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SYSTEM ON CHIP DESIGN FOR POST-QUANTUM CRYPTOGRAPHY
USING RISC-V PROCESSOR

SUMMARY

This project revolves around the development of a System-on-Chip (SoC) design
intended for the robust implementation of the post-quantum cryptography algorithm
known as CRYSTALS-Dilithium. The overarching goal is to seamlessly integrate this
algorithm into a RISC-V processor-based system while ensuring optimal performance
and security. The project unfolds through several key phases:

Understanding the Significance of Post-Quantum Cryptography:

In the initial phase, the project delves into the realm of post-quantum cryptography,
investigating its crucial importance in the face of evolving quantum computing threats.
By scrutinizing the vulnerabilities inherent in existing cryptographic systems, the
project aims to establish the necessity of transitioning to post-quantum algorithms.
Comprehensive Exploration of CRYSTALS-Dilithium Algorithm:

A thorough examination of the CRY STALS-Dilithium algorithm forms the foundation
of the project. This includes acquiring in-depth knowledge of its mathematical
foundations and cryptographic principles. The objective is to grasp the intricacies that
make CRYSTALS-Dilithium a compelling choice for secure communication in the
post-quantum era.

Source Code Examination and Compilation:

The project proceeds to acquire and meticulously review the source code associated
with the CRYSTALS-Dilithium algorithm. This step is crucial to gain insights into the
software aspects of the algorithm. Subsequently, the source code is compiled to ensure
its proper functionality within the system.

Profiling and Performance Analysis:

A pivotal aspect of the project involves profiling the compiled source code to pinpoint
specific functions or modules that consume a significant portion of the running time.
Through performance analysis, the project endeavors to identify areas for
optimization, paving the way for enhanced efficiency.

Hardware Design Research for RISC-V Core Integration:

With a focus on hardware solutions, the project embarks on researching and selecting
suitable designs for integration with a RISC-V processor. The aim is to identify
hardware acceleration techniques and optimizations that align seamlessly with the
requirements of the CRYSTALS-Dilithium algorithm. The ultimate objective is to
augment the overall system performance.

Essentially, during the hardware design research phase, we're not just looking into
different options; we're carefully evaluating each one based on how straightforward,
efficient, and compatible it is. This method guarantees that the chosen hardware not
only improves the overall system performance but also does it in a way that is easy to
understand and in harmony with the specific requirements of the CRYSTALS-
Dilithium algorithm. The ultimate goal is to create a secure and optimized System-on-
Chip (SoC) design that can effectively tackle the challenges presented by the imminent
threats of quantum computing.

Xiii



In conclusion, this project aspires to not only comprehend the theoretical foundations
of post-quantum cryptography and the intricacies of the CRYSTALS-Dilithium
algorithm but also to manifest a tangible, secure, and optimized SoC design. By
leveraging the capabilities of a RISC-V processor, the project seeks to address the
imminent challenges posed by quantum computing threats, resulting in a robust and
efficient solution.
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RISC-V ISLEMCI KULLANARAK KUANTUM SONRASI KRIPTOGRAFI
ICIN CIP UZERINDE SiSTEM TASARIMI

OZET

Her gecen giin, kuantum bilgisayarlarinin kullanimimin artmasi; beraberinde bazi
glivenlik sorunlarini da beraberinde getirmistir. Giinlimiizde kullanilan kriptografi
algoritmalarinin bu sorunlar karsisinda yetersiz kalmasi yeni arayiglart dogurmustur.
CRYSTALS-Dilithium algoritmast bu arayislar sonucu ortaya ¢ikan, yakin
gelecekteki glivenlik problemlerine ¢6ztim olabilecek bir Post-Quantum Cryptography
algoritmasidir. Bu algoritma NIST kurumunun baslattifi projeler dogrultusunda
olusturulmus bir algoritmadir. Bizim projemizin amaci ise bir RISC-V islemcisi
kullanarak bu algoritmay1 kosturabilecek bir SoC dizayn olusturmaktir. Sadece
giinimiizii degil, gelecekte olusabilecek durumlart da degerlendirmek amaciyla bu
proje oldukca Kiritiktir.

Bu proje siirecinde gesitli adimlar ve arastirmalar yapilmustir. Oncelikli olarak, PQC
konseptini ve dnemini idrak etmek amaciyla aragtrmalar yapilmistir. Veri giivenligi
sliphesiz her alanda ¢ok kritiktir. Yapilan aragtirmalar dogrultusunda da bu konudaki
onemin her gecen giin daha da artacag1 gézlemlenmistir. Ozellikle bankacilik, bulut
sistemleri ve tiketici bilgileri gibi konularda gereken giivenlik kosullari, giiniimiiz
algoritmalariyla glivende olmayacag i¢in; PQC algoritmalarinin yeri oldukga kritiktir.
PQC algoritmalarinin genel 6zellikleri ve 6nemi anlasildiktan sonra, secilen algoritma
olan CRYSTALS-Dilithium algoritmasinin 0zellikleri ve c¢alisma prensiplerini
anlamak amaciyla aragtirma yapilmistir. Bu algoritmanin matematiksel modelleri ve
igerisinde barindirdig1 problem tipleri arastirilip 6grenmilmistir. Yapilan incelemeler
sonucu, bu algoritmanin diger PQC algoritmalari gibi giiniimiiz algoritmalarindan gok
daha giivenli oldugu, quantum siber saldirilar1 karsisinda oldukga gii¢lii oldugu
gorunmustiir.

Bu algoritmanin kaynak kodlar1 incelenmis ve kosturulmustur. Bu adim algoritmanin
yazilimsal Ozelliklerini gérmek adina onemli bir kaynak olmustur. Algoritmada
kullanilan fonskiyonlar tek tek derlenip sonuglar1 incelenip karsilastirilmistir. Daha
sonrasinda  gergekelstirilen yazilim profili sonucunda, algoritmanin hangi
fonksiyonunun en ¢ok zaman harcadig1 ve en fazla ¢agrildig: tespit edilmistir. Bunun
amaci sudur: Islem zamanini en ¢ok harcayan fonksiyon i¢in tasarlanacak ve RISC-V
iselmcisine uyumlu olacak bir donanim; biitiin sistemin daha hizli ¢alismasin
saglayacaktir.

Esasen, donanim tasarimi arastirma asamasi sadece mevcut segeneklerin kesfini
icermiyor; aynt zamanda her birini basitlik, verimlilik ve uygunluk temelinde titiz bir
degerlendirme siirecinden gegiriyoruz. Bu yaklasim, seg¢ilen donanim ¢dziimiiniin
sadece genel sistem performansini artirmakla kalmayip ayni zamanda CRYSTALS-
Dilithium algoritmasinin sifreleme incelikleriyle de uyumlu bir sekilde ¢alismasini
saglar. Bu c¢abalarin sonucunda, yakin gelecekteki kuantum hesaplama tehditleriyle
basa cikabilen gilivenli ve optimize edilmis bir System-0on-Chip (SoC) tasarimi ortaya
¢ikmasi beklenmektedir.
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Profilleme sonucunda en ¢ok zaman harcayan fonksiyon KeccakF1600_StatePermute
fonskyionu olmustur. Bu fonksiyon, PQC algoritmalar1 arasinda yaygm olarak
kullanilan bir fonksiyon oldugu i¢in dncelikli hedef literatiirdeki donanim tasarimlarini
arastirmak olarak belirlenmistr. Yapilan arastirmalarla birlikte donanin opsiyonlari
incelenmis ve bir tanesi secilmistir. Daha sonra secilen donanim ile ilgili daha detayl
bir arastirma yapilip dokiimente edilmistir.
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1. INTRODUCTION

As this project unfolds within a collaborative effort involving Istanbul Technical
University, Sabanci University, and TUBITAK, facilitated by the 1001 Project, the
carefully planned trajectory of our study has been charted through regular, weekly
online meetings within the project group. At its core, the overarching goal of this
endeavor is the development of a RISC-V processor capable of executing Post-
Quantum Cryptography (PQC) algorithms. These PQC algorithms stem from a
competitive initiative sponsored by the National Institute of Standards and Technology
(NIST), underscoring their significance in the landscape of cryptographic

advancements.

In accordance with our project advisor's guidance, we have chosen the Dilithium
algorithm as the focal point of our graduation project. This deliberate choice has led
us to engage in an in-depth exploration of the Dilithium algorithm, dissecting its
intricacies, comprehending the underlying code structures, and scrutinizing the
outcomes produced by this cryptographic mechanism. The ensuing chapters of our
thesis will unfold the layers of our research, illuminating the complexities and insights
gained during our examination of the Dilithium algorithm, thereby contributing to the
broader field of Post-Quantum Cryptography.



2. POST-QUANTUM CRYPTOGRAPHY

2.1 What Is PQC?

Post-Quantum Cryptography (PQC) is a branch of cryptography that mainly focuses
on creating cryptographic algorithms that can withstand attacks from quantum
computers [1]. Many contemporary cryptographic techniques, such as Rivest-Shamir-
Adleman (RSA) and elliptic curve cryptography (ECC), are vulnerable to quantum
computers. Since an attack made from a quantum compute is powerful and efficient
when it comes to solving specific mathematical issues, the traditional cryptography

algorithms fall short against attacks from quantum computers.

To address this issue, PQC algorithms are based on mathematical problems that are
thought to be difficult to solve even by quantum computers. These algorithms are
designed to provide security in a future with large-scale quantum computers. Lattice-
based cryptography, code-based cryptography, multivariate polynomial cryptography,
hash-based cryptography, and many other methodologies are common in various PQC
algorithms [2].

National Institute of Standards and Technology (NIST) of the United States launched
a program and competition in en effort to standardize PQC algorithms [3]. The NIST
PQC Standardization process, which began in 2016, involves the evaluation and
selection of novel cryptographic algorithms capable of defending against attacks from
both classical and quantum computers. Multiple rounds of submissions, reviews, and
public scrutiny are part of the process. The goal of NIST in this standardization process

is to replace traditional algorithms with new PQC algorithms that will be used globally.

Because it protects the long-term security and integrity of digital communications and data
in the post-quantum age, PQC is an important area of research. PQC algorithms seek to
deliver secure cryptographic solutions in the future by inventing algorithms that are

resistant to quantum computer attacks [4].



Code-Based

Hash-Based
Cryptography

Signatures

Post-Quantum
Cryptography
(PQC)

Lattice-Based

Cryptography

Figure 2.1 : Basic Types of PQC Algorithms
2.1.1 The importance of PQC algorithms

The significance of PQC algorithms rests in mitigating the potential danger to data
security posed by quantum computers. It guarantees data security even in the presence of
sophisticated quantum computing capabilities. PQC seeks to provide sensitive data with
long-term security. Organizations and individuals can future-proof their cryptographic
systems and ensure the secrecy, integrity, and authenticity of their data over time by

switching from traditional algorithms to PQC algorithms.

2.1.2 Usage areas of PQC algorithms

PQC techniques can play an important role in many domains where data integrity is
critical. Some examples of various application areas include insdustries such as defense,
banking, manufacturing, retail and many more. Digital signatures are commonly used to
authenticate digital documents. PQC algorithms can provide post-quantum secure
signature techniques, ensuring message non-repudiation and protecting against cyber

threats.

PQC algorithms can be used to secure and assure the integrity of stored data. This is
especially important in instances where sensitive information must be kept secure for an
extended period of time, such as bank records, healthcare databases, or vital infrastructure

systems. Virtual private network (VPN) solutions can use PQC algorithms to offer safe



and private communication between remote networks or persons. The integrity of data
transported across the VPN can be preserved by incorporating PQC algorithms into VPN

protocols.

PQC algorithms can also be employed in communication protocols to safeguard data and

allow it to be safely transported across networks.

2.2 Lattice Based Cryptography

2.2.1 What is lattice?

It is necessary to comprehend the meaning of lattice before delving into the
explanation of lattice-based cryptography. A collection of points having a periodic
structure inside an n-dimensional space is called a lattice structure. Formally speaking,
the collection of vectors formed by n-linearly independent vectors b1,...,bn Rn is called
the lattice [8]. Figure 2.2 shows an example of a 2D lattice created using three distinct

basis vectors.
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Figure 2.2: 2D lattice generated by 3 different base vectors



2.2.2 What is lattice based cryptography?

Lattice-based techniques that rely on solving computational lattice issues are widely
acknowledged as being secure and challenging. Because of this, the field of PQC
algorithms frequently use these techniques. As it stated in [8] there is no polynomial
time algorithm that approximates lattice problems to within polynomial factors.
Altough there are many lattice-based problems, there are two important problems that
stand out for cryptography algorithms which are Shortest Vector Problem (SVP) and
Closest Vector Problem (CVP).

2.2.2.1 Shortest vector problem

The SVP has three different versions as well. The first variant involves finding the
shortest non-zero vector, the second aims to determine the length of the shortest non-
zero vector, and the last one focuses on verifying if the length of the shortest non-zero
vector is shorter than a specified real number [9]. An example to SVP can be seen in

Figure 2.3 below.
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Figure 2.3: SVP example [10]



2.2.2.2 Closest vector problem

The SVP and CVP are very similar. The distinction is that the issue seeks to locate the
lattice point that is closest to the target vector given a basis of a lattice and a target. An

illustration of CVP is provided in Figure 2.4 below.

Figure 2.4: CVP example [11]

2.2.3 Lattice based cryptography and PQC

As stated earlier, lattice based problems form the basis for many algorithms in the field
of PQC. The general reason behind this is certain lattice problems are difficult even
for quantum computers. With that motivation, it is believed that quantum computers
are not capable enough to solve lattice problems. Schemes based on lattice problems
are being actively researched as potential replacements for traditional cryptography
algorithms.

Like the CRYSTALS-Dilithium algorithm, the NIST is leading an effort to standardize
the PQC algorithms and mostly lattice based algorithms. It is a sure thing that PQC
algorithms need to be secure but also they need to be efficient. Lattice based algorithms

have a big advantage when it comes to efficiency.

To summarize, lattice-based problems are central to the development of PQC
algorithms. The algorithm which we study on is also a lattice based PQC algorithm of
NIST.



3. LITERATURE REVIEW ON RISC-V PROCESSORS

3.1 What Is RISC-V?

RISC-V is an open-source instruction set architecture (ISA) used for the development
of custom processors that are aiming a variety of applications. RISC stands for
Reduced Instruction Set Computer and the RISC-V is designed for the purposes like
high performance and power efficiency. The start of this project goes back to 2010 in
University of California, Berkeley. In the default version, there are four types of
instructions which are called base instructions: R-, I-, S- and U- Type. The structures

of these instructions are shown in Figure3.1.

31 25 24 20 19 15 14 12 11 76 0
[ funct7 | 12 | w1 | funct3| rd | opeode | Retype
| imm[11:0] [ 1 [funct3 | 1d | opcode | ILtype
[ imm[1:5] | 12 | rsl | funct3 | imm[4:0] | opcode | S-type
| imm[31:12] [ td | opcode | U-type

Figure 3.1: RISC-V base instruction set format [6]

3.2 RISC-V Applications

The versatility and open architecture of RISC-V make it a good choice for various
applications across different industries. The RISC-V specifications are maintained by
the RISC-V Foundation, an international consortium of members dedicated to creating
an open ISA. Both hardware and software studies are also available in the website of
the RISC-V Foundation [6].

Since the RISC-V ISA is an open source and flexible, it is suitable to many
applications. It is suitable for embedded system designs due to its simplicity and
customizable nature. It is a great option where an efficient and small sized processor
is required. Thanks to its power efficiency RISC-V processors are also good options
for 10T devices like sensors. This ISA is also widely used for academic purposes

because it is free and simple. Last but not least, RISC-V processors are good options



for security purposes like in this project. Realizing PQC algorithms and building

cloud computing systems can be great examples to security purposed applications of

RISC-V processors.

3.3 Hornet RISC-V Core

The Hornet RISC-V core is a processor core that uses the RISC-V ISA with the "M"

extension. Yavuz Selim Tozlu and Yasin Yilmaz created it as part of their graduation

project at Istanbul Technical University [7]. The core is intended for microcontroller

applications, providing an efficient and adaptable solution.

The Hornet RISC-V core strives to optimize performance and simplicity by adhering to

the principles of RISC design. It is built on the RISC-V ISA, which enables a modular and

adaptable architecture. The RISC-V ISA's "M" extension is specifically designed to handle

microcontroller functionality such as interrupts, low-power modes, and efficient exception

handling.

I

Figure 3.2: Pipeline Diagram of the Hornet Core



4. IMPLEMENTATION AND TESTING OF HORNET CORE

4.1 Implementation on Xilinx Vivado

To implement the Hornet core, Xilinx Vivado program was chosen. The installation of

Vivado can be achieved form the official Xilinx website which is shown in Figure 4.1.
& Vivado HLx 20183 Update 1 (TAR/GZIP - 4.07 GB)
MD5 SUM Value : 4fc03097e1a17399044c4cc12a72860b

Download Verification €@

Figure 4.1: Xilinx website

It should be noted that there are multiple versions of Vivado. For this project version
2018.3 should suffice considering the recent versions will take too much disk space. After
installation of Vivado, the initial program screen should look like as given in Figure 4.2.

Flow Todls  Winoow  Help

VIVADO' £ XILINX

Tasks

Manage IP 3
Open Hardware Manager >
XHul Stores >

Learning Center

Documentation and Tutorials >

1

]

Ev
T

Figure 4.2: Vivado interface



To implement the Hornet core, codes of the project should be downloaded from the

GitHub repository available in [yavuz tozlu]. The github repository can be seen in Figure

4.3. After the download is complete, from the Vivado interface a new project should be

created and every file shown Figure 4.4 should be addded into the newly created Vivado

project. After adding the souce files mentioned and opening the project the hierarchy of

the project should look like as given in Figure 4.4.

*,;'y‘ RISC-V (Public S @ -

# main - | P 2Branches §0Tags t) || Addfile -

gl yavuz650 Removed redundant outputs. 6c7af88 . 3yearsago XU 220 Commits

W core Added address register. 3 years ago
I documentation Updated manuals 3 years ago
| ib Added readme files. 3 years ago
M peripherals Fix reset output signal. 3 years ago
M processor Removed redundant outputs. 3 years ago
B test Update 3 years ago
D LICENSE Added license 3 years ago
[ README.md Update readme 3 years ago

(] simplified_pipeline.png Update diagram 3 years ago

About

Repository for Hornet RISC-V Core

[0 Readme
& MIT license
A Activity
¥ 16 stars
® 1watching
% 6 forks

Report repository

Releases

No releases published

Packages

No packages published

Figure 4.3: Sources of the Hornet Core vivado projects
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W Design Sources (10
~ @ 2. barebones_wh_top (barebones_whb_topy) (4)
~ @ corel : core_wb (core_wb.v) (1)
~ @ corel : core (core.wv) (3)
@ CSR_UNIT : csr_unit (csr_unity)
@ CTRL_UNIT : control_unit (control_unity)
@ IMM_DEC : imm_decoder (imm_decoder.y)
~ @ MULDIV : MULDIV_top (MULDIV_top.v) (6)
@ MULDIV_ctrl : MULDIV_ctrl (MULDIV_cirl.v)
@ MULDIV_in : MULDIV_in (MULDIV_in.v)
~ @ MUL : multiplier_32 (multiplier_32.) (1)
@ PPHH3 : multiplier_8 (multiplier_32.v)
@ PPHH2 : multiplier_8 (multiplier_32.v)
@ PPHHT : multiplier_8 (multiplier_32.v)
@ PPHHO : multiplier_& (multiplier_22 )
@ PPHL3 : multiplier_8 (multiplier_22.v)
@ PPHLZ : multiplier_& (multiplier_22.v)
@ PPHL1 : multiplier_& (multiplier_3
@ PPHLO : multiplier_& (multiplier_22.v)
@ PPLH3: multiplier_8 (multiplier_22.v)
@ PPLH2Z : multiplier_8 (multiplier_22.v)
@ PPLH1 : multiplier_& (multiplier_22.v)
@ PPLHO : multiplier_& (multiplier_32.v)
@ PPLL3: multiplier_& (multiplier_22 )
@ PPLLZ : multiplier_& (multiplier_22.v)
@ PPLLY : multiplier_& (multiplier_22.v)
@ PPLLO : multiplier_& (multiplier_22.v)
~ @ DIV divider_32 (divider_32.v) (2)
@ div_control ; div_control (divider_22.v)
~ @ div_block : div_block (divider_32v) (1)
@ row_0: div_array (divider_32.v)
@ MULout: MULout (MUL_DIV_outy)
@ DIVout: DIVout (MUL_DIV_outv)
@ HZRD_DET_UNIT : hazard_detection_unit (hazard_detection_unity)
@ FWD_UNIT : forwarding_unit (forwarding_unity)
@ ALU - ALU (ALUWY)
@ LS_UNIT : load_store_unit (load_store_unity)

V)

M2 Ma
= :

(o=
=

@ memory : memory_2rw_wb (memory_2rw_wb.y)
@ mtime_regs : mtime_registers_wb (mtime_registers_wb.v)
@ debug_if: debug_interface_wb (debug_interface_wb.y)
w @ uart_wb (uart_wbw) (2)
® uart ted ; UART _TX (uart_wby)
® uart_ 0 UART R (uart_wby)

@ loader_wb (loader_whb.v)

Figure 4.4: Sources of the Hornet Core vivado project
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4.2 Synthesis and Implementation Steps

The Hornet Core, developed by Istanbul Technical University's Yavuz Selim TOZLU and
Yasin YILMAZ, was specifically designed and optimized for RISC-V processor
implementation. Choosing the "Hornet" Core takes use of the university's experience and
research background in the field of RISC-V architecture. We can benefit from the
experience and knowledge gained through the creation of an established and well-tested

core, assuring a reliable and efficient foundation for our PQC processor.

To take synthesis and implementation of the project simply “Run Synthesis” and “Run
Implementation” as fiven in Figure 4.5. A successfull implementation will ensure the
project is working corretly. The option to view the RTL schematic is also available and
shown in Figure 4.5. RTL scheme of the core and the whole system are shown in Figure
4.6 and Figure 4.7.

v RTL ANALYSIS
~ (Open Elaborated Design
Report Methodolagy
Report DRC

*4 Schematic

v SYNTHESIS
P Run Synthesis

> Open Synthesized Design

v IMPLEMENTATION
P Run Implementation
~ Open Implemented Design
Constraints Wizard
Edit Timing Constraints
) Report Timing Summary
Report Clock Metworks
Report Clock Interaction
Report Methodology
ReportDRC
Report Utilization
& Report Power

"4 Schematic

Figure 4.5: RTL schematic, synthesis and implementation tools of Vivado
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T

f

Figure 4.7: RTL schematic of the core module

The post implementation layout of the system on the AMD Arty Artix-7 100T FPGA
board is shown in Figure 4.8. The post-implementation utilization report in Figure 4.9
shows the utilized assets of the used FPGA.
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Figure 4.8: Post implementation layout of the Hornet Core System

Resource Utilization Ayailable Utilization %
LUT 5393 63400 8.51
FF 2485 126800 1.96
BRAM 2 135 1.48
10 20 300 6.67

LUT A 9%

FFm 2%
BRAM 1 1%

104 %

1] IEIEI o IEIDI o I.'f‘lﬁl o I1[|JUl -

tilization (%)

Figure 4.9: Post implementation utilization report Hornet Core System
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4.3 Simulation with Available Souces

The simulation and testing of the Hornet Core can be done from the waveform which
is given in Figure 4.10. Looking through the simulation waveform can prove helpful
when specific signals need to be viewed. Although this method can be useful, the
provided testbench in the Hornet files automatically checks whether the run code

works correctly or not. This way the programs run can be checked directly from the

TCL console.

Figure 4.10: Post implementation utilization report Hornet Core System

As it will be mentined in the following sections, considering the way the testbench
works it is extremely helpful to manipulate a single address in the C codes that are run
the Hornet core. The value of the address 0x00002010 will automatically be checked
form the testbench. If the result is correct the testbench expects a value of 1, and O if
unsuccessful. The TCL console output and the testbench are seen in Figure 4.11 and

Figure 4.12 repectively.

Tcl Console

Q = = Il B B O
run 10 us A
Success!
finish called at time : 535 n3 : File "Ci/Users/ekint/OneDrive
< ]

source barebones top th.tcl

Figure 4.11: TCL console output
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./ always B(posedge wb_clk i or posedge wh_rst i)
begin
] if (wb_rst_i) begin end

else
kegin
O if(wb_cyc i && wWb_3th i && wbh we i)
begin
O if (wb_dat_i == 32'b1)
begin
o sdisplay{"Success!™);
D= sfipish;
end
else
begin
@ s$display("Failure!"):
o sfinish:
end
end
end
end

Figure 4.12: Testbench code

4.4 RISC-V GNU Toolchain

Any text editor can be used to edit the algorithm's codes. However, the RISC-V GNU
Toolchain is needed for the compilation process, and it can only be found on Linux

systems.
4.4.1 Setup

Ubuntu is chosen for this project since it is based on Linux. As we did in this project,
the most popular approach to utilize Ubuntu is to put it up as a virtual machine on top
of a Windows operating system. Oracle's VirtualBox software is used as our Ubuntu
virtual machine [12]. Once the Ubuntu virtual machine is operational, the project

environment needs to be configured.

In order to install the toolchain, command lines have been used like the most software
installations in Linux systems. These commans can be accessed through a terminal

application on the Linux machine.
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As a first step of installing the toolchain on the system, the repository must be cloned

with the command below:

e git clone https://github.com/riscv/riscv-gnu-toolchain

Other prerequired software can be installed with the command below:

e sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf

libtool patchutils bc zlib1g-dev libexpat-dev

After that, current directory should be changed with the directory of the toolchain with

the command below:
e cd riscv-gnu-toolchain
The command down below will configure the toolchain:

e /configure —-prefix=/opt/riscv --with-multilib-generator="rv32iilp32--
;rv32im-ilp32--"

And lastly, the toolchain can be installed by the following command:
e sudo make
This installation appproximately lasts an hour.

4.4.2 Verification of the setup

In order to verify the toolchain, we compiled a test C program and generated a binary
file for the RISC-V processor. The test C program is called bubble sort program and
used from an earlier graduation project of our professor [7]. This program is a simple
program based on the bubble sort game. The source code bubble_sort.c is shown in
Figure 4.13.
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#include

#include <s

#define DE

void bubble_sort(int* arr, int len

int sort_num
d o

sort_num
for(int i i<len-1;1

if arr+i arr+i+l
int tmp arr+i
arr+i arr+i+l

arr+i+l tmp
sort_num

while(sort_num

main

195,14,176,103,54,32,128
14,32,54,163,128,:

addr_ptr int DEBUG_IF_ADDR

printf %x@Ex\n", addr_ptr

if (memcmp( (char sorted_arr char unsorted_arr

printf("s

printf("f
printf xhn", addr_ptr
printf i addr_ptr
return

Figure 4.13: Code of the bubble sort program
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The following steps have been followed to test the toolchain. Firstly, the repository of
the project needs to be cloned:

e git clone https://github.com/yavuz650/RISC-V.git
Changing the directory:
e cd RISC-V/test/bubble_sort

In order to achieve the binary file, first we need to achieve the Executable and Linkable

File format (.elf) of this program:

e riscv64-unknown-elf-gcc bubble_sort.c ../crt0.s —march=rv32i — mabi=ilp32
—T .J[linksc.ld —nostartfiles —ffunction-sections —fdatasections —WI,--gc
sections —o bubble_sort.elf

And lastly, the binary file gets generated from the .elf file with the command below:

e riscv64-unknown-elf-objcopy —O binary —j .init —j .text —j .rodata
bubble_sort.elf bubble_sort.bin

Once the binary file has been generated, the program is compiled successfully. But
there is one more step before this file gets loaded into the processor’s memory. This
binary file needs to be converted into another format called .data file. To do that,

there is a simple C program called rom_generator in the same repository.

The command sequence down below is set to generate the .data file:
ecd ..
g++ rom_generator.c —0 rom_generator
cd bubble_sort

..[rom_generator bubble_sort.bin

Now, the .data file is ready for loading into the processor's memory.
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5. CRYSTALS-DILITHIUM PQC ALGORITHM

5.1 What Is CRYSTALS-Dilithium Algorithm?

CRYSTALS-Dilithium algorithm is one of the post-quantum cryptography algorithms
submitted to the NIST. As it stated in [13], CRYSTALS-Dilithium is a lattice based
digital signature scheme whose security is based on the hardness of finding short

vectors in lattices.

5.2 Design Criterias And Characteristics Of CRYSTALS-Dilithium

There are some design criterias of the CRYSTALS-Dilithium signature algorithm.

The main idea behind these design criterias is to make the algorithm efficient and

easy adaptive. Main criterias and their descriptions are down below [13].

Simple to implement: This is one of the most cruical aspects of the
CRYSTALS-Dilithium algorithm beacuse; as we mentioned before, the threats
that cyber attacks with quantum computers will be very common in the short
future based on the studies about PQC. So implementation of such an algorithm
needs to be simple for a wider usage.

Conservative with parameters: Selecting a conservative approach to
choosing parameters for algorithms allows long-term security. This criteria

makes the algorithm be adaptive over a long time of period.

Minimum size of (key + signature): The sum of these parameters are
designed to be minimum because many applications of the algorithm require
the transmission of both public key and the signature. As it stated in [13], the
CRYSTALS-Dilithium algorithm has the smallest size when it comes the
combination of the public key and signature sizes amongs the lattice based

schemes with the same level of security.

Being modular: With thise criteria of the algorithm and its functions, the usage
are of the algorithm varies. This enables the algorithm to get implemented in

many areas where the security is needed.
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5.3 Overview Of The Basic Approach Of The CRYSTALS-Dilithium

According to the [13], the design of the scheme is based on the "Fiat-Shamir with

Aborts" approach. And the simpilfied verison of the scheme is shown in Figure 5.1.

1A~ R
2 (5].5-_;] — Srl:l b S:;
3 ti= As; + 8,
. return (pk

Gen

(AL t), sk

Sign( sk, M)
& while z
}r = Sf-[—]
w 1= HighBits{ Ay, 2+2)
c€ B, :=H(M || wy)
£ =¥+ 5

1 do

2 return o = (z, ¢
Verify(pk, M. o0 = (2, ¢))
3 w) = HighBits( Az — ct.2.)
1 if return [[||z]|. <71 — 9] and [c

(A t,s1.82))

H(M || w})]

if ||z||< = 71 — 3 or ||LowBits{ Ay — cs2, 27|« & 72 — 3, then = :

Figure 5.1: Template of the signature scheme without public key compression

5.4 Key Generation And Signature In The CRYSTALS-Dilithium

Since the CRYSTALS-Dilithium algorithm is a signature scheme, the two main parts

of the algorithm are public key generation and signing procedure. Of course the

algorithm itself is very much complicated than that but since this study is about

implementing the algorithm on a RISC-V processor, we will not go through all of the
details of the algorithm. AIll the information about the CRYSTALS-Dilithium

algorithm can be found in [13].

5.4.1 Key generation

The main idea behind the key generation algorithm is to generate a matrix that is sized

k < | which will be named A. Each entry of matrix A will be a polynomial in the ring

equation given below.
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Later on, the algorithm samples 2 random vectors called s1 and s2. The coefficient of
the vectors is an element of R,. Lastly, the second part of the public key is generated

as given in the equation below.

t = ASZ + Sl (52)

5.4.2 Signing procedure

In the signing part of the algorithm, a masking vector of polynomials y with
coefficients less then y1 is generated. The parameter y1 is chosen strategically to ensure

the signature remains zero-knowledge regarding the secret key and is difficult to forge.

The algorithm computes Ay and extracts the "high-order" bits wi from the coefficients
in this vector. The challenge c is then created as the hash of the message and wi,
resulitng in a polynomial in R, with exactly T + 1 non-zero coefficients. The potential
signature is computed as given in equation 3. But to prevent leaking the secret key,

rejection sampling is employed.
Z=y+cs, (5.3)

The parameter S is set to the maximum possible coefficient of csl, and if any
coefficient of z exceeds y1 - g, or if any coefficient of the low-order bits Az - ct
surpasses y. - f, the signing procedure is restarted. The loop continues until both

conditions are met. Parameters are chosen to limit the expected number of repetitions.

5.5 Code Profiling Of The CRYSTALS-Dilithium

Code profiling is a method used to study how a program behaves when it runs. Its
purpose is to measure how well the program performs, pinpoint areas where it may be
slowing down, and comprehend how resources are being used. This involves gathering
information about different aspects of the program's execution, like the time each
function takes, how much memory is being used, and how often functions are called.

The main objective of code profiling is to enhance and make the code more efficient.

In order to make the CRYSTALS-Dilithium algorithm run faster on the Hornet core,
a custom hardware block is planned to be designed. Detecting the most repeated
function on the algorithm is highly important because realizing that function with a
external hardware block will increase the speed of the algorithm on the Hornet core.

To find out which function is the most repeated, the code profiling method is applied.
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The profiling operation script in the Makefile shown in Figure 5.2 and the result of the
code profiling is shown in Figure 5.3.

profile: test/test_vectors.c $(KECCAK_SOURCES) S$(KECCAK_HEADERS)
$(CC) S(CFLAGS) -pg -00 -o profile_test_vectors S$< $(KECCAK_SOURCES)
./profile_test_vectors
$(PROF) -p profile_test_vectors gmon.out

Figure 5.2: Profiling script in the Makefile

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

21.79 1.63 1.63 1174176 1.39 1.39 KeccakF1600_StatePermute

13.90 67 04 main

10.29 .44 i looptop
.89 .03 .59 640000 pqcrystals_dilithium2_avx2_rej_uniform_avx
.08 41 .38 271568 keccakx4_squeezeblocks
.28 73 .32 252088 pqcrystals_dilithium2_avx2_decompose_avx
.34 .98 .25 pqcrystals_dilithium2_avx2_invntt_avx
.67 .18 .20 10540000 load64
o 27 .35 7 50000 pqcrystals_dilithium2_avx2_polyt® unpack
.01 .50 .15 pqcrystals_dilithium2_avx2_ntt_avx
87 .64 .14 46960000 nttidx
.87 .78 .14 506321 pqcrystals_dilithium2_avx2_poly_chknorm
.87 .92 .14 262088 pacrystals_dilithium2_avx2_polyz_unpack
.60 .04 .12 292088 pqcrystals_dilithium2_avx2_poly_caddq
.60 .16 .12 209066 keccak_absorb
.60 .28 12 50000 pqcrystals_dilithium2_avx2_polyt@_pack
39 11 306321 pacrystals_dilithium2_avx2_poly reduce
49 10 120000 pqcrystals_dilithium2_avx2_rej_eta_avx
59 .10 Anit
67 08 50000 pacrystals_dilithium2_avx2_polyz_pack
75 .08 _looptop2
.80 .05 80000 pqcrystals_dilithium2_avx2_power2round_avx
.85 .05 50000 pqcrystals_dilithium2_avx2_polyt1_pack
.90 .05 40000 pqcrystals_dilithium2_avx2_use_hint_avx
.95 .04 90000 pqcrystals_dilithium2_avx2_polyeta_pack
.99 .04 90000 pqcrystals_dilithium2_avx2_polyeta_unpack
.03 .04 1071374 store64
.07 .04 236034 pqcrystals_dilithium2_avx2_poly_add
Sl .04 222088 pqcrystals_dilithium2_avx2_polywl_pack
.15 .04 173022 keccak_squeeze
.19 .04 100000 keccak_absorb_once
i .03 50000 pacrystals_dilithium2_avx2_polyt1 unpack
.25 .03 nttunpack128_avx
a2l .02 243022 keccakx4_absorb_once
29 02 136044 keccak_init
31 02 114184 rej_eta
33 02 10000 pqcrystals_dilithium2_avx2_keypair
34 01 640000 pacrystals_dilithium2_avx2_poly_nttunpack
35 01 209066 pacrystals_dilithium_fips202_avx2_shake256_absorb
.36 .01 160000 pqcrystals_dilithium2_avx2_poly uniform_4x
37 .01 160000 pqcrystals_dilithium_fips202x4_avx2_shake128x4_squeezeblocks
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Figure 5.3: Profiling results
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Like the most of the cryptography algorithms, CRYSTALS-Dilithium algorithm is
generally based on randomness. For that reason; to get the most precised results, the
algorithm has been runned in a loop. Based on the results that shown in Figure 5.3,
KeccakF1600_StatePermute function is the one that takes the most of the running time

of the algorithm, it is also the one that gets called most in the algorithm.

In conclusion, the test_vectors algorithm has been run in a loop and based on the results
KeccakF1600_StatePermute function will be the function that will run on the custom

hardware block.

Since the KeccakF1600_StatePermute function is a widely used function in
cryptography algorithms, doing a research on the earlier studies about implementing a
new design for KeccakF1600_StatePermute function is decided as the first thing to do.
Based on the results of the researching, hardware designs in the literature will be

explained in detail later on this paper.

One hardware design is planned to be selected to add in this project. The design
requires not only be able to run the KeccakF1600_StatePermute function, but also it

requires to be suitable for the Hornet RISC-V core.

5.5.1 Keccak algorithm

Before getting in the detail of hardware designs of KeccakF1600_StatePermute
function, it will be nice to know the keccak algorithm itself. The algorithm based on
the permutation function f. It is designed for Keccak states with a constant length of b,
where b = ¢ + r bits. In this equation r is the bit-rate and the c is capacity. In order to
generate a new message length that is a multiple of r, the algorithm first pads the input
message. The data output block is the first r bits of the state, and compression is done
at the conclusion. Some of the arguments for the KeccakF1600_StatePermute function
are listed below [14].

e c=1024
e =576

e f=1600
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6. HARDWARE DESIGNS FOR KECCAK ALGORITHM

Our analysis indicates that the Micromachines KECCAK implementation is the first
hardware alternative. The proposed pipelined hardware configuration for the Keccak

algorithm is shown in Figure 6.1.

R
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Figure 6.1: KECCAK Architecture of MicroMachines[14]
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Second option is the study of wang shown in Figure 6.2.
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Figure 6.2: KECCAK Architecture of Wang [15]
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Finally, the last solution is the design of Team Keccak, the RTL scheme shown i

Figure 6.3 is generated with the source codes from their website using Vivado.
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Figure 6.3: KECCAK Architecture of Team Keccak

All the designs mentioned above are quite similar to each other. Due to its simplicity,

and high performance analysis, the study of Micromachines stands out the most. The

explanations of the blocks shown in Figure 6.3 are below.

6.1 The Chosen Keccak Hardware Architecture

e Input Buffer: Provides connectivity for the Keccak round-input extarnel

module in this design.

e Padder Unit: Carries out the padding operation and byte-by-byte inversion.

The data flow between the Padder Unit and the Keccak core components is

managed by a 2x1 multiplexer.
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e Controller: Performs the synchronization of all the Keccak modules and their

data transmission.

e Keccak Round: This is the core component of Keccak. The chain of
operations get executed in this core.

e Output Buffer: Ensures the Keccak round-output connectivity in this
architecture.

e Theta Operation: This will perform exclusive or operation on five columns

of input bits.

e Rho Operation: Carries out a left rotation for each lanes unige member of
positions.

e Pi Operation: Adjusts the lanes location in the Keccak.
e Chi Operation: A matrix consists of five rows and five lanes.

o lota Operation: Executes an exclusive or operation on the initial lane.

FPGA hardware implementation details are shown in Table 5.1.

Design Area (Slice) | Freq. (MHz) | Throu. Eff.

(Gbps) (Mbps/Slice)
[16] 5363 110 - -
[17] 1365 326.38 7.83 5.73
[18] 1102 223 5.35 4.49
Micromachines | 1370 258.6 10.77 7.96
Proposed

Table 6.1: Implementation details of the KECCAK Architecture [14]

The KECCAK implementation in this study utilizes 1370 slices at a frequency of 258.6
MHz. The proposed design achieves a throughput of 10.77 Gbps with an efficiency of
7.96 Mbps per slice.

This architecture has been used to analyze the impact of fault attacks on the Keccak
process. Tests were carried out by inserting single and multiple defects into
KECCAK's input processes. The quantity of false bits produced by each operation at
its output was then counted. The analysis's findings are displayed in Figure 6.4.
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Figure 6.4: Fault analyze of the architecture [14]
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7. REALISTIC CONSTRAINTS AND CONCLUSIONS

7.1 Practical Applications of this Project

The significance of purpose-specific hardware designs is growing steadily.
Consequently, processors are crafted for distinct purposes within various architectures.
In the case of the Hornet RISC-V processor, the addition of a PQC hardware will help
improve the usage of the core significantly. The design is open for utilization and

expansion, serving research, education, and personal projects alike.

7.2 Realistic Constraints

7.2.1 Social, environmental and economic impact

RISC-V operates as an ISA without licensing fees. This implies that companies or
groups are not obligated to make payments for obtaining the license to produce or sell

RISC-V processors; it is freely available for such purposes.

7.2.2 Cost analysis

Every single tool used in this project is free and open-source. If it is desired, he

manufacturing of hardware will cost around $10000 which is quite costly.

7.2.3 Standards

The primary guide to adhere to in this project is the RISC-V ISA manual.
7.2.4 Health and safety concerns

This project arises no health and safety concerns.

7.3 Future Work and Recommendations

The future work on this project is decided as compiling all the codes of the
CRYSTALS-Dilithium algorithm and connecting the KECCAK architecture with the

Hornet core.

30



REFERENCES

[1] D. J. Bernstein and T. Lange, "Post-quantum cryptography," Nature, vol. 549,
pp. 188-194, 2017.

[2] L. Ducas and D. Micciancio, "Lattice-Based Cryptography,” in "Handbook of
Elliptic and Hyperelliptic Curve Cryptography,” CRC Press, 2018, pp.

1395-1446.
[3] I. T. L. Computer Security Division, “Post-quantum cryptography: CSRC,”
CSRC, https://csrc.nist.gov/projects/post-quantum-cryptography

(accessed Jan. 7, 2024).

[4] C. Peikert, "A decade of lattice cryptography,” Foundations and trends® in
theoretical computer science, vol. 10, pp. 283-424, 2016.

[5] “Crystals ,” Dilithium, https://pg-crystals.org/dilithium/index.shtml. (accessed
Jan. 8, 2024).

[6] “V international — RISC-V: The open standard RISC instruction set
architecture,” RISC, https://riscv.org/ (accessed Jan. 8, 2024).

[7] Y. S. Tozlu and Y. Yilmaz, “Design and implementation of a 32-bit RISC-V
core,” senior design project, Electronics and Communication Eng.
Dept., Istanbul Technical Univ., Istanbul, TURKEY 2021.

[8] Micciancio and O. Regev, "Lattice-based cryptography,” in Post-quantum
cryptography, ed: Springer, 2009, pp. 147-191.

[9] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota,

"Post-quantum lattice-based cryptography implementations: A survey,"
ACM Computing Surveys (CSUR), vol. 51, pp. 1-41, 20109.

[10] Y.-L. Chuang, C.-l. Fan, and Y.-F. Tseng, "An efficient algorithm for the
shortest vector problem," IEEE Access, vol. 6, pp. 61478-61487, 2018.

[11] D. Wong, “Lattices and Tikz posted August 2015,” Lattices and Tikz,
https://www.cryptologie.net/article/284/lattices-and-tikz/  (accessed
Jan. 8, 2024).

[12] “Welcome to  Virtualbox.org!,” Oracle VM  VirtualBox,
https://www.virtualbox.org/ (accessed Jan. 8, 2024).

[13] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, et al.,
"Crystals-dilithium,”  Algorithm  Specifications and Supporting
Documentation, 2020.

[14] H. Mestiri and |I. Barraj, "High-Speed Hardware Architecture Based on Error
Detection for KECCAK," Micromachines, vol. 14, p. 1129, 2023.

31



[15] Y. Wang, Y. Shi, C. Wang and Y. Ha, "FPGA-based SHA-3 acceleration on a
32-bit processor via instruction set extension,” 2015 IEEE International
Conference on Electron Devices and Solid-State Circuits (EDSSC),
Singapore, 2015, pp. 305-308, doi: 10.1109/EDSSC.2015.7285111.

[16] P. Nannipieri, M. Bertolucci, L. Baldanzi, L. Crocetti, S. Di Matteo, F.
Falaschi, et al., "SHA2 and SHA-3 accelerator design in a 7 nm
technology within the European Processor Initiative," Microprocessors
and Microsystems, vol. 87, p. 103444, 2021.

[17] S. ElI Moumni, M. Fettach, and A. Tragha, "High throughput implementation
of SHA3 hash algorithm on field programmable gate array (FPGA),"
Microelectronics journal, vol. 93, p. 104615, 2019.

[18] M. Sundal and R. Chaves, "Efficient FPGA implementation of the SHA-3 hash
function,” in 2017 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2017, pp. 86-91.

32



33



APPENDICES

APPENDIX A: Makefile

34



APPENDIX A

1SCC ?= Jusr/bin/cc

2 CFLAGS += -Wall -Wextra -Wpedantic -Wmissing-prototypes -Wredundant-decls \
3 -Wshadow -Wpointer-arith -mavx2 -mpopcnt -maes \

4 -march=native -mtune=native -03

5 NISTFLAGS += -Wno-unused-result -mavx2 -mpopcnt -maes \

6 -march=native -mtune=native -03

7 SOURCES = sign.c packing.c polyvec.c poly.c ntt.S invntt.S pointwise.S \

8 shuffle.S consts.c rejsample.c rounding.c

9 HEADERS = align.h config.h params.h api.h sign.h packing.h polyvec.h poly.h ntt.h \
10 consts.h shuffle.inc rejsample.h rounding.h symmetric.h randombytes.h

11 KECCAK_SOURCES = $(SOURCES) fips202.c fips202x4.c f1600x4.S symmetric-shake.c
12 KECCAK_HEADERS = $(HEADERS) fips202.h fips202x4.h

13 AES_SOURCES = S$(SOURCES) fips202.c aes256ctr.c

14 AES_HEADERS = $(HEADERS) fips202.h aes256ctr.h

15

16 PROF = gprof

17

18 .PHONY: all shared clean
19

20 all: \

21 test/test_dilithium2 \
22 test/test_dilithium3 \
23  test/test_dilithium5 \
24 test/test_dilithium2aes \
25 test/test_dilithium3aes \
26 test/test_dilithiumSaes \
27 test/test_vectors2 \
28 test/test_vectors3 \
29 test/test_vectors5 \
30 test/test_vectors2aes
31 test/test_vectors3aes
32 test/test_vectorsSaes
33 test/deneme_test \

P

34 speed
35
36 speed: \

37 test/test_speed2 \
38 test/test_speed3 \
39 test/test_speed5 \
40 test/test_speed2aes \
41 test/test_speed3aes \
42 test/test_speedSaes

44 shared: \

45 libpqcrystals_dilithium2_avx2.so \
46 libpqcrystals_dilithium3_avx2.so \
47 libpqcrystals_dilithium5_avx2.so \
48 libpqcrystals_dilithium2aes_avx2.s:
49 libpqcrystals_dilithium3aes_avx2.s
50 libpgcrystals_dilithiumSaes_avx2.s
51 libpqcrystals_fips202_avx2.so \

52 libpqcrystals_fips202x4_avx2.so \
53 libpqgcrystals_aes256ctr_avx2.so

55 libpqcrystals fips202_avx2.so: fips202.c fips202.h
$(CC) -shared -fPIC $(CFLAGS) -0 $@ $<

57

ss libpqcrystals_fips202x4_avx2.so: fips202x4.c fips202x4.h f1600x4.S
$(cc) -shared -fPIC $(CFLAGS) -0 $@ $< f1600x4.S

60

61 libpqcrystals_aes256ctr_avx2.so: aes256ctr.c aeszsﬁctr.h
62 $(cC) -shared -fPIC $(CFLAGS) -o s@ $

63

64 libpqcrystals_dilithium2_avx2.so: $(SOURCES) S(HEADERS) symmetric-shake.c
$(cc) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=2 \

66 -0 $@ $(SOURCES) symmetric-shake.c

67

63 libpgcrystals_dilithium3_avx2.so: S$(SOURCES) S(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=3 \

7ﬂ -0 5@ $(SOURCES) symmetric-shake.c

71

72 Mbpqcrystals dilithium5_avx2.so: $(SOURCES) $(HEADERS) symmetric-shake.c

$(cc) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=5 \
74 -0 $@ $(SOURCES) symmetric-shake.c

76 libpgcrystals_dilithium2aes_avx2.so: $(SOURCES) $(HEADERS)
$(cc) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
73 -0 $@ $(SOURCES)

88 libpqcrystals_dilithium3aes_avx2.so: $(SOURCES) S$(HEADERS)
$(cc) -shared -fPIC S(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \

82 -0 $@ $(SOURCES)

83

84 libpqcrystals_dilithiumSaes_avx2.so: $(SOURCES) $(HEADERS)

85 $(cc) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=5 -DDILITHIUM_USE_AES \
86 -0 $@ $(SOURCES)

87

88 test/test_dilithium2: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
89 $(KECCAK_HEADERS)

90 $(CC) $(CFLAGS) -DDILITHIUM_MODE=2 \
91 -0 $@ $< randombytes.c $(KECCAK_SOURCES)
92

93 test/test_dilithium3: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
94  S(KECCAK_HEADERS)

95 $(CC) $(CFLAGS) -DDILITHIUM_MODE=3 \
96 -0 $@ $< randombytes.c $(KECCAK_SOURCES)
97

98 test/test_dilithium5: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
99  $(KECCAK_HEADERS)

100 $(CC) $(CFLAGS) -DDILITHIUM_MODE=5 \
101 -0 $@ S< randombytes.c $(KECCAK_SOURCES)
102

103 test/test_dilithium2aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \
104  S(AES_HEADERS)

105 $(CC) $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
106 -0 $@ $< randombytes.c $(AES_SOURCES)
107

108 test/test_ dilithium3aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \
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108 test/test_dilithium3aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \

109
110
111
112

113 test/test_dilithiumSaes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \

$(AES_HEADERS)
$(cc) $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \
-0 $@ S$< randombytes.c $(AES_SOURCES)

114  $(AES_HEADERS)

115 $(cC) $(CFLAGS) -DDILITHIUM_MODE=5 -DDILITHIUM_USE_AES \

116 -0 $@ $< randombytes.c $(AES_SOURCES)

117

118 test/test_vectors2: test/test_vectors.c $(KECCAK_SOURCES) $(KECCAK_HEADERS)
119 $(CC) $(CFLAGS) -DDILITHIUM_MODE=2 \

120 -0 $@ $< $(KECCAK_SOURCES)

121

122 test/test_vectors3: test/test_vectors.c $(KECCAK_SOURCES) S$(KECCAK_HEADERS)
123 $(CC) $(CFLAGS) -DDILITHIUM_MODE=3 \

124 -0 $@ $< $(KECCAK_SOURCES)SS|

125

126 test/test_vectors5: test/test_vectors.c $(KECCAK_SOURCES) $(KECCAK_HEADERS)
127 $(cC) $(CFLAGS) -DDILITHIUM_MODE=5 \

128 -0 $@ $< $(KECCAK_SOURCES)

129

130 test/test_vectors2aes: test/test_vectors.c $(AES_SOURCES) $(AES_HEADERS)
131 $(CC) $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \

132 -0 $@ $< $(AES_SOURCES)

133

134 test/test_vectors3aes: test/test_vectors.c $(AES_SOURCES) $(AES_HEADERS)
135 $(cC) $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \

136 -0 $@ $< $(AES_SOURCES)

137

138 test/test_vectorsS5aes: test/test_vectors.c S(AES_SOURCES) $(AES_HEADERS)
139 $(cc) $(CFLAGS) -DDILITHIUM_MODE=5 -DDILITHIUM_USE_AES \

140 -0 $@ $< $(AES_SOURCES)

141

142 test/test_speed2: test/test_speed.c test/speed_print.c test/speed_print.h \
143 test/cpucycles.c test/cpucycles.h randombytes.c $(KECCAK_SOURCES) \
144  $(KECCAK_HEADERS)

145 $(CC) $(CFLAGS) -DDILITHIUM_MODE=2 \

146 -0 $@ $< test/speed_print.c test/cpucycles.c randombytes.c \
147 $(KECCAK_SOURCES)

148

149 test/test_speed3: test/test_speed.c test/speed_print.c test/speed_print.h \
150 test/cpucycles.c test/cpucycles.h randombytes.c $(KECCAK_SOURCES) \
151  $(KECCAK_HEADERS)

152 $(CC) $(CFLAGS) -DDILITHIUM_MODE=3 \

153 -0 $@ $< test/speed_print.c test/cpucycles.c randombytes.c \
154 $(KECCAK_SOURCES)

155

156 test/test_speed5: test/test_speed.c test/speed_print.c test/speed_print.h \
157 test/cpucycles.c test/cpucycles.h randombytes.c $(KECCAK_SOURCES) \
158 $(KECCAK_HEADERS)

159 $(CC) $(CFLAGS) -DDILITHIUM_MODE=5 \
160 -0 5@ $< test/speed_print.c test/cpucycles.c randombytes.c \
161 $(KECCAK_SOURCES)

170 test/test_speed3aes: test/test_speed.c test/speed_print.c test/speed_print.h \
171 test/cpucycles.c test/cpucycles.h randombytes.c $(AES_SOURCES) \
172  S(AES_HEADERS)

173 $(cC) $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \

174 -0 $@ $< test/speed_print.c test/cpucycles.c randombytes.c \
175 $(AES_SOURCES)

176

177 test/test_speedSaes: test/test_speed.c test/speed_print.c test/speed_print.h \
178 test/cpucycles.c test/cpucycles.h randombytes.c $(AES_SOURCES) \
179  $(AES_HEADERS)

180 $(CC) $(CFLAGS) -DDILITHIUM_MODE=5 -DDILITHIUM_USE_AES \

181 -0 $@ $< test/speed_print.c test/cpucycles.c randombytes.c \
182 $(AES_SOURCES)

183

184 test/test_mul: test/test_mul.c randombytes.c $(KECCAK_SOURCES) \

185 S(KECCAK_HEADERS)

186 $(CC) $(CFLAGS) -UDBENCH -o $@ $< randombytes.c $(KECCAK_SOURCES)
187

188 PQCgenKAT_sign2: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \

189  S$(KECCAK_HEADERS)

190 $(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 \
191 -0 $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto
192

193 PQCgenKAT_sign3: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \
194 $(KECCAK_HEADERS)

195 $(CcC) $(NISTFLAGS) -DDILITHIUM_MODE=3
196 -0 $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto
197

198 PQCgenkKAT_sign5: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \
199  $(KECCAK_HEADERS)

200 $(CC) $(NISTFLAGS) -DDILITHIUM_MODE=5 \

201 -0 $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

202

203 PQCgenKAT_sign2aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) S(AES_HEADERS)
204 $(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \

205 -0 $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

206

207 PQCgenKAT_sign3aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) $(AES_HEADERS)
208 $(CC) $(NISTFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \

209 -0 $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

210

211 PQCgenKAT_sign5aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) S$(AES_HEADERS)
212 $(CcC) $(NISTFLAGS) -DDILITHIUM_MODE=5 -DDILITHIUM_USE_AES \

213 -0 $@ S< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

214

215

216 profile: test/test_vectors.c $(KECCAK_SOURCES) S(KECCAK_HEADERS)

217 $(CC) $(CFLAGS) -pg -00 -o profile_test_vectors $< $(KECCAK_SOURCES)
218 ./profile_test_vectors

219 $(PROF) -p profile_test_vectors gmon.out

220

Figure A.1: Makefile
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