a side-
channel attack on a substitution box of Rijndael, which is usually implemented
as a table lookup operation in [180]. The attack is based on identifying equal
intermediate results from power measurements while the actual values of these
intermediates remain unknown.

Biham and Shamir present an attack which can determine the secret key of the
DES uniquely by attacking several sub-keys in [22]. Fahn and Pearson introduce
inferential power analysis (IPA) in [64]. An IPA attack is characterized by two
stages, the first a long profiling stage and the second a simpler key extraction
stage. The profiling step is typically based on comparisons of repeated parts of
a selected cryptographic operation. These comparisons can be performed on a
single cryptographic module, requiring many measured operations and result
in a profile that can subsequently be used to extract keys from other modules
using as little as a single cryptographic operation. Messerges et al. review and
analyze the power analysis techniques used to attack DES in [163].

Megarajan proposes an attack based on the comparison of the repeated parts
of an algorithm in [154]. Chari et al. describes an attack on SAFER++ [149]
in [38]. They argue that at most half of the round keys need to be attacked in
order to determine the secret key. They also propose attacks on the whitening
process of Twofish [231].

3.3.1.2 Countermeasures

The goals of power analysis countermeasures are reducing the correlation be-
tween the power consumption data and the secret data and/or obscuring the
power consumption measurements. There are two different types of counter-
measures as software and hardware. Surveys about the countermeasures are
given in [162, 27].

Software Countermeasures:

Time randomization was discussed in [39, 44, 49, 98, 99, 120, 141, 151, 206, 92,
113, 21]. In this type of countermeasures, the operations occur during random
intervals of in an execution. This is done by using no-operations (NOPs), using
dummy variables and instructions, data balancing (representation of the data
is done in order to make the Hamming weight constant).

Permuting the execution (rearranged instructions) is proposed by Goubin and
Patari in [86].

Masking techniques are studied in [86, 161, 45, 10, 85, 81, 256, 254]. Go-
mulkiewicz and Kutylowski show that masking is not always useful in [83].
The authors present an attack against an addition implementation, based on
the observation of the Hamming weight of the sequence of carry that occur



3.3. Power Analysis Attacks 35

during the bitwise addition. Apart from the efficiency of this attack, of more
interest is the fact that this attack is not hindered by masking; in fact, the
authors note that this could even make the attack easier.

In order to obtain DPA resistant applications, it cannot be tolerated that the
software or hardware performs ‘many’ cryptographic operations on known in-
puts with the same secret information. Also, not ‘too many’ cryptographic
operations should occur on the inputs that vary according to a known scheme
with keys that vary according to a known scheme. Borst et al. demonstrated
how to take countermeasures at the protocol level in [28, 27]. They proposed
to use more key levels in a typical smart card application.

Hardware Countermeasures:

Increasing the measurement noise was the idea of Kocher et al. by a hardware
noise generator as a random number generator (RNG) in [133]. The design of
this approach may be relatively simple and it is an effective way to resist power
analysis attacks. But it is expensive to implement and might be easy to disable
through tampering and it is not energy efficient.

Shamir and Coron and Goubin proposed power signal filtering to obscure the
measurements in [235] and [45], respectively. The design of this approach may
be relatively simple and it is an effective way to resist attacks, but it requires
a change to the hardware and might be easy to disable through tampering.
Two types of filters were proposed as a passive filter in which physical limi-
tations restrict the size of an on-chip capacitor and an active filter in which
compensation techniques are likely to lag behind power supply changes. This
countermeasure does not hide the electromagnetic radiation information of the
device. The source of the electromagnetic radiation of the device is the inter-
nal current flow on the wires of the device and this countermeasure does not
change the current flow which depends on the processed data.

There are also novel circuit designs. Shamir proposed detachable power sup-
plies in [235]. Securing algorithm at the logic level was the idea of Tiri and
Verbauwhede [253]. The method employs logic gates with a power consump-
tion, which is independent of the data signals and therefore the technique
removes the foundation for DPA. Asynchronous circuits are used as a counter-
measure in [69, 169]. The power consumption and electromagnetic radiation
are reduced, but the execution time depends on the data processed, so they
are vulnerable to timing attacks. Golic̀ used reversible logic in order to reverse
computation which returns the consumed energy during the computation back
to the circuit in [80].

Mangard has identified the hardware countermeasures that influence the num-
ber of samples needed in DPA attacks in [147]. Based on these properties, he
proposed formulas that allow the calculation of lower bounds for the number
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of samples needed in DPA attacks.

3.3.2 Attacks and Countermeasures for Public Key Cryp-
tosystems

3.3.2.1 Attacks on Implementations of the Modular Exponentiation

After the description of power-analysis attacks by Kocher et al. [133], the first
paper dedicated to the application of these types of attacks on public-key cryp-
tosystems was from Messerges et al. [164]. They studied the application of
PA attacks on software implementations of modular exponentiations in smart
cards. They observed, that SPA attacks are possible due to several reasons.
Firstly, when using the binary algorithm, the branching instruction itself could
be observed. Secondly, in software implementations where two different rou-
tines for the square and the multiply operation are implemented, the two rou-
tines are likely to have different power traces.

Walter et al. observe in [264] that modular subtractions can also be used to de-
termine the secret key. In [260] Walter describe an attack on an RSA secret key
with single measurement; additionally he shows that certain implementations
of sliding window techniques might be vulnerable to PA attacks.

In [179], Novak uses the power leakage of a smart card to determine the secret
primes p and q for a certain implementation of the Chinese Reminder Theorem
(CRT) exponentiation. In [54], a chosen plaintext attack on a CRT implemen-
tation is presented. Klima et al. discuss in [124] several side-channel attacks
on various RSA schemes such as EME-OAEP PKCS #1 v.2.1. Three different
attack variants, with different assumptions about the side-channel leakage are
given, one of the variants can determine the RSA private key.

3.3.2.2 Attacks on Implementations of the Elliptic-Curve Scalar
Point-Multiplication

Coron’s work [44] was the first article on PA attacks dedicated solely to ECC.
He presents attacks on the unprotected implementations of an Elliptic Curve
Diffie-Hellman (ECDH) and an Elliptic Curve Integrated Encryption Scheme
(ECIES) protocol.

Nguyen and Shparlinski pointed out that also the scalar point-multiplication in
the Elliptic Curve Digital Signature Algorithm (ECDSA) must resist against
PA attacks in [178]. The paper gives a rigorous treatment of this topic. Römer
and Seifert treated the same topic with more heuristic arguments in [221].

Oswald developed another type of attack to attack countermeasures which are
based on randomizing (variants of) the binary algorithm in [204]. This attack
can defeat countermeasures that randomize the sequence of instructions in the
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binary algorithm in a certain way [206] under the assumption that the power
trace from an EC point-addition operation can be distinguished from the power
trace of an EC point-doubling operation. Oswald also mounted another type
of attack to defeat certain variants of these randomization approaches in [184].
It assumes that an attacker can monitor several executions of an EC scalar
point-multiplication with the same scalar and it additionally assumes that EC
point-addition and EC point-doubling can be distinguished.

3.3.2.3 Countermeasures for Modular Exponentiation

Countermeasures for Modular Exponentiation consist of either blinding the
plaintext or blinding the exponent. Exponent blinding can be achieved by
adding a multiple of the group order to the exponent. Efficient methods for
this task have been proposed by Kocher in [132].

Messerges et al. also propose a countermeasure to prevent DPA attacks on mod-
ular exponentiations in [164]. They propose to randomize the starting point
in the binary algorithm. From this random starting point on, the algorithm
is either first computed upwards to the most significant bit (MSB) and then
computed downwards to the least significant bit (LSB), or vice versa. The
results of the computations of both directions are then combined.

Walter presents a randomized-window algorithm in [261]. An analysis consist-
ing of two attack scenarios is given in [263].

3.3.2.4 Countermeasures for Elliptic Curve Scalar Point Multipli-
cation

For elliptic curve scalar point multiplication there are two types of countermea-
sures against SPA and DPA. First of all, one has to randomize the expressions
(i.e., the coordinates) of calculated points. This can be achieve with random-
ized projective coordinates. Secondly, one has to obscure the multiplier. It
would be optimal if there would be no correlation between the sequence of EC
point-doubling (addition/subtraction) operations and the multiplier bits. Pro-
posals for how to achieve these two goals have already been presented in [44].
Countermeasures applicable to arbitrary curves fixing the sequence of EC op-
erations are given in [44, 167, 92, 113, 110, 255, 185, 186]. Countermeasures
applicable to arbitrary curves not fixing the sequence of EC operations are
given in [206, 31, 23, 68]. Countermeasures applicable to special curves fixing
the sequence of EC operations are given in [98, 183, 182]. Countermeasures
applicable to special curves not fixing the sequence of EC operations are given
in [141, 118, 120, 41].



38 Side-Channel Analysis Attacks

3.4 Electromagnetic Analysis Attacks

The sudden current pulse that occurs during the transition of the output of a
CMOS gate, mentioned in Section 3.3, causes a sudden variation of the elec-
tromagnetic field surrounding the chip, that can be monitored by inductive
probes which are particularly sensitive to the related impulse. The electromo-
tive force across the sensor (Lentz’ law) relates to the variation of magnetic
flux as follows [234]:

V = −
dφ

dt
and φ =

∫∫
~B · d ~A ,

where V is the probe’s output voltage, φ the magnetic flux sensed by probe,
t is the time, ~B is the magnetic field and ~A is the perpendicular area that it
penetrates.

The Biot-Savart Law relates magnetic fields to the currents which are their
sources. Finding the magnetic field resulting from a current distribution in-
volves the vector product, and is inherently a calculus problem when the dis-
tance from the current to the field point is continuously changing.

~dB =
µ0I ~dL× ~̂r

4πr2
,

where ~dL is length of conductor carrying electric current I and ~̂r is unit vector
to specify the direction of the vector distance r from the current to the field
point.

Electromagnetic radiation itself consists of two components, the electrical and
magnetic field vectors [106]. In theory, both components can be measured indi-
vidually or in their interaction. Capacitive sensors mainly capture the electrical
field components, while antennas and coils are able to acquire both electrical
and magnetic components, and Hall sensors and so-called “SQUIDS” (super
conducting quantum interference devices) mainly detect the pure magnetic field
components.

Two types of electromagnetic analysis attacks are distinguished. In a simple
electromagnetic analysis (SEMA) attack, an attacker uses the side-channel in-
formation from one measurement directly to determine (parts of) the secret key.
In a differential electromagnetic analysis (DEMA) attack, many measurements
are used in order to filter out noise. While SEMA exploits the relationship
between the executed operations and the electromagnetic radiation, DEMA
exploits the relationship between the processed data and the electromagnetic
radiation.
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3.4.1 Attacks

It is well known that the United-States government has been aware of elec-
tromagnetic leakage since the 1950s. The resulting standards are called TEM-
PEST; partially declassified documents can be found in [181]. The first pub-
lished papers are work of Quisquater and Samyde [215] and the Gemplus
team [72]. Quisquater and Samyde showed that it is possible to measure the
electromagnetic radiation from a smart card. Their measurement setup con-
sisted of a sensor which was a simple flat coil, a spectrum analyzer or an oscil-
loscope and a Faraday cage. Quisquater and Samyde also introduced the terms
Simple EMA (SEMA) and Differential EMA (DEMA). The work of Gemplus
deals with experiments on three algorithms: DES, RSA and COMP128. They
observed the feasibility of EMA attacks and compared them with PA attacks
in favor of the first. Namely, EM emanation can also exploit local information
and, although more noisy, the measurements can be performed from a distance.
This fact broadens the spectrum of targets to which SCA attacks can be ap-
plied. They are not limited to smart cards and similar tokens but also include
SSL accelerators and many other cryptographic devices.

According to Agrawal et al. there are two types of emanations: intentional and
unintentional [7, 6]. The first type results from direct current flows. The second
type is caused by various couplings, modulations (amplitude modulation (AM)
and frequency modulation (FM)), etc. The two papers mentioned above deal
exclusively with intentional emanations. To the contrary, the real advantage
over other SCA attacks lies in exploring unintentional emanations [7, 6]. More
precisely, electromagnetic (EM) leakage consists of multiple channels. There-
fore, compromising information can be available even for DPA resistant devices
which can be detached from the measurement equipment.

Mangard showed that near-field EM attacks can be conducted even with a
simple hand-made coil in [146]. Also he showed that measuring the far-field
emissions of a smart card connected to a power supply unit also suffices to
determine the secret key used in the smart card.

Carlier et al. showed that EM side channels from an FPGA implementation of
AES can be effectively used by an attacker to retrieve some secret information
in [36]. They worked close to the FPGA and by this way were able to get rid of
the effects of other computations made at the same time. They also introduced
a new Square EM Attack.

Up to now, most papers on EMA applied similar techniques as power analysis
while apparently much more information is available to be explored. It is likely
that future work will also deal with combinations of EMA with other side
channel attacks.
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3.4.2 Countermeasures

Very few articles describe countermeasures against an EMA analysis. A com-
plete shielding of Smart Card controllers, known from devices used in electronic
data processing, is possible, but an attacker could simply remove the shield
prior to analysis, making this countermeasure worthless [106].

With these presumptions in mind, EMA countermeasures have to reach much
further than the commonly known PA defense systems, due to the fact that
EMA attacks may provide information about small chip areas, whereas the PA
measurement only yields data concerning the supply current of the complete
chip.

3.5 Acoustic Analysis Attacks

Recently, Shamir and Tromer present their results using the sound of a cen-
tral processing unit (CPU) as a side-channel information in [236]. The oldest
eavesdropping channel, namely acoustic emanations, has received little atten-
tion. Shamir and Tromer’s preliminary analysis of acoustic emanations from
personal computers shows them to be a surprisingly rich source of information
on CPU activity.

Several desktop and laptop computers have been tested and in all cases it was
possible to distinguish an idle CPU from a busy CPU. For some computers,
it was also possible to distinguish various patterns of CPU operations and
memory access. This can be observed for artificial cases (e.g., loops of various
CPU instructions), and also for real-life cases (e.g., RSA decryption).

A low-frequency (KHz) acoustic source can yield information on a much faster
(GHz) CPU in two ways. First, when the CPU is carrying out a long operation,
it may create a characteristic acoustic spectral signature. Second, temporal
information about the length of each operation is learnt and this can be used
to mount TA, especially when the attacker can affect the input to the operation.

One obvious countermeasure is to use sound dampening equipment, such as
“sound-proof” boxes, that is designed to sufficiently attenuate all relevant fre-
quencies. Conversely, a sufficiently strong wide-band noise source can mask the
informative signals, though ergonomic concerns may render this unattractive.
Careful circuit design and high-quality electronic components can probably
reduce the emanations. Alternatively, one can employ known algorithmic tech-
niques to reduce the usefulness of the emanations to attacker. These techniques
ensure the rough-scale behavior of the algorithm is independent of the inputs
it receives; they usually carry some performance penalty, but are often already
used to thwart other side-channel attacks.
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3.6 Conclusions

In this chapter we have introduced the side-channel analysis attack. We have
presented four groups of the SCA attacks according to four types of side-channel
information: timing, power consumption, electromagnetic radiation and sound.
We have given the definition of the two different types of SCA attacks; simple
and differential. The previous work and the countermeasures on the SCA
analysis have been also presented in this chapter.

This chapter provides the background information for the timing, power and
electromagnetic analysis attacks on our FPGA implementation of elliptic curve
processor over GF (p) presented in Chapter 6. We have also used the informa-
tion provided in this chapter for the power analysis attacks on the hardware
implementations of the AES and the DES in Chapter 7.
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Chapter 4

Hardware Implementations
of Elliptic Curve
Cryptosystems

Elliptic Curve Cryptography (ECC) was proposed independently by Miller [165]
and Koblitz [126] in the 1980s. Since then a considerable amount of research
has been performed on secure and efficient ECC implementations. The bene-
fits of ECC, when compared with classical cryptosystems such as RSA [220],
include: higher speed, lower power consumption and smaller certificates, which
are especially useful for wireless applications.

In this chapter we present our FPGA implementations of processors for ECC
over finite field GF (p), p is prime and GF (2m), m is prime. Our results were
published in [197, 198, 159]. The performance of an elliptic curve cryptosys-
tem and of several other public key cryptosystems is mostly determined by the
efficient implementation of finite field arithmetic. The most critical operation
for latency is modular multiplication. In 1985 Montgomery introduced a new
method for modular multiplication [168]. The approach of Montgomery avoids
the time consuming trial division that is a common bottleneck of other algo-
rithms. His method is proven to be very efficient and is the basis of many im-
plementations of modular multiplication, both in software and hardware [19].
In this chapter, we present our FPGA implementations of the Montgomery
modular multiplication (MMM) over GF (2m) and GF (p). The designs have
systolic array architectures to allow pipelining and to make the clock frequency
independent of m and the bit-length of p. In this way, the clock frequency does
not change when the bit-length is enlarged for security reasons. These results
were published in [196, 198] for GF (p) and in [157] for GF (2m).

43



44 Hardware Implementations of Elliptic Curve Cryptosystems

Our elliptic curve processors consist of special operational blocks for MMM,
modular addition/subtraction (MAS), EC point doubling/addition, modular
multiplicative inversion, EC point multiplier, projective to affine coordinates
conversion and Montgomery to normal representation conversion. Hence it can
be programmed by the user to execute any of these operations in any order.
It is possible to use the proposed processor over GF (p) not only for ECC, but
also for any system for which modular arithmetic operations are essential, such
as the RSA cryptosystem.

The basic building blocks of our designs are MMM and MAS. The other blocks
include some finite state machines (FSMs), which control the execution of these
operations. The critical path depends only on the critical path of the circuits for
MMM and MAS. The architecture of these blocks is designed to ensure a short
critical path to allow for high clock frequencies which are independent from
the bit-length of the EC parameters. For simplicity, all blocks were designed
separately with their own FSMs; this allows for independent optimization and
testing of the building blocks.

In this chapter, we briefly explain the arithmetic operations over GF (2m) and
GF (p), respectively. It is possible to represent the elements of GF (2m) in three
main different ways which are called basis. The performance of the most time
and area consuming operation, multiplication, depends on the representation of
the elements in GF (2m). Hence, we give an overview of these representations.
Then, we present the most used multiplication architectures for different basis.
Then, we summarize the pervious work on multiplications over GF (2m). We
present our Montgomery modular multiplier designs over GF (2m) and GF (p).
Then, we use these implementations in our EC processors over GF (2m) and
GF (p).

4.1 Arithmetic Operations over GF (2m)

In this section we introduce the arithmetic operations over GF (2m) used in
ECC over GF (2m). These operations determine the performance of an ECC
and of several other public key cryptosystems. Hence, the hardware design for
the public key cryptosystems starts with the hardware design for finite field
operations.

4.1.1 Representation of the Elements in GF (2m)

The most critical operation for latency is modular multiplication and its perfor-
mance depends on the representation of the elements in GF (2m). It is possible
to represent the elements of GF (2m) different ways which are called basis. In
the following sections, we give an overview of these representations.
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4.1.1.1 Polynomial (or Standard or Canonical) Basis

Definition 4.1 The polynomial basis (PB) is given by the set
{
1, x, x2, · · · ,

xm−1
}

where x is a root of the prime polynomial P (x) of degree m used to
construct GF (qm) from GF (q). 2

According to this representation an element a of GF (qm) is a polynomial with
length m, written as

a(x) =

m−1∑

i=0

aix
i = am−1x

m−1 + · · ·+ a1x + a0 ,

where the coefficients ai ∈ GF (q). In the word-level representation, these
coefficients are grouped into s words of equal length. Let ω be the word length
and m = s · ω. Hence, a can be written as a(x) =

∑s−1
i=0 Ai(x)xiω , where each

polynomial Ai(x) corresponds to a word of length ω, or

Ai(x) = aiω+ω−1x
ω−1 + · · ·+ aiω+1x + aiω . (4.1)

4.1.1.2 Dual Basis

Definition 4.2 Let F = GF (2), K = GF (2m) and a ∈ K. The trace of a
relative to the subfield F is:

TrK
F (a) = a + a2 + a22

+ · · ·+ a2m−1

.

2

Definition 4.3 The set {x0, x1, · · · , xm−1} is a basis for K = GF (2m) over

F = GF (2), such that a2i

= xi, a ∈ K, 0 ≤ i ≤ m− 1. So the elements of the
set are linearly independent over F . 2

Definition 4.4 The corresponding dual basis (DB) is: {y0, y1, · · · , ym−1} ⊆
GF (2m) such that:

Tr (xiyj) =

{
1 if i = j
0 if i 6= j

(4.2)

2

4.1.1.3 Normal Basis

Definition 4.5 Let x be a root of the prime polynomial P (x) of degree m used

to construct GF (qm) from GF (q). Then the set
{

x, xq , · · · , xqm−1

}
forms a

normal basis (NB). 2
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4.1.1.4 Triangular Basis

Definition 4.6 Let {x0, x1, · · · , xm−1} be a PB. A triangular basis, denoted
as {z0, z1, · · · , zm−1}, is derived as follows:

zi =

m−1∑

j=i

pj+1x
j−i 0 ≤ i ≤ m− 1 ,

where pis are the coefficients of an irreducible polynomial P (x). 2

4.1.1.5 Other Basis Representations

Parker and Benaissa presented multiplier architectures for redundant basis rep-
resentation (RBR) in [213]. RBR was proposed by Parhami in [211]. Wu et al.
presented multiplication, conversion and squaring architectures for finite field
computation using RBR in [278]. Drolet proposed a new representation for
finite field elements called polynomial ring representation (PRR) in [59]. He
also presented architectures for a parallel and serial multiplier, exponentiation,
inversion and division architectures with PRR. Silverman proposed a new rep-
resentation for finite field elements in 1999 [238]. He called this method Ghost
Bit Basis (GBB). There is no multiplier hardware structure for this represen-
tation so far.

4.1.2 Addition/Subtraction

The addition or subtraction of two elements a and b in GF (2m) is performed
by adding the polynomials a(x) and b(x), where the coefficients are added in
the field GF (2). This is equivalent to a bit-wise XOR operation on the vectors
a and b.

4.1.3 Multiplication

In order to multiply two elements a and b in GF (2m), we need to select an
irreducible polynomial of degree m. Note that a different choice of polynomial
leads to a different finite field representation, but all finite fields with the same
number of elements are isomorphic. Different choices of irreducible polynomials
are discussed in [155] by Menezes et al. Let P (x) be an irreducible polynomial
of degree m over the field GF (2), hence pm = 1 and p0 = 1. The product
c = a · b in GF (2m) is obtained by computing c(x) = a(x)b(x) mod p(x),
where c(x) is a polynomial of length m, representing the element c ∈ GF (2m).
Mastrovito’s thesis from 1991 [150] serves as an extensive reference of hardware
architectures for performing GF (2m) multiplication.
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4.1.3.1 Serial Polynomial Basis Multiplier

In this section an architecture for bit-serial computation of products of two
elements of GF (2m) that are represented by PB will be described. This archi-
tecture is called a serial shift register (SSR) multiplier.

Let A(x) = a0+a1x+ · · ·+am−1x
m−1 and B(x) = b0+b1x+ · · ·+bm−1x

m−1 be
the two field elements that will be multiplied. C(x) = c0+c1x+· · ·+cm−1x

m−1

is the result of the multiplication. Then

C(x) = A(x)B(x) mod P (x)
=
[
b0A(x) + b1xA(x) + · · ·+ bm−1x

m−1A(x)
]

mod P (x) .
(4.3)

Each term bix
iA(x) in Eq. (4.3) can be computed recursively in the following

way

bix
iA(x) mod P (x) =

(· · · ((bixA(x) mod P (x)) x mod P (x)) · · · ) x mod P (x) .

for i = 0, 1, · · · , m− 1. So C(x) can be written as follows:

C(x) = (((bm−1xA(x) + bm−2A(x)) x + bm−3A(x)) x + · · · ) x
+b0A(x) mod P (x) .

(4.4)

The block diagram of a SSR multiplier is shown in Fig. 4.1. The product
C(x) is found in the C = [cm−1, cm−2, · · · , c0] register after m clock cycles. A
schematic view of a SSR multiplier cell is shown in Fig. 4.2. The multiplier
operates as follows. The C register is initially set to zero. During the first
clock cycle, the polynomial bm−1A(x) is loaded to the C register. On the next
clock cycle both C and B registers are shifted one position left. The A and P
registers are unchanged. Shifting Z to left is equivalent to multiplication by x
in Eq. (4.4) and since this operation can result in a term of degree greater than
m−1, the FB IN and FB OUT signals in Fig. 4.1 and 4.2 indicate a reduction
should be whether or not performed. Also during the second clock cycle the
polynomial bm−2A(x) is added to the previous result bm−2A(x)x mod P (x).

Properties of SSR Multiplier: The length of the critical path is 4 (one
register, one AND-gate and two XOR-gates), independently of the choice of
P (x). This implies that the SSR allows the same clock frequency for any m.
The number of clock cycles needed to complete one multiplication is m. The
hardware complexity is O(m), exactly 4m-bit register and 7m gates.

4.1.3.2 Parallel Polynomial Basis Multiplier

Mastrovito proposed in his thesis [150] a parallel multiplier which is named
after him. The architecture can be explained as follows.
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SSR_CELL SSR_CELL SSR_CELL
FB_IN

B_IN

FB_OUT

B_OUT

ZI ZI_1

c 0ccm−1 m−2

a a a0m−2m−1

b b b0m−2m−1

p p pm−1 m−2 0

A

P

B

C

Figure 4.1: Block diagram of the serial shift register multiplier over GF (2m)

B_OUT

ZI

FB_OUT

B_IN

A

ZI_1

P

FB_IN

Figure 4.2: Schematic view of a cell of the serial shift register multiplier over
GF (2m)

The product C(x) = A(x)B(x) mod P (x) can be written in matrix form as
C = ZB, where Z is a binary m by m matrix. The entry zi,j of Z is denoted
by fi,j(A) or simply fi,j . The elements of C(x) can be written as follows:

ci = b0fi,0(A) + b1fi,1(A) + · · ·+ bm−1fi,m−1(A) , (4.5)

or in matrix notation:

C =




f0,0 f0,1 · · · f0,m−1

f1,0 f1,1 · · · f1,m−1

...
...

...
fm−1,0 fm−1,1 · · · fm−1,m−1







b0

b1

...
bm−1


 = ZB .
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It is desirable to have explicit formulas for the functions fi,j . Next, an m− 1
by m binary matrix Q which is called the reduction matrix is defined as:




xm

xm+1

...
x2m−2


 = Q




1
x
...
xm−1




=




q0,0 q0,1 · · · q0,m−1

q1,0 q1,1 · · · q1,m−1

...
...

...
qm−1,0 q1,m−1 · · · qm−1,m−1







1
x
...
xm−1


 .

The reduction matrix is obtained from P (x) by a simple shift & add-on-overflow
procedure. Because,

xm mod P (x) = pm−1x
m−1 + · · ·+ p1x + p0

= q0,0 + q0,1x + · · ·+ q0,m−1x
m−1 .

It follows that q0,i = pi for i = 0, 1, · · · , m− 1. For 1 ≤ i ≤ m− 1 we have that

qi,0 = qi−1,m−1qi−1,0

qi,1 = qi−1,m−1qi−1,1 + qi−1,0

...
qi,m−1 = qi−1,m−1qi−1,m−1 + qi−1,m−2 .

Mastrovito then shows that the elements fi,j in Eq. (4.5) can be written as
follows:

fi,j = σ (i− j) ai−j +

j−1∑

t=0

qj−1−t,iam−1−t ,

where σ (k) is a step function defined by

σ (k) =

{
1 k ≥ 0
0 k < 0

.

The multiplier is divided into two subsystems. The first subsystem computes
the functions fi,j and is called the f -network. The second subsystem is called
the IP network and consists of m identical cells.

Properties of the Parallel PB Multiplier: the total complexity (in gates)
is denoted by C and the length of the critical path through the whole multiplier
is denoted by L.

2 + dlog2me ≤ L ≤ 1 + 2 dlog2me ,

1 + m(2m− 1) ≤ C ≤ (m− 1)(ωP − 2) + m(2m− 1) ≤ 3m(m− 1) + 1 ,
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with ωP with the Hamming weight of P (x).

The C and L depend on the selection of the irreducible polynomial P (x). One
multiplication is computed in one clock cycle with a parallel PB multiplier.

4.1.3.3 Serial Dual-Basis Multiplier

Let A, B, C ∈ GF (2m) and C = A ∗ B denote the product in GF (2m). We
assume that A is in dual basis representation and B is in PB representa-
tion, i.e., A =

∑
aiyi and B =

∑
xiαi with {x0, x1, · · · , xm−1} is PB and

{y0, y1, · · · , ym−1} is the corresponding DB calculated by Eq. (4.2).

From the duality relation and the properties of the trace function, c0 can be
obtained as follows (see Mastrovito [150], Section 3.2):

c0 = Tr (AB) = Tr (b0A) + Tr (b1αA) + · · ·+ Tr
(
bm−1α

m−1A
)

= a0b0 + a1b1 + · · ·+ am−1bm−1

= A · B
(4.6)

where “·” denotes the inner product.

To obtain the second coefficient c1, A is replaced by xA in Eq. (4.6) and com-
pute the inner product (xA)·B, the third coefficient c2 is obtained by computing
(x2A) ·B and so on for the remaining coefficients as ci =

(
xiA

)
·B . The block

diagram of DB multiplier is shown in Fig. 4.3.

Properties of the DB Multiplier: the complexity of DB multiplier is 3m-bit
register and 7m gates. The critical path has length 2 + dlog2me (one register
+ the inner-product logic). The execution of one modular multiplication is
completed in m clock cycles.

4.1.3.4 Serial Normal-Basis (Massey-Omura) Multiplier

The NB multiplier was first proposed by Massey and Omura [187], hence it
is known as the Massey-Omura (MO) multiplier. The key property of the NB
representation is that squaring is a very simple operation, namely a single cyclic
left shift of the operand. Let A = a0x + a1x

2 + · · · + am−1x
2m−1

∈ GF (2m).
Then

A2 = a0x
2 + a1x

4 + · · ·+ am−1x
2m

= am−1x + a0x
2 + a1x

4 + · · ·+ am−2x
2m−1

.
(4.7)

Here we use the linearity of the squaring operation and the fact that x2m

= x.

Let C = AB = c0x+ c1x
2 + · · ·+ cm−1x

2m−1

be the product in GF (2m). Then
the last coefficient cm−1 of C is a function of the coefficients of A and B, i.e.,

cm−1 = f (a0, a1, · · · , am−1; b0, b1, · · · , bm−1) .
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a0 aaa 321

b0 b b1 2

p p p p0 1 2 m−1

c i=0,1,...,m−1i ,

bm−1

am−1

Figure 4.3: Block diagram of the dual basis (DB) multiplier over GF (2m)

By Eq. (4.7) C2 can be written as follows:

C2 = A2B2

= (am−1, a0, · · · , am−2) · (bm−1, b0, · · · , bm−2)
= (cm−1, c0, · · · , cm−2) ,

which means that the last coefficient cm−2 of C2 can be obtained by applying
the same function f to the components of A2 and B2. By squaring C repeatedly,
all the coefficients of C can be found as

cm−1 = f (a0, a1, · · · , am−1; b0, b1, · · · , bm−1)
cm−2 = f (am−1, a0, · · · , am−2; bm−1, b0, · · · , bm−2)
...
c0 = f (a1, a2, · · · , a0; b1, b2, · · · , b0) .

The complexity of this multiplier depends on the function f which in turn,
depends on the choice of P (x). The schematic view of a MO multiplier over
GF

(
24
)

with P (x) = x4 + x3 + 1 is shown in Fig. 4.4.

Properties of Serial the NB (Massey-Omura) Multiplier: as a measure
of the complexity of the Massey-Omura multiplier, the number of terms aibj in
f is used. This number is denoted by Nm. The complexity of MO multiplier
is: (3.5Nm − 2) gates+ 2m-bit register. The length of the critical path is
2 + dlog2Nme (one register and the logic function f). The execution of one
modular multiplication is completed in m clock cycles.
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a0 a2 a31a

c i
i=3, 2, 1, 0

0 2 31b b b b

Figure 4.4: Schematic view of the Massey-Omura multiplier over GF
(
24
)

with
the irreducible polynomial P (x) = x4 + x3 + 1

Mullin et al. showed that Nm ≥ 2m − 1 for any NB in [173] and the concept
of optimal normal basis (ONB) is introduced. An NB is said to be optimum if
Nm = 2m − 1. There are two constructions given in [173] to obtain an ONB
in GF (2m); these constructions are called type I and type II.

4.1.3.5 State of the Art for GF (2m) Multiplier Hardware Imple-
mentations

Polynomial Basis

In 1971 Laws and Rushforth proposed a cellular-array multiplier [137]. This
array exhibits a high degree of regularity and can be viewed as a device for
performing computations in space rather than in time. The block diagram of
the cellular-array multiplier is shown in Fig. 4.5. The schematic view of a gen-
eral individual cell is shown in Fig. 4.6. The other work about this structure
is from Jain et al. [114]. They also fabricated a multiplier chip for GF

(
24
)

using CMOS 1.2 µm technology. The chip has an active area of 0.434 mm2 and
requires 1076 transistors; it is programmable for different irreducible polyno-
mials.

In 1984 Yeh et al. [282] proposed a similar architecture as in [137]. They
wanted to implement not only AB mod P but also AB + C mod P . This is
straightforward, because addition is simply bitwise XOR. Hence they add one
more XOR gate to the cells of SSR and cellular-array multipliers to get their
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Figure 4.5: Block diagram of the cellular-array multiplier over GF (2m)
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Figure 4.6: Schematic view of a cell of the cellular-array multiplier over
GF (2m)
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architecture.

Hasan and Bhargava proposed a bit-serial systolic architecture for multiplica-
tion in [100]. Hasan also proposed to use a look-up table approach in [97].
Hasan et al. proposed two structures of parallel multipliers based on an ir-
reducible all one polynomial (AOP) of degree m and equally spaced polyno-
mial (ESP) of degree m(m + 1)i [101]. A polynomial f(z) =

∑m
i=0 fiz

i over
GF (2) is called AOP of degree m if fi = 1 for i = 0, 1, . . . , m. A polynomial
g(z) =

∑sm
i=0 giz

i = zsm + zs(m−1)+···+zs+1 = f(zs) over GF (2), where f(z) is
an AOP of degree m over GF (2) is called an s-ESP of degree sm. The details of
the proposed algorithms will not be given here. The total delay of the parallel
AOP multiplier is DA +(m + dlog2(m− 1)e) DX where DX and DA denote the
delay for an XOR gate and an AND gate, respectively. The total number of
XOR and AND gates are m2 + m− 2 and m2, respectively. Another result on
multipliers for finite fields defined by AOP and ESP was reported by C.-Y. Lee
et al. in [139]. They used a systolic architecture for bit-parallel multipliers.

The first result on composite field, GF ((2n)
m

), is from Paar [207, 208]. Also
Paar and Rosner compare multiplication in composite fields and prime fields,
GF (2m), with m prime, in [210].

S.-W. Wei and Tsai and Wang used systolic architectures for parallel multi-
plication in [269] and [257], respectively. Wu proposed explicit formulas to
calculate the complexity of parallel multiplication in [272].

Orlando and Paar gave the results of their implementation of a serial multiplier
on several FPGAs in [191]. They describe a prototype implementation on a
Xilinx XC4000X FPGAs. They also present timing estimations of elliptic curve
point multiplication using projective coordinates.

Song and Parhi, Sunar and Koç, Halbutog̃ulları and Koç reported their results
on the Mastrovito multiplier in [243], [247] and [95], respectively. A design
methodology for a Mastrovito multiplier was proposed by Zhang and Parhi
in [284].

The multiplier architecture from Hasan and Wassal [102] which was designed
by using triangular and polynomial basis together was fabricated. The design
was optimized in CMOS 0.5 µm technology for a 3.3 V supply voltage. The
prototype can support operations over finite fields up to GF

(
264
)
. The silicon

area used was approximately 3.445 mm × 3.827 mm. The prototype chip was
tested at a clock frequency of 50 MHz. This frequency limitation is reported
as due to the packaging technology used. The authors claim that the imple-
mented chip core could run at a frequency of more than 80 MHz, while an
implementation with m = 256 was estimated to run at a frequency of more
than 75 MHz.

Gao and Parhi implemented parallel multiplier by using two different ap-
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proaches, irregular and regular semi-systolic [73]. They used 0.35 µm CMOS
technology to implement both structures for GF

(
28
)
. Another parallel struc-

ture by Koç and Sunar can be found in [131].

Yu gives comparisons for power consumption of their architectures [283]: semi-
systolic array, Mastrovito and composite field.

Hasan et al. proposed a squaring structure which requires m−1 XOR gates and
has a time delay of one XOR gate in [101]. Jain et al. proposed semi-systolic
architectures for parallel squaring in polynomial basis [114]. Information about
the complexity of squaring can be found in the articles by Wu [272, 274].
Orlando and Paar proposed a squaring architecture which can also be used for
multiplication [193].

Normal Basis

Wang et al. propose a parallel architecture for the Massey-Omura multiplier
in [265]. They have fabricated a chip for GF

(
24
)

using 4 µm negative-channel
metal-oxide semiconductor (NMOS) technology. The chip has 8 pins and has
an area of 1248 µm× 996 µm. Other parallel structures are proposed by Koç
and Sunar, Reyhani-Masoleh and Hasan in [131] and [218], respectively.

Since the multiplication function, f , given in Section 4.1.1.3 depends on the
irreducible polynomial, every time the polynomial is changed the multiplier
circuit has to be changed. An algorithmic way to find f for any irreducible
polynomial is proposed by Wang in [266, 267].

In 1988 Onyszchuk, Mullin and Vanstone propose a different approach from
the Massey-Omura multiplier; this invention can be found in [188]. Agnew et
al. improve the results in [2]. In 1992 the same authors report a Very Large
Scale Integration (VLSI) implementation of a normal basis multiplier [4]. The
chip has been fabricated using 1.5 µm high speed CMOS (HCMOS) gate array
with a clock speed of 40 MHz; it requires less than 12 000 gates.

Lu gives maximum, minimum and average values of the measure of the com-
plexity of the Massey-Omura multiplier, Nm, for different m in [144] (for a
definition of Nm see Section 4.1.1.3). He proposes a way to find the optimal
multiplication function f .

An architecture to realize composite field multiplication has been patented by
Mullin [172]. Because he used composite fields, the multiplication is done with
more than one bit of the operands in one clock cycle.

Gao and Sobelman gave some VLSI design results in [76].

Sunar and Koç present algorithms for a type II ONM multiplier in [248]. Suti-
kno and Surya propose architectures for ONB multiplier in extension and prime
field [250]. Reyhani-Masoleh and Hasan propose architectures for a serial NB
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multiplier in [216]. The same authors give comparisons of algorithms for NB,
type I ONB and composite field multiplication in [217].

Dual Basis

Bit-serial systolic multiplier structures were proposed by Diab and Poli in [57].
Fenn et al. propose bit-serial and parallel multipliers and give delay and area
comparisons in [67]. Wu, Hasan and Blake propose parallel multipliers in [276,
277]. Lee and Lim define a new dual basis called circular dual basis (CDB)
in [138]. They give the algorithms for multiplication, squaring, conversion and
inversion in [138]. Gollmann reports some results about ESP and dual basis
in [82].

Comparison of Different Basis

Hsu et al. report their VLSI implementation results of 8-bit finite field multi-
pliers using dual, normal and standard basis in [107]. Their conclusions are:

• The DB multiplier occupies the smallest amount of chip area.

• As the order of the field goes higher, the DB multiplier will increase its
advantage over the other multipliers.

• The NB multiplier is very effective in performing operations such as in-
version, squaring and exponentiation.

• The area of the NB multiplier grows faster than the area of the PB
multiplier as the order of the field goes up.

• The PB does not require basis conversion.

• Due to the regularity and simplicity of PB, the design and expansion to
higher order finite fields are easier.

Paar and Lange present VLSI implementation results of finite field multipliers
using dual, normal and standard basis for different orders in [209].

Ahlquist et al. present FPGA implementation results of several finite field mul-
tipliers in [9]. The performance of each finite field multiplier is characterized
on the Xilinx XC4062 FPGA. From the results they conclude that finite field
multipliers optimized specifically for VLSI are not necessarily optimized for
FPGAs. They claim that the following three significant flaws are responsible
for this mismatch:

• multi-clock cycle operation;

• long unregistered data paths; and

• under utilized logic elements.
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They modified their designs to avoid these flaws [9].

Composite extension fields, GF ((2n)
m

) are not recommended for security rea-
sons [77, 71, 240]. Namely, the method of Weil descent for solving the ECDLP,
as introduced by Frey [70], can be applied to these fields. This method does
not apply for curves over GF (2p) where p is prime; most standards, except for
Internet Protocol SECurity protocol(IPSEC [109], the use of GF (2p) with p
prime.

4.1.4 Montgomery Modular Multiplication over GF (2m)

The Montgomery multiplication method requires that r(x) and p(x) are rela-
tively prime, i.e.,

gcd(r(x), p(x)) = 1 .

For this assumption to hold, it suffices that p(x) be not divisible by x. Since
p(x) is an irreducible polynomial over the field GF (2), this will always be the
case. Since r(x) and p(x) are relatively prime, there exist two polynomials
r−1(x) and p′(x) with the property that

r(x)r−1(x) + p(x)p′(x) = 1 , (4.8)

where r−1(x) is the inverse of r(x) modulo p(x). The polynomials r−1(x) and
p′(x) can be computed using the extended Euclidean algorithm [153, 142]. The
Montgomery modular multiplication (MMM) of a(x) and b(x) is defined as the
product

c(x) = a(x)b(x)r−1(x) mod p(x) ,

where r(x) = xm. This equation can be computed using the following algo-
rithm:

Algorithm 4.1: Montgomery modular multiplication over GF (2m)

Require: a(x), b(x), p(x), P ′
0(x)

Ensure: c(x) = a(x)b(x)x−m mod p(x)
t(x) := a(x)b(x)
u(x) := t(x)n′(x) mod r(x)
c(x) := [t(x) + u(x)p(x)] /r(x)

In order to prove the correctness of Algorithm 4.1, we note that u(x) =
t(x)p′(x) mod r(x) implies that there is a polynomial K(x) over GF (2) with
the property

u(x) = t(x)p′(x) + K(x)r(x) . (4.9)
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We write the expression for c(x) in Step 3 of Algorithm 4.1 and then substitute
u(x) with the expression (4.9) as

c(x) = 1
r(x) [t(x) + u(x)p(x)]

= 1
r(x) [t(x) + t(x)p′(x)p(x) + K(x)r(x)p(x)]

Furthermore, we have p′(x)p(x) = 1+r(x)r−1(x) according to Eq. (4.8). Thus,
c(x) is obtained as

c(x) = 1
r(x)

[
t(x) + t(x)

[
1 + r(x)r−1(x)

]
+ K(x)r(x)p(x)

]

= 1
r(x)

[
t(x)r(x)r−1(x) + K(x)r(x)p(x)

]

= t(x)r−1(x) + K(x)p(x)
= t(x)r−1(x) mod p(x)
= a(x)b(x)r−1(x) mod p(x) ,

as required. Now, we will show that the degree of the polynomial c(x) computed
by Algorithm 4.1 is less than and equal m − 1. Since the degrees of a(x) and
b(x) are both less than and equal m− 1, the degree of t(x) = a(x)b(x) will be
less than and equal to 2(m−1). Also note that the degrees of p(x) and r(x) are
both equal to m. The degree of u(x) computed in Step 2 of Algorithm 4.1 will
be strictly less than m since the operation is performed modulo r(x). Thus,
the degree of c(x) as computed in Step 3 of Algorithm 4.1 is found as

deg (c(x)) ≤ max (deg (t(x)) , deg (u(x)) + deg (p(x)))− deg (r(x))
≤ max (2m− 2, m− 1 + m)−m
≤ m− 1 .

Thus, the polynomial c(x) is reduced modulo p(x).

4.1.4.1 Computation of Montgomery Multiplication

The product c(x) = a(x)b(x)r−1(x) mod p(x) can be written as

c(x) = x−ma(x)b(x) = x−m
m−1∑

i=0

aix
ib(x) mod p(x) .

The product

t(x) =
(
am−1x

m−1 + am−2x
m−2 + · · ·+ a1x + a0

)
b(x)

can be computed by starting from the MSB and then proceeding to the LSB,
as follows:

t(x) := 0
for i = m− 1to 0

t(x) := t(x) + aib(x)
t(x) := xt(x) .
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The shift factor x−m in x−ma(x)b(x) reverses the direction of summation. Since

x−m
(
am−1x

m−1 + am−2x
m−2 + · · ·+ a1x + a0

)

= am−1x
−1 + am−2x

−2 + · · ·+ a1x
−m+1 + a0x

−m ,

we start processing the coefficients of a(x) from the LSB and obtain the fol-
lowing bit-level algorithm in order to compute t(x) = a(x)b(x)x−m as follows:

t(x) := 0
for i = m− 1to 0

t(x) := t(x) + aib(x)
t(x) := t(x)/x .

We are interested in computing c(x) = x−ma(x)b(x) mod p(x). Because

c(x)x−1 mod p = (c(x) + u(x)p(x)) x−1 mod p ,

u(x) can be chosen in a way that c(x) + u(x)p(x) will be divisible by x. This
requires that the LSB of the sum c(x) + u(x)p(x) is ‘0’. Since, p(x) is a irre-
ducible polynomial, the LSB of p(x), p0, is ‘1’. If u(x) is chosen as the LSB
of c(x), c0, then the requirement will be fulfilled. The bit-level algorithm for
MMM is given in Algorithm 4.2.

Algorithm 4.2: Bit-level algorithm for the Montgomery modular multipli-
cation over GF (2m)

Require: a(x), b(x), p(x)
Ensure: c(x) = a(x)b(x)x−m mod p(x)
1: c(x) := 0
2: for i from 0 to m− 1 do
3: c(x) := (c(x) + aib(x) + c0p(x)) /x
4: end for

Algorithm 4.2 for MMM is generalized to the word-level algorithm by proceed-
ing word by word, where the word size is ω ≥ 2 and s = dm/ωe. Let Ai(x)
represent one word of the polynomial a(x). Step 3 of Algorithm 4.2 is then
performed by multiplying Ai(x) by b(x) at the ith iteration. We then need to
multiply the partial product c(x) by x−ω modulo p(x). In order to perform
this step using division, we add a multiple of p(x) to c(x) so that the least
significant ω coefficients of c(x) will be zero, i.e., c(x) will be divisible by xω .
Thus, if c(x) 6= 0 mod xω , then we find M(x) (which is a polynomial of length
ω) such that c(x) + M(x)p(x) = 0 mod xω. Let C0(x) and P0(x) be the least
significant words of c(x) and p(x), respectively. We calculate M(x) as

M(x) = C0(x)N−1
0 (x) mod xω .
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We note that N−1
0 mod xω is equal to N ′

0(x) since Eq. (4.8) implies that

xsωx−sω + p(x)p′(x) = 1 mod xω

P0(x)P ′
0(x) = 1 mod xω . (4.10)

The word-level algorithm for the MMM obtained by Koç and Acar in [168, 130]
is given in Algorithm 4.3. The papers by Wu [273, 275] are good references to
learn about this technique.

Algorithm 4.3: Word-level algorithm for Montgomery modular multiplica-
tion over GF (2m)

Require: a(x), b(x), p(x), P ′
0(x)

Ensure: c(x) = a(x)b(x)x−m mod p(x)
1: c(x) = 0
2: for i from 0 to s− 1 do
3: M(x) = (C0(x) + Ai(x)B0(x)) P ′

0(x) mod xω

4: c(x) = (c(x) + Ai(x)b(x) + M(x)p(x)) /xω

5: end for

4.1.4.2 Montgomery Modular Multiplication Circuit

The design of the Montgomery modular multiplication circuit (MMMC) that
performs Algorithm 4.3 is a contribution of this thesis. A systolic array with
variable bit-length m and variable word length ω is used as an architecture.
This systolic array architecture makes the clock frequency independent of the
bit-length m. The clock frequency only depends on the word length ω. The
results of our design for the MMMC are published in [160, 157, 158, 17].

As explained above P ′
0(x) = P−1

0 (x) mod xω needs to be computed. This is
done by using the observation that P0(x) and its inverse satisfy P0(x)P−1

0 (x) =
1 mod xi for i = 1, 2, · · ·ω [130]. We have designed a circuit that calculates the
coefficients of the polynomial P−1

0 during the first clock cycle and writes the
result in a register. Then the value of this register is used as an input for the
MMMC in Algorithm 4.3.

The architecture of the MMMC consists of a systolic array, a circuit to compute
P ′

0(x), a read-in and read-out mechanism and a state machine to control the
MMM. The read-in mechanism ensures that the inputs to the systolic array
arrive at the correct moment. The read-out mechanism registers the result of
the MMM.
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4.1.4.3 Systolic array

The ith iteration of Step 4 in Algorithm 4.3 computes the temporary results

ci(x) = x−ω (ci−1(x) + Ai(x)b(x) + Mi(x)p(x)) , (4.11)

where i = 0, · · · , m − 1 and c−1(x) = 0. ci(x) can be divided into s words of
length ω and Eq. (4.11) can be rewritten as follows:

s∑

j=0

Ci,j(x)xjω (4.12)

= x−ω




s∑

j=0

Ci−1,j(x)xjω + Ai(x)

s∑

j=0

Bj(x)xjω + Mi(x)

s∑

j=0

Pj(x)xjω


 ,

where i = 0, · · · , s, Ci,j(x), Bj(x) and Pj(x) are the jth words of ci(x), b(x)
and p(x), respectively. In order to calculate Ci,j(x) we compute the product
terms in Eq. 4.12 as follows:

Ai(x)Bj(x)=

(
ω−1∑

k=0

ak+ωix
k

)(
ω−1∑

k=0

bk+ωjx
k

)
(4.13)

=xω

(
ω−1∑

l=1

aω−l+ωi

(
ω−1∑

k=l

bk+ωjx
k−l

))
+

(
ω−1∑

l=0

al+ωi

(
ω−1−l∑

k=0

bk+ωjx
k+l

))

=xωHABi,j(x) + LABi,j(x) ,

for i = 0, · · · , s− 1 and j = 0, · · · , s− 1.

Mi(x)Pj(x)=

(
ω−1∑

k=0

mi,kxk

)(
ω−1∑

k=0

pk+ωjx
k

)
(4.14)

=xω

(
ω−1∑

l=1

mi,ω−l

(
ω−1∑

k=l

pk+ωjx
k−l

))
+

(
ω−1∑

l=0

mi,l

(
ω−1−l∑

k=0

pk+ωjx
k+l

))

=xωHMPi,j(x) + LMPi,j(x) ,

for i = 0, · · · , s− 1 and j = 0, · · · , s. We substitute Eq. (4.13) and Eq. (4.14)
in Eq. (4.12) as follows:

s∑

j=0

Ci,j(x)xjω = x−ω




s∑

j=0

Ci−1,j(x)xjω +

s∑

j=0

(xωHABi,j(x) + LABi,j(x)) xjω

+

s∑

j=0

(xωHMPi,j(x) + LMPi,j(x)) xjω


 ,
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for i = 0, · · · , s. According to the above expression we can calculate jth word
of ci(x), Ci,j(x), as follows:

Ci,j(x) (4.15)

= x−ω(Ci−1,j(x)+HABi,j−1(x)+LABi,j(x)+HMPi,j−1(x)+ LMPi,j(x)) .

Every word Ci,j(x) of ci(x) is computed in a separate cell; these cells are
contained in the systolic array. There are three different kinds of cells. Most
of the words are calculated by a regular cell (cell 1, . . ., cell s−1). Two special
cells, the rightmost cell (cell 0) and the leftmost cell (cell s), perform the rest
of the calculations. Fig. 4.7 shows the different cells in the systolic array. In
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Figure 4.7: Schematic view of the one dimensional systolic array used in the
Montgomery modular multiplier over GF (2m)

the ith iteration step the array computes ci(x) by using ci−1(x), Ai(x), b(x)
and p(x). Fig. 4.7 shows a schematic view of the array. The output Ci,j+1

of the (j + 1)th cell is used as the input Ci−1,j+1 for the jth cell during the
next iteration. This way the division by xω in Step 4 of Algorithm 4.3 is
implemented.

Regular cell

Figure 4.8 shows the regular cell (cell 0, . . ., cell s − 1) which calculates
Eq. (4.15). It consists of two different operations:

• bitwise XOR (
⊕

): this is implemented as a bit-wise XOR array which
consists of ω XOR gates with 5 inputs.

• a multiplication (∗): this performs a multiplication of two ω-bit num-
bers and produces a 2ω-bit output which is divided into the least signifi-
cant and the most significant parts according to Eq. (4.13) and Eq. (4.14).
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Figure 4.8: Schematic view of a regular cell in the systolic array used in the
Montgomery modular multiplier over GF (2m) (∗ = multiplication,

⊕
= bit-

wise XOR)

Rightmost cell

Based on Step 3 in Algorithm 4.3 we can compute Mi(x) as follows:

Mi(x) = (Ci−1,1(x) + LABi,0(x)) P ′
0(x) mod xω ,

with i = 0, . . . , s − 1 and C−1,0(x) = 0. According to Step 4 in Algorithm 4.3
Mi(x) is not an input to the rightmost cell, but obtained in the rightmost cell.
Because B−1(x) = 0 and P−1(x) = 0 Eq. (4.15) can be simplified as follows:

Ci,0(x)=Ci−1,1(x)+LABi,0(x)+LMPi,j(x)

=Ci−1,1(x)+LABi,0(x)+(Ci−1,1(x)+LABi,0(x)) P ′
0(x)P0(x) mod xω ,

for i = 0, . . . , s− 1. We substitute Eq. (4.10) in the above expression and the
additions are bitwise XOR, then Ci,0 = 0. This is the required result to be
able to divide ci(x) by xω in Section 4.1.4.1. Hence, the rightmost cell does not
have the C output. Figure 4.9 shows the rightmost cell (cell 0), which consists
of three different operations:

• bitwise XOR (
⊕

): this is implemented as a bit-wise XOR array which
consists of ω XOR gates with 2 inputs.

• a multiplication (∗): this performs a multiplication of two ω-bit num-
bers and produces a 2ω-bit output which is divided into the least signifi-
cant and the most significant parts according to Eq. (4.13) and Eq. (4.14).
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• a modular xω multiplication (
⊙
∗ ): This is a multiplication modulo

xω.

*

*

Ai

*

P’0

Mi
Ai

B0P 0

LAB i,0

C i−1,1HMPi,0

HABi,0

Figure 4.9: Schematic view of the rightmost cell in the systolic array used
in Montgomery modular multiplier over GF (2m) (∗ = multiplication,

⊕
=

bitwise XOR,
⊙
∗ = multiplication modulo xω)

Leftmost cell

Because Bs(x) = 0, Eq. (4.15) for Ci,s(x) can be simplified as follows:

Ci,s(x) = Ci−1,s+1(x) + HABi,s−1 + HMPi,s−1(x) + LMPi,s , (4.16)

with i = 0, · · · , s− 1. As Ps = 0 or1, HMPi,s(x) = 0, also because Bs(x) = 0
and Ps+1(x) = 0 Eq. (4.15) for Ci,s+1(x) can be simplified as follows:

Ci,s+1(x) = Ci−1,s+2(x) ,

with i = 0, · · · , s − 1. Above equation means Ci,s+1(x) = 0. Eq. (4.16) is
implemented by the leftmost cell (cell s), which is shown in Fig. 4.10. It
consists of:

• bitwise XOR (
⊕

): this is implemented as a bit-wise XOR array which
consists of ω XOR gates with 2 inputs.

• a multiplication (∗): this is implemented as a bit-wise AND array
which consists of ω AND gates with 2 inputs.

4.1.4.4 Inversion

Eq. (4.17) finds the inversion of the polynomial P0(x) modulo xω . When
P0(x) = pω−1x

ω−1 + · · ·+ p1x + p0 and P−1
0 (x) = p′ω−1x

ω−1 + · · ·+ p′1x + p′0,
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Figure 4.10: Schematic view of the leftmost cell in the systolic array used in
Montgomery modular multiplier over GF (2m) (∗ = bit-wise AND,

⊕
= bitwise

XOR)

the coefficients p′i, i = 0, · · · , w − 1 can be found as follows:

p0p
′
0 = 1⇒ p′0 = p0 = 1

p1p
′
0 ⊕ p′1p0 = 0⇒ p′1 = p1

p2p
′
0 ⊕ p1p

′
1 ⊕ p′2p0 = 0⇒ p′2 = p2 ⊕ p1

p3p
′
0 ⊕ p2p

′
1 ⊕ p1p

′
2 ⊕ p0p

′
3 = 0⇒ p′3 = p3 ⊕ p1

p4p
′
0 ⊕ p3p

′
1 ⊕ p2p

′
2 ⊕ p1p

′
3 ⊕ p0p

′
4 = 0⇒ p′4 = p4 ⊕ (p1 + p2)

. . .

(4.17)

We have designed a circuit that calculates the coefficients of the polynomial
P−1

0 during the first clock cycle and writes the result in a register. Then the
value of this register is used as an input for the MMMC.

Equation (4.17) depends on the word length ω. For every ω the circuit used
to calculate it has to be designed specially. Hence if ω is changed frequently
then P−1

0 (x) can be computed in software and sent to the MMMC as an input.
But this will bring extra communication delay with the user of the MMMC
which will be repeated for every usage of the MMMC. The other possibility is
to calculate P−1

0 (x) once and store this in a LUT in the circuit, but this LUT
table has to be updated for every change of ω; moreover, the LUT will use a
larger area than the circuit used to calculate it. So depending on how frequent
the MMMC is used, the area availability and the needed time to design the
MMMC, one of the three solutions can be chosen.

4.1.4.5 Read-in and Read-out Mechanism

If the execution of every iteration of Step 3 and 4 in Algorithm 4.3 would
happen in one clock cycle, the delay from Ci−1,1 to Ci,s would be too large.
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The leftmost cell would have to wait for HABi,s−1 and HMPi,s−1 coming
from cell s − 1, while this cell has to receive HABi,s−1 and HMPi,s−1 first,
etc. This would imply that the minimum clock period would increase with
m. Because the maximum clock frequency should not become too low and
remain independent of the value of m, the design is implemented as a systolic
array. Now, the maximum clock frequency only depends on the word length
ω, because this value determines the number of logic gates in one cell. The
critical path of the systolic array is the same as the critical path of one regular
cell and it is independent of the bit-length m of the operands. It is equal to
TMULT/ADD + 2TADD = TAND + (w + 3)TXOR, where TMULT and TADD are
the latencies of the multiplication/addition and the addition respectively. Ci,j

is calculated at the 2(i+1)+(j−1)th clock cycle as the output of the (j +1)th
cell.

Because of the registers in between, every cell evaluates another word of a(x)
in the same clock cycle. A left-shift register (LSR), a temp, is used to provide
every cell with the correct word of a(x). Figure 4.11 shows an example for
m = 16 and ω = 4. For this example, the starting value, a start, of a temp is
0000 0000 0000 A0 0000 A1 0000 A2 0000 A3. In the same manner Mi(x)
is placed in the least significant word of a LSR, m temp, to provide every cell
with the correct version of Mi(x).

Because the output words of c(x) are not valid at the same time, a right-shift
register (RSR), counter, is used to determine when the words are loaded in
the output register as shown in Fig. 4.11. The length of counter is always 3s.
For this example, the starting value of counter is 100000000000. Every clock
cycle the ‘1’ in this register shifts one place to the right. At the end, this ‘1’ is
sent to the enable (E) of the output register.

4.1.4.6 State machine

Figure 4.12 shows the algorithmic state machine (ASM) chart of the MMMC.
When the reset signal (RST) arrives, all the registers are reset. The circuit
waits in the IDLE state for the START signal. When the START signal comes
a start is loaded into a temp, the most significant bit of counter is set and the
circuit goes to state S1. In every clock cycle a temp, m temp and counter are
shifted ω, ω bits and 1 bit, respectively. Also, the outputs of the systolic array
cells are returned to the inputs. When the least significant bit of counter is
1, after 3s clock cycles, a VALID signal is produced to indicate that the value
of the output register, result, is ready. Hence the latency of the word level
MMMC is 3s clock cycles.
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Figure 4.11: Architecture of the Montgomery modular multiplier circuit over
GF (2m) for m = 16 and ω = 4, as m = sω (• = register, E=enable)

4.1.4.7 Implementation Results

The implementation results of the MMMC on a Xilinx Virtex XCV800-4 FPGA
are indicated in Table 4.1. When the word length ω increases, the number of
clock cycles needed for completing one MMM decreases, as it is 3s and s = m/ω.
The minimal clock period, Tp, increases by the increase of ω, because the critical
path in the regular cell is increasing. The total MMM latency can be calculated
as TMMM = 3m

ω Tp. As shown in Table 4.1, increasing the word length does not
always give faster results. Figure 4.13.(a) shows that the total MMM latency
reaches an optimum for ω = 16, as the latency of MMM decreases until ω = 16
and starts increasing with ω = 32. Figure 4.13.(b) shows that the circuit
becomes larger when ω increases.

An efficient implementation of the MMM over GF (2m) in hardware was consi-
dered by Wu [275]; the proposed parallel architecture is restricted to finite fields
that are represented using irreducible trinomials. Our contribution consists of
an FPGA implementation of MMM in a systolic array, which makes the clock
frequency of the design independent of the field size m and allows for pipelining.
The clock frequency depends of ω. The clock frequency of Wu’s design decreases
with the increase of m. Unlike Wu’s design, our implementation is also suitable
for finite fields that cannot be represented using a trinomial.
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Figure 4.12: Algorithmic state machine chart of the Montgomery modular
multiplier over GF (2m) (<< x = left shift over x bits, >> x = right shift over
x bits, & = concatenation of two words)
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Figure 4.13: Implementation results of Montgomery modular multiplier over
GF (2m) as a function of the word length ω: (a) latency (b) number of gates
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Table 4.1: FPGA implementation results of the Montgomery modular multi-
plier over GF (2m)

ω = 1 ω = 4 ω = 8 ω = 16 ω = 32
# of clock cycles 160 120 60 30 15
Minimum 16.03 ns 17.89 ns 19.76 ns 23.162 ns 62.56 ns
clock period
Total 2.56 µs 2.15 µs 1.19 µs 0.69 µs 0.94 µs
MMM latency
# of Gates 18 940 32 564 37017 49112 72690

4.1.5 Modular Multiplicative Inversion

Modular inversion is a vital operation for PKC protocols as shown in Chap-
ter 2. It is used for example, to calculate a private RSA key for decryption, for
ECDSA [108] etc. It is known to be the slowest operation that motivated many
implementations to use projective coordinates. Yet, some inversions have to be
performed even in this case and the fastest and the most secure way to do so
is a dedicated inverter in hardware.

For any α ∈ GF (2m), α−1 = α2m−2. Let 2m − 2 be decomposed as 2 + 22 +
23 + · · ·+ 2m−1; then α−1 can be expressed as

α−1 =
(
α2
) (

α22
)
· · ·
(
α2m−1

)
. (4.18)

Thus, the computation of the inverse of α requires m− 1 squaring operations
and m− 2 multiplications [265, 101].

Wang et al. propose a chip to realize Eq. (4.18) by using repeated square
and multiply operations in normal basis [265]. Hasan et al. propose to use
polynomial base representation for the same problem [101]. Feng, Fenn et al.,
Calvo and Torres and Takagi et al. come up with different representations for
2 + 22 + 23 + · · · + 2m−1 in [65], [66], [35] and [252], respectively. Wei uses
the systolic architecture for modular multiplication and uses this architecture
for repeated multiplications to realize Eq. (4.18) in [269]. Wang and Guo also
propose a systolic architecture and claim that their architecture has half the
area of Wei’s in [89, 268].

Another decomposition for 2m − 2 is as follows

2m − 2 =
(
2m/2 + 1

)(
2m/2 − 2

)
+ 2m/2 .
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Therefore α−1 can be computed by [111]

α−1 =
(
α2m/2

· α
)(2m/2−2)

· α2m/2

= y
(2m/2−2)
1 · α2m/2

= y−1
1 · α2m/2

=
(
y2m/4

1 · y1

)(2m/4−2)
· y2m/4

1 · α2m/2

= y−1
2 · y2m/4

1 · α2m/2

...

Applying a similar procedure iteratively a recursive algorithm for computing
multiplicative inverses in GF (2m) is given in [111] by Itoh and Tsujii. They
used a normal basis representation in order to compute the square easily. Asano
et al. generalize in [14] the recursive algorithm proposed in [111] for multiplica-
tive inverse computation in the composite field GF ((2m)

n
).

Brunner et al. design a multiplicative structure which uses Euclid’s algorithm to
find the greatest common divisor (GCD) of two polynomials in [33]. Yan and
Sarwate propose a systolic architecture for implementing Euclid’s algorithm
in [281].

Paar and Rosner give the result of their FPGA implementation of inversion in
composite fields in [210]. Information about the complexity of inverse compu-
tation can be found in the work by Wu [272]. Gao and Sobelman gave some
VLSI design results by using normal basis in [76]. Hasan and Wassal [102]
implement inversion circuit which they proposed in the same work as a part of
their GF (2m) arithmetic processor. They use normal basis for representation
and extended Euclidean algorithm for GCD computation.

Modular inversion is often performed by the Extended Euclidean Algorithm
(EEA) [127]. Kaliski [121] proposed a method of Montgomery Inverse which
is also derived from the EEA. Some other modular inverse studies based on
this technique are presented by Savaş and Koç in [225]. Their algorithm has
been implemented in hardware in Gutub et al. [91]. In this architecture two
VLSI hardware implementations are presented. Both are based on the same
inversion algorithm with the difference of one being fixed but fully parallel and
the other one being scalable. Both designs have been compared based on their
speed and area. The area of the scalable design is on average 42% smaller than
the fixed one.
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4.2 Arithmetic Operations over GF (p)

In this section we introduce the arithmetic operations over GF (p) used in ECC
over GF (p). The performance of an ECC depends on the performance of these
operations specially the modular multiplication.

4.2.1 Addition/Subtraction

Modular addition and subtraction are executed according to Algorithm 4.4 and
Algorithm 4.5, respectively [129].

Algorithm 4.4: Modular addition over GF (p)

Require: M , 0 ≤ A < M , 0 ≤ B < M
Ensure: C = A + B mod M
1: C ′ = A + B
2: C ′′ = C ′ −M
3: if C ′′ < 0 then
4: C = C ′

5: else
6: C = C ′′

7: end if

Algorithm 4.5: Modular subtraction over GF (p)

Require: M , 0 ≤ A < M , 0 ≤ B < M
Ensure: C = A−B mod M
1: C ′ = A−B
2: C ′′ = C ′ + M
3: if C ′ < 0 then
4: C = C ′′

5: else
6: C = C ′

7: end if

The numbers are represented in two’s complement representation. In this repre-
sentation, addition and subtraction can be realized with the same circuit [212].
Addition/subtraction circuit (ASC) includes a bit-serial adder with one full
adder (FA), two shift registers, one flip-flop, a counter and a controller as shown
in Fig. 4.14 [148]. One addition/subtraction is executed in l clock cycles, with
l the bit-length of the A and B. Hence one modular addition/subtraction is
executed in 2l + 1 clock cycles.
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Figure 4.14: Architecture of the bit serial addition/subtraction circuit over
GF (p)

4.2.2 Montgomery Modular Multiplier over GF (p)

Montgomery modular multiplication is defined as follows [168]:

Mont(x, y) = xyR−1 mod N .

For a word base b = 2α, R should be chosen such that R = 2r = (2α)l > N .
There is a one-to-one correspondence between each element x ∈ ZN and its
Montgomery representation xR mod N . This Montgomery representation al-
lows very efficient modular arithmetic especially for multiplication. Mont-
gomery’s method for multiplying two integers x and y modulo N avoids di-
vision by N , which is the most expensive operation in hardware. The method
requires conversion of x and y to Montgomery representation and conversion
of the calculation result back to ZN . The procedure is as follows. To compute
Z = xy mod N , one first has to compute the Montgomery multiplication of x
and R2 mod N to get Z ′ = xR mod N . Mont(Z ′, y) gives the desired result.
When computing the Montgomery product T = Mont(x, y) = xyR−1 mod N ,
the procedure shown in Algorithm 4.6 is performed [155].

In the original notation of Montgomery after each multiplication a reduction
was needed (Step 7 in Algorithm 4.6). The input had the restriction x, y < N
and the output T was bounded by T < 2N . As a consequence, if T > N ,
N must be subtracted so that the output can be used as input of the next
multiplication. To avoid this subtraction a bound for R is known [262] such
that for inputs x, y < 2N the output is also bounded by T < 2N .

In [258] the need of avoiding reduction after each multiplication is addressed.
In practice this means that the output of the multiplication can be directly used
as an input of the next Montgomery multiplication. We want to find a bound
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on R such that with X, Y < 2N the output of the Montgomery multiplication
T < 2N . Write R ≥ kN , then:

T =
xy + mN

R
=

xy

R
+

m

R
N <

4

k
N + N ,

where m = (xy mod R)N ′ mod R [18].

Hence, T < 2N for k ≥ 4, implying: 4N ≤ R. We will use 4N < R = 2l+2,
by taking α = 1 for simplicity and executing the iteration starting from Step 2
l + 2 times. As the result of the choice of α, −N−1 mod 2α can be written
as (2 − n0)

−1 mod 2. Because N is odd for RSA and an odd prime for ECC,
n0 = 1 which results in N ′ = 1. We will use Algorithm 4.7 for MMM which
includes these improvements.

Algorithm 4.6: Montgomery modular multiplication over GF (p) with final
subtraction

Require: N = (nl−1 · · ·n1n0)2α , x = (xl−1 · · ·x1x0)2α ,
y = (yl−1 · · · y1y0)2α with x, y ∈ [0, N − 1], R = (2α)l,
gcd(N, 2α) = 1 and N ′ = −N−1 mod 2α

Ensure: T = xyR−1 mod N
1: T ← 0.
2: for i from 0 to (l − 1) do
3: mi ← (t0 + xiy0) N ′ mod 2α

4: T ← (T + xiy + miN)/2α

5: end for
6: if T ≥ N then
7: T ← T −N
8: end if

Algorithm 4.7: Montgomery modular multiplication over GF (p) without
final subtraction

Require: N = (nl−1 · · ·n1n0)2, x = (xl · · ·x1x0)2, y = (yl · · · y1y0)2 with
x, y ∈ [0, 2N − 1], R = 2l+2, gcd(N, 2) = 1

Ensure: T = xyR−1 mod 2N
1: T ← 0
2: for i from 0 to l + 1 do
3: mi ← (t0 + xiy0) mod 2
4: T ← (T + xiy + miN)/2
5: end for

All the operations will be computed modulo 2N through the EC point multi-
plication. The final round in the EC point multiplication is the conversion to
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the integer domain, i.e., calculating the Montgomery multiplication of the last
result and 1. The same arguments as above prove that this final step remains
within the following bound: Mont(T, 1) ≤ N .

Our system can be divided hierarchically into three levels [196, 198]:

1. Systolic Array Cell: computes 1 bit of T in Step 4 of Algorithm 4.7.

2. Systolic Array: computes one iteration of Step 2 of Algorithm 4.7.

3. MMMC: computes the complete Algorithm 4.7.

In the following sections we describe the system using a bottom-up approach.

4.2.2.1 Systolic Array Cells

The ith iteration of Step 2 in Algorithm 4.7 computes the temporary results

Ti = 2−1(Ti−1 + xiY + miN) ,

where i = 0, · · · , l + 1 and T−1 = 0 [259]. The jth bit of Ti is obtained using
the recurrence relation

22c1i,j + 2c0i,j + ti,j = ti−1,j+1 + xiyj + minj + 2c1i,j−1 + c0i,j−1 , (4.19)

for i = 0, · · · , l + 1, j = 0, · · · , l + 1, c1i,−1 = 0 and c0i,−1 = 0. In Eq. (4.19),
2c1i,j + c0i,j , j = −1, · · · , l, denotes the carry chain up the adder.

The regular cell of the systolic array consists of two FAs, one half-adder (HA)
and two AND-gates as shown in Fig. 4.15. We can calculate mi from the
following equation:

mi = (ti−1,1 + xiy0) mod 2 = ti−1,1 ⊕ xiy0 , (4.20)

for i = 0, · · · , l + 1 and t−1,1 = 0. Here mi is not an input to the rightmost
cell, but obtained in the rightmost cell.

Because there is no carry input to the rightmost cell, the equation for calcu-
lating ti,0 can be simplified as shown by Eq. (4.21).

2c0i,0 + ti,0 = ti−1,1 + xiy0 + mi , (4.21)

for i = 0, · · · , l + 1 and t−1,1 = 0. By combining Eq. (4.20) and Eq. (4.21), it
can easily be shown that ti,0 = 0 and the equation for calculating c0i,0 is as
follows:

c00 = ti−1,1 + xiy0 ,

for i = 0, · · · , l + 1 and t−1,1 = 0. The rightmost cell of the systolic array
consists of one AND, one OR and one XOR gate as shown in Fig. 4.16.
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Figure 4.15: Schematic view of a regular cell in the systolic array used in the
Montgomery modular multiplier over GF (p)
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Figure 4.16: Schematic view of the rightmost cell in the systolic array used in
the Montgomery modular multiplier over GF (p)

Because there is only one carry input from the rightmost cell, Eq. (4.19) can
be simplified for ti,1 as follows, which is implemented by the cell shown in
Fig. 4.17. It consists of one FA, two HAs and two AND-gates.

22c1i,1 + 2c0i,1 + ti,1 = ti−1,2 + xiy1 + min1 + c00 .

for i = 0, · · · , l + 1 and t−1,2 = 0.

Because nl = 0, the equation of ti,l can be simplified as follows:

2ti,l+1 + ti,l = ti−1,l+1 + xiyl + 2c1i,l−1 + c0i,l−1 ,

for i = 0, · · · , l + 1 and t−1,l+1 = 0. This equation is implemented by the lth
cell, which is shown in Fig. 4.18. This cell consists of one FA, one AND and
one XOR-gate.

The ith row computes Ti from Ti−1. Each cell operates in a single clock cycle.
Then the i, jth cell processes the bits of Eq. (4.19) at clock cycle time 2i + j.
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the Montgomery modular multiplier over GF (p)

4.2.2.2 Systolic Array

In order to obtain a linear, pipelined modular multiplier, only one row of cells
is taken. The jth cell behaves like cell (i, j), computing Eq. (4.19) at time 2i+j
for i = 0, · · · , l + 1.

The schematic view of the systolic array is shown in Fig. 4.19. T denotes
the intermediate value register. The carry chain is stored in the C0 and C1
registers.

Figure 4.19 shows that the ti,j+1 output of the (j +1)-st cell is used as an input
for the jth cell during the (i + 1)th iteration. This way the division by 2 in
Step 4 of Algorithm 4.7 is realized.

The total area of the systolic array is (5l− 3)XOR+(7l− 7)AND +(4l− 5)OR
gates and 4l flip-flops. The critical path is the same as the critical path of one
regular cell and it is independent of the bit-length of the operands, hence equal
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Figure 4.19: Schematic view of the one dimensional systolic array used in the
Montgomery modular multiplier over GF (p)

to 2TFA + THA, where TFA and THA are the critical paths of one FA and HA,
respectively.

4.2.2.3 Modular Montgomery Multiplication Circuit

The MMMC has three l-bit data inputs X , Y and N , one START instruction
input, one DONE output, which indicates that the operation is finished, and
an l-bit RESULT output.

The MMMC is designed using the ASM approach; an ASM chart of the MMMC
is shown in Fig. 4.21. For detailed information about the ASM approach, the
reader is referred to Mano and Kim [148]. The circuit consists of a controller
and a data path as shown in Fig. 4.20. The controller has four states, IDLE,
MUL1, MUL2 and OUT. The data path consists of a systolic array, four internal
registers, a counter and a comparator.

The controller stays in the IDLE state waiting for the START instruction.
When the START input is set, the X , Y and N registers are loaded with the
input values and the T register and the counter are reset.

In MUL1, the outputs of the systolic array cells are written to the T register
and the controller goes to the MUL2 state. When the controller is in the MUL2
state, the counter is incremented by 1. When the counter value reaches 2(l+1),
the comparator sets the “count-end” signal. Then the controller goes to the
OUT state in which the value of the T register is written to the RESULT
output and the acknowledgement signal DONE is set.

In the MUL2 state, the X register is shifted one bit to the right and the MSB
of the X register is filled with 0. This ensures that, during the last iteration of
Step 2 of Algorithm 4.7, the value of xl+1,0 will be 0.

As mentioned before ti,j is calculated at the (2i+j)th clock cycle, i = 1, · · · , l+2
and j = 1, · · · , l. Similarly tl+2,l is calculated at the (2(l + 2) + l)th clock
cycle. Hence, the total number of clock cycles for completing one modular
Montgomery multiplication equals 3l + 4 .
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Figure 4.20: Architecture of the Montgomery modular multiplier circuit over
GF (p)

In the previous work from Blum and Paar [25] the cells process u data bits
in one clock cycle. The 3-bit control registers are put in the cells to control
the output of four complex multiplexors. These bring a high latency on the
critical path of one cell and as a consequence, the clock frequency is lower. In
this work, cells process 1 bit in one clock cycle; the circuit is constructed using
only combinational elements and the architecture is much simpler as shown in
Figs. 4.15, 4.16, 4.17 and 4.18.

In [25], the total number of bits used for control logic is equal to 3ḋl/ue. The
role of the control in their circuit and the implementation of the complete
algorithm using it is not completely clear. In this work, the control logic
requires log2(l + 2) + 2-bits, including a 2-bit state register, a log2(l + 2)-bit
counter and a comparator. It is implemented separately from the systolic array
as shown in Fig. 4.20 and controls the execution of the modular Montgomery
multiplication algorithm according to the ASM shown in Fig. 4.21.

Implementation Results of The Modular Montgomery Multiplication
Circuit

The MMMC is implemented on a Xilinx V800-HQ (Virtex) FPGA. The number
of slices (S), clock period (Tp), time-area product (TA) and time for one MMM
(TMMM ) for different bit-lengths l are given in Table 4.2.

One can conclude from Table 4.2 that the clock frequency changes slightly with
the bit-length. This property gives our circuit the advantage of suitability to
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Figure 4.21: Algorithmic state machine chart of the Montgomery modular
multiplier over GF (p)

various applications with different bit-lengths such as RSA and ECC.
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Table 4.2: Number of slices (S), clock period (Tp), time-area products (TA) and
time for one MMM (TMMM ) for different bit-lengths l on a Xilinx V800-HQ

# S Tp TA TMMM

l ns S · ns µs
32 369 13.121 4841.65 1.311
64 697 12.252 8539.64 2.401
128 1355 12.846 17 406.33 4.984
256 2666 13.907 37 076.06 10.736
512 5290 15.036 79 540.44 23.155

4.3 FPGA Implementation of Elliptic Curve
Cryptosystems over GF (2m)

Our ECP can be divided into four hierarchical levels as shown in Fig. 4.22 [160,
159].

The operation blocks at each level from top to bottom are as follows:

• Level 1: Main Controller (MC)

• Level 2:

1. affine to projective coordinates converter (AtoP)

2. normal to Montgomery representation converter (NtoM)

3. EC point multiplier (ECPM)

4. projective to affine coordinates converter (PtoA)

5. Montgomery to normal representation converter (MtoN)

• Level 3:

1. EC point doubling circuit (ECPDC)

2. EC point addition circuit (ECPAC)

3. modular multiplicative inverter (MMI)

• Level 4:

1. modular addition (MA)

2. Montgomery modular multiplication circuit (MMMC)

The bit-length m, the word length ω and the key length l are input parameters
to the circuit.
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Figure 4.22: Block diagram of the elliptic curve point multiplier circuit over
GF (2m)

4.3.1 Elliptic Curve Point Doubling and Addition

Algorithm 4.8 and 4.9 realize an ECPA and an ECPD over GF (2m) based
on [143], respectively. The inputs to the algorithms are points on the curve
that are written in projective coordinates, as explained in Section 2.1.4.2. The
output points are also in projective coordinates.

The doubling algorithm consists of eleven steps and needs three temporary
registers. In each step a modular addition and/or a MMM is executed. Because
MA and MMMC are separate hardware blocks, the operations can be performed
in parallel. The first ten steps all contain a Montgomery modular multiplication
that is sometimes accompanied by a modular addition, while the 11th step
only consists of a modular addition. This makes the total execution time
10TMMM + 1, with TMMM the latency of one MMM. In the same way, it
can be found that the total execution time of one ECPA is 14TMMM + 1.
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Algorithm 4.8: Elliptic Curve Point Addition over GF (2m)

Require: P1 = (x, y, 1), P2 = (X2, Y2, Z2)
Ensure: P1 + P2 = (X3, Y3, Z3)

1. T1 ← Z2
2

2. T2 ← yT1

3. T3 ← xZ2 T2 ← T2 + Y2

4. T1 ← aT1 T3 ← T3 + X2

5. T4 ← Z2T3

6. T3 ← T 2
3 T1 ← T4 + T1

7. T1 ← T3T1

8. Z3 ← T 2
4

9. T4 ← T2T4

10. T2 ← T 2
2 T1 ← T1 + T4

11. T1 ← X2Z3 X3 ← T2 + T1

12. T2 ← Y2Z3 T1 ← X3 + T1

13. T1 ← T4T1 T2 ← X3 + T2

14. T3 ← Z3T2

15. Y3 ← T1 + T3

4.3.2 Modular Multiplicative Inverter

Modular multiplicative inversion is computed using Fermat’s theorem [127,
155], a(x)−1 = a(x)2

m−2 mod p(x). This modular exponentiation of a(x) by
2m − 2 = (1, 1, · · · 1, 1, 0)2, using the square-and-multiply algorithm [155], is
shown in Algorithm 4.10.

The MMI circuit controls the execution of the square-and-multiply algorithm.
It gets its START signal from the PtoA circuit. The MMI circuit then com-
mands the MMMC to perform a MMM twice in every loop iteration in Algo-
rithm 4.10 and once at the end.

4.3.3 Affine to Projective Representation Converter

As explained in Section 2.1.4.2, it is more efficient to compute point operations
using projective instead of affine coordinates. The conversion to projective
coordinates is as follows:

(xp(x), yp(x)) → (X(x), Y (x), Z(x)) = (xp(x), yp(x), 1)

where (xp(x), yp(x)) is the point in affine coordinates and (X(x), Y (x), Z(x))
is the same point in projective coordinates.
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Algorithm 4.9: Elliptic Curve Point Doubling over GF (2m)

Require: P1 = (X1, Y1, Z1)
Ensure: 2P1 = (X3, Y3, Z3)

1. T1 ← Z2
1

2. T2 ← X2
1

3. Z3 ← T1T2

4. T1 ← T 2
1

5. T2 ← T 2
2

6. T1 ← bT1

7. T2 ← Y 2
1 X3 ← T1 + T2

8. T3 ← aZ3 T2 ← T2 + T1

9. T1 ← T1Z3 T3 ← T3 + T2

10. T3 ← X3T3

11. Y3 ← T3 + T1

Algorithm 4.10: Modular multiplicative inversion over GF (2m)

Require: polynomial a(x), 0 ≤ a(x) < p(x) and p(x)
Ensure: b(x) = a(x)2

m−2 mod p(x) = a(x)−1 mod p(x)
1: b(x)← a(x)
2: for i from 2 to m− 2 do
3: b(x)← b(x)b(x) mod p(x)
4: b(x)← b(x)a(x) mod p(x)
5: end for
6: b(x)← b(x)b(x) mod p(x)

4.3.4 Normal to Montgomery Representation Converter

The conversion of a(x) from the normal to the Montgomery representation
is computed as Mont(a(x), r(x)2) = a(x)r(x) mod p(x). Multiplication by the
MMMC of two polynomials that are in Montgomery representation will produce
the Montgomery representation of the product as Mont(a(x)r(x), b(x)r(x)) =
a(x)b(x)r(x) mod p(x).

Modular addition of two polynomials that are in Montgomery representation
will produce the Montgomery representation of the sum as a(x)r(x) mod p(x)+
b(x)r(x) mod p(x) = (a(x) + b(x)) r(x) mod p(x). Because of these relations,
the Montgomery representation of the coordinates of P , the coefficients a, b
and the number 1 will be calculated at the beginning of the point multiplication
by the NtoM circuit and all the operations during the EC point multiplication
will be performed in Montgomery representation.
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The conversion to Montgomery representation of the number 1 is computed as
Mont(1, r(x)2) = r(x) mod p(x).

The other conversions in NtoM are performed by the following four operations:

Mont(a(x), r(x)2) = a(x)r(x) mod p(x)
Mont(b(x), r(x)2) = b(x)r(x) mod p(x)
Mont(xp(x), r(x)2) = xp(x)r(x) mod p(x)
Mont(yp(x), r(x)2) = yp(x)r(x) mod p(x) .

4.3.5 Elliptic Curve Point Multiplier

The ECPM circuit controls the execution of Algorithm 2.1. In every iteration
of the loop, an ECPD is executed. An ECPA is only performed when the
evaluated key bit is 1.

4.3.6 Projective to Affine Coordinates Converter

After completing the ECPM the result point Q must be converted from pro-
jective coordinates to affine coordinates. This is done as (X(x), Y (x), Z(x)) →
(xq(x), yq(x)) such that xq(x) = X(x)Z(x)−1 and yq(x) = Y (x)Z(x)−2 [143].
PtoA controls four operations in the following order:

Z(x)−1r(x) mod p(x) = MMIof Z(x)
Mont(X(x)r(x), Z(x)−1r(x)) = xq(x)r(x) mod p(x)
Mont(Z(x)−1r(x), Z(x)−1r(x)) = Z(x)−2r(x) mod p(x)
Mont(Y (x)r(x), Z(x)−2r(x)) = yq(x)r(x) mod p(x) .

4.3.7 Montgomery to Normal Representation Converter

Because the coordinates of the product point must be in normal representa-
tion, as a last action a conversion from Montgomery representation to nor-
mal representation is needed. This conversion requires two additional ex-
ecutions of the MMMC operation with the inputs xq(x)r(x) mod p(x) and
1, then yq(x)r(x) mod p(x) and 1, as xq(x) = Mont(xq(x)r(x), 1), yq(x) =
Mont(yq(x)r(x), 1).

4.3.8 Implementation Results

The EC processor has been implemented on a Xilinx Virtex XCV800-4-HQ240
FPGA. The implementation results are given in Table 4.3. The number of
gates in the table is not the same as ASIC gates. They are equivalent gates
computed by the Xilinx Project Manager. The table shows that the minimum
clock period and the area of the circuit decrease when the word length ω of
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Table 4.3: Area and latency results of the elliptic curve processor implemen-
tations over GF

(
2163

)
for different word lengths (the key is 160-bit and its

Hamming weight is 80)

w 1 4 8
Number of gates 138 528 149037 150678
Clock Period (ns) 19.956 19.977 20.923
Latency of ECP (ms) 9.652 7.249 3.801

MMM is enlarged. For a larger ω, the latency of the circuit becomes smaller,
because the point multiplication can be done in fewer clock cycles.

The maximum clock frequency is independent of the bit-length m. The total
latency of the elliptic curve point multiplication can be calculated as

(1900 + 14hw) TMMMC + 316 + 2hw ,

where hω is the Hamming Weight of the key and TMMMC is the latency of one
MMM. TMMMC = m for ω = 1 and TMMMC = 3m

ω for ω > 1. One ECPM
requires 3.810 ms at 47 MHz. In order to verify the correctness of the execution
of the circuit we simulated the behavior for m = 8 and m = 16 by the simulator
provided by Xilinx Foundation software. Then we produced 10 000 test vectors
by Magma, after implementing and uploading the circuit on the FPGA, we let
the FPGA executing 10 000 EC point multiplications with the input points in
the test vectors and a fixed key. We verified that the outputs are the same as
the ones in the test vectors.

Because there is no previous work which uses MMM and all other designs
use different platforms, it is hard to compare the area of the current work
with the previous ones. The time needed for one ECPM with our design is
approximately the same as the result reported in [5], smaller than the results
reported in [249, 74, 75, 140, 63, 84, 116]. Unfortunately our circuit is slower
than the ones reported in [192] and [60].

4.4 State of the Art for Elliptic Curve Cryp-
tosystem Implementations over GF (2m)

The following sections discuss earlier work on hardware implementations of
elliptic curve point multiplication over GF (2m).

In 1989 Agnew et al. report the first result for performing elliptic curve op-
erations in hardware [3]. To achieve this they used their earlier normal basis
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multiplier as arithmetic unit and a Motorola M68008 as control unit. The
throughput of the system is about 5 Kbps. Agnew et al. also used a Mo-
torola M68030 as control unit and implemented a GF

(
2155

)
processor in [4].

If point multiplication by an integer with Hamming weight 30 is considered,
this requires about 154 point doublings and 29 additions. The device is able
to perform at least 145 integer multiplication per second, which corresponds
to approximately 50 Kbps. In elliptic curve systems, the same base point P
can be used repeatedly. Then all of the squares can be pre-computed, which
increases the throughput by a factor of 4 to approximately 200 Kbps. The
storage requirements for the point squarings is less than 6 Kbyte.

Agnew et al. describe how Diffie-Hellman and ElGamal protocols can be effi-
ciently implemented using the group of an elliptic curve over a finite field; a
VLSI implementation of an arithmetic processor in GF

(
2155

)
is discussed [5].

The finished device requires the equivalent of about 11 000 gates and runs at
the design target speed of 40 MHz (clock).

Sutikno et al. also proposed a VLSI design and implementation of arithmetic
processor over GF

(
2155

)
in [249]. In this work the field inversion is performed

by the method of Agnew et al. [1]. It needs 23 field multiplications for m =
155. This method is used for accomplishing area optimization. The arithmetic
processor has 32-bit wide internal bus. It has 15 instructions and 5 bit-length
for its operation codes (3 bit LSB used for selecting instruction and 2 MSB for
selecting the active register).

Sutikno et al. also presented the use of non-supersingular elliptic curve group
over GF

(
2155

)
and a VLSI implementation of an ElGamal ECC processor

in [251]. There are eleven 155-bit wide registers to store data and interme-
diate results from the arithmetic process. In the control module, there are
five control blocks: main control, repeat square and multiply control, adding
point control, doubling point control and inversion control. The throughput
rate for encryption is estimated as 6.5 · 10−4 bit/clock cycle and for decryption
13.1 · 10−4 bit/clock cycle. The area on FPGA is estimated as 40 000-50000
gates.

Gao et al. proposed in [74, 75] an ECC coprocessor with variable key size, which
utilizes the internal static random access memory (SRAM) in an FPGA. The
controller is the kernel of the scalar multiplier and has the format of a finite
state machine (FSM) with a table look-up to implement the logic functions.
All operations can be categorized as one of the following atomic operations:
unconditional jump, conditional jump, operand load, operand store, finite field
addition, finite field squaring, finite field multiplication and finite field inver-
sion. The scalar is decomposed as a non-adjacent form (NAF) and the EC
point multiplication is computed with a series of addition/subtractions of EC
points.
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The cost of one EC point multiplier with key size m is given as:

• total flip-flops (FFs) = 21m + 3 log2 m + 48;
• total function generators (FGs) = 24m + 3 log2 m + 308;
• minimal number of CLBs = 12m + (3 log2 m)/2 + 154; and
• maximal number of CLBs = 45m + 6 log2 m + 356.

Hauck et al. proposed an ECC chip using asynchronous wave pipelines (AWPs)
in [103]. They give the simulation results of their design and report that the
circuit runs at a rate of 1.5 GHz in 0.35 µm CMOS technology.

Leung et al. described a Xilinx Virtex based FPGA implementation of an EC
processor in [140]. It consists of an arithmetic logic unit (ALU), register file,
a microcode sequencer and microcode storage. In the ALU a Massey-Omura
Multiplier is used. A 16 × n-bit dual-port synchronous register file is con-
structed from the 16×1-bit distributed random access memory (RAM) feature
of the Xilinx Virtex series. Apart from instructions which directly control the
ALU, there are three types of jump instructions: JMP-jump unconditionally,
JKZ-jump if the least significant bit of K counter is zero and JCZ-jump if the C
register is zero. Another FPGA implementation for 270-bit operations similar
to the previous was proposed by Ernst et al. in [63]. They used a XC4085XLA
FPGA for implementation and reported that 180 000 system gates were used.
The clock speed was 34 MHz and resulting performance is 146 point multipli-
cations per second.

Orlando and Paar proposed a scalable elliptic curve processor architecture
which operates over GF (2m) in [192]. The EC processor (ECP), consists of
three main components. These components are the main controller (MC), the
arithmetic unit controller (AUC) and the arithmetic unit (AU). The AU per-
forms the GF (2m) field additions, squares, multiplications and inversions un-
der AUC control. The MC executes the double-and-add and the Montgomery
scalar multiplication functions, the AUC performs all the other subroutines and
the AU is the hardware that computes the finite field operations. Three ECP
prototypes were built. These prototypes support ECs over the field GF

(
2167

)
,

with this field being defined by the field polynomial F (x) = x167 +x6 +1. Each
prototype used a 16-bit MC processor with 256 words of program memory, a
24-bit AUC processor with 512 words of program memory and 128 registers,
each of which is 167 bits wide. They also provided a 32-bit I/O interface to
the host system. The prototypes used least significant digit (LSD) multipliers
with digit sizes equal to 4, 8 and 16. The prototypes were implemented using
the Xilinx’s XCV400E8BG432 (Virtex E) FPGA. The prototype implementa-
tions used between 15% and 28% of the look-up tables (LUTs) (depending on
the digit size), 16% of the FFs and 25% of the Block RAMs available in the
XCV400E8BG432 FPGA.

Janssens et al. proposed a high-speed hardware/software co-design for com-
puting EC point multiplications over GF (2m) and implemented it on an Atmel
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Field Programmable System Level Integration Circuit (FPSLIC) [116]. The
design consists of a Data-path, which performs the finite field arithmetic and
two FSMs that each control a particular part of the functionality at a particular
level of hierarchy. At the highest level the Software Controller is the master. It
gives instructions to the Hardware Controller, which translates these instruc-
tions in a sequence of direct control signals for the operators in the Data-path.

The design flow which is proposed by the Atmel System Designer software was
followed. On average, 125 m instructions for the AVR are needed to read in
data, perform the point multiplication and write out the results. Since the
embedded AVR core achieves a throughput approaching 1 MIPS per MHz, this
corresponds with 125 m clock cycles. The critical path after synthesis is 33 ns.
The corresponding maximum clock frequency is nearly 30 MHz. After place-
and-route it turned out that 23 CLBs are needed per bit slice and 496 CLBs
for the hardware controller. Since there are only 2304 CLBs available on the
FPGA, a design for a key length of 72 bits can be implemented.

The results above are used to estimate the total time it takes to perform a com-
plete EC point multiplication. Since the Software Controller is always waiting
on an interrupt from the Hardware Controller before sending a new instruction,
the Hardware Controller receives this new instruction almost directly after it
has finished performing the former instruction. Therefore we can take only the
number of clock cycles needed by the hardware part, which is on average 12m2.

Schaumont and Verbauwhede present an elliptic curve processor over GF (2m)
in [227, 228]. The architecture has a layered structure with the layers corre-
sponding to the operations described in the security pyramid shown in Fig. 4.23.
The authors propose a language and simulation environment that allows to ex-
plore the design of security domain specific processors at a high abstraction
level.

Security
Protocol

Achitecture

Security Algorithms

Number Theory

Instruction Accurate Models
Cycle Accurate/

Core, ASIC, ...
FPGA, Flash,

StrongArm .asm, ...
Verilog RTL,

Large Numbers, ...
Galoid Fields,

Key Management, ...
PKI, Cipher,

Implementation

Hash, AES, RSA, ECC, ...

Figure 4.23: Security pyramid

Bednara et al. compare several approaches to hardware implementation of
ECCs in [20]. They especially focused on FPGA based implementations. Kim
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and Lee presented in [122] an ECP which consists of control unit, arithmetic
unit and register unit.

We present a hardware architecture of a processor for an EC cryptosystem over
the finite field GF (2m) in Section 4.3. We use Montgomery modular multiplier
over GF (2m) proposed by Koç and Acar in [130] in our elliptic curve processor.
The maximum clock frequency is independent of the bit length m. The total
latency of the ECP can be calculated as (1900 + 14hw) TMMMC + 316 + 2hw,
where hw is the Hamming weight of the key and TMMMC is the latency of one
MMM. TMMMC = m for w = 1 and TMMMC = 3m

w for w > 1. One elliptic
curve point multiplication (ECPM) requires 3.810 ms at 47 MHz.

Creating a working implementation was a significant challenge in the 1980s; the
number of hardware implementations that made it to prototype or production
phase was very limited. In the 1990s, we have seen significant progress due to
a combination of better algorithms and advances in VLSI technology.

Reviewing various hardware architectures for ECC one conclusion is imposing
itself. Hardware as proposed in the 1980s is still relevant in the sense of its
fundamentals such as finite field arithmetic, the hierarchy of the operations, etc.
The algorithms for ECC are constantly being pushed by current applications
to be even faster, in order to fulfill industry and government demands.

The implementations that were proposed in the last years use the software/hard-
ware co-design technique. Only the basic operations are implemented in hard-
ware and the software part of the implementation call these coprocessors. This
approach gives the possibility to use the same hardware for different applica-
tions. The performance of these designs will be less than the performance of a
fixed design, but they will be more flexible.

There is no doubt that in the coming years even more performant hardware
implementations will be developed for high-end applications. We believe that
the biggest challenge ahead may be the development of very compact and
inexpensive low-power implementations that allow protection for personal and
wireless devices. A second challenge is to develop efficient implementations
that offer adequate security against sophisticated side-channel attacks.

4.5 FPGA Implementation of Elliptic Curve

Cryptosystems over GF (p)

In this section we present the results of our elliptic curve processor over GF (p).
The elliptic curve we use in this design is defined by Weierstrass equation as
Eq. (2.2). Our ECP can be divided into five hierarchical levels as shown in
Fig. 4.24 [202, 195, 197, 16, 198]. The operation blocks on each level from top
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to bottom are as follows:

x
y
a
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x, y, a, R, a and M  registers
X, Y, Z, aZ  registers
6 temporary registers for EPDA
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MMMC and MAS

for point Q
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START−MtoN
DONE−MtoN
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DONE−NtoM
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EPDA MMI

logic 1

logic 1 logic 1

MMMCMAS

START−MAS
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DONE−PM
START−PM
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START−PAD

Figure 4.24: Block diagram of the elliptic curve processor over GF (p)

• Level 1: Main Controller (MC)

• Level 2:

1. Affine to projective coordinates converter (AtoP):
(x, y)→ (X, Y, Z, aZ4) such that X = x, Y = y, Z = 1, aZ4 = a.

2. Normal to Montgomery representation converter (NtoM)

3. EC point multiplier (EPM)

4. Projective to affine coordinates converter (PtoA)

5. Montgomery to normal representation converter (MtoN)

• Level 3:

1. EC Point doubling, addition circuit (EPDA)

2. Modular Multiplicative Inverter (MMI)

• Level 4:

1. Montgomery Modular Multiplication Circuit (MMMC)
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2. Modular Addition, Substraction circuit (MASC)

• Level 5: Addition, Substraction circuit (ASC)

For simplicity all blocks were designed separately with their own FSMs and data
paths. This allows for independent optimization and testing of the building
blocks. The VHDL code was written by describing the bit-length N of the
coordinates x and y of P and the bit-length l of k as parameters. Hence this
design is suitable for any N and l. In the following sections we have described
the system using a top-down approach.

4.5.1 Main Controller

MC includes an FSM with five states. The ASM chart [148] of the MC is
shown in Fig. 4.25. The START signal is the instruction signal from the host.
MC issues the instructions NtoM to start conversion from normal to Mont-
gomery representation, EPM to start point multiplication, PtoA to start con-
version from projective to affine coordinates and MtoN to start a conversion
from Montgomery to normal representation one after another by setting the
START-NtoM, START-PM, START-PtoA and START-MtoN signals, respec-
tively. The DONE-NtoM, DONE-PM, DONE-PtoA and DONE-MtoN signals
indicate that the related operations are finished. The DONE signal indicates
to the host that a complete EC point multiplication operation is finished and
the results are ready on the output ports.

4.5.2 Normal to Montgomery Representation Converter

The conversion of an integer x from the normal representation to the Mont-
gomery representation is calculated as

Mont(x, R2) = xR2R−1 mod M = xR mod M .

This conversion operation is similar to the normal to Montgomery represen-
tation conversion over GF (2m) presented in Section 4.3.4. Multiplication
by MMMC of two numbers that are in Montgomery representation will pro-
duce the Montgomery representation of their product as Mont(xR, yR) =
xRyRR−1 mod M = xyR mod M . Modular addition and subtraction of two
numbers that are in Montgomery representation will produce the Montgomery
representation of the sum or difference as xR mod M ± yR mod M = (x ±
y)R mod M . Because of these relations, the Montgomery representation of the
coordinates of P , the coefficient a and the number 1 will be calculated in the
beginning of the point multiplication by the NtoM circuit and all the oper-
ations during the EC point multiplication will be computed in Montgomery
representation.
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Figure 4.25: Algorithmic state machine chart of the main controller in the
elliptic curve processor over GF (p)

NtoM includes an FSM with 5 states. The ASM chart of NtoM is shown in
Fig. 4.26. NtoM waits in first (ini-IDLE) state until the START-NtoM signal
from MC is set. NtoM lets the MMMC to execute 4 MMMs,

Mont(1, R2) = R mod M,
Mont(x, R2) = xR mod M,
Mont(y, R2) = yR mod M,
Mont(a, R2) = aR mod M.
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After DONE-MMM is set in the last state, NtoM sets DONE-NtoM signal and
goes back to (ini-IDLE) state.

1,R   inputs of MMMC2

DONE−MMM

DONE−MMM

DONE−MMM

MMM result    xR register

1

START−MMM=1
2y,R   inputs of MMMC
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MMM result    yR register
a,R   inputs of MMMC
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0

1

MMM result    aR register
DONE−NtoM=1

START−NtoM

Figure 4.26: Algorithmic state machine chart of the normal to Montgomery
representation converter circuit in the elliptic curve processor over GF (p)

4.5.3 Elliptic Curve Point Multiplier

The ECPM includes an FSM with four states to control the execution of Algo-
rithm 2.1. The ASM chart of ECPM is shown in Fig. 4.27. The circuit stays in
the first (mul-IDLE) state until the START-PM signal from the MC is set. The
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DONE-PM signal indicates that the scanning of the bits of k is finished, so the
result of the operation can be read from the output ports. The ECPM instructs
the EPDA to start a point double operation by setting the START-PAD sig-
nal and resetting the ADD-DOUBLE signal and a point addition operation by
setting the START-PAD and ADD-DOUBLE signals. The DONE-PAD from
the EPDA indicates that a point double or addition operation is finished.

xR,yR,R,aR   Q registers

counter<l
DONE−PM=1

Q    outputs of EPDA

    inputs of EPDA
outputs of EPDA

ADD−DOUBLE=1
START−PAD=1

Q    outputs of EPDA

mul−S2

0DONE−PAD

1

k( −1)l

1

0

mul−IDLE

START−PM

yes

no

Q    inputs of EPDA
START−PAD=1
ADD−DOUBLE=0

k register  << 1 bit

counter++

mul−S1

0

1

DONE−PAD 0

mul−S3

1

Figure 4.27: Algorithmic state machine chart of the elliptic curve point multi-
plication circuit in the elliptic curve processor over GF (p)
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4.5.4 Projective to Affine Coordinates Converter

After finishing the EC point multiplication, the resulting point Q must be con-
verted from Jm coordinates to affine coordinates. This is done as follows [43]:

(
X, Y, Z, aZ4

)
→ (x, y) such that x = XZ−2 and y = Y Z−3 .

PtoA includes an FSM with six states to control the above operations. PtoA
waits in the first (PtoA-IDLE) state until the signal START-PtoA from MC is
set. After it is set, PtoA visits the other five states in the following order and
after DONE-MMM signal from the MMM circuit is set in the (PtoA-S5) state,
PtoA sets DONE-PtoA signal and goes back to (PtoA)-IDLE state.

• PtoA-S1: Z−1R =Modular Multiplicative Inversion of Z

• PtoA-S2: Z−2R = Mont(Z−1R, Z−1R)

• PtoA-S3: xR = XZ−2R = Mont(XR, Z−2R)

• PtoA-S4: Z−3R = Mont(Z−1R, Z−2R)

• PtoA-S5: yR = Y Z−3R = Mont(Y R, Z−3R)

4.5.5 Montgomery to Normal Representation Converter

Because the coordinates of the product point must be in normal representa-
tion, as a last action a conversion from Montgomery representation to nor-
mal representation is needed. This conversion requires two additional execu-
tions of the MMM operation with the inputs xR and 1, then yR and 1, as
x = Mont(xR, 1) = xRR−1, y = Mont(yR, 1) = yRR−1.

4.5.6 Elliptic Curve Point Doubling, Addition

When we convert the input point P from affine coordinates to projective coor-
dinates we take Z as 1. The Jm representation of P (x, y) is (x, y, 1, a). The EC
point multiplication is calculated by Algorithm 2.1. One of the input points
of the EC point addition at Step 5 of Algorithm 2.1 is always P . According
to these properties we can take Z1 = 1 and simplify Eq. (2.4) for EC point
addition in projective coordinates as follows:

U1 = X1Z
2
2 , S1 = Y1Z

3
2 , H = X2 − U1, r = Y2 − S1,

X3 = −H3 − 2U1H
2 + r2, Y3 = −S1H

3 + r
(
U1H

2 −X3

)
,

Z3 = Z2H, aZ4
3 = aZ4

3 .

Since both the MMMC and the modular addition/subtraction (MAS) circuits
are available, these operations can be executed in parallel. EC point addition
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Algorithm 4.11: Elliptic curve point addition over GF (p)

Require: P1 = (x, y, 1, a), P2 = (X2, Y2, Z2, aZ4
2 )

Ensure: P1 + P2 = P3 = (X3, Y3, Z3, aZ4
3 )

1. T1 ← Z2
2

2. T2 ← xT1

3. T1 ← T1Z2 T3 ← X2 − T2

4. T1 ← yT1

5. T4 ← T 2
3 T5 ← Y2 − T1

6. T2 ← T2T4

7. T4 ← T4T3 T6 ← 2T2

8. Z3 ← Z2T3 T6 ← T4 + T6

9. T3 ← T 2
5

10. T1 ← T1T4 X3 ← T3 − T6

11. aZ4
3 ← Z2

3 T2 ← T2 −X3

12. T3 ← T5T2

13. aZ4
3 ←

(
aZ4

3

)2
Y3 ← T3 − T1

14. aZ4
3 ← a

(
aZ4

3

)

(ECPA) and doubling (ECPD) can be realized by Algorithm 4.11 and Algo-
rithm 4.12, respectively.

Fourteen states and six temporary registers are needed for EC point addition
and also for EC point doubling. Because completing one MAS operation takes
a shorter time than one MMM, the latency of one state is the same as for one
MMM. Hence the total execution time of an EC point addition is 14TMMM ,
with TMMM the latency of one MMM. The total execution time of an EC
point doubling is 8TMMM + 6TMAS, with TMAS the latency of one MAS.

4.5.7 Modular Multiplicative Inverter

Modular multiplicative inversion is calculated according to Fermat’s theorem,
a−1 = ap−2 mod p, if gcd(a, p) = 1 [127, 155]. Because the curves we are
interested in are defined over GF (p) (with p prime), we can use this theorem
to find multiplicative inverses modulo p. Hence multiplicative inversion can be
performed by modular exponentiation of a by p − 2. Modular exponentiation
can be realized by using the square and multiply algorithm given in [155].

The MMI controls the execution of the square and multiply algorithm. It
includes an FSM with four states. The ASM chart of MMI is shown in Fig. 4.28.
The START-INV signal is the instruction signal from PtoA. The DONE-INV
signal indicates that the scanning of the bits of the T1 register is finished.
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Algorithm 4.12: Elliptic curve point doubling over GF (p)

Require: P1 = (X1, Y1, Z1, aZ4
1)

Ensure: 2P1 = P3 = (X3, Y3, Z3, aZ4
3)

1. T1 ← Y 2
1 T2 ← 2X1

2. T3 ← T 2
1 T2 ← 2T2

3. T1 ← T2T1 T3 ← 2T3

4. T2 ← X2
1 T3 ← 2T3

5. T4 ← Y1Z1 T3 ← 2T3

6. T5 ← T3

(
aZ4

1

)
T6 ← 2T2

7. T2 ← T6 + T2

8. T2 ← T2 +
(
aZ4

1

)

9. T6 ← T 2
2 Z3 ← 2T4

10. T4 ← 2T1

11. X3 ← T6 − T4

12. T1 ← T1 −X3

13. T2 ← T2T1 aZ4
3 ← 2T5

14. Y3 ← T2 − T3

4.5.8 Implementation Results of The Elliptic Curve Pro-
cessor

The proposed processor is implemented on a Xilinx V800-HQ-240-4 Virtex
FPGA by taking the bit-length of EC parameters N and the bit-length of k, l
as 160. According to the implementation results, the number of flip-flops and
4-input LUTs are equal to 11 192 and 14 393, respectively. This is equivalent
to 175952 gates. The minimum clock period is 40.550 ns (maximum clock
frequency: 24.661 MHz). LUTs are lookup-tables that are used as RAMs or
4-input gates. The latency of the operations according to the clock frequency of
the implemented circuit is given in Table 4.4. In order to verify the correctness
of the execution of the circuit we simulated the behavior for two p values with
bit-length 8 and 16 by the simulator provided by Xilinx Foundation software.
Then we produced 10 000 test vectors by Magma, after implementing and up-
loading the circuit on the FPGA, we let the FPGA executing 10 000 EC point
multiplications with the input points in the test vectors and a fixed key. We
verified that the outputs are the same as the ones in the test vectors.

The only existing previous work done on FPGA is from Orlando and Paar [194].
They reported that their processor used 11 416 LUTs, 5735 flip-flops and 35
BlockRAMs; BlockRAM is a block memory on Virtex FPGAs. On their FPGA
one BlockRAM consists of 4096 bits of memory. The clock frequency was
reported as 40 MHz. If we compare both results, we can say that our processor
uses less memory.
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counter<l

M−2   T1,

T1(N−1)

T2    inputs of MMMC

1

0
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START−INV
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inv−S1

DONE−INV=1

START−MMM=1
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DONE−MMM 0

T2    output of MMMC

Figure 4.28: Algorithmic state machine chart of the modular multiplicative
inverter in the elliptic curve processor over GF (p)

We use our ECP to estimate the performance of one signature generation and
verification. The ECDSA algorithm is given in Section 2.2. A circuit to execute
SHA-1 is needed. We will use the performance data for SHA-1 given by Helion
Technology Lim. in [104].

The operations used for ECDSA signature generation starting from the second
step are as follows:

1. Elliptic Curve point multiplication: 56.705 ms. One modular reduction:
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Table 4.4: Latency of the operations executed in the elliptic curve processor
over GF (p)

Operation Sub-operations # of clock cycles Latency*
ms

NtoM 4 MMM 12N + 16 0.078
EPM l ECPD+ l(51N + 66) 53.370

l/2 ECPA
PtoA MMI+4 MMM 3N2 + 16N + 16 3.218
MtoN 2 MMM 6N + 8 0.039
ECPD 8 MMM+6 MAS 40N + 38 0.261
ECPA 14 MMM 42N + 56 0.275
MMI 3N/2 MMM 9/2N2 + 6N 4.710
MMM 3N + 4 0.02
MAS 2N + 1 0.013

* for N = l = 160 at 24.661 MHz

0.013 ms.

2. Modular multiplicative inversion: 4.71 ms

3. SHA-1: 0.009 ms

4. Two multiplications: 0.08 ms. One modular addition: 0.013 ms

Total latency for one signature generation with ECDSA is 61.53 ms.

The operations used for ECDSA signature verification are as follows:

1. SHA-1: 0.009 ms

2. Modular multiplicative inversion: 4.71 ms

3. Two multiplications: 0.08 ms

4. Two elliptic curve point multiplications: 56.705 ms. One elliptic curve
point addition: 0.275 ms. One modular reduction: 0.013 ms.

Total latency for one signature generation with ECDSA is 61.873 ms.

4.6 State of the Art for Elliptic Curve Cryp-
tosystem Implementations over GF (p)

To the best of our knowledge, the first documented ECC processor over GF (p)
before our design was proposed in Orlando and Paar [194]. This so-called
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Elliptic Curve Processor (ECP) is scalable in terms of area and speed and es-
pecially suited for FPGAs. The ECP is best suited for projective coordinates
and it uses a new type of high-radix precomputation-based MMM. It consists
of three main components: the MC, the AUC and the AU. The MC is control-
ling the point multiplication. The AUC is responsible for point operations and
it controls the AU. The AU is in charge of GF (p) operations. It consists of a
register file, an adder and a multiplier as the most critical component. This
multiplier performs a generalized version of the MMM algorithm with quo-
tient pipelining introduced in Orup [203]. This version supports positive and
negative operands and features Booth recoding and precomputation. Positive
and negative numbers appear often in ECC algorithms and both are equally
treated as subtraction has the same cost as addition. The proposed ECP ar-
chitecture was verified on an example of the field GF

(
2192 − 264 − 1

)
which is

one of the fields recommended by FIPS 186-2 in [174]. The scalability of the
multiplier to larger fields was also verified in the field whose size is 521 bits.
The authors have estimated eventual a timing of 3 ms for computing one point
multiplication. The authors estimate that it takes 3 ms to compute one 192-bit
point multiplication. However, this estimate assumes 100% throughput from
the multiplier; the expected latency was not considered.

In this thesis we present a FPGA implementation of an elliptic curve pro-
cessor [202, 195, 197, 16, 198]. The processor consists of special operational
blocks for Montgomery Modular Multiplication, modular addition/subtraction,
EC Point doubling/addition, modular multiplicative inversion, EC point mul-
tiplier, projective to affine coordinates conversion and Montgomery to normal
representation conversion. Hence it can be programmed by the host to execute
any of these operations in any order. It is possible to use the proposed proces-
sor not only for ECC, but also for any system for which modular arithmetic
operations are essential, such as the RSA cryptosystem.

The basic operations are MMM and MAS. The other blocks include a FSMs,
which control the execution of these operations. The critical path depends
only on the critical path of the circuits for MMM and MAS. The architecture
of these blocks is designed to ensure a short critical path to allow for high clock
frequencies which are independent from the bit-length of the EC parameters.

Our processor is implemented on a Xilinx V800-HQ-240-4 Virtex FPGA by
taking the bit-length of EC parameters N and the bit-length of key, l as 160.
According to the implementation results, the number of flip-flops and 4-input
LUTs are equal to 11 192 and 14 393, respectively. This is equivalent to 175952
gates. The minimum clock period is 40.550 ns.

Orlando and Paar use a multiplier which is also based on the MMM algo-
rithm but it is a generalized version with quotient pipelining introduced by
Orup in [203]. We use the basic MMM algorithm from which we only ex-
clude the modular reduction as a result of the bound adjustment. In this way
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no pre-computation is required, which results in a substantial memory reduc-
tion. More importantly, this property also facilitates modular exponentiation
as temporary results of multiplications can be fed back directly without any
modular subtraction. Their multiplier has a semi-systolic architecture while
the multiplier presented here is fully systolic. This results in an increased flex-
ibility which is unrelated to any specific parameter choice. Orlando and Paar
also used an adaptation of a fixed base exponentiation method as introduced
by Brickell et al. in [29]. This algorithm is assumed to be four times faster
than standard double-and-add algorithm which we use. However, it involves
a known point calculation which is a limiting factor with respect to various
applications of ECC.

Goodman and Chandrakasan proposed a domain-specific reconfigurable cryp-
tographic processor (DSRCP) in [84]. The instruction set definition of the
DSRCP was dictated by the IEEE 1363 Public Key Cryptography Standard
document [108]. A list of the arithmetic functions required to implement the
various primitives defined in the standard was tabulated in a functional matrix,
which was then used to define the instruction set architecture (ISA) of the pro-
cessor. The ISA contains 24 instructions broken up into six types of operations:
conventional arithmetic, modular integer arithmetic, GF arithmetic, EC field
arithmetic over GF, register manipulation and processor configuration. The
processor consists of four main architectural blocks: the global controller and
microcode read only memories (ROMs), the I/O interface, the shutdown con-
troller and the reconfigurable datapath. Operands used within the processor
can vary in size from 8 to 1024 bits requiring the use of a flexible I/O interface
that allows the user to transfer data to/from the processor in a very efficient
manner. The primary component of the DSRCP is the reconfigurable data-
path. The datapath consists of four major functional blocks: an eight-word
register file, a fast adder unit, a comparator unit and the main reconfigurable
logic unit.

The DSRCP performs a variety of algorithms ranging from modular integer
arithmetic to EC arithmetic over GF. All operations are universal in that they
can be performed using any valid n-bit modulus (8 ≤ n ≤ 1024), GF (2m) field
polynomial and non-supersingular elliptic curve over GF (2n). The various
complex modular arithmetic operations (multiplication, reduction, inversion
and exponentiation) are implemented using microcode, while simple operations
(addition and subtraction) are implemented directly in hardware using the wide
adder and comparator units. Multiplication is performed using MMM [168].

The processor is fabricated in a 0.25 µm CMOS technology with five levels of
metallization. The core contains 880000 devices and measures 2.9× 2.9 mm2.
The datapath consists of 1024 processing bit-slices, each of which measures
30 × 150 µm2. At 50 MHz, the processor operates at a supply voltage of 2 V
and consumes at most 75 mW of power. In ultra-low-power mode (3 MHz at
VDD = 0.7V ), the processor consumes at most 525 µW.
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Wolkerstorfer has proposed a dual-field arithmetic unit that offers all instruc-
tions required for both types of finite fields: GF (p) and GF (2m) in [271]. He
uses a redundant number representation and a special multiplication with inter-
leaved modular reduction. Inversion is performed by the Extended Euclidean
Algorithm. This is a low-power architecture that can be realized on a moder-
ate silicon area; the author claims that it requires just a little more hardware
resources than for a pure GF (p) multiplier.

The idea of unified multiplier was first introduced by Savaş et al. in [226].
The authors presented a scalable and unified architecture for a Montgomery
multiplication module. They deployed an array of word size processing units or-
ganized in a pipeline. The same idea forms the basis of the design of Grosschädl
in [87]. His bit-serial multiplier performs multiplications in both types of fields.
The author also modifies the classical MSB-first version for iterative modular
multiplication. All concepts are introduced in detail, but the actual VLSI im-
plementation is not given. Most recent published work is the one of Satoh and
Takano [224]. They presented a dual field multiplier with the best performance
so-far in both type of fields. The throughput of EC scalar multiplication is
maximized by Montgomery multiplier and a on-the-fly redundant using binary
converter. The great quality of their design lies in the scalability in operand
size and also the flexibility between speed and hardware area.

4.7 Conclusions

We have presented an overview of the wide variety of architectures which have
been designed to implement elliptic curve cryptosystems. In the 1990s, we have
seen significant progress due to a combination of better algorithms and advances
in VLSI technology. In addition, Elliptic Curve Cryptography may allow more
compact implementations. Cryptographic hardware accelerator modules are
now a commodity for Virtual Private Networks (VPNs) and e-commerce trans-
actions; they can even be found in smart card co-processors.

There is no doubt that in the coming years even better performance hardware
implementations will be developed for high-end applications. We believe that
the biggest challenge ahead may be the development of very compact and
inexpensive low-power implementations that allow protection for personal and
wireless devices and devices used in the context of ambient intelligence. A
second challenge is to develop efficient implementations that offer adequate
security against the ever more sophisticated side-channel attacks.

We have presented an efficient hardware implementation of the Montgomery
modular multiplication over GF (2m) and GF (p) in an FPGA. The designs have
a systolic array architecture to allow pipelining and to make the clock frequency
independent of the operand bit-length m = sω. In this way, the clock frequency



4.7 Conclusions 103

does not change when the bit-length is enlarged for security reasons. The clock
frequency only depends on the word length ω, which determines the amount of
logic in one cell of the systolic array. The word length is an input parameter for
the implementation of the circuit. The MMM over GF (2m) is not restricted to
field representations using irreducible trinomials: every irreducible polynomial
of degree m can be used. In the design of MMM over GF (p) the optimal
bound is used which, with some savings in hardware, omits completely all the
conditional reduction steps that are known to be vulnerable to the side-channel
analysis attacks presented in 3.

We have described efficient implementations of elliptic curve processors over
GF (p) and GF (2m). The processors can be programmed to execute a modu-
lar multiplication, addition/subtraction, modular multiplicative inversion, EC
point addition/doubling and multiplication.
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Chapter 5

Measurement Setup

As part of a modern design flow, FPGAs are gaining more importance. Rea-
sons for this include their relatively low cost and the available tools. Register
transfer level descriptions (like VHDL for example) for a circuit can easily be
ported, if not directly used, for an FPGA implementation of the circuit. Nat-
urally, it is desirable to use the resulting FPGA implementation also for an
evaluation of the designed circuit against power-analysis attacks.

In this chapter we describe the first realization of power-analysis attacks on a
Virtex FPGA [201]. We can prove that this FPGA leaks a significant amount
of information about its internal computations through the power supply lines.
We can even provide evidence that the power consumption characteristics are
comparable with the power consumption characteristics of ordinary application
specific integrated circuits (ASICs).

In Section 5.1 we summarize a related work that is useful to understand the
power consumption characteristics of FPGAs. In Section 5.2 we briefly intro-
duce the FPGAs in general and in Section 5.3 the specific Xilinx Virtex FPGA
of our setup. In order to use this FPGA for our experiments we have designed
a board to measure the side-channel information while the FPGA is running.
This board is introduced in Section 5.4. The experiments for characterizing
the power consumption of our FPGA and the results produced with them are
given in Section 5.5.

105
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5.1 Related Work

The characterization of the power-consumption characteristics of FPGAs has
received little attention so far. Shang et al. [237] is the only recent article in
that field. In their article, Shang et al. analyze the dynamic power consumption
of the XILINX Virtex-II family. They conclude that 60% of the dynamic power
consumption is due to the interconnects, 14% is due to the clocking, 16% is
due to the logic and 10% is due to the IOBs. As we explain in Section 3.3,
in differential power analysis we exploit the correlation between the power
consumption predictions and the measured power consumption for a set of
inputs. We use the number of bit transitions in the registers as the power
consumption prediction. Based on the result in [237] the part we predict is
just 16% of the total power consumption of an FPGA. Hence it looks much
more difficult to conduct power-analysis attacks on FPGAs than on ASICs.
However, as we will demonstrate in this chapter, such attacks are feasible and
can be realized in practise.

5.2 Field Programmable Gate Arrays

A field programmable gate array (FPGA) consists of an array of configurable
logic blocks (CLBs), surrounded by programmable I/O blocks, and connected
with programmable interconnections as shown in Fig. 5.1 [190]. A typical
FPGA contains from 64 to tens of thousands of logic blocks and an even greater
number of flip-flops. Most FPGAs do not provide a 100% interconnect between
the logic blocks. Instead, sophisticated software places and routes the logic on
the device.

Two main classes of FPGA architectures can be distinguished. Coarse-grained
architectures consist of fairly large logic blocks, often containing two or more
look-up tables and two or more flip-flops. Fine-grained architectures consist
of a large number of relatively simple logic blocks. Another difference in the
architectures is the underlying process technology used to manufacture the de-
vice. Currently, the highest-density FPGAs are built using SRAM technology,
which is similar to microprocessors. The other common process technology is
called anti-fuse which are one-time programmable.

SRAM-based devices are inherently re-programmable, even in-system. After a
power-up is applied to the circuit, the program data defining the logic config-
uration must be loaded into the SRAM [148]. The program data defines how
each of the logic blocks functions, which I/O blocks are inputs and outputs,
and how the blocks are interconnected.

The FPGA either self-loads its configuration memory, or an external processor
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Figure 5.1: The architecture of the field programmable gate array (FPGA)
used in the measurement setup

downloads the configuration file into the memory of the FPGA. The configu-
ration time is typically less than 200 ms, depending on the device size and con-
figuration method. In contrast, anti-fuse devices are one-time programmable
(OTP). Once programmed, they cannot be modified, but they also retain their
program when the power is off. Anti-fuse devices are programmed in a device
programmer either by the end user or by the factory or distributor.

5.3 Xilinx Virtex Architecture

Virtex devices feature a flexible, regular architecture that comprises an array of
CLBs surrounded by programmable input/output blocks (IOBs), all intercon-
nected by a rich hierarchy of fast, versatile routing resources. Virtex FPGAs
have a coarse-grained architecture, are SRAM-based, and are customized by
loading configuration data into the internal memory cells.

5.3.1 Configurable Logic Block

The basic building block of the Virtex CLB is the logic cell (LC) [279]. A LC
includes a 4-input function generator, carry logic, and a storage element. The
output from the function generator in each LC drives both the CLB output
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Figure 5.2: Simplified diagram of a slice in the Xilinx Virtex FPGA

and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized
in two similar slices. Figure 5.2 shows a more detailed view of a single slice. In
addition to the four basic LCs, the Virtex CLB contains logic that combines
function generators to provide functions of five or six inputs.

The Virtex function generators are implemented as 4-input LUTs. In addi-
tion to operating as a function generator, each LUT can provide a 16 × 1-bit
synchronous RAM. The storage elements in the Virtex slice can be configured
either as edge-triggered D-type flip-flops or as level-sensitive latches. The D in-
puts can be driven either by the function generators within the slice or directly
from the slice inputs, bypassing the function generators. In addition to Clock
and Clock Enable signals, each Slice has synchronous set and reset signals (SR
and BY). All the control signals can be inverted independently and are shared
by the two flip-flops within the slice.

5.3.2 I/O Block

The Virtex IOB features SelectIO inputs and outputs that support a wide
variety of I/O signalling standards [279]. The three IOB storage elements
function either as edge-triggered D-type flip-flops or as level sensitive latches.
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Prior to configuration, all pins not involved in configuration are forced into
their high-impedance state.

5.3.3 I/O Banking

Some of the I/O standards require VCCO and/or VREF voltages. These volt-
ages are connected to the device pins that serve groups of IOBs, called banks.
Consequently, not all I/O standards can be combined within a given bank.
Each bank has multiple VCCO (Output supply voltage) pins, all of which must
be connected to the same voltage. This voltage is determined by the output
standards in use.

5.3.4 Configuration of the FPGA

Virtex devices are configured by loading configuration data into the internal
configuration memory. Some of the pins used for this are dedicated configura-
tion pins, while others can be re-used as general purpose inputs and outputs
once configuration is complete. Virtex supports four configuration modes which
are the Slave-serial mode, the Master-serial mode, the SelectMAP mode and the
Boundary-scan mode. The configuration mode pins (M2, M1, and M0) define
which of these modes is used. Our board supports three of these configuration
modes.

5.4 Measurement Setup

Our setup consists of two boards (see Fig. 5.3), an oscilloscope, current probe,
a passive probe, a power supply and a function generator. The main board
is responsible for interfacing to the PC via the parallel port. It is connected
with the XILINX parallel cable in order to program the VIRTEX FPGA and it
provides some LEDs, switches and buttons for testing purposes. The daughter
board itself just carries the VIRTEX FPGA; it allows to access some pins for
triggering and to measure the power consumption of the VIRTEX FPGA in a
convenient way.

5.4.1 Mother Board

The Parallel Port [15] is the most commonly used port for interfacing home
made projects. This port allows the input of 5 bits and the output of 12 bits.
The port is composed of 4 control lines, 5 status lines and 8 data lines. The
communication between the FPGA and the PC uses this parallel port. We
need only 17 input/output pins to send data or commands to the FPGA and
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Xilinx Virtex 800

Current Probe

VCCInt

Trigger

VCCO

GND

Figure 5.3: The measurement setup. On the daughter board the current probe
is connected to VCCINT. Alternatively it can be connected to the VCCO of
the individual banks, or the GND.
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receive the result, but we designed the board in such a way that it gives us
more monitoring points and thus connected 32 input/output pins of the FPGA
to the board. We use the additional 15 input/output pins for different reasons
during different stages of the development. Some of them are connected to some
LEDs and buttons. So during the first tests of the board these were used to
apply some simple inputs and to receive some outputs without the need for the
parallel port communication. During the circuit development stage, we design
the circuits in a way that they send some signals showing the internal states to
these pins. Hence they give us extra control points for the correct functionality
of the circuits. During the measurement phase we use them as trigger signals,
which show us starting or ending of the events that we are interested in. The
unused input/output pins are pulled up after the configuration.

We have also designed a protocol to send and receive data to and from the
FPGA. When the FPGA communicates with the PC, it uses the three most
significant bits of the status lines to indicate its status. The two remaining bits
of the status lines are used for sending the result from the FPGA to the PC.
The protocol is independent from the operation executed in the FPGA. Only
the length of the data which is communicated can be modified by the PC. This
provides a flexible setup where experiments with different algorithms can be
performed in a coherent manner.

5.4.2 Daughter Board

We use a Xilinx XCV800 FPGA from the Virtex series in a HQ240C package.
Reasons for this particular choice include:

1. The resources are sufficient to implement a 160-bit elliptic-curve point-
multiplication.

2. This is the most powerful FPGA that can be used for hand-mounting on
the board. This is because the pins of this FPGA are on its sides. The
more powerful FPGAs have the pins underneath with a grid structure
and so special machines are needed to mount them.

3. The architecture is made of combinational and memory elements. Be-
cause of this property it is a good representative of application specific
integrated circuits (ASICs).

The XCV800 has 12 core voltage supply (VCCINT) pins, 16 output voltage
supply (VCCO) pins and 32 ground (GND) pins. The FPGA is divided into 8
banks each with their own VCCINT and VCCO pins. After the implementation
of the desired circuit and the configuration of the FPGA with the implementa-
tion data, the banks whose CLBs are used more than the others should draw
more current from their supply lines. The CLBs that are not used do not
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draw current from their banks supply lines. With our setup it is possible to
verify this hypothesis. If different parts of a design (such as an elliptic-curve
addition and an elliptic-curve doubling) are mapped to different banks of the
FPGA, measuring the current of the individual banks allows us to take more
precise measurements. By measuring VCCINT and VCCO of the same bank
separately, we can detect the input/output and core activity timing and power
consumption separately.

Therefore we use three headers with two lines for VCCINT, VCCO and GND
as shown in Fig. 5.3. During the normal operation of the board without mea-
surement, the two pins are connected by a jumper. When we want to measure
the current flow from a specific bank, the associated jumper is replaced by a
cable that is going through the hole in the current probe as shown in Fig. 5.3.

This setup creates the possibility of making measurements on different points
at the same time and makes it easy to modify the measurement point.

5.4.2.1 Bypassing Considerations

With high-speed, high-density FPGA devices, maintaining signal integrity is
the key to reliable, repeatable designs [280]. Proper power bypassing and de-
coupling improves the overall signal integrity. Without it, power and ground
voltages are affected by logic transitions and can cause operational issues.

When a logic device switches from a logic one to a logic zero, or a logic zero
to a logic one, the output structure is momentarily at a low impedance across
the power supply. Each transition requires that a signal line be charged or
discharged, which requires energy. As a result, many electrons are suddenly
needed to keep the voltage from collapsing. The function of the bypass capac-
itor is to provide local energy storage.

10 nF capacitors are placed between every VCCINT and VCCO pin of the
FPGA and the nearest GND. Because we designed the setup in two different
cards, the daughter card can be thought of as a stand-alone chip taking power
from the mother board. Bypass capacitors had to be placed between the power
supplies of the card and the GND line.

5.4.3 Measurement Equipment

The measurement equipment consists of a Tektronix TDS714L digital storage
oscilloscope (DSO), a Tektronix CT1 current probe, a passive probes, a power
supply and a function generator.

Tektronix TDS714L oscilloscope has 500 MHz bandwidth, 500 MS/s sample
rate, 8-bit vertical resolution, 1 mV/div to 10 V/div sensitivity, record lengths
to 8 M points. The full record length cannot be used with the mathematical
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functions. Because of this we measure the data by the oscilloscope, transfer it
to the PC via GPIB connection and then perform the needed operations on the
data with MATLAB. For each measurement the PC sends the inputs and then
the signal to start the execution of the operation to the FPGA. This signal
is used as a trigger to start the measurements by the oscilloscope. After the
execution of the operation on the FPGA is completed and simultaneously the
measurement is done, the PC receives the outputs from the FPGA, compares
them with the ones calculated by the C program. If the results from the C
program and the FPGA are the same then the PC takes the measurement data
from the oscilloscope.

Tektronix CT1 current probe is used to measure the dynamic power consump-
tion of the FPGA. The probe is a closed-circuit design which will accept iso-
lated wire sized up to 20 gauge. The probe converts the current flows on this
wire to voltage and we measure this voltage as a representative of the power
consumption of the circuits.

We use a function generator instead of a fixed frequency oscillator on the FPGA
board. This gives us the possibility to change the clock frequency as needed.
Hence we can observe different power consumption characteristics of the circuit
for different clock frequencies.

The power supply provide 8 V DC to the main board. This voltage level is
divided to get 3.3 V for the I/O and 2.5 V for the core power supply of the
FPGA.

5.5 Power Consumption Characteristics

We now describe the experiments conducted on the measurement setup de-
scribed above. As the aim of our work was to build an alternative platform
for power-analysis attacks, we decided to perform first some basic experiments
to verify that the assumption which we usually make for such attacks are also
valid for our FPGA setup.

As discussed in Section 3.3, we should be able to detect either transition-count
leakage or Hamming weight leakage in our setup. This is because according
to Section 5.2, the CLBs consist of flip-flops (and other logic) which exhibit
the power consumption characteristics of CMOS technology. The only problem
can be that if the circuit, which we load into the FPGA, does not use all of the
FPGAs resources, then the noise which is produced by the unused parts might
be larger than the signal produced by the circuit.

As we explained in Section 3.3, transition count information leaks when the
dominant source of the current is due to the switching of the gates and Ham-



114 The Measurement Setup

Figure 5.4: Floor plan of the 8-bit elliptic curve point addition circuit as a
result of the implementation on the FPGA

ming weight information leaks when a pre-charged bus design is used. We
do not use pre-charged bus design. Hence, we expect that our setup leaks
transition-count information.

In order to evaluate the behavior of the FPGA we implemented an 8-bit EC
point addition circuit on the FPGA. The floor plan of the FPGA as the result
of this implementation is shown in Fig. 5.4. The floor plan shows the CLBs
of the FPGA. The dark areas on the floor plan are the used CLBs after the
implementation of 8-bit EC point addition circuit on the FPGA. We use only
3% of the FPGA and of the FPGA’s flip-flops.

Next, we measured the power consumption of the whole FPGA and, at the
same time, the power consumption of an empty (idle) bank and partially full
bank (see Fig. 5.5, Fig. 5.6 and Fig. 5.7 for the power consumption traces). The
overall power consumption shows clearly higher peaks than both of the other
traces. The idle bank’s power consumption trace however does not exhibit any
peaks during the whole computation. This experiment confirms that idle parts
of the FPGA will not influence the overall power consumption. Moreover, even
the power consumption of a very small circuit (we used only 3% of the FPGA
and of the FPGAs flip-flops) can be easily detected.

With another simple set of experiments we confirmed that the amount of power
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Figure 5.5: Current consumption trace measured from the total VCCINT of
the FPGA for the 8-bit elliptic curve point addition
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Figure 5.6: Current consumption trace measured from the VCCINT of an
empty bank of the FPGA for the 8-bit elliptic curve point addition
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Figure 5.7: Current consumption trace measured from the VCCINT of a par-
tially full bank of the FPGA for the 8-bit elliptic curve point addition

consumed of the FPGA is linear in the number of flip-flops that change their
outputs. We have designed registers of a specific size and loaded them on
the FPGA. Then we let them repeatedly store 0 and 1 values and measured
the FPGA’s power consumption. Figure 5.8 and 5.9 illustrate that the power
consumed by the 6000-bit register for flipping from all 0s to all 1s is about
twice as high as the power consumed by the 3000-bit register.

A direct conclusion from such experiments is that the power consumption char-
acteristics are essentially the same as of an ordinary CMOS circuit. Idle CLBs
or even idle banks do not add too much noise to the overall power consumption.

5.6 Conclusions

We have introduced a new platform for evaluating power analysis. Our ap-
proach consists of an FPGA, which is placed on a hand-made board which
makes it very easy to conduct power-analysis attacks. We have characterized
the power consumption of a XILINX Virtex 800 FPGA and conclude that it is
similar to the power consumption of an ordinary ASIC in CMOS technology.
Therefore, it is possible to draw conclusions about the vulnerability of a cer-
tain circuit by performing power-analysis attacks on an FPGA-implementation.
Since programming an FPGA is considerably less expensive than manufactur-
ing an ASIC, assessing vulnerability of a device to power analysis attacks is
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Figure 5.8: Current consumption trace of a 3000-bit register during some tran-
sitions on its outputs
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Figure 5.9: Current consumption trace of a 6000-bit register during some tran-
sitions on its outputs
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much cheaper on our platform. Consequently, our approach describes the first
inexpensive and efficient way to conduct power-analysis attacks on a real im-
plementation (i.e., not on a software simulation) of a circuit in a very early
stage of the design.



Chapter 6

Side Channel Analysis of
FPGA Implementations of
Elliptic Curve
Cryptosystems

As explained in Chapter 3 side-channel analysis attacks form important threats
against hardware implementations of cryptographic algorithms. Hence it is nat-
ural to study the weaknesses of our circuits, presented in Chapter 4, against
these attacks. We have implemented SCA attacks on our FPGA implementa-
tions of ECCs and we have improved the resistance of the circuits against side
channel attacks.

In Section 6.1 we show a timing analysis attack against an FPGA Implementa-
tion of ECC over GF (p). Our initial design was vulnerable and it was possible
to learn the Hamming weight of the key by using the timing information. Then
we improved our circuit and give the TA attack results on it in Section 6.1.1.
It is not possible to find out any information about the key by a TA attack
on the improved design. In Section 6.2 we give the results of the simple power
analysis attack on the same initial circuit. As it is expected the SPA attack
given in Section 6.2.1 was successful and we could learn all the bits of the key
by using only one measurement. After improving our initial design, our elliptic
curve processor became resistant against a SPA attack. We implemented a
DPA attack on the improved implementation mentioned above in Section 6.2.2
and showed that it is possible to find the value of the MSB of the key. By using
this information of the previous key bit we can implement the DPA attack tar-
geting the next MSB. Hence, the DPA attack presented in this chapter reveals

119
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all the bits of the key. Also we present simple and differential electromagnetic
analysis attacks on the same circuits in Sections 6.3.1 and 6.3.2. The SEMA
attack is as successful as the SPA attack. In order to succeed with the DEMA
attack we need more measurements for the DEMA attack than the DPA attack,
because the noise level of the electromagnetic radiation measurements is higher
than that of the power consumption measurements.

6.1 Timing Analysis of a FPGA Implementa-
tion of Elliptic Curve Cryptosystem over

GF (p)

The clock frequency we use during these analysis is 5 MHz, hence one clock
period is 200 ns. According to the timings given in Section 4.2.2.3 and Sec-
tion 4.2.1, one 160-bit MMM will take 485× 200 ns = 97 µ s and one 160-bit
MAS will take 321× 200 ns = 64.2 µ s.

As explained in Section 2.1.4, an elliptic curve point multiplication consists
of point additions and doublings. The latency of one EC point addition and
doubling can be calculated as TPAD = 14TMMM = 1.358 ms and TPDB =
8TMMM + 6TMAS = 1.161 ms as shown in Section 4.5.6, respectively.

If we use Algorithm 2.1 for a 160-bit elliptic curve point multiplication with
an l-bit key with the MSB of the key equals to 1, the latency of one point
multiplication will be

TPMUL = (l − 1)TPDB + (w − 1)TPAD = (l1.161 + w1.358− 2.519) ms ,

with w the Hamming weight of the binary representation of the key [160].
It means that somebody who can measure the execution time of one 160-bit
elliptic curve point multiplication will learn the Hamming weight of the key by
using the above expression. Hence Algorithm 2.1 is vulnerable to TA attacks.

6.1.1 Countermeasures Against Timing Attacks

As explained in Section 6.1, Algorithm 2.1 is vulnerable to timing analysis
attack because of the conditional branch at Step 4. In order to get rid of this
weakness we use the algorithm proposed by Coron in [44]: we execute always a
point doubling and a point addition independent from the value of the current
key bit. After finishing both point operations, we select the needed result
according to the value of the current key bit as shown in Algorithm 6.1.

If we use Algorithm 6.1 for a 160-bit elliptic curve point multiplication with
an l-bit key with the MSB of the key equals to 1, then the latency of one
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Algorithm 6.1: Elliptic curve point multiplication: binary method, left to
right, always double and add

Require: EC point P = (x, y), integer k, 0 < k < M , k = (kl−1, kl−2,
· · · , k0)2, kl−1 = 1 and M

Ensure: Q = [k]P = (x′, y′)
1: Q← P
2: for i from l − 2 downto 0 do
3: Q1 ← 2Q
4: Q2 ← Q1 + P
5: if ki = 0 then
6: Q← Q1

7: else
8: Q← Q2

9: end if
10: end for

point multiplication will be TPMUL = (l − 1)
(
TPDB + TPAD + 200 · 10−9

)
=

(l− 1)2.519 ms. This latency depends only on the key bit-length l, but not on
the Hamming weight of the key.

As a second countermeasure against timing analysis attack, we use the binary
right to left point multiplication algorithm by executing point addition and
doubling in parallel as proposed by Izu and Takagi in [112, 113].

Algorithm 6.2: Elliptic curve point multiplication: binary method, right to
left, parallel double and add

Require: EC point P = (x, y), integer k, 0 < k < M , k = (kl−1, kl−2,
· · · , k0)2, and M

Ensure: Q = [k]P = (x′, y′)
1: Q← O, S ← P
2: for i from 0 to l − 1 do
3: Q2 ← Q + S ‖ S ← 2S
4: if ki = 1 then
5: Q← Q2

6: else
7: Q← Q
8: end if
9: end for

If we use Algorithm 6.2 for the elliptic curve point multiplication the inputs
of the point addition in Step 3 can be any point. This is different from the
case explained in Section 4.5.6. In Section 4.5.6, Algorithm 4.11 calculates a
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simplified EC point addition by using the fact that one of the input points
to the point addition in Algorithm 2.1 is always the input point P and its Z
coordinate in projective coordinates is always 1. The non-simplified point ad-
dition algorithm is described below in Algorithm 6.3. Algorithm 6.3 computes
Eq. (2.4).

Algorithm 6.3: Non-simplified elliptic curve point addition over GF (p)

Require: P1 = (X1, Y1, Z1, aZ4
1), P2 = (X2, Y2, Z2, aZ4

2 )
Ensure: P1 + P2 = P3 = (X3, Y3, Z3, aZ4

3 )
1. T1 ← Z2

2

2. T2 ← X1T1

3. T3 ← Z1Z1

4. T4 ← X2T3

5. T1 ← X1T1 T4 ← T4 − T2

6. T1 ← Z2T1

7. T3 ← Z1T3

8. T3 ← Y2T3

9. T5 ← Z2T4 T3 ← T3 − T1

10. Z3 ← Z1T5

11. T5 ← T4T4

12. T2 ← T2T5

13. T5 ← T4T5 T4 ← 2T2

14. T6 ← T3T3 T4 ← T5 + T4

15. T5 ← T1T5 X3 ← T6 − T4

16. T6 ← Z2
3 T2 ← T2 −X3

17. T2 ← T3T2

18. T6 ← T6T6 Y3 ← T2 − T5

19. aZ4
3 ← aT6

Nineteen states and six temporary registers are needed for EC point addition.
The total execution time of EC point addition is 19TMMM . The latency of one
160-bit point addition can be calculated as, TPAD = 19TMMM = 1.843 ms.

One point doubling takes less time than one point addition, thus in Algo-
rithm 6.2 for elliptic curve point multiplication the latency of Step 3 is the
latency of one point addition. The execution time of one 160-bit elliptic curve
point multiplication with an l-bit key with the MSB of the key equals to 1 is
TPMUL = (l− 1)

(
TPAD + 200 · 10−9

)
= (l− 1)1.843 ms. This latency depends

only on the key bit-length l, but not on the Hamming weight of the key.
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6.2 Power Analysis of a FPGA Implementations
of Elliptic Curve Cryptosystem over GF (p)

In this section, we conduct power analysis attacks on the FPGA implementation
of our elliptic curve processor over GF (p) presented in Section 4.5. First, we
demonstrate that our initial design is vulnerable to simple power analysis attack
and show that it is possible to find out the key with only one measurement.
Then we improve our design in order to be resistant against these attacks. Our
improved design is vulnerable to differential power analysis attack as presented
in the following sections.

6.2.1 Simple Power Analysis of a FPGA Implementation
of Elliptic Curve Cryptosystem over GF (p)

The hardware design of the elliptic curve processor over GF (p) is explained
in Section 4.5. Because we use a Montgomery modular multiplier circuit as a
basic operational block in the hardware design of our elliptic curve processor
over GF (p), we first show the current consumption trace of this block. Then we
analyze the power consumption of the EC point addition, doubling and point
multiplication blocks presented in Section 4.5.

The measurement of a 480-bit MMMC is depicted in Fig. 6.1. The three
parts shown in the figure can be explained according to the algorithm and
the architecture used. The T register in Fig. 4.19 is reset at the start of the
MMM operation and then it is being updated for 1440 clock cycles. The number
of bits in T which are updated is increasing until clock cycle 480. This stage
corresponds to the first part shown in the current consumption trace. After
480 clock cycles all the bits of the T register have been assigned a value and all
of them are updated before clock cycle 960. This stage is visible in the second
part of Fig. 6.1. The last part of Fig. 6.1 corresponds to reading out the result
from the pipeline. Because there is no new input on the LSB of the systolic
array, starting from clock cycle 961 the number of bits of the T register that is
updated decreases.

The three parts of Fig. 6.1 prove one more time that our circuit leaks transition
count information. The experiment on the MMMC also teaches us the shape
of the current consumption trace of one of the building blocks of our elliptic
curve processor. During the later experiments we recognize this pattern easily
in order to implement SPA. In the DPA attack this pattern shows us the right
time to make the measurements.

The circuits for EC point addition and EC point doubling are described in
Section 4.5.6. The current consumption trace of one 160-bit EC point addition
implemented with Algorithm 4.11 is shown in Fig. 6.2. Fourteen states can be
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Figure 6.1: Current consumption trace of a 480-bit Montgomery modular mul-
tiplier over GF (p)

counted easily from the trace. All the states are completed in nearly 500 clock
cycles which corresponds TMMM = 3 · 160 + 4. The power consumption during
Step 3, 5, 7, 8, 10, 11 and 13 seems higher than for the other steps. In these
steps a modular addition or subtraction is taking place as well as an MMM.

The current consumption trace of one 160-bit EC point doubling is shown in
Fig. 6.3. As expected, the number of clock cycles for EC point doubling is less
than the number of clock cycles for EC point addition. The main difference
in power consumption between EC point addition and EC point doubling can
be observed by looking at Step 7, 8, 10, 11, 12 and 14. In these steps only a
modular addition or subtraction takes place. Obviously the latency and power
consumption of these are smaller than the others. This means that a simple
power analysis attack is easy to perform.

The EC point multiplication is implemented with the simple double-and-add
algorithm given by Algorithm 2.1. The current consumption trace of a 160-bit
EC point multiplication is shown in Fig. 6.4. It can be easily seen from Fig. 6.4
that the key used during this measurement is 1001100.

We have changed our design to work with Algorithm 6.1 as a countermeasure
for the attack given above. The current consumption trace of one EC point
multiplication is shown in Fig. 6.5. It follows from Fig. 6.5 that it is no longer
possible to attack this circuit by SPA. So we will use a DPA attack to find the
key bits in the following section.
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Figure 6.2: Current consumption trace of a 160-bit elliptic curve point addition
over GF (p)
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Figure 6.3: Current consumption trace of a 160-bit elliptic curve point doubling
over GF (p)

6.2.2 Differential Power Analysis of a FPGA Implemen-
tation of Elliptic Curve Cryptosystem over GF (p)
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Figure 6.4: Current consumption trace of a 160-bit elliptic curve point multi-
plication over GF (p) with Algorithm 2.1
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Figure 6.5: Current consumption trace of a 160-bit elliptic curve point multi-
plication over GF (p) with Algorithm 6.1

The target for our DPA attack is the second MSB of the key, kl−2, in Algo-
rithm 6.1. There are two temporary point registers in the design, Q1 and Q2.
These temporary points and the output point Q are updated in the following
order.
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Step 1: Q← P
Step 3: Q1 ← 2Q = 2P
Step 4: Q2 ← Q1 + P = 3P

Step 5: Q←

{
Q1 = 2P kl−2 = 0 Step 6
Q2 = 3P kl−2 = 1 Step 8

Step 3: Q1 ←

{
2Q = 4P kl−2 = 0
2Q = 6P kl−2 = 1

Step 4: Q2 ←

{
Q1 + P = 5P kl−2 = 0
Q1 + P = 7P kl−2 = 1

Step 5: Q←





2Q = 4P kl−2 = 0 kl−3 = 0 Step 6
2Q = 6P kl−2 = 1 kl−3 = 0 Step 6
2Q = 5P kl−2 = 0 kl−3 = 1 Step 8
2Q = 7P kl−2 = 1 kl−3 = 1 Step 8

The first step of the DPA attack is to find the point of the measurements. The
current consumption trace of an EC point multiplication is shown in Fig. 6.5.
The highest seven spikes on Fig. 6.5 show the end of seven EC point doubling
operations. Because these spikes are clearly higher than other spikes on the
current consumption trace, our attack point is one of these seven spikes. The
first one corresponds to the end of the first EC doubling operation. As shown
above this spike shows the ending of the second operation which is Q1 ← 2P
and this step is executed independent from the key bits. The third, fourth and
so an spikes need the knowledge of the kl−2, kl−3 etc. Hence our choice for
the measurement point is the second update of Q1 after the second EC point
doubling (Step 3). We use the transitions between the previous value of Q1,
2P , and the new value at our target point, 4P or 6P according to the value of
kl−2 as the power consumption predictions.

6.2.2.1 Correlation Analysis

In the first step of our attack, we have produced a power consumption file.
For this purpose, we have chosen N random points on the EC and one fixed,
but random key, k. The FPGA executes N point multiplications such that
Qi = [k]Pi for i = 1, 2, · · · , N . We have measured the power consumption of
the FPGA during 2400 clock cycles around the second update of Q1. The clock
frequency applied to the chip was around 300 kHz and the sampling frequency
of the oscilloscope was 250 MHz. With these measurements, we have produced
a N × 2 000 000 matrix, M1. The current consumption trace of one of these
measurements, is shown in Fig. 6.6.

We have applied a pre-processing technique to reduce the amount of measure-
ment data in every clock cycle. We have found the maximum value of the
measurement data in each clock cycle as follows:

M2(i, j) = max(M1(i, Di · (j − 1) + 1 : Di · j)) , (6.1)
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Figure 6.6: Current consumption trace of the FPGA during the execution of
one EC point multiplication for DPA attack (1st row of M1)

where i = 1, . . . , N , j = 1, . . . , 2400. M2(i, j) is the element of the matrix M2

at the ith row and the jth column. Di is the number of samples per clock
cycle during ith measurement, M1(i, Di · (j − 1) + 1 : Di · j) is the row vector
[M1(i, Di · (j − 1) + 1) M1(i, Di · (j − 1) + 2) · · · M1(i, Di · j)].

Because the clock frequency of the function generator in our experiments was
varying slightly during the measurements we have to find Di. In order to
compute Di we have to know the exact clock frequency. We have calculated
the DFT of ith measurement, corresponding the ith row of M1. As the clock
frequency can be between 250 kHz and 375 kHz, we have searched between these
frequencies for the maximum value in the DFT trace. The result for the first
measurement is shown in Fig. 6.7. According to this figure the clock frequency
during the first measurement was 302.8 kHz. Hence, D1 = 250·106/302.8·103 =
825.63. Figure 6.8 shows the first measurement after taking the maximum value
in every clock cycle.

We have implemented the EC point multiplication with Algorithm 6.1 in the C
programming language. The C program computes N EC point multiplications
with N EC points and the key. The EC points and the key are the same as
the ones given to the FPGA during the measurements. During the execution
of the EC point multiplications, the C program computes the number of bits
that change from 0 to 1 in some registers at the steps corresponding to the
five spikes shown in Fig. 6.8. The number of transitions is used as the power
consumption prediction.



6.2 PA of a FPGA Implementations of ECC over GF (p) 129

260 280 302.8 320 340 360
0

0.5

1

1.5

2
x 10

9

frequency (kHz)

Figure 6.7: DFT of the current consumption trace of the first measurement
between 250 kHz and 375 kHz; the clock frequency is 302.8 kHz
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Figure 6.8: Current consumption trace of the first measurement after taking
the maximum value in every clock cycle (1st row of M2)

One of the steps of the attack is to find the right steps in the C program to
predict the power consumption which corresponds to the measurement points.
As we aimed to measure the power consumption of the FPGA around the last
clock cycle of the second EC doubling in Step 3 of Algorithm 6.1, the third
spike in Fig. 6.8 corresponds to this event. Hence we can predict it by counting



130 SCA of FPGA Implementations of ECCs

the number of transitions between the bits of the coordinates of Q1 and 2Q;
for kl−2 = 0 we count the number of transitions between 2P and 4P and for
kl−2 = 1 between 2P and 6P .

The first and the second spikes in Fig. 6.8 occur at the end of the twelfth and the
thirteenth steps of the EC point doubling with Algorithm 4.12, respectively.
The fourth and the fifth spikes in Fig. 6.8 occur at the end of the first and
the second steps of the EC point addition with Algorithm 4.11, respectively.
For kl−2 = 0 the second EC doubling is executed with the input 2P and the
second EC addition is executed with the inputs 4P and P . For kl−2 = 1
the second EC doubling is executed with the input 3P and the second EC
addition is executed with the inputs 6P and P . We have produced two power
consumption prediction matrixes, M3 and M4, which are for the kl−2 = 0 and
kl−2 = 1 guesses, respectively. M3 and M4 have five columns for the five spikes
and N rows for the N EC points.

Now we can learn the right value of kl−2 by finding the correlations between
the columns of M3 and M4 and the five columns of M2 which correspond to
the five spikes in Fig. 6.8. If the correlations between the columns of M3 and
M2 are higher than the correlations between the columns of M4 and M2, then
we decide that kl−2 = 0, otherwise we decide that kl−2 = 0. We are also
interested in finding the minimum number of measurements that are necessary
to find the right key-bit. Figure 6.9 shows the changes in correlations between
the columns of M3 and M4 and the five columns of M2 which correspond to
the five spikes in Fig. 6.8 according to the number of measurements used.

It is visible from Fig. 6.9 that the correlations for the predictions for the kl−2 =
1 guess are higher than the correlations for the predictions for the kl−2 = 0
guess. By just using the first 500 measurements the decision of kl−2 = 1 can be
made for all the spikes expect the third spike. For the third spike the correlation
for the kl−2 = 1 guess becomes higher by using around 4000 measurements.
As it can be seen from Fig. 6.8, the third spike is the highest one of all the five
spikes, hence the number of registers that are updated at this moment is higher
than for the other spikes. Since we count the transitions of only the coordinates
of Q1, the signal to noise ratio (SNR) is lower for the third spike. This shows
that the decrease of the SNR results in a larger number of measurements for a
successful attack.

We have calculated the SNR of the power consumption measurements. The
signal is calculated by averaging the 100 measurements for the same point on
the elliptic curve. The noise is calculated by subtracting the signal from one
of the measurements. The we use Eq. (3.2) in order to calculate the SNR.
Figure 6.10 shows the SNR for all the clock cycles in Fig. 6.8. The SNRs at
all the clock cycles which five spikes occur are above 20dB. This means we can
distinguish the signal from the noise. The highest SNR occurs at the clock
cycle for the 5th spike and the lowest for the 3rd spike. This result matches
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Figure 6.9: Changes in correlations between the current consumption measure-
ments and the predictions of the five spikes in Fig. 6.8 according to the number
of measurements

with the findings by the correlation analysis above.

6.2.2.2 Distance of Mean Test

We produce a new measurement matrix, M5, from M2 by taking 20 columns
around each column of M2 that corresponds to a spike in Fig. 6.8. Thus,
M5 has 100 columns and N rows. We use the prediction matrices M3 (for
kl−2 = 0 guess) and M4 (for kl−2 = 1 guess) explained in Section 6.2.2.1 in
order to split the measurements into sets. For each spike in Fig. 6.8 there are
two sets for kl−2 = 0 guess and kl−2 = 1 guess. If the measurements are split
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Figure 6.10: Signal to noise ratio of the power consumption measurements

according to the predictions of the ith (i = 1, 2, · · · , 5) spike then we calculate
the mean value of the ith column of M3 and M4, E(M3(:, i)) and E(M4(:, i)),
respectively. M3(:, i) is the ith column of M3. If the prediction for the jth (j =
1, 2, · · · , 10 000) measurement for kl−2 = 0 guess is smaller than E(M3(:, i))
(M3(j, i) < E(M3(:, i))) then jth measurement is put in set Si,1,1, otherwise
in set Si,1,2. If the prediction for the jth (j = 1, 2, · · · , 10 000) measurement
for kl−2 = 1 guess is smaller than E(M4(:, i)) (M4(j, i) < E(M4(:, i))) then jth
measurement is put in set Si,2,1, otherwise in set Si,2,2.

Then we calculate the mean values of all the sets and find the bias signal for
the ith spike and the jth guess as follows

Ti,j = E(Si,j,2)−E(Si,j,1) .

The current consumption bias signals for the five spikes and for kl−2 = 0 and
kl−2 = 1 guesses are shown in Fig. 6.11. All the figures show a high peak on
the expected spot on the line for the kl−2 = 1 guess. Hence the decision for
the right key-bit is again as 1.

In order to compare the correlation analysis and distance of mean test we
should also find the number of measurements needed to find the right key bit
for the distance of mean test. Figure 6.12 shows the change in the amplitude
of all the clock cycles on the current consumption bias signals for all the spikes
for the kl−2 = 1 guess. The number of measurements on these traces are the
number of measurements in the sets Si,2,1, Si,2,2 described above. The number
of measurements in these sets are nearly the same. Hence we should multiply
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Figure 6.11: Current consumption bias signals for the five spikes in Fig. 6.8
and the kl−2 = 0 and kl−2 = 1 guesses

the number of measurements seen in Fig. 6.12 by two in order to find the needed
number of measurements. As it is shown in Fig. 6.12.(c) 9000 measurements
are not enough to distinguish the right clock cycle from the wrong ones. For the
first, second, fourth and fifth spikes the right clock cycle is visible by using 1000,
2000, 1000 and 500 measurements in Fig. 6.12.(a), (b), (d) and (e), respectively.
When we compare the results shown in Fig. 6.9 and Fig. 6.12, we should use
two times more measurements for the distance of mean test than for correlation
analysis.
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Figure 6.12: Change in the amplitude of the current consumption bias signal
for the five spikes in Fig. 6.8, the kl−2 = 1 guess and for all clock cycles

6.3 Electromagnetic Analysis of a FPGA Im-
plementation of Elliptic Curve Cryptosys-

tem over GF (p)

In this section, we conduct electromagnetic analysis (EMA) attacks on the
FPGA implementation of our elliptic curve processor over GF (p) presented in
Section 4.5. First, we demonstrate that our initial design is vulnerable to simple
electromagnetic analysis (SEMA) attack and that it is possible to obtain the
key with only one measurement. Then we conduct differential electromagnetic
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analysis attack on our improved design explained in Section 6.2.1.

6.3.1 Simple Electromagnetic Analysis of a FPGA Im-
plementation of Elliptic Curve Cryptosystem over
GF (p)

In our measurement we connect an antenna directly to an oscilloscope as shown
in Fig. 6.13.

Figure 6.13: The measurement setup. The loop antenna is placed vertically on
the FPGA.

The electromagnetic radiation trace of a 160-bit EC point multiplication is
shown in Fig. 6.14 [34]. The SEMA attack is implemented on the EC proces-
sor given in Section 4.5 which uses Algorithm 2.1 for EC point multiplication.
It can be easily seen from Fig. 6.14 that the key used during this measure-
ment is 11001100, because there is a clear difference between the traces of EC
point addition and doubling. The SEMA attack was successful because of the
conditional branch in Step 4 of Algorithm 2.1.

As a countermeasure to this attack we have implemented the EC point mul-
tiplication with Algorithm 6.1. One EM measurement of this architecture is
shown in Fig. 6.15.
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Figure 6.14: Electromagnetic radiation trace of a 160-bit elliptic curve point
multiplication over GF (p) with Algorithm 2.1
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Figure 6.15: Electromagnetic radiation trace of a 160-bit elliptic curve point
multiplication with Algorithm 6.1

6.3.2 Differential Electromagnetic Analysis of a FPGA
Implementation of Elliptic Curve Cryptosystem over
GF (p)

The target for our DEMA attack is the second MSB of the key, kl−2, in Algo-
rithm 6.1. If kl−2 = 0, then Q will be updated by 2P , otherwise by 3P at step
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5 in Algorithm 6.1.

6.3.2.1 Correlation Analysis

In the first step of our attack, we have produced an electromagnetic radiation
file. For this purpose, we have measured the electromagnetic radiation at the
same time as the power consumption measurements given in Section 6.2.2.1
and produced M1 in the same way. The electromagnetic radiation trace of one
of these measurements is shown in Fig. 6.16.
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Figure 6.16: Electromagnetic radiation trace of the FPGA during the execution
of one EC point multiplication for a DEMA attack (1st row of M1)

We have applied the same pre-processing technique as in Section 6.2.2.1 to data
from the oscilloscope. The DFT of the first measurement between 250 kHz and
375 kHz is shown in Fig. 6.17. Figure 6.18 shows the 1st measurement after
taking the maximum value in every clock cycle.

We have predicted the electromagnetic radiation of the FPGA during the events
which correspond to the five spikes shown in Fig. 6.18 for kl−2 = 0 and kl−2 = 1
guesses as explained in Section 6.2.2.1.

It is visible from Fig. 6.19 that the correlations for the predictions for the
kl−2 = 1 guess are higher than the correlations for the predictions for the
kl−2 = 0 guess in Fig. 6.19.(b), (d) and (e). By just using the first 1000
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Figure 6.17: DFT of the electromagnetic radiation trace of the first measure-
ment between 250 kHz and 375 kHz; clock frequency is 302.8 kHz
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Figure 6.18: Electromagnetic radiation trace of the first measurement after
taking the maximum value in every clock cycle (1st row of M2)

measurements the decision of kl−2 = 1 can be made for the fourth and fifth
spikes. For the second spike the correlation for the kl−2 = 1 guess becomes
higher by using around 2000 measurements. The minimum necessary number of
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Figure 6.19: Changes in correlations between the electromagnetic radiation
measurements and the predictions of the five spikes in Fig 6.18 according to
the number of measurements

measurements in order to be successful with a DEMA attack is two times larger
than the minimum necessary number of measurements for the DPA attack given
in Section 6.2.2.1. This proves that the EM radiation measurements are more
noisy than the power consumption measurements. But the information can be
obtained with enough measurements.

We have also calculated the SNR of the electromagnetic radiation measure-
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Figure 6.20: Signal to noise ratio of the electromagnetic radiation measure-
ments

ments. The signal and the noise are calculated the same way as explained in
Section 6.2.2.1. Figure 6.20 shows the SNR for all the clock cycles in Fig. 6.18.
The SNRs at all the clock cycles which five spikes except the third spike occur
are above 20dB. This means we can distinguish the signal from the noise.

When we compare Fig. 6.10 and Fig. 6.20 we see that the SNR of the elec-
tromagnetic radiation measurements are lower than the SNR of the power
consumption measurements. This difference is the reason of the need for more
measurements for the DEMA attack than DPA attack.

6.3.2.2 Distance of Mean Test

The EM radiation measurements are split into the sets with the same parti-
tioning function as defined in Section 6.2.2.2. The electromagnetic bias signals
for the five spikes and for guesses kl−2 = 0 and kl−2 = 1 are shown in Fig. 6.21.
All the figures for all the spikes show high peaks on the expected spot on the
line for the kl−2 = 1 guess in Fig. 6.21. Hence the decision for the right key bit
is again as 1.

Again we find the number of measurements needed to find the right key bit for
distance of mean test. Figure 6.22 shows the change in the amplitude of all the
data points on the EM radiation bias signals for all the spikes for the kl−2 = 1
guess. As it is shown in Fig. 6.22.(a) 9000 measurements are not enough to
distinguish the right clock cycle from the wrong ones. For the second, third,
fourth and fifth spikes the right clock cycle is visible by using 5000, 7000, 2000
and 2000 measurements in Fig. 6.22.(b), (c), (d) and (e), respectively. When we
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Figure 6.21: Electromagnetic radiation bias signals for the five spikes in Fig.
6.18 and the kl−2 = 0 and kl−2 = 1 guesses

compare the results shown in Fig. 6.19 and Fig. 6.22, we should use five times
more measurements for the distance of mean test than for correlation analysis.
The minimum necessary number of measurements in order to be successful
with a DEMA attack is two times more than the minimum necessary number
of measurements for DPA attack given in Section 6.2.2.2, which is the same
difference between the correlation analysis for DPA and DEMA.
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Figure 6.22: Change in the amplitude of the electromagnetic radiation bias
signal for the five spikes in Fig. 6.18, the kl−2 = 1 guess and for all clock cycles

6.4 Conclusions

We have implemented timing, power and electromagnetic analysis attacks on
our FPGA implementations of elliptic curve cryptosystems over GF (p). We
conclude that our initial design was vulnerable to simple attacks and by using
only the timing information it is possible to find the Hamming weight of the key.
More drastically by using simple power and electromagnetic analysis attacks it
was possible to find all the key bits. Next we improved our circuits such that
they are resistant against timing and simple power and electromagnetic analysis
attacks. We showed that this improved design is vulnerable to differential
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attacks.

We conduct differential power and electromagnetic analysis attacks on our im-
proved FPGA implementation of a elliptic curve processor. We use two well
known techniques for DPA and DEMA; correlation analysis and a distance of
mean test. We conclude that the correlation analysis reveals the right key bit
by using six times less measurements than the distance of mean test for both
DPA and DEMA. The number of required electromagnetic radiation measure-
ments is twice the power consumption measurements in order to find the right
key bit. This result has several reasons. We use a very simple handmade an-
tenna shown in Fig. 6.13. Because the diameter of the antenna is large and it
is not isolated from any effect by any protection, the antenna collects all the
signals in the air. We use the same prediction data for both power consump-
tion and electromagnetic radiation, which is the number of transitions in the
target registers. This is a correct model for power consumption as it is related
to the current flow to the load capacitances, but the electromagnetic radiation
is also effected by the direction of the current internally. So the predictions
for electromagnetic radiation should be improved by taking into account of the
position of the antenna on the FPGA and the relative direction of the current
flows.

A step would be to implement and test the countermeasures against differential
power and electromagnetic analysis attacks. The suggestions for the counter-
measures are given in Section 3.3.2.4; they have not been implemented in this
thesis because of the time limitation.
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Chapter 7

Power Analysis of
Hardware Implementations
of Block Ciphers

During the AES selection process, the security of Rijndael was evaluated with
respect to all types of attacks. While AES is resistant to classical cryptanalytic
methods, it turned out that side channel attacks are a serious threat against
naive implementations of the Rijndael algorithm. To our knowledge, there
exists no publication on practical implementations of power analysis attacks on
dedicated hardware implementations of the AES. This chapter demonstrates
the feasibility of power analysis attacks against hardware implementations of
the AES. Our attacks target against an ASIC implementation of the AES
developed by the ETH Zürich [90] and an FPGA implementation of the AES
developed by the UCL Crypto group [246]. These results allow us to compare
the alternative ways of implementing the same algorithm with respect to side-
channel attacks.

In 1977, the Data Encryption Standard (DES) Algorithm [176] was adopted as
a Federal Information Processing Standard for unclassified government com-
munication. Although a new Advanced Encryption Standard (AES, [175]) was
selected in October 2000, triple-DES is still widely used, particularly in the
financial sector. In this chapter we describe a power analysis attack against an
FPGA implementation of the DES developed by the UCL Crypto group [222].

For hardware design efficiency, clock frequency and area requirements are of
primary importance. In this chapter, we demonstrate that these aspects also
have a substantial impact on the feasibility of power analysis attacks.

145
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We target a part of the key in our DPA attacks on the hardware implementa-
tions of the AES and the DES. It is important to note that more key bits may
be found using exactly the same set of measurements. The attacker only has
to modify the power consumption predictions and target different key bits. In
order to produce the predictions we implemented the algorithms in C++. The
C++ program runs for the same set of inputs as given to the FPGA during
the measurements. During the executing of the program, the number of bit
changes between two consecutive values of the target part of the target register
at the attack point is used as the power consumption prediction for the FPGA
at the attack point. Therefore, the full key can be recovered by computing
the power consumption predictions for all the parts of the key and finding the
correlation between these predictions and the measurements.

The results of this chapter are published in [200, 199, 244, 245]. The outline
of this chapter is as follows. In Section 7.1 we present our DPA attack on an
ASIC implementation of the AES. In Section 7.2 we present our DPA attack
on the FPGA implementation of the AES. In Section 7.3 we present our DPA
attack on the FPGA implementation of the DES.

7.1 Power Analysis of an ASIC Implementation

of the AES

In this section we present our DPA attack on the ASIC implementation of
the AES. First we summarize the ASIC implementation of the AES. Then we
introduce our measurement setup. We implement our attack with simulated
data in order to verify that our attack strategy is correct. Finally we present
the DPA attack with real measurements on the ASIC implementation of the
AES.

7.1.1 Fastcore

Fastcore is an efficient ASIC realization of the AES algorithm in a standard
0.25 µm CMOS process with en/decryption rates in excess of 2 Gb/s [90].
Fastcore contains two separate datapaths for the encryption and decryption
operations. Figure 7.1 shows a simple block diagram highlighting the encryp-
tion datapath structure of Fastcore. The encryption operation is performed on
128-bit values in parallel internally, but the external chip interface is limited
to 16 bits for plaintext and ciphertext. The input and output buffers are used
to store plaintext and ciphertext values and transfer them to/from the chip re-
spectively. Each encryption round requires a round key, that is generated from
the encryption key using a key schedule algorithm. The key schedule routine
is implemented in the Key Expansion Unit. The round keys in Fastcore are
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generated on-the-fly, parallel to the encryption operation.
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Figure 7.1: Block diagram of the encryption path of the AES crypto-chip,
Fastcore

In Fastcore, the order of SubBytes and ShiftRows has been changed and the
first ShiftRows operation has been moved to the initial AddRoundKey opera-
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tion. The result is a functionally equivalent, but slightly different encryption
round structure seen in Fig. 7.1. This transformation allows a more efficient
implementation in hardware. The last encryption round shares the SubBytes
operation with the standard encryption round followed by an additional Ad-
dRoundKey operation.

7.1.2 Measurements

The measurement setup consists of an HP83000 test system to provide the
chip with the required inputs such as clock, data, key and control signals and a
Tektronix 784C sampling oscilloscope with a Tektronix CT-1 current probe to
measure the supply current. Fastcore uses two separate power supplies, a 3.3V
supply for I/O and a 2.5V supply for the core cells. Only the core power supply
has been measured. We neither took special measures to stabilize the power
supply of the chip, nor did we try to characterize or minimize noise that might
be induced by the measurement setup. Instead we have computed the average
of the measurements to reduce noise. Using the averaging function of the
sampling scope; we repeated each measurement 16 times. In the remainder of
this section we will refer to the average measurements simply as measurements.

The HP83000 has been configured to perform an entire test run. Such a test
run consists of initializing the crypto-chip, loading the encryption key, sending
10 000 plaintexts and comparing the results with the expected values. The sam-
pling oscilloscope cannot sample the entire test run with the desired accuracy,
hence the test system has been configured to generate a separate trigger signal
at the beginning of each encryption operation. This signal has been used to
sample and store the current multiple times for the clock cycles at and around
the desired round of the encryption operation.

Fastcore contains a large number of functional blocks that can operate in par-
allel. Special care has been given to ensure that all unrelated blocks are either
idle or compute the same results during the encryption operation. The decryp-
tion datapath is stalled and data I/O is not performed during encryption. The
only other block that is active during an encryption operation is the key expan-
sion unit. Since the same key is used throughout all the measurements, the key
expansion unit calculates exactly the same intermediate results for the same
encryption round. The test vectors ensure that of the 2758 flip-flops present
in the Fastcore, only 128 flip-flops of the encryption round register have data
dependent values and contribute to the difference in the power consumption.

If the functional blocks other than the encryption blocks are also active, the
power consumption of them are added to the power consumption of the encryp-
tion block as noise. Because we do not have control on their activity and they
work independently from the data we provide to the chip, we cannot predict
the power consumption of the unused blocks during the encryption. Hence, in
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this case we have to increase the number of measurements.

However, not all flip-flops within the encryption round register have the same
drive strength (in total, there are 4 different drive strengths); they all are con-
nected differently and the interconnection capacitance for each flip-flop is dif-
ferent. Furthermore, as a result of logic optimizations during the design phase,
the number of gates driven by each flip-flop also differs slightly. Therefore,
the contribution of each flip-flop to the overall dynamic power consumption
is different. This can be clearly seen in Fig. 7.2, which shows the simulated
dynamic power consumption of all the 128 flip-flops of the encryption round
register separately.
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Figure 7.2: Power consumption characteristics of the Fastcore’s registers

7.1.3 A Differential Power Analysis Using Simulated Data

The target for our DPA attack were the 8 MSBs of the Register in Fig. 7.1
after the initial key addition operation [200, 199]. Because the key used for
this operation is the original key for encryption and the ShiftRows operation
does not change the position of the 8 MSBs of the result of the AddRoundKey
operation, we decided to predict the power consumption of the Register during
the storage of these MSBs.

We have tested our attack with simulated data before making real measure-
ments. This approach enabled us to estimate the difficulty of a real attack,
i.e., an attack using real measurements. In order to predict the dynamic power
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consumption of the Register, behavioral HDL simulations of Fastcore were
used. An advantage of this approach is that it allows to simulate attacks in
an early stage of the design flow. Another reason for using a HDL simulation
was that we did not reset the chip after each AES execution. At the beginning
of an AES execution, the Register still contained some value which is related
to the previous AES execution. Hence, without the HDL simulation, we could
have only predicted the Hamming weight of the Register, but not the dynamic
power consumption.

In the first step of this simulated attack, we have produced a so-called simulated
power consumption file. For this purpose, we have chosen N random plaintexts
and one fixed, but random key. After each encryption round (clock cycle), the
simulator has written the total number of bit changes between the previous and
the current values of the Register in Fig. 7.1 to this file. Register is used
to store the state of the AES which is 128 bits (see Section 2.4.1). Fastcore
computes one round of the AES in one clock cycle thus one encryption takes
10 clock cycles. Hence, the simulator has produced a file which contains an
N × 10 matrix (N = 10 000), M1, with values between 0 and 128.

In the second step, we have chosen the M MSBs of the Register. For the same
plaintexts and key as in the first step, the simulator has calculated the total
number of bit changes between the previous and the current values of these M
MSBs of the Register for the initial key addition. This result was stored in a
file as an N × 1 matrix, M2, which contains values between 0 and M . In this
particular experiment, we have chosen M = 8.

Then, we have calculated the correlation between all the columns of M1 and
M2 as follows:

ci = C(M1(1 : N, i), M2) i = 1, . . . , 10 ,

where M1(1 : N, i) denotes the ith column vector of the matrix M1.

In step 1 and step 2, the same plaintexts and the same key were used. The
only difference between the two steps is the difference in the number of bits
taken into account when counting the number of bit changes. Hence, the values
generated in step 2 are a prediction for the values calculated in the initial key
addition of step 1. If the calculations are correct, the correlation coefficient of
M2 and the first column of M1 (which corresponds to the initial key addition)
must be significantly higher than the correlation coefficients of M2 and all the
other columns of M1. Figure 7.3 shows that this is indeed the case.

In the third step, we have repeated the second step with a different value for
the key. Hence, we have produced an output file containing the matrix M3.

As in step 2, we calculated the correlation coefficient of M1 and M3:

ci = C(M1(1 : N, i), M3) i = 1, . . . , 10 .
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Figure 7.3: Correlation between all the columns of M1 and M2 with 10 000
plaintexts for the ASIC implementation of the AES

As we used another key to produce M3, we expect no correlation between the
columns of the matrices M1 and M3. Figure 7.4 shows that this is indeed the
case. We conclude that our model, which consist of using predictions of the
behavior HDL simulation, makes correct predictions for the simulated behavior
of the Fastcore chip. From this result we expect that our model will make
correct predictions for the real behavior also, but the real behavior will have
more noise and we will have to use more plaintexts than the simulated attack
in order to see the same results.

In the fourth and last step, we have extended the experiments performed in
step 2 and step 3 in such a way that a full DPA attack on L = 8 bits was
performed. Hence, we calculated an N × 2L matrix M4. Each column of the
matrix M4 contains the prediction for the bit changes in the Register for a
particular guess of the L attacked key bits of the initial key addition. Eq. (7.1)
shows how we can calculate the correlation coefficients between the predictions
of all the possible keys and the first column of M1:

ci = C(M1(1 : N, 1), M4(1 : N, i)) i = 0, . . . , 2L − 1 . (7.1)

From the previous steps we can expect that only one value, corresponding to
the correct L key bits, leads to a high correlation coefficient. Figure 7.5 shows
that this is indeed the case.

We have already demonstrated that our attack setup works well together with
our model. The only question that remains is how many measurements, N ,
are needed to determine the correct key. In order to determine this minimum,
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Figure 7.4: Correlation between all the columns of M1 and M3 with 10 000
plaintexts for the ASIC implementation of the AES
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Figure 7.5: Correlation between the first column of M1 and M4 with 10 000
plaintexts for the ASIC implementation of the AES
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we have calculated the correlation coefficient between M1 and M4 for different
values of N :

ci,j = C(M1(1 : i, 1), M4(1 : i, j)) i = 1, . . . , 10 000 , j = 0, . . . , 2L − 1 .

As shown in Fig. 7.6, after approximately 400 plaintexts the correct L MSBs
can be distinguished from the wrong L MSBs. Hence, for the simulated attack,
400 measurements are sufficient to find the correct L MSBs of the key.
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Figure 7.6: Correlation between the first column of M1 and all the columns of
M4 as a function of the number of measurements for the ASIC implementation
of the AES

7.1.4 A Differential Power Analysis Using Measured Data

In this section, we present the results of our DPA attacks on Fastcore using real,
measured data. We have encrypted with Fastcore the same N plaintexts with
the same key as used in the first step of Section 7.1.3. The initial key addition
operation occurs during the first clock cycle. The result of this operation is
written into the Register at the rising edge of the second clock cycle. Hence,
we have measured the current consumption of Fastcore during the first two
clock cycles of the encryption operation. The clock frequency applied to the
chip was 2 MHz and the sampling frequency of the oscilloscope was 1 GHz.
Hence, 500 samples were acquired per clock cycle. With these measurements,
we have produced a N × 1000 matrix, M5. The power trace of one of these
measurements, is shown in Fig. 7.7.
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Figure 7.7: Current consumption trace of the 50th measurement of the ASIC
implementation of the AES

In order to identify the correct L MSBs of the key we have used the correlation
coefficient again. We have applied a pre-processing technique to reduce the
noise in our measurements and to reduce the amount of measurement data. The
pre-processing technique essentially consists of averaging. We have calculated
the mean value of the measurement data in the second clock cycle as follows:

M6(i) = E(M5(i, D + 1 : 2D)) i = 1, . . . , N ,

where D is the number of data points measured during one clock cycle. M5(i, D+
1 : 2D) is the vector which consists of the ith row and the columns between
D + 1 and 2D of M5. We used these pre-processed measurements as input for
our correlation analysis:

ci = C(M6, M4(1 : N, i)) i = 0, . . . , 2L − 1 .

As shown in Fig. 7.8 the highest correlation occurs at i = 153. This value
corresponds to 0x99 which are the 8 MSBs of the key.

The critical path of Fastcore is around 7 ns. Thus, only the first data points
of a measurement contain information which is directly related to the attacked
operation. Hence, we decided to reduce the number of data points for the
pre-processing step.

In order to determine the minimal number of data points that contain relevant
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Figure 7.8: Correlation between all the columns of M4 and M6 with 10 000
measurements for the ASIC implementation of the AES

information, i.e., information on the initial key addition, we have calculated the
correlation coefficient between pre-processed measurement data (for a varying
amount of data points in one clock cycle) and the column corresponding to the
correct key of M4:

M7(i, j) = E(M5(i, D + 1 : D + j))−E(M5(i, D + 1− j : D))

for i = 1, . . . , N and j = 1, . . . , D.

ci = C(M7(1 : N, i), M4(1 : N, 153)) i = 1, . . . , D .

Figure 7.9 shows that the highest correlation occurs when we use 50 data points
around the rising edge of the second clock cycle.

Figure 7.10 depicts the correlation coefficients between all the columns of M4

and the pre-processed data in column 50 of M7. This figure shows clearly
that the peak corresponding to the correct key becomes higher while the peaks
corresponding to the incorrect key guesses stays constant compared to Fig. 7.8.

As in Section 7.1.3, N was taken as 10 000. However, we are interested in the
smallest number of measurements that allow for a successful attack. In order
to find the minimal number of measurements, we have calculated the following
correlation coefficients:

ci,j = C(M7(1 : i, 50), M4(1 : i, j))i = 1, . . . , N , j = 0, . . . , 2L − 1 .
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Figure 7.9: Correlation between 153th column of M4 and all the columns of
M7 for the ASIC implementation of the AES
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Figure 7.10: Correlation between all the columns of M4 and the 50th column
of M7 with 10 000 measurements for the ASIC implementation of the AES
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It is shown in Fig. 7.11 that after approximately 4000 measurements the correct
and the wrong 8 MSBs of the key can be distinguished.
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Figure 7.11: Correlation between all the columns of M4 and the 50th column of
M7 as a function of the number of measurements for the ASIC implementation
of the AES

The attack with simulated data in Section 7.1.3 needs about 400 measurements
to deduce the correct key. Taking into account that the 4000 measurements
are the averages of 64 000 real measurements (see Section 7.1.2) we conclude
that we need 160 times more data to deduce the correct key.

7.2 Power Analysis of an FPGA Implementa-

tion of the AES

7.2.1 Hardware Description

The design used to investigate DPA attack against AES is described by Stan-
daert et al. in [246]. The complete architecture is represented in Fig. 7.12,
where all the registers contain 128 bits. It is a loop architecture with pipeline,
designed for optimizing the ratio Throughput (Mbits/s)/Area (slices). The re-
sulting design implements the round (and key round) function in 5 clock cycles
and the complete cipher in 52 clock cycles.
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Figure 7.12: Architecture of an FPGA Implementation of AES

7.2.2 Predictions in a Pipeline Design

The problem we study in this section is whether pipelining has any influence
on DPA attack resistance [244]. We also investigate a practical design that
is the result of efficiency optimizations. Loop architecture is a relevant choice
because it satisfies the usual area and throughput requirements for block cipher
applications. However, unrolled architectures will also be explored in a further
section.

Based on the hypothesis of Section 3.1.1, the first step in a power analysis attack
is to make theoretical predictions on the power consumption. This can be done
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using a selection function D that we define as follows. Let Xi and Xi+1 be
two consecutive values inside a target register. An estimation of the register’s
power consumption at the time of the transition is given by the function D =
H(Xi⊕Xi+1), where H(X) is the Hamming weight of X . An attacker who has
to predict the transitions inside the registers of an implementation therefore
needs to answer two basic questions:

1. Which register transitions can we predict?

2. Which register transitions leak information?

Answering these questions determines which registers will be targeted during
the attack. As an attacker can use the plaintexts (resp. ciphertexts) and predict
transitions by partial encryption (resp. decryption), it is also important to
evaluate both scenarios.

The predictability of a register is related to the number of key bits one should
know to predict its transitions. For block ciphers, this depends on the size
of the S-boxes and the diffusion layer. In practice, it is assumed that it is
possible to guess up to 24 key bits and the diffusion layer usually prevents
guessing of more than one block cipher round. In AES, S-boxes are 8 bits wide
and their outputs are thus predictable after the first (resp. final) key addition.
However, every MixColumns output bit depends on 32 key bits and is therefore
computationally intensive to guess.

Definition 7.1 We denote a register as a full (resp. empty) register if its
transitions leak (resp. do not leak) secret information. 2

For example, it is obvious that an input (resp. output) register does not leak
any secret information as it only contains the plaintext (resp. ciphertext).

A surprising consequence of the hypothesis introduced in Section 3.1.1 is that
the registers following an initial (resp. final) key addition and which are not
changed anywhere else in the algorithm do not leak information either. An
example for this kind of register is R2 in Fig. 7.12. To illustrate this statement,
we use the following key addition:

AddKey

result = input ⊕ key;

Let assume that the result is actually stored in the FPGA register R2 in
Fig. 7.12. Let two consecutive inputs of the key addition be denoted as input1
and input2. Using the previously defined selection function, the register power
consumption may be estimated by:

PR ∝ H(result1 ⊕ result2) = H(input1 ⊕ key ⊕ input2 ⊕ key)
= H(input1 ⊕ input2) .

(7.2)
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Eq.( 7.2) clearly specifies that register R2 is empty.

Note that this observation strongly depends on the hypothesis and selection
functions used to perform the attack. Another surprising observation is that
the register R2 may still leak secret information if reset signals are used. This
is due to the constant state that reset signals introduce. Then, we have:

PR ∝ H(“all zeroes”⊕ result1) = H(“all zeroes”⊕ input1 ⊕ key)
= H(input1 ⊕ key) ,

which makes the power consumption dependent on the key again. As a con-
sequence, a secure hardware implementation should not apply reset signals to
its inner registers in order to delete this additional information leakage. Note
that a similar observation has been used to attack smart card implementations,
where the constant state actually corresponds to a constant instruction address.

7.2.2.1 Predictions in AES

Figure 7.13 illustrates predictable and full registers when the AES design is
filled with five different plaintexts, denoted 1, 2, . . . , 5, during the first eight
clock cycles of an encryption. As an example, during the first cycle, register
R1 contains plaintext 1 while all the other registers are undefined. During the
second cycle, R1 contains plaintext 2, R2 contains the plaintext 1 and the other
registers are undefined. Remark that in the eighth cycle, the multiplexer starts
to loop and register R3 therefore contains data corresponding to plaintext 1
again.

Similarly, Fig. 7.14 illustrates predictable and full registers when the AES de-
sign is filled with five different plaintexts, denoted 1, 2, . . . , 5, during the last
six clock cycles of an encryption. As an example, the register R12 contains
the first ciphertext in the second cycle, ciphertext 2 in the third cycle and
ciphertext 3 in the fourth cycle.

In the next section, we explain how theoretical predictions of the power con-
sumption can be used to attack an FPGA implementation of the AES. Due to
the size of the AES S-boxes, we predicted transitions in 8-bit registers for which
the values depend on 8 key bits. In the following, predictions are consequently
performed for 28 possible key guesses.

7.2.3 Description of a Correlation Analysis Attack

A correlation attack against an FPGA implementation of AES is divided into
three steps [205, 30]. Let N be the number of plaintext/ciphertext pairs for
which the power consumption measurements are accessible. Let K be the secret
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Figure 7.13: Status of the registers in the FPGA implementation of the AES
during the first eight clock cycles

encryption key. When simulating the attacks, we assume that K is known to
the attacker. For practical attacks, it is of course unknown.

7.2.3.1 Prediction Phase

For each of the N encrypted plaintexts, the attacker first selects the target
registers and clock cycle for the previously defined selection function D. In
Fig. 7.13, we see that between cycles 7 and 8, registers R4, R5, R6, R7, R8, R11
and R12 are full and have predictable and defined values. Similarly, in Fig. 7.14,
we observe that between cycles 1 and 2, registers R3, R4, R5, R6, R7 and R10
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Figure 7.14: Status of the registers in the FPGA implementation of the AES
during the last six clock cycles

are full and have predictable and defined values. Depending on the knowledge
of the design, these registers can therefore be targeted. Due to the size of the
AES S-box, the predictions are performed on 8 bits and may be repeated for
every 8-bit part of a register Ri.

Let t be the number of 8-bit registers targeted by the attacker. Then, he
predicts the value of D (i.e., the number of bit switches inside the target
registers in the targeted clock cycle) for the 28 possible key guesses and N
plaintexts. The result of the prediction phase is an N×28 selected prediction
matrix, containing integers between 0 and 8 × t. For simulation purposes, it
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is also interesting to produce the global prediction matrix that contains
the number of bit switches inside all the 12 registers of the design, for all the
cycles. That is, if the encryption is performed in 52 clock cycles, we obtain a
N×52 matrix, containing integers between 0 and 12×128 = 1536. This is only
feasible if the key is known. In accordance with the hypothesis of Section 7.2.2,
these matrices give estimations for the power consumption of the device. Since
the same key is used for all the measurements, the power consumption of the
key schedule is fixed and may be considered as a DC component that we can
neglect as a first approximation.

7.2.3.2 Measurement Phase

During the measurement phase, we let the FPGA encrypt the same N plain-
texts with the same key, as we did in the prediction phase. While the chip
is operating, we measure the power consumption for the 52 consecutive clock
cycles. Then, the power consumption trace of each encryption is averaged 10
times in order to remove the noise from our measurements; we store the max-
imum values of each encryption cycle so that we produce an N × 52 matrix
with the power consumption values for all the plaintexts and clock cycles. We
denote it as the global consumption matrix.

7.2.3.3 Correlation Phase

In the correlation phase, we compute the correlation coefficient between a col-
umn of the global consumption matrix (corresponding to the cycle targeted
by the prediction phase) and all the columns of the selected prediction matrix
(corresponding to all the 28 key guesses). If the attack is successful, we expect
that only one value, corresponding to the correct key guess, leads to a high
correlation coefficient.

Finally, theoretical predictions of the attack can be performed by using the
global prediction matrix instead of the global consumption matrix. As the
global prediction matrix contains the number of bit switches inside all the
registers, it represents a theoretical noise free measurement and may help to
determine the minimum number of texts needed to mount a successful attack,
i.e., an attack where the correct key guess leads to the highest correlation
coefficient. This is investigated in the next section.

7.2.4 A DPA Attack Using Simulated Data

In this section, we study the influence of the number of registers predicted on
the efficiency of the attack. Several scenarios can be considered that correspond
to different abilities of the attacker. In the most basic case, the attacker does
not have any information about the design and has to make assumptions about
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its implementation. A reasonable assumption is that the S-box outputs will be
stored in registers. This is usually the case in the AES because S-boxes are
the most time (and space) consuming parts of the algorithm. Therefore, the
attacker will only predict the switching activity of 8 bits in R8 (in encryption)
or R3 (in decryption). In the first step of the simulated attack, we produce
the selected prediction matrix and global prediction matrix as defined
in the previous section. Thereafter, we perform the correlation phase between
these two matrixes. If the attack is successful, we expect that only one value,
corresponding to the correct key guess, leads to a high correlation coefficient.

As the attacker is interested to determine the minimum number of plaintexts
necessary to extract the correct key, we calculated this correlation coefficient
for different values of N : 1 ≤ N ≤ 4096. As shown in Fig. 7.15, after
approximately 1500 plaintexts the right 8 key bits can be distinguished from a
wrong guess. We may therefore say that the attack is theoretically successful
after about 1500 plaintexts.
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Figure 7.15: Change in the correlation coefficient as a function of the number
of plaintexts for a simulated attack on the FPGA implementation of the AES
by predicting only register R8 during the encryptions

As explained above an attacker who has no information about the implemen-
tation of the AES will only predict the switching activity of 8 bits in R8 (in
encryption) or R3 (in decryption). In a more advanced scenario, the attacker
has access to some implementation details (for example the scheme of Fig. 7.13).
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Hence he knows that there are five pipeline stages in one round of the AES
and twelve registers are used in the complete implementation of the AES. Then
may determine the predictable and full registers in the scheme of Fig. 7.13.
Instead of just predicting the power consumption of R8, he can predict the
power consumption of all twelve registers. Based on the complete predictions
of Fig. 7.13, the correlation coefficient values for every key guess as a function
of the number of plaintexts are represented in Fig. 7.16.
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Figure 7.16: Change in the correlation coefficient as a function of the number
of plaintexts for a simulated attack on the FPGA implementation of the AES
by predicting all the full registers during the encryptions

We observe that the correct key guess is distinguishable after about 500 plain-
texts, but stays closely correlated to three other candidates. As the S-box is
a large multiplexer with two pipeline stage six input bits are actually used to
select the values in registers R4, R5, R6, R7 [246]. Thereafter, two last bits
select the final result of R8. As a consequence, if the key guess is such that the
first six input bits of the S-box remain unchanged, the values stored in regis-
ters R4, R5, R6, R7 are the same. Only the S-box output in register R8 will
differ. As there are four such key guesses, we will have four closely correlated
candidates, including the correct one, what we can clearly observe in Fig. 7.16

A solution to this problem is to use the decryption predictions of Fig. 7.14.
Then, even if only one bit differs at the output of the S-box (in R8), it will not
result in the same intermediate register transitions. Based on these predictions,
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the correlation coefficient values for every key guess and different number of
traces are represented in Fig. 7.17, where the correct key candidate is clearly
distinguishable after about 500 plaintexts.
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Figure 7.17: Change in the correlation coefficient as a function of the number
of plaintexts for a simulated attack on the FPGA implementation of the AES
by predicting all the full registers during the decryptions

7.2.5 A DPA Attack Using Practical Measurements

When we attack a device physically, the selected prediction matrix remains
unchanged while we replace the global prediction matrix by the real mea-
sured global consumption matrix. Therefore, we encrypt 4096 plaintexts on
the FPGA with the same key as we have done in the previous section and
produce the matrix as described in Section 7.2.3.2.

In order to evaluate the quality of our theoretical predictions, we made a pre-
liminary experiment and computed the correlation coefficient between one (in
practice the 26th) column of the global prediction matrix and every col-
umn of the global consumption matrix. Figure 7.18 clearly illustrates that
the highest correlation value appears for the predicted round, and therefore
confirms that our predictions are correlated with real measurements.

In order to identify the correct 8 MSBs of the final round key, we used the
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Figure 7.18: Correlation between global predictions for cycle 26 and measure-
ments for the FPGA implementation of the AES (N = 4096)

correlation coefficient again. As it is shown in Fig. 7.19, the correct key guess
is distinguishable after about 2500 traces. As a consequence, the attack is
practically successful, i.e., the selected prediction matrix is sufficiently cor-
related with the real measurements and we can extract the key information.
Remark that comparing Fig. 7.17 and 7.19 allows us to evaluate the effect of
the measurement phase. Compared with smart cards, the sampling process
was made more difficult by the high clock frequency of the AES design (around
100 MHz).

Finally, it is important to note that more key bits may be found using exactly
the same set of measurements. The attacker only has to modify the selected
prediction matrix and target different key bits. The full key can therefore
be recovered computing the correlation between the global consumption
matrix and 16 predictions, each one revealing 8 key bits.

7.2.6 Hypothesis

Looking back at the hypothesis of Section 3.1.1, it is important to evaluate how
the work presented in this section could be improved and how representative
our results are. To the question “Are power analysis attacks realistic against ef-
ficient FPGA implementations of AES?”we may certainly answer “yes”. While
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Figure 7.19: Change in the correlation coefficient as a function of the number
of plaintexts for a practical attack on the FPGA implementation of the AES
by predicting all the full registers during the decryptions

attackers usually investigate “toy”implementations for side-channel attacks, we
took a real and optimized design with high clock frequencies and evaluated the
significance of pipelining techniques in terms of DPA resistance. From an at-
tacker’s point of view, we have investigated the simplest possible hypothesis
and built a practical attack based on these simple assumptions. However, the
question “How to counteract these power analysis attacks?”is still open in dif-
ferent ways. When countermeasures are considered, it is important to note
that our measurements can be improved in several ways; moreover, the attack
model should be taken into account.

As an illustration, we limited the transition predictions to the registers of the
AES design. However, it is clear that registers are not the only leaking parts
in FPGAs and transitions in other components could be predicted in order to
improve the attack. Similarly, looking back at Eq. (3.3), a more accurate pre-
diction of the FPGA power consumption could be done by evaluating the load
capacitance values. A notable feature of FPGAs is that they contain differ-
ent resources (e.g. logic blocks, connections) the power consumption of which
differs because of different effective load capacitances. As a consequence, the
power consumption of FPGA designs does not only depend on their switching
activity but also on the internal resources used. In practice, more accurate
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estimations of the most consuming components of an FPGA design can be
derived from the delay information that is generated by most implementation
tools [152]. As an input delay represents the delay seen by a signal driving that
input due to the capacitance along the wire, large (resp. small) delay values
indicate that the wire has a large (resp. small) capacitance. Based on the re-
ports that are automatically generated by the implementation tools, one may
expect to recover very accurate information about the signals that are driving
high capacitances. The knowledge of the implementation net lists with delay
information is therefore relevant; it will allow an attacker to improve the attack.

7.3 Power Analysis of an FPGA Implementa-
tion of the DES

We have performed our experiments on the sequential DES implementation of
Rouvroy et al. in [222] that takes one clock cycle to perform one round. It is
represented in Fig. 2.3(a). We used again correlation analysis to implement a
DPA attack on the FPGA Implementation of DES.

7.3.1 An Attack Using Simulated Data

This time our target is the four MSBs of the register L that are affected by the
six MSBs of the round key 16 [245]. It corresponds to the output bits of S-box
S0. For simulation purposes, we produce the global prediction matrix that
contains the number of bit transitions inside all the registers of the design, for
all the cycles (see Section 7.1.3). As explained in Section 2.3, there are two
register of 32 bits, L and R. That is, if the encryption is performed in 16 clock
cycles, we obtain an N × 16 matrix, containing integers between 0 and 64 for
N random plaintexts. The number N of measurements for this experiment was
4096.

Then for each of the N encrypted plaintexts, we predict the number of bit
transitions inside our target register between rounds 15 and 16 for the 26 key
guesses. The result of the prediction is an N×26 selected prediction matrix
containing integers between 0 and 4.

According to the hypothesis of Sect. 3.1.1, these matrices give estimations for
the power consumption of the device. Since the same key is used for all the
measurements, the power consumption of the key schedule is fixed and may be
considered as a DC component that we can neglect as a first approximation.

Thereafter, we compute the correlation coefficient between the 16th column of
the global consumption matrix (corresponding to 16th round targeted) and all
the columns of the selected prediction matrix. If the attack is successful, we
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expect that only one value, corresponding to the correct key guess, leads to a
high correlation coefficient. Figure 7.20 shows that this expectation is met and
the correct 6 MSBs of the last round key guess are 1Ehex = 30dec.
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Figure 7.20: Correlation coefficient of all the 26 key guesses for simulated attack
on the FPGA implementation of the DES (N = 4096)

As an attacker would like to learn the minimum number of plaintexts that are
necessary to find the key, we have also calculated this correlation coefficient
for different values of N : 0 ≤ N ≤ 2000. As shown in Fig. 7.21, after
approximately 400 plaintexts the right 6 key-bits can be distinguished from a
wrong guess. We may therefore say that the attack is theoretically successful
after about 400 texts.

7.3.2 Correlation Phase:

In the correlation phase, we compute the correlation coefficient between the
16th column of the global consumption matrix (corresponding to 16th round
targeted by the prediction phase) and all the columns of the selected prediction
matrix (corresponding to all the 26 key guesses). If the attack is successful, we
expect that only one value, corresponding to the correct key guess, leads to a
high correlation coefficient.

Finally, theoretical predictions of the attack can be performed by using the
global prediction matrix instead of the global consumption matrix. As the
global prediction matrix contains the number of bit switches inside all the
registers, it represents a theoretical noise free measurement and may help to
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Figure 7.21: Change in correlation coefficient as a function of the number of
measurements for simulated attack on the FPGA implementation of the DES

determine the minimum number of texts needed to mount a successful attack,
i.e., an attack where the correct key guess leads to the highest correlation
coefficient. This is investigated in the next section.

7.3.3 An Attack Using Practical Measurements

When attacking a device in practice, the selected prediction matrix stays un-
changed while we replace the global prediction matrix by the measured global
consumption matrix. We encrypt the same N plaintexts on the FPGA with
the same key, as we did in the prediction phase. While the chip is operat-
ing, we measure the power consumption for 16 consecutive clock cycles. Then,
the power consumption trace of each encryption is averaged 10 times in or-
der to remove the noise from our measurements and we store the maximum
value of each encryption cycle so that we produce an N × 16 matrix with the
power consumption values for all the texts, cycles. We denote it as the global
consumption matrix.

In order to identify the correct 6 MSBs of the final round key, we used the
correlation coefficient again. As it is shown in Fig. 7.22, the highest correlation
occurs when the key guess is 1Ehex = 30dec. This value corresponds to the
correct 6 MSBs of the round key 16. As a consequence, the attack is practi-
cally successful, i.e., the selected prediction matrix is sufficiently correlated
with the real measurements and we can extract the key information. Note that
comparing Fig. 7.20 and Fig. 7.22 clearly allows to evaluate the effect of the
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noise in our measurements.
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Figure 7.22: Correlation coefficient of all the 26 key guesses for the practical
attack on the FPGA implementation of the DES (N = 4096)

It is important to note that more bits of the final subkey may be found using
exactly the same set of measurements. The attacker only has to modify the
selected prediction matrix in order to target different key bits. As every subkey
consists of 48 bits and the master key of 56 bits, we can easily find the last 8
key bits by exhaustive search. Figure 7.23 shows the correlation coefficient for
the predictions of 12 bits of the 16th round key. It proves that by using the
same set of measurements and by just changing the predictions we can find all
the key bits.

7.4 Conclusions

In Section 7.1, we have presented the first public implementation of a DPA
attack on an ASIC implementation of the AES. We have shown how to build
a reliable measurement setup and how to improve the correlation coefficients,
i.e., the signal to noise ratio for our measurements. Due to the results of the
simulated attack and the real attack, we conclude that the chip tester, which we
used in our measurement setup, introduces a considerable amount of noise in
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Figure 7.23: Correlation coefficient of all the 212 key guesses for the practical
attack on the FPGA implementation of the DES (N = 4096)

our measurements (we needed 160 times more measurements in the real attack
than in the simulated attack).

Our approach forms a first step to link real and simulated power measurements.
This is very important for designers of cryptographic hardware, as it allows
them to estimate the vulnerability to power attacks in a very early stage of the
design flow. This can bring important security and cost benefits.

In Sections 7.2 and 7.3, we have investigated the first power analysis attacks
against FPGA implementations of the AES and the DES, respectively. We
have exhibited the effect of pipelining and unrolling techniques in this context.
It is first demonstrated that pipelining a loop implementation does not pro-
vide an effective countermeasure if an attacker has access to the design details
because most of the registers in the pipeline remain predictable. We have also
provided a theoretical model allowing the simulation and comparison of the
attacks in different contexts. In practice, we have mounted the first successful
attack against an efficient FPGA implementation of the AES. Finally, a clear
discussion of the hypothesis used to perform power analysis is provided with
some proposals for further improvements.
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Chapter 8

Conclusions and Open
Problems

8.1 Conclusions

In this thesis we focused on area and time efficient hardware design of elliptic
curve cryptosystems and on side channel attacks on hardware implementations
of cryptographic algorithms. We started the work with hardware implementa-
tion of elliptic curve cryptosystems. The efficiency of the implementation of the
elliptic curve cryptosystems depends on the efficiency of the implementations
of the finite field operations which are the basic operations. Hence first of all we
have studied the efficient hardware implementation of the finite field operations
over GF (2m) and GF (p). Amongst all the finite field operations the most area
and time consuming operation is the modular multiplication. Hence we give
special attention to the choice of the most efficient algorithm and implemen-
tation it in most efficient way. In order to get rid of the modular reduction
step, which is the most expensive operation of a modular multiplication, we
use Montgomery modular multiplication (MMM).

We have presented efficient hardware implementations of the Montgomery mod-
ular multiplication algorithm over GF (2m) and GF (p) in an FPGA. The de-
signs use systolic array architectures to allow pipelining and to make the clock
frequency independent of the operand bit-length. The systolic array consists
of cells which are independent from m and p. The critical path of the complete
Montgomery modular multiplier is the same as the critical path of a cell of
the systolic array. In this way, the clock frequency does not change when m
or the bit-length of p is enlarged for security reasons. For the Montgomery
modular multiplication over GF (2m) the clock frequency only depends on the

175
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word length ω, as m = sω, which determines the amount of logic in one cell
of the systolic array, s is the digit-length of m. The word length is an input
parameter for the implementation of the circuit. The MMM over GF (2m) is
not restricted to field representations using irreducible trinomials: every ir-
reducible polynomial of degree m can be used. In the design of MMM over
GF (p) the optimal bound is used which, with some savings in hardware, omits
completely all the conditional reduction steps that are known to be vulnerable
to the side-channel analysis attacks presented in Chapter 3.

We presented a hardware architecture of a processor for an EC cryptosystem
over the finite field GF (2m) in Section 4.3. Our elliptic curve processor uses
the Montgomery modular multiplier over GF (2m) proposed by Koç and Acar
in [130]. The maximum clock frequency is again independent of the bit length
m. The total latency of the ECP can be calculated as (1900 + 14hw) TMMMC +
316 + 2hw, where hw is the Hamming Weight of the key and TMMMC is the
latency of one MMM. TMMMC = m for w = 1 and TMMMC = 3m

w for w > 1.
One elliptic curve point multiplication (ECPM) requires 3.810 ms at 47 MHz.

Because there is no previous work which uses MMM and all other designs use
different platforms, it is hard to compare the area of the current work with
other implementations. The time needed for one ECPM with our design is
approximately the same as the result reported in [5], smaller than the results
reported in [249, 74, 75, 140, 63, 84, 116], but larger than the ones reported
in [192] and [60].

We presented a FPGA implementation of an elliptic curve processor [202, 195,
197, 16, 198]. The processor consists of special operational blocks for Mont-
gomery Modular Multiplication, modular addition/subtraction, EC Point dou-
bling/addition, modular multiplicative inversion, EC point multiplication, pro-
jective to affine coordinates conversion and Montgomery to normal represen-
tation conversion. Our processor can be programmed by the host to execute
these operations in any order. It is possible to use the proposed processor not
only for ECC, but also for any system for which modular arithmetic operations
are essential, such as the RSA cryptosystem.

The basic operations are MMM and MAS. The other blocks include FSMs,
which control the execution of these operations. The critical path depends
only on the critical path of the circuits for MMM and MAS. The architecture
of these blocks is designed to ensure a short critical path to allow for high clock
frequencies which are independent from the bit-length of the EC parameters.

The proposed processor has been implemented on a Xilinx V800-HQ-240-4
Virtex FPGA by taking the bit-length of EC parameters N and the bit-length
of key, l as 160. According to the implementation results, the number of flip-
flops and 4 input LUTs are equal to 11 192 and 14393, respectively. This is
equivalent to 175952 gates. The minimum clock period is 40.550 ns (maximum
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clock frequency: 24.661 MHz). LUTs are lookup-tables that are used as RAMs
or 4-input gates.

The only existing previous work done on FPGA is from Orlando and Paar [194].
Orlando and Paar use a multiplier which is also based on the MMM algorithm
but it is a generalized version with quotient pipelining introduced by Orup
in [203]. We use the basic MMM algorithm from which we only exclude the
modular reduction as a result of the bound adjustment. In this way no pre-
computation is required, which results in a substantial memory reduction. More
importantly, this property also facilitates modular exponentiation as temporary
results of multiplications can be fed back directly without any modular sub-
traction. Their multiplier has a semi-systolic architecture while the multiplier
presented here is fully systolic. This results in an increased flexibility which
is unrelated to any specific parameter choice. Orlando and Paar also used an
adaptation of a fixed base exponentiation method as introduced by Brickell et
al. in [29]. This algorithm is claimed to be four times faster than the standard
double-and-add algorithm which we use. However, it involves a known point
calculation which is a limiting factor with respect to various applications of
ECC.

We have designed, implemented and simulated the circuits with commercial
software tools, such as Synopsys, Cadence, etc.; it would be desirable to build
and test real implementations. Because there are many choices for architec-
tures that we would like to try and also we would like to test our circuits for
debugging purposes before the final product comes out, we should have a pro-
totyping environment. Because of the reconfigurability of the FPGAs, they
are the best choice for this requirement. We need a development board which
the FPGA we choose is on, we should be able to configure the FPGA and
establish a communication between the FPGA and a PC via this board. An-
other issue designers should take care of is the resistance against side-channel
attacks. The algorithms can be mathematically secure, but if they are im-
plemented in a way that their side-channels give information about the secret
data inside then the expected security level from the algorithm will never be
achieved. The side-channels of an implementation that have been exploited
so far are timing, power consumption, electromagnetic radiation and sound.
As a hardware designer of cryptographic algorithms it is natural that we are
interested in understanding the resistance of our implementations against side-
channel analysis attacks. Again because the FPGAs give the possibility to try
as many circuits as we wish, they serve as a good environment for attacking
on our circuits and improving them in order to have more resistant circuits.
The most popular side-channel information that the researchers use is the dy-
namic power consumption of the cryptographic hardware, while executing the
cryptographic algorithm with a set of known inputs. There is a main problem
in order to conduct a power analysis attack; we have to interrupt the power
source wires of the FPGA. The commercial development boards provide all the
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requirements mentioned above, but they do not give the possibility to reach
the power sources of the FPGA. The only wire we can use to make the power
consumption measurements is the power source wire of the board. If we use
this wire then we will measure the power consumption of all the devices on the
board, such as the microcontroller, memory, leds, etc. Hence we have designed
and produce our own development board with special features to conduct the
side-channel attacks easily.

We can prove that our FPGA leaks a significant amount of information about
its internal computations through the power source wires. We have even pro-
vided evidence that the power consumption characteristics are comparable with
the power consumption characteristics of ordinary application specific inte-
grated circuits (ASICs). Therefore, it is possible to draw conclusions about the
vulnerability of a certain circuit by performing power-analysis attacks on an
FPGA-implementation. Since programming an FPGA is considerably less ex-
pensive than manufacturing an ASIC, assessing vulnerability of a device w.r.t.
power-analysis attacks is less expensive on our platform. Consequently, our
approach describes the first inexpensive and efficient way to conduct power-
analysis attacks on a real implementation (i.e., not on a software simulation)
of a circuit in a very early stage of the design.

After developing the suitable environment for the side-channel analysis attacks,
we have implemented timing, power and electromagnetic analysis attacks on
our FPGA implementations of elliptic curve cryptosystems over GF (p). We
concluded that our initial design was vulnerable to simple attacks and by using
only the timing information it is possible to find the Hamming weight of the key.
More drastically by using simple power and electromagnetic analysis attacks
it was possible to find all the key bits. Next we improved our circuits such
that they are resistant against timing and simple power and electromagnetic
analysis attacks. We showed that this improved design is still vulnerable to
differential attacks.

We have conducted differential power and electromagnetic analysis attacks on
our improved FPGA implementation of elliptic curve processor. We use two
well known techniques for DPA and DEMA; correlation analysis and distance of
mean test. We conclude that the correlation analysis reveals the right key bit by
using six times less measurements than the distance of mean test for both DPA
and DEMA. Our electromagnetic radiation measurements have to be doubled
with respect to the power consumption measurements in order to find the right
key bit. There are several reasons for this. We use a very simple handmade
antenna shown in Fig. 6.13. Because the diameter of the antenna is large and
it is not isolated from any effect by any protection, the antenna collects all the
signals in the air. We use the same prediction data for both power consumption
and electromagnetic radiation, which is the number of transitions in the target
registers. This is a correct model for power consumption as it is related to
the current flow to the load capacitances, but the electromagnetic radiation is
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also affected by the internal direction of the current. Hence the predictions
for electromagnetic radiation should be improved by taking into account of the
position of the antenna on the FPGA and the relative direction of the current
flows.

Having our custom development FPGA board gives us the opportunity to con-
duct power analysis attacks on the FPGA implementations of the AES and
the DES from UCL Crypto Group. In order to compare the resistance against
power analysis attack of different architectures and different technologies, we
have conducted a power analysis attack on an ASIC implementation of the
AES from ETH Zürich. We have presented the first public implementation of
a DPA attack on an ASIC implementation of the AES. We have shown how to
build a reliable measurement setup and how to improve the correlation coeffi-
cients, i.e., the signal to noise ratio for our measurements. Due to the results
of the simulated attack and the real attack, we conclude that the chip tester,
which we used in our measurement setup, introduces a considerable amount
of noise in our measurements (we needed 160 times more measurements in the
real attack than in the simulated attack).

Our approach forms a first step to link real and simulated power measurements.
This is very important for designers of cryptographic hardware, as it allows
them to estimate the vulnerability to power attacks in a very early stage of the
design flow. This can bring important security and cost benefits.

We have investigated the first power analysis attacks against FPGA implemen-
tations of AES and DES, respectively. We have studied the effect of pipelining
and unrolling techniques in this context. First we have demonstrated that
pipelining a loop implementation does not provide an effective countermeasure
if an attacker has access to the design details because most of the registers in
the pipeline remain predictable. We have also provided a theoretical model that
allows to simulate and compare the attacks in different contexts. In practice,
we have mounted the first successful attack against an efficient FPGA imple-
mentation of AES. Finally, a clear discussion of the hypothesis used to perform
power analysis is provided with some proposals for further improvements.

8.2 Topics for New Research

• So far we use correlation analysis and distance of mean test for the DPA
and DEMA attacks. Other methods [42] such as a maximum likelihood
test should be used in order to decrease the needed number of measure-
ments.

• Besides carefully exploring all available side-channel information an at-
tacker can also focus on a combination of two or more side-channels.
Agrawal et al. define these so-called multi-channel attacks in which the
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side-channels are not necessarily of a different kind [8]. We can measure
different side-channels of the FPGA simultaneously on our measurement
setup, hence combining these information can decrease the needed num-
ber of measurements.

• A step would be to implement and test the countermeasures against dif-
ferential power and electromagnetic analysis attacks. The suggestions for
the countermeasures are given in Section 3.3.2.4.

• Fault attacks can be also conducted on our measurement setup by mod-
ifying the configuration file of the FPGA.

• We use a very simple handmade antenna shown in Fig. 6.13 for EMA
attacks. Because the diameter of the antenna is large and it is not isolated
from any effect by any protection, the antenna collects all the signals in
the air. The position, dimension of the antenna should be analytically
explored.

• We use the same prediction data for both power consumption and elec-
tromagnetic radiation, which is the number of transitions in the target
registers. This is a correct model for power consumption as it is related
to the current flow to the load capacitances, but the electromagnetic ra-
diation is also effected by the direction of the current internally. So the
predictions for electromagnetic radiation should be improved by taking
into account of the position of the antenna on the FPGA and the relative
direction of the current flows.

• It can be possible to decrease the number of needed measurements by
combining the classical cryptanalysis and side-channel analysis attacks.
There are a few publications on this work which are all implemented on
software implementations [232, 233].
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using the Jacobi form. In Ç. K. Koç, D. Naccache, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems (CHES), volume 2162
of Lecture Notes in Computer Science, pages 391–401. Springer-Verlag,
2001.

[142] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their
Applications. Cambridge University Press, New York, NY, USA, 1994.

[143] J. Lopez and R. Dahab. Improved algorithms for elliptic curve arithmetic
in GF (2n). Technical Report IC-98-39, Institute of Computing, State
University of Campinas, Campinas, 13081-970 Sao Paulo, Brazil, October
1998.

[144] C.-C. Lu. A search of minimal key functions for normal basis multipliers.
IEEE Transactions on Computers, 46(5):588–592, May 1997.

[145] S. Mangard. A simple power-analysis attack (SPA) attack on implemen-
tations of the AES key expansion. In P. J. Lee and C. H. Lim, editors,
Information Security and Crytography (ICISC), volume 2587 of Lecture
Notes in Computer Science, pages 343–358. Springer-Verlag, 2002.

[146] S. Mangard. Exploiting radiated emissions – EM attacks on crypto-
graphic ICs. In Proceedings of Austrochip, Linz, Austria, October 3 2003.

[147] S. Mangard. Hardware countermeasures against DPA – a statistical anal-
ysis of their effectiveness. In T. Okamoto, editor, Topics in Cryptology
– CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages
222–235. Springer-Verlag, 2004.

[148] M. M. Mano and C. R. Kime. Logic and Computer Design Fundamentals.
Prentice Hall, New Jersey, second edition, 2001.

[149] J. L. Massey, G. H. Khachatrian, and M. K. Kuregian. Nomination of
SAFER++ as a candidate algorithm for the New European Schemes for
Signatures, Integrity and Encryption (NESSIE). Primitive submitted to
NESSIE by Cylink Corp., September 2000.

[150] E. D. Mastrovito. VLSI Architectures for Computations in Galois Fields.
PhD thesis, Department of Electrical Engineering, Linkøping University,
Sweden, 1991.

[151] D. May, H. Muller, and N. Smart. Random register renaming to foil
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