
i

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

INTERIM REPORT

May, 2024

DESIGN AND IMPLEMENTATION OF

HIGH-PERFORMANCE DUAL ISSUE RISC-V CORE

Abdullah Aykut KILIÇ

Mustafa Kerem ERTEM

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ii

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

May, 2024

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

DESIGN AND IMPLEMENTATION OF

HIGH-PERFORMANCE DUAL ISSUE RISC-V CORE

SENIOR DESIGN PROJECT

INTERIM REPORT

Abdullah Aykut KILIÇ

 (040190207)

Mustafa Kerem ERTEM

 (040200218)

Project Advisor: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

iii

Abdullah Aykut KILIÇ

(040190207)

We are submitting the Senior Design Project Interim Report entitled as “Design and

Implementation of High-Performance Dual Issue RISC-V Core”. The Senior Design

Project Interim Report has been prepared as to fulfill the relevant regulations of the

Electronics and Communication Engineering Department of Istanbul Technical

University. We hereby confirm that we have realized all stages of the Senior Design Project

Interim Report by ourselves, and we have abided by the ethical rules with respect to

academic and professional integrity .

Mustafa Kerem ERTEM

(040200218)

iv

FOREWORD

We offer our sincere gratitude to our academic advisor Prof. Dr. Sıddıka Berna ÖRS

YALÇIN, who has been with us with her goodwill and vast knowledge throughout the

whole process, besides, we are appreciated to Yasin YILMAZ who is the designer of

the Hornet core and who always helped us whenever we needed.

We are thankful to our precious families and friends who always support us both in

life and education.

May 2024

Abdullah Aykut KILIÇ

Mustafa Kerem ERTEM

v

vi

TABLE OF CONTENTS

Page

FOREWORD ... iv
TABLE OF CONTENTS .. vi
ABBREVIATIONS .. vii
SYMBOLS ... viii
LIST OF TABLES .. ix

LIST OF FIGURES ... x
SUMMARY.. xi

 INTRODUCTION .. 1
 PROCESSORS AND CORES ... 2

 General Core Design .. 2

 2.1.1 Single-Issue Cores .. 3

 2.1.2 Dual-Issue Cores .. 3

 2.1.2.1 Static Multiple Issue ... 4

 2.1.2.2 Dual-Issue Cores .. 4

 RISC-V ... 5

 Literature Review ... 7
 Hornet Core and Dual issue .. 9

 PREPARING THE ENVIRONMENT ... 9

3.1 Setting Up the Linux Environment... 10

3.2 GNU Toolchain Installation ... 10

3.3 Compiling and Running a Test Code ... 10

 3.3.1 Simulation and Validation .. 10

 DESIGNING THE DUAL-ISSUE CORE .. 13

4.1 Extracting the Register File From Hornet .. 13

4.2 Separation of Data Memory and Instruction Memory...................................... 16
4.3 Fetching Instructions .. 16

 Instruction Memory .. 17

 Dual Issue Hazards ... 18
 The Prototype of The Dual Issue Core ... 18
 The Finalized Design .. 19

4.7.1 Modification of the Register File .. 20

4.7.2 Implementation of the Issue Unit .. 21
4.7.3 Implementation of the PC Logic Unit ... 23
4.7.4 Implementation of the Dual Hazard Unit .. 24

 REALISTIC CONSTRAINTS AND CONCLUSIONS 26

 Practical Application of this Project ... 27

 Realistic Constraints ... 27

 Social, Environmental and Economic Impact ... 27

 Cost Analysis ... 27

5.2.3 Standards ... 28

5.2.4 Health and safety concerns .. 28

 Future Work and Recommendations .. 28

REFERENCES ... 29
APPENDICES .. 30

 .. 31

CURRICULUM VITAE .. 33

vii

ABBREVIATIONS

AIC : Akaike Information Criteria

ALU : Arithmetic Logic Unit

CSR : Control-Status Registers

CPU : Central Processing Unit

EX : Execute

FPGA : Field Programmable Gate Arrays

FPU : Floating Point Unit

GNU : Gnu’s Not Unix

ID : Instruction Decode

IEEE : The Institute of Electrical and Electronics Engineers

IF : Instruction Fetch

IP : Intellectual Property

ISA : Instruction Set Architecture

ITU : Istanbul Technical University

M-extension : Multiplt Extension

NOP : No-operation

PULP : Parallel Ultra-Low Power

PC : Program Counter

RISC-V : Reduced Instruction Set Architecture

SoC : System On Chip

TRY : Turkish Liras

viii

SYMBOLS

MHz : Megahertz

ix

LIST OF TABLES

Page

 Comparison Between Cortex and RISC-V processors. 8

 Instruction Issue Logic Table .. 22
 PC Logic Truth Table ... 24

x

LIST OF FIGURES

Page

 Architecture Comparison. .. 2

 Dynamic Multiple Issue Structure. .. 5
 Comparison Between Needed Number of Cycles to Run Test Programs

with Single-Issue and Dual-Issue RISC-V processors. 7

 Comparison Between Power Consumption of Single-Issue and Dual-

Issue RISC-V processors. ... 8
 Bubble Sort Input and Correct Output Values....................................... 11
 All Possible Arithmetic and Logic Operations. 12

 Simulation of Bubble Sort Algorithm Execution. 12

 The Test Function for the Hazard Detection ... 13
 It is seen that the hazard_stall signal is set to 1 on the red line 13

 The Input and Output Port Connections of the Register Bank. 14
 The General Hierarchy .. 14
 The Completely Separated Register Bank Module 15

 The Bubble Sort Simulation with the Original Core. 15
 The Bubble Sort Simulation with the Modified Core............................ 15
 RTL Schematic of Combined Instruction Memory and Data Memory. 16
 RTL Schematic of Separated Instruction Memory and Data Memory. . 16

 Verilog Code for Separated Instruction Memory. 17
 Block Diagram of The First Prototype .. 18

 The Block Diagram of the Overall Design .. 20

 Schematic View of the Initial Register Bank and the Modified Register

Bank .. 21
 Schematic View of the Issue Unit. .. 23

 The Schematic View of the PC_logic Unit ... 23

Figure 4.14 : PC Logic Unit Block Diagram. ... 24
Figure 4.15 : The Schematic View of Dual Hazard Unit .. 25

Figure 4.16 : Verilog Codes for the Dual Hazard Unit ... 26
Figure 4.17: Verilog Codes for the Dual Hazard Unit – Continued 27

Figure A.1: RTL Schematic of the Top Module in Vivado 31

Figure A.2: RTL Schematic of the Core_wb Module in Vivado 32

xi

DESIGN AND IMPLEMENTATION OF HIGH-PERFORMANCE DUAL

ISSUE RISC-V CORE

SUMMARY

According to Cheng, the technical marketing director of Qualcomm, RISC-V has gone

a significant way since its establishment by University of California, Berkeley in 2010

due to its resilience and cost-saving advantages when it is compared to proprietary

ISAs [1]. It is crucial to understand how the RISC-V ISA is important. The main

benefits coming from the open-source and simple environment. This has motivated

people to design numerous cores and make it publicly available on many platforms.

Thus, people have been able to inspire from each other's design and develop further

improved cores and SoCs.

The purpose of this paper is to advance the pre-designed single-issue Hornet core by

Istanbul Technical University students to a dual-issue architecture and clarify every

component of the design. The dual-issue architectures mainly benefit from

approximately double instruction throughput. This design approach may confuse the

designers in terms of potential hazards which may occur during the operation of the

core. In this paper, we strived to find intelligent solutions for complicated structure of

the dual-issue architecture.

The general methodology which has been followed throughout this research consists

of three main parts: Setting-up the RISC-V toolchain environment and running the

existing design, understanding it and developing the new architecture. There are both

pros and cons of improving an existing design. The advantageous part is to simply

focus on what can be further enhanced; however, the unfavorable part is to strive to

make sense of the components of the existing design. Therefore, it may take a long

time and may necessitate consulting to the designers. Although, it has been more

straightforward the stage of dealing with the existing design compared to the stage of

developing the dual-issue architecture. The design of dual-issue primarily requires

issuing two instructions at every clock cycle to the pipelines. This job entails a tedious

brainstorming to figure out the details and complications which may occur. Therefore,

in this study, the design process has been divided into stages and first, has been started

from the overall picture then gone into details.

In essence, RISC-V carries significant importance in terms of its flexibility and low-

cost nature. This allows many organizations to develop their own cores and SoCs in

order to realize their projects. In this paper, it is aimed to advance a previous work to

have better performance and higher instruction throughput. While doing this, the dual-

issue architecture has been selected as the main attitude. This is because, it had been

turned out to be an optimum solution when the many research papers had been

analyzed where the performance improvements are broadly close to %80 percent [2].

xii

ÇİFT İŞLEMLİ RISC-V ÇEKİRDEĞİNİN TASARIMI VE

İMPLEMENTASYONU

ÖZET

2010 yılında Kaliforniya Üniversitesi, Berkeley tarafından geliştirilen RISC-V

mimarisi Qualcomm'un teknik pazarlama direktörü Cheng'e göre, özel ISA’lara

kıyasla sahip olduğu dayanıklılık ve maliyet avantajları sayesinde kuruluşundan bu

yana kayda değer bir yol kat etmiştir [1]. RISC-V ISA'nın önemini kavramak kritik

öneme sahiptir. Bu önemin temel faydaları açık kaynaklı ve kolay kullanılabilir

yapısından gelmektedir. Bu sayede birçok çekirdek tasarımı yapılmış ve bu tasarımlar

çeşitli platformlarda herkese açık hale getirilmiştir. Böylelikle tasarımcılar

birbirlerinden ilham alarak daha gelişmiş çekirdekler ve SoC'ler üretebilmişlerdir.

Bu çalışmasının amacı, İstanbul Teknik Üniversitesi öğrencilerinin tasarladığı Hornet

çekirdeğini çift işlemli bir mimariye yükseltmek ve tasarımın her bir bileşenini

açıklığa kavuşturmaktır. Çift işlemli çekirdek mimarileri, birim zamanda yaklaşık

olarak iki kat daha fazla sayıda işlem gerçekleştirebilmesiyle öne çıkmaktadır. Ancak

bu tasarım yaklaşımı, çekirdeğin çalışma esnasında ortaya çıkabilecek potansiyel

problemler açısından tasarımcıları zorlayabilmektedir. Bu çalışmada, çift işlemli

çekirdek mimarisinin karmaşık yapısı için verimli çözümler üretilmeye çalışılmıştır.

Araştırma boyunca izlenen genel metodoloji üç ana bölümden oluşmaktadır: RISC-V

toolchain’in kurulması ve mevcut tasarımın çalıştırılması, mevcut tasarımın

anlaşılması ve yeni mimarinin geliştirilmesi. Halihazırda varolan bir tasarımı

geliştirmenin hem avantajları hem de dezavantajları vardır. Olumlu yanı, tasarımın

temel kısmından ziyade üzerine koyulabiliecek gelişmiş özelliklere odaklanabilmektir.

Dezavantajı ise, bir başkası tarafından tasarlanmış komplike bir sistemi anlamaya

çalışmaktır. Bu yönüyle yoğun bir çalışma gerektirebilir ve tasarımcılarla görüşüp

onların bakış açısını anlamak gerekmektedir. Varolan tasarımı anlamdırma aşaması,

çift işlemli mimariyi geliştirme aşamasına kıyasla daha kolay olsa da; çift işlemli

tasarımın asıl amacı her saat döngüsünde işlem hatlarına iki komut göndermektir. Bu

özellik, ortaya çıkabilecek problemli ve karmaşık durumları çözmek için detaylı bir

inceleme gerektirmektedir, dolayısıyla bu çalışmada tasarım süreci aşamalara ayrılmış

olup, öncelikle genel resimden başlanarak daha sonra detaylara inilmiştir.

Özet olarak, RISC-V mimarisi esnekliği ve düşük maliyeti açısından önemli bir yere

sahiptir. Bu sayede birçok kuruluş kendi çekirdeklerini ve SoC'lerini

geliştirebilmektedir. Bu çalışmada, öncesinde İstanbul Teknik Üniversitesi öğrencileri

tarafından geliştirilmiş olan Hornet çekirdeğini daha iyi performans ve daha yüksek

işlem verimi elde edecek şekilde geliştirmek hedeflenmektedir. Bu amaçla, yapılan

literatür taramasında performans artışının genellikle %80'e yakın olduğu

görüldüğünden çift işlemli çekirdek mimarisinin geliştirilmesi kararlaştırılmıştır [2].

1

 INTRODUCTION

In the rapidly evolving environment of embedded systems and high-performance

computing, the demand for efficient and powerful processor architectures is

continuously growing. Traditional single-issue processors face limitations in

meeting the increasing computational requirements of modern applications like

artificial intelligence, image processing etc. The RISC-V instruction set

architecture provides an excellent solution for processor design. But unfortunately,

there is not enough high-performance design for RISC-V architecture.

The main objective of this project is to improve the performance of the Hornet core

developed by ITU students. This performance increase is aimed to be achieve by

converting the current single issue core into a dual issue structure. First of all,

various performance tests were performed to observe that the core, which is the

only issue, is working properly. Then, the structure of this single issue core was

analysed and a new architecture was developed to make this core as dual issue core

with higher performance. This new architecture has been finalised through various

revisions and has been applied to the current core with various changes in the code.

Basically, a dual-core architecture with more performance than the existing single-

core architecture has been created.

As a result of this project, a dual-issue core with RISC-V architecture, which has

not many equivalents both in the market and in the academic field, will be obtained.

The higher performance of this core, which can fetch two instructions at once, will

enable it to come to the forefront in applications that require more processing

power but not so complicated applications such as image processing, artificial

intelligence and deep learning in basic manner. In addition, the fact that this core

has an open source architecture such as RISC-V will make the design more

accessible to all parties.

2

 PROCESSORS AND CORES

 General Core Design

The processors in use today are based on two different architectures, Neumann and

Hardvard. The main difference between these two architectures lies in their access to

memory. In the Harvard architecture, memory is divided into two for data and

instrumentation, while in the Neumann architecture, memory is shared. Data and

instruction are carried at the same time. The remaining parts are common for both

architectures. These parts are basically arithmetic and logic unit (ALU), control unit,

programme counter, registers and memory.

The ALU is responsible for performing basic operations. These operations consist of

arithmetic operations such as addition and subtraction and logic operations such as and

or. Registers are memory elements that store the necessary information while the ALU

is running. The control unit controls the rest of the processor by generating various

signals during operations. Lastly, memory stores the necessary registers, data and

instructions [3].

Figure 2.1 : Architecture Comparison [4]

3

Cores are classified according to the number of instructions they can execute in a single

cloclk cycle. These are single issue and multiple issue cores. Multiple issue cores are

specially called Dual issue if they can execute two instructions in a single cycle.

2.1.1 Single-issue cores

A microprocessor type known as a single-issue processor is limited to executing a

single instruction each clock cycle. The ability of the processor to send instructions to

the execution units for processing is referred to as "issue" in the context of computer

architecture. A single instruction can only be executed per a clock cycle in a single-

issue processor; multiple instructions cannot be executed at the same time by the

processor. In contrast, several instructions can be issued and carried out concurrently

during a single clock cycle in superscalar architectures.

Single-issue processors are easier to design and build because of their simplicity, but

they might not be able to process instructions as quickly as more complicated

superscalar processors. With instruction-level parallelism, superscalar processors—

which can execute many instructions at once—may be able to attain even better

performance. They do, however, also typically have more intricate designs and

demand more hardware. Single-issue processors are frequently found in embedded

systems, simpler computing devices, or applications with lower computational

demands that can be met with a simpler design while still achieving the necessary

performance.

2.1.2 Dual-issue cores

A microprocessor that has the ability to issue and carry out two instructions each clock

cycle is known as a dual-issue processor. The ability of the processor to send

instructions to the execution units for processing is referred to as the "issue" in

computer architecture. The processor can benefit from instruction-level parallelism, in

which two instructions are carried out concurrently throughout each clock cycle,

thanks to the dual-issue capabilities. Comparing this to single-issue processors, more

instruction throughput and better performance may result.

A dual-issue processor features multiple continuously operating execution units and a

pipeline intended to accommodate the simultaneous processing of two instructions.

Because this architecture can take use of instruction-level parallelism, it makes better

4

use of the resources that are available. As a subset of superscalar architecture, dual-

issue processors are capable of carrying out multiple instructions at once. Processors

with numerous execution units that can issue and execute several instructions each

clock cycle are referred to as "superscalar" processors. A particular class of superscalar

processors known as dual-issue processors is dedicated to processing two instructions

at once.

While dual-issue processors may perform better than single-issue processors due to

their additional complexity, more complex design and control logic are also needed.

In more complex and high-performance computing systems, when utilizing

instruction-level parallelism is essential to improving overall performance, dual-issue

processors are frequently found. Multiple issue core can be classified in two different

ways: static and dynamic.

2.1.2.1 Static Multiple Issue

In a static multiple issue, the programmer or the compiler must determine which

independent instructions can run simultaneously. The processor schedules instructions

statically onto a number of pipelines or execution units. To find parallelism, this

method necessitates the use of a complex compiler or programmer, which is not always

practical or effective. Its capability to use parallelism across a large range of

instructions is one advantage; nevertheless, it may be restricted by the compiler's

ability to detect parallelism and requires a significant amount of compiler support.

2.1.2.2 Dynamic Multiple Issue

Dynamically recognizing separate instructions at runtime and allocating them to

different execution units for parallel execution is known as dynamic multiple issue, or

dynamic instruction scheduling. Instead of relying on compiler instructions or human

intervention, dynamic multiple issues use hardware techniques to detect parallelism.

This is in contrast to static multiple issues. Unlike static multiscalar scheduling, which

is based on availability and dependencies, the dispatching of instructions to execution

units allows for more adaptable and flexible scheduling. Because dynamic multiple

issues can adjust to changes in program behavior as it is being executed, they may be

able to achieve higher performance in scenarios when the compiler may not be able to

identify all available parallelism. “Static multiple issue” architecture was chosen for

this core design. In the design, the first pipeline can execute only integer and branch

5

instructions. In addition to that, second pipeline can execute only integer and memory

instructions. A simple representation of this structure is as in the Figure 2.2.

Figure 2.2 : Dynamic Multiple Issue Structure [5]

The CPU receives various commands from the outside world in order to perform the

necessary operations, and these commands are called instructions. These instructions

have a binary structure for machines to understand and they consist of a certain number

of bits. The structure formed by these instructions coming together, containing

instruction properties and names, is called Instruction set arctirecture (ISA).

Depending on this structure preference, cores based on different architectures can be

designed. In RISC-V this is one of the ISAs [6].

 RISC-V

RISC-V is an instruction set architecture (ISA) developed and maintained by RISC-V

International (formerly the RISC-V Foundation). It is used to create custom processors

for a range of uses, including supercomputers and embedded systems. In contrast to

proprietary processor designs, custom processors targeting a range of end applications

can be developed using the open-source RISC-V instruction set architecture (ISA).

RISC-V is designed around a simple, modular ISA that can be extended with optional

features. The base ISA includes a minimal set of instructions for basic computational

needs, while additional standard extensions cover floating-point operations, atomic

operations, and vector processing, among others. This modularity is a key strength of

RISC-V, allowing it to be tailored for a wide range of applications from

microcontrollers to high-performance computing. The architecture is also notable for

its simplicity and efficiency [7].

6

The RISC-V ISA, which was first created at the University of California, Berkeley, is

regarded as the fifth generation of processors based on the reduced instruction set

computer (RISC) architecture. It has grown a lot in popularity recently because of its

openness and technical advantages. With over 3,000 members, RISC-V International

is currently in charge of overseeing the standard. As of the end of 2022, the

organization had shipped over 10 billion chips with RISC-V cores. Many

implementations of RISC-V are available, both as open-source cores and as

commercial IP products.

For example, the SiFive Freedom Platform, based on RISC-V, offers a family of SoCs

that cater to various market needs from low-power to high-performance applications.

Additionally, the PULP (Parallel Ultra-Low Power) platform from ETH Zurich and

the University of Bologna showcases RISC-V's potential in ultra-low-power

computing for IoT applications [8][9]. Also, major tech companies like NVIDIA,

Western Digital, and Google have shown interest in RISC-V, indicating its potential

to disrupt the processor market.

Because of the architecture's ability to give the processor more straightforward

instructions to complete a variety of jobs, RISC-V has grown in popularity. It also

speeds up time to market by allowing designers to generate thousands of possible

bespoke processors. Additionally, the shared processor IP reduces the time needed for

program development. Some advantages of RISC-V are as follows:

• Because of its open-standard design, the industry may collaborate and innovate

together.

• Common ISA: Since all processors may utilize the same architecture, this

facilitates software development. From small embedded systems to the biggest

supercomputers, designers can customize their creations to meet market

demands by using the same basic ISA.

• RISC-V ISAs are different from earlier ISAs in that they can be tailored to

meet specific needs. The availability of more compact, modular, and energy-

efficient solutions

• Open-source reference designs, software composition analysis tools, and

security extensions are sources of security features. Furthermore, because the

RISC-V architecture is open-source, all of its components can be thoroughly

7

examined in the public domain, removing any potential for back doors or

hidden channels.

 Literature Review

This project is based on the paper “Design and Implementation of a 32-bit RISC-

V Core”. [10] In this paper, the single-issue RISC-V Core which is designed by

ITU students is revealed. It was seen that there could be further improvements on

this core. To figure out what could be done, various studies are examined. There

are many perspectives including application specific accelerators, dual-core

architectures, dual-issue and multiple-issue architectures. Besides, it turned out that

there is no previous research about dual-issue RISC-V Core in Turkey.

Thus, different approaches about dual-issue cores are examined. A researcher

Hongsheng designed and tested a dual-issue RISC-V processor [2]. In that study,

first a single-issue processor is designed then it is extended to a dual-issue

processor. The fetched data in Instruction Fetch (IF) stage is doubled and

Instruction Decode (ID) stage is modified accordingly. Execution (EX) stage unit

is doubled and a data hazard unit is added to prevent complications. The main idea

is to use the same modules to extend the single-issue processor to dual-issue core

which reduces the design complexity. Consequently, the final design was subjected

to performance analysis and it turned out that the dual-issue processor was 80%

faster than the single-issue processor (Figure 2.3) while maintaining just a slight

difference between power consumption (Figure 2.4) [2].

Figure 2.3 : Comparison Between Needed Number of Cycles to Run Test

Programs with Single-Issue and Dual-Issue RISC-V processors [2]

8

Figure 2.4 : Comparison Between Power Consumption of Single-Issue and Dual-

Issue RISC-V processors [2]

A group of researchers from the Indian Institute of Science designed a 32-bit dual

pipeline superscalar RISC-V processor on an FPGA. The architecture was

proposing fetching two sequential instructions in the IF stage from Instruction

Cache (I-Cache). And one or two of the instructions are issued by Instruction

Issuing Unit (IIU) depending on dependencies in between. Because the architecture

is just capable of executing two integer instructions or one integer and one floating

point instructions. Besides the two instruction fetching, branch prediction unit is

also implemented. This unit is used in the EX stage in order to predict the next

Program Counter (PC) value. Thus, the processor becomes faster. In conclusion,

on Virtex-7 FPGA, the processor is tested via CoreMark benchmark and the dual-

issue RISC-V processor was 13% faster than Arm Cortex-M4 Processor (Table

2.1) [11].

Processor CoreMark/MHz

Dual-Issue RISC-V 3.84

Cortex-M4 (NXP Kinetis K70) 3.40

Cortex-M3 (STM32L152) 3.34

Cortex-M0+ (Atmel SAM D20) 2.46

Cortex-M0 (STM32F051C8 2.33

Table 2.1 : Comparison Between Cortex and RISC-V processors [11]

9

When the mentioned designs are examined it is seen that dual-issue RISC-V

processors can provide faster processing compared to well-known processors and

they consume less power compared to single-issue RISC-V processors. Also

extending single-issue processors to dual-issue processors improves the

performance significantly. Thus, these properties convinced us to extend the

single-issue Hornet core to dual-issue core.

 Hornet Core and Dual issue

Hornet is a single-issue core that implements the M extension of RISC-V

developed by ITU students. This core is designed to run more efficiently in

applications requiring less power like microcontroller systems. The core is

designed in a modular way to make it easier to add, remove and modify, and all

steps in the design of the core are documented. Because of these features, Hornet

is a core that is open to be made dual issue. The fact that it has detailed

documentation and the designers of the core are more easily accessible minimises

the disadvantages and incomprehensions that may arise during the design of the

new core. For these reasons, it was decided to design our dual issue core based on

the Hornet core. In addition, instead of designing a dual issue core from scratch, it

is aimed to dual issue an existing core in the market. The main motivation here is

to create a more efficient core with less labour and research time. Considering the

real life conditions, it is seen how important this is for product development. As a

result, it was decided to make the Hornet core dual issue, which required first

understanding the structure of the Hornet core and also running the core smoothly.

 PREPARING THE ENVIRONMENT

This was basically the first physical step that we have taken in order to develop a

further core. Validating the current core and ensuring the installation steps was quite

important to create a solid project. The following steps mostly originated from the

“Design and Implementation of a 32-bit RISC-V Core” paper [1], however some

problems are fixed and documented in our Github [12]. The main stages are setting up

10

the Linux environment, RISC-V GNU toolchain installation, test code compilation and

running, and the last step is simulation.

3.1 Setting up the linux environment

RISC-V GNU Toolchain can only be utilized on a Linux environment, this is why it is

used. The Linux operating system is set on a UTM virtual machine which makes it

easier to set up the Linux environment. The installation steps can be found in many

sources, after setting up the Linux operating system, toolchain should be installed.

3.2 GNU toolchain installation

First and foremost, the main and the additional prerequisites are installed. After

cloning the toolchain, it is configured with related prefixes and multilib generators.

Then, “make” command is executed. In this step if python cannot be found, the

following code can be executed in order to have a compatible version of python and

execute “make” again.

• # Install python 2

sudo apt install python
Make python refer to python3
sudo apt install python-is-python3
Prepare for a clean build

make distclean
sudo rm -rf <prefix-dir-specified-at-configure-time>
Configure and make
./configure --prefix=... --with-multilib-generator="..."
make 2>&1 | tee build.log

After toolchain installation is done successfully, its directory should be added to path

in order to compile codes.

3.3 Compiling and running a test code

Before running a code it should be compiled. For this purpose “.elf”, “.bin” and “.data”

files were created respectively. Then a script is executed which utilizes a “c wrapper

file” to make the original test code with “.c” extension compatible with the simulator.

3.3.1 Simulation and validation

To simulate the core, Verilator and GTKWave are installed. Verilator is actually used

to simulate the core and GTKWave is used to observe the signal waves. To verify the

core a test code is written including all the combinations of arithmetic and logic

11

operations (Figure 3.2) and it is observed that except from floating point and 38 bit

shift operation everything works properly. The shift operation can be done maximum

with 32 bits and in order to utilize floating point operations FPU (Floating Point Unit)

should be added to the design.

Figure 3.1 : Bubble Sort Input and Correct Output Values

12

Figure 3.2 : All Possible Arithmetic and Logic Operations

And also the bubble sort algorithm is executed successfully (Figure 3.3) in the core

and the source code can be seen in Figure 3.1. The outputs are given in data_wb_dat_i

signal.

Figure 3.3 : Simulation of Bubble Sort Algorithm Execution

Besides, it is tested how the core behaves when there is a dependency between

consecutive instructions. To do that the code of the hazard detection module was

observed and it is seen that the hazard detection module sets “stall_IF” signal to 1 and

the pipeline is stalled at that duration. In the below simulation figure the behavior of

the core is simulated when there is a hazard. When the “r_sum” is attempted to be

summed with “10” the hazard_stall signal is set to “1” and pipeline is stalled.

13

Figure 3.4 : The Test Function for the Hazard Detection

Figure 3.5 : It is seen that the hazard_stall signal is set to 1 on the red line.

 DESIGNING THE DUAL-ISSUE CORE

 Extracting the Register File From Hornet

The register file is used to assign registers that are used in compiler to physical registers

that essentially make the real arithmetic and logical operations. In the previous single-

issue core the register file was embedded to core. However, in order to develop a dual-

issue processor it is needed to separate the register file from the core and use it as a

common block for both pipelines. To realize this design all the code lines related to

the register file are isolated from the core and defined into a new module called

“register bank” (Figure 4.3). Then all the necessary input and output ports are defined

and connected to the core (Figure 4.1). While extracting the register file from the core

14

all the registers and wires that are defined in the new modules should be defined with

the exact same bit number.

Figure 4.1 : The Input and Output Port Connections of the Register Bank

The general hierarchy is aimed to be separate instruction memory, data memory and

register bank. Those three common modules are connected to both pipelines. In the

Figure 4.2 a single pipeline (core.v) and a separate register bank (reg_bank) are given

and their instances are created then connected with each other under “core_wb.v”.

Figure 4.2 : The General Hierarchy

15

Figure 4.3 : The Completely Separated Register Bank Module

The new configuration with extracted register bank is tested with bubble sort algorithm

via Vivado simulations and compared with the original core and the result is turned

out to be that the modified core is working properly. The simulation with original core

and modified core can be seen in Figure 4.4 and Figure 4.5 respectively.

Figure 4.4 : The Bubble Sort Simulation with the Original Core

Figure 4.5 : The Bubble Sort Simulation with the Modified Core

16

 Separation of Data Memory and Instruction Memory

The memory designed for Hornet Core is designed as a single module including both

data and instruction memory. Since the new core to be designed will have a dual issue

structure, these memories must be separate and can be manipulated independently of

each other. Therefore, data memory and instruction memory, which are normally in

the same module, have been redesigned as separate modules. In the Figure 4.7, it can

be seen that the new instruction memory and data memory. The Figure 4.6 shows the

memory in the combined state.

Figure 4.6 : RTL Schematic of Combined Instruction Memory and Data Memory

Figure 4.7 : RTL Schematic of Separated Instruction Memory and Data Memory

17

 Fetching Instructions

In the stage of developing the initial single-issue processor to create a dual-issue

processor, it had first planned to fetch instructions one by one to each core in each

clock cycle then fetching two instructions simultaneously to both pipes in order to

make the developing procedure easier. However, this step is skipped because it turned

out to be logically more sensible to transform single port instruction memory to dual

port instruction memory and fetch two instructions simultaneously. The process of

modifying instruction memory is given in the next paragraph.

 Instruction Memory

Instruction memory has been redesigned for the new core with dual issue core

structure. The design, which previously could only send one instruction output in one

clock cycle, has been made capable of sending two instructions in one clock cycle.

Each instruction sends an instruction to a pipeline. Thanks to this change, the

instructions sent in a single clock cycle are executed simultaneously.

Figure 4.8 : Verilog Code for Separated Instruction Memory

18

 Dual Issue Hazards

The most compelling part of designing a dual-issue processor is undoubtedly the

presence of hazards. Hazards can be divided into two: Structural hazards and data

hazards. The case in which the two instructions cannot be executed simultaneously can

be named as structural hazard where the data hazard implies the data dependency

between two consecutive instructions means that the result of current instruction is

dependent on the result of prior instruction [13]. Resolution of hazards comprises two

main parts: Detection of the hazard and stall of the pipeline. Detection is done by

hazard units which check the source registers of the current instruction and the

destination register of the previous instruction and the functional types of the

instructions as well. On the other hand, stall operation is simply implies feeding the

same PC to the processor and placing no-operation instruction to the pipeline stages.

That basically completes the hazard algorithm.

 The Prototype of The Dual Issue Core

Figure 4.9 : Block Diagram of The First Prototype

After separating instruction memory and data memory, the output port of instruction

memory is doubled. This was the first step to fetch two instructions at a time to the

core. However, this little step necessitates a very-well planned design. In order to make

the core simpler and tidier it is decided that one of the pipelines will execute only

branch and ALU operations, on the other side the second pipeline will just execute

memory and ALU operations. Thus, the first design component is that this architecture

necessitates an issue unit that forwards incoming instructions to the pipelines

according to their instruction types.

19

In a regular single pipeline processor, there is just a single hazard detection unit that

detects hazards such as structural hazards, data hazards etc. between sequential

instructions that are fetched to the pipeline. However, in the dual-issue case, there are

two pipelines which are operating simultaneously. That phenomena generates a second

type of hazard that is the dependencies or the structural hazards between instructions

that are fetched simultaneously to the pipelines. For this reason, a second type of

hazard unit which is responsible for detecting the data dependencies or structural

hazards between the parallel instructions that are going to be fetched to the pipelines

is created in the issue unit.

In order to update the PC regularly, the PC logic unit is designed. This unit is in charge

of updating PCs depending on the hazard signals which are generated from the hazard

detection units within the pipeline and also in the issue unit as well. The PC is desired

to be increased by eight regularly, because in each clock cycle, two instructions are

needed to be read. However, in case of hazard, the PC may need to be partially or fully

stalled. That is to say, if just one of the hazard units sends a signal to the PC logic unit,

then the PC needs to be partially stalled which means it needs to be increased by four.

However, if there is a hazard in two of the hazard units then the PC should be stalled

completely.

Furthermore, the dual hazard unit is desired to detect hazards between parallel

instructions before they are fetched, and update PC according to the hazard situations.

The problem with this design is timing. In the base core design, hazard detection is

made on the decode stage, the decoded instruction information is sent to the hazard

unit then it decides whether there is a hazard or not and according to that, it stalls the

pipe and PC. On the contrary, the proposed design comprises a third hazard unit in

issue unit, in other words, just before the fetch operation. Consequently, it is decided

that there is a timing issue and all of the hazard units should be in the same stage, in

order to control the PC properly.

 The Finalized Design

The major part of designing a dual-issue core based on a single-issue core is the

instruction issuing and hazard handling. Fetching two instructions at a time may cause

numerous problems. Thus, the design has been made considering those cases. In this

20

section, mostly the instruction and hazard signal flow are discussed. In this

perspective, there are three essential units: Instruction memory, PC logic unit, issue

unit and hazard units.

Figure 4.10 : The Block Diagram of the Overall Design

To begin with the instruction memory, it outputs two instructions at a single clock

cycle to the issue unit. Issue unit checks the instructions’ types and the current hazard

situations in order to fetch the instructions to each pipeline since one of the pipelines

executes memory and ALU operations while the other one executes branch and ALU

operations. Moreover, it sends a “pc_increment” signal to the PC logic unit in order it

to make a decision on the amount of pc increment. The fetched instructions are

decoded in each pipeline, and thereafter hazard checks are made by two regular hazard

units and one dual hazard unit. The generated stall signals from all three units are sent

to the issue unit and the PC logic unit, in order to control the instruction flow.

Eventually, the PC logic unit determines the next PC value according to the stall,

branch, CSR and PC increment signals. This PC is plugged into the instruction

memory for the next instructions to be obtained. This structure can be seen in Figure

4.10. Besides, RTL schematics are given in Figure A.1 and Figure A.2.

4.7.1 Modification of the Register File

21

Register file has 32-bit 32 registers. In the initial case for the Hornet core there was

just a single pipeline which utilizes the register file from two read and one write port.

However, the developed dual-issue core necessitates two separate access to the register

file from each pipeline since both pipelines have ability to handle register operations.

In order to satisfy this condition the register file has been modified such that there are

four read ports and two write ports. Besides, the internal structure, other control and

status signals are modified according to the dual-issue structure.

Figure 4.11 : Schematic View of the Initial Register Bank and the Modified Register

Bank

4.7.2 Implementation of the Issue Unit

The issue unit simply covers the functionality of issuing each instruction to appropriate

pipelines according to their opcodes. This module has two main parts: First is to

decode the instructions and assess the instruction type depending on the opcodes.

Second is to evaluate two consecutive instructions and determine whether both of them

or just the first one or none of them are going to be sent according to the Table 4.1. In

22

addition, the issue unit also determines which instruction is going to which pipeline

since the first pipeline executes branch and ALU operations while the second pipeline

executes memory and ALU operations. Besides, it is important to emphasize that no

second instruction is issued if the first instruction is a branch operation. Because if the

condition of the branch operation is satisfied then jump operation would be held and

the executed second instruction would be a hazard.

 Table 4.1 : Instruction Issue Logic Table

The issue unit checks some status signals and generates some status signals as well.

Firstly, the stall signals which are generated from the hazard units are checked in order

to decide whether to forward instructions or not. If there is a hazard signal then the

issue unit just stalls the instruction to the next clock cycle. If there is no hazard signal

then it runs the given logic in the Table 4.1. The status signals are “issue_stall,

pc_increment, priority”. The first, 1-bit “issue_stall” signal is utilized in the pipeline

in order to decide stalling the pipeline and this signal is generated if the pipeline is

expected not to execute any instruction, in other words to execute no-operation (NOP).

The second, 32-bit “pc_increment” signal is utilized in the “pc_logic” unit in order to

decide how much the PC needs to be increased depending on whether there is a stalled

operation or not. And the third, 1-bit “priority” signal is designed for the “dual hazard

unit”. This signal specifies which pipeline is fetched by the primary instruction. The

Incoming Instructions Issued Instructions Status Signals

1. Instruction

Type

2. Instruction

Type

1. Pipeline 2. Pipeline

Memory-1 Memory-2 NOP Memory-1 issue_stall_0 = 1, issue_stall_1 = 0

priority = 1, pc_increment = 4

Memory Branch Branch Mem issue_stall_0 = 0, issue_stall_1 = 0

priority = 1, pc_increment = 8

Branch Mem Branch NOP issue_stall_0 = 0, issue_stall_1 = 1

priority = 0, pc_increment = 4

Mem Alu Alu Mem issue_stall_0 = 0, issue_stall_1 = 0

priority = 1, pc_increment = 8

Alu Mem Alu Mem issue_stall_0 = 0, issue_stall_1 = 0

priority = 0, pc_increment = 8

Alu Branch Branch Alu issue_stall_0 = 0, issue_stall_1 = 0

priority = 1, pc_increment = 8

Branch Alu Branch NOP issue_stall_0 = 0, issue_stall_1 = 1

priority = 0, pc_increment = 4

Branch-1 Branch-2 Branch-1 NOP issue_stall_0 = 0, issue_stall_1 = 1

priority = 0, pc_increment = 4

Alu-1 Alu-2 Alu-1 Alu-2 issue_stall_0 = 0, issue_stall_1 = 0

priority = 0, pc_increment = 8

23

functionality of the “priority” signal is going to be further detailed in the

“implementation of the dual hazard unit” section.

Figure 4.12 : Schematic View of the Issue Unit

4.7.3 Implementation of the PC Logic Unit

In the original single-issue design the PC used to be assigned in the same module with

the rest of the core. However, in the dual-issue design there are two separate modules

for the pipeline stages and the PC is assigned under another module named

“PC_logic”. The assigned PC goes through a couple of modules then arrives at the

pipelines as it is mentioned in the finalized design.

Figure 4.13 : The Schematic View of the PC_logic Unit

This unit mainly calculates the next value of the PC considering several factors such

as reset, branch and stall signals. The stall signals are generated from three separate

24

hazard units. Two of them are from within pipelines and the third one is from the dual

hazard unit. If any one of the stall signals is generated then the PC is directly stalled,

otherwise increased by “pc_increment” value from the issue unit. The PC logic unit

might be able to handle jump operations as well. Thus, “take_branch” signal controls

whether to jump to “take_branch_addr” or just use the new PC value. There are also

CSR and reset controls which are compulsory for the core to work properly.

Figure 4.14 : PC Logic Unit Block Diagram

stall_0 stall_1 stall_dual PC

0 0 0 +pc_increment

0 0 1 +0

0 1 0 +0

0 1 1 +0

1 0 0 +0

1 0 1 +0

1 1 0 +0

1 1 1 +0

Table 4.2 : PC Logic Truth Table

4.7.4 Implementation of the Dual Hazard Unit

In the single-issue processor, the hazard detection unit checks the source registers 1

and 2 from the decode stage and destination register from the execute stage. However,

in the dual-issue processor design to detect the hazard between parallel instructions,

the dual hazard unit utilizes source registers and destination register all from decode

25

stage as it is seen in Figure 4.15, since instructions to be compared need to be ones

which are fetched in the same clock cycle.

Figure 4.15 : The Schematic View of Dual Hazard Unit

In order to implement the dual hazard unit, first the opcodes of the decoded instructions

from both pipes are obtained, besides, the source registers and the destination registers

from both pipes are accepted as an input. The most tricky part about the dual hazard

unit is to evaluate these parameters. It is crucial to determine which instruction

between pipes is the primary in terms of the execution order. This is accomplished by

checking the priority bit which tells the core which instruction has the priority in the

instruction memory. To make it clear, if it is assumed that the instruction which

belongs to the first pipe is the primary, then the source registers of the instruction going

through the first pipe and the destination register of the instruction going through the

second pipe along with the opcode are analyzed and a dual hazard situation is

determined.

26

Figure 4.16 : Verilog Codes for the Dual Hazard Unit

Figure 4.17 : Verilog Codes for the Dual Hazard Unit (Continued)

 REALISTIC CONSTRAINTS AND CONCLUSIONS

27

 Open-source softwares, which all parties can use without any restrictions, has gained

importance and popularity in recent years. In this study, it is aimed to increase

performance by turning the previously designed open-source single issue (hornet) into

a core dual issue. This design is completely open to everyone's contribution and

update. In addition, this design is planned to be used in various low-power, high-

performance applications and in the field of education.

 Practical Application of this Project

This work can be used in a variety of applications that require low power and are not

very complex. With artificial intelligence becoming popular again, computing units

have begun to be needed in edge applications. This design may be a suitable solution

for those computational units.

 Realistic Constraints

5.2.1 Social, environmental and economic impact

More optimized operation of the system indirectly causes power consumption to be

less than alternatives. In this way, its negative impact on the environment will be

reduced. Additionally, there is no need to pay any fee to produce this design. If the

design is turned into a product, this product will have positive economic impacts on

the country. In addition, in case of encountering various embargo dangers, this product

will constitute an alternative and will be able to undertake critical tasks in important

areas like the defense industry.

5.2.2 Cost analysis

Many things to be done within the scope of this project will be carried out through

software, so the costs will be relatively less. Programs such as Xilinx Vivado and

Github repo that will be used during the development of the project are free for

students. In addition, the FPGA we will use costs approximately 10,000 TRY and is

provided free of charge by the school's lab. Finally, two engineers allocate a total of

16 hours a week for the project. Considering the 9-month working period and the

salary of a newly graduated engineer, the cost of this project in terms of labor is

144,000 TRY.

28

5.2.3 Standards

Since project is not working on a subject that relies on protocols such as

communication systems, the number of standards we use in the project will be

relatively less. The standards we will use are as follows: The RISC-V Instruction Set

Manual IEEE Standards which is relevant with the project

5.2.4 Health and safety concerns

This project has no visible or invisible health and safety concerns.

 Future Work and Recommendations

This work is completely open source so that it can be developed further in the future.

By making various additions to the dual issue design architecture, a higher

performance core can be obtained by turning it into a multiple issue. Or, this design

can become more performant by using different performance-enhancing methods such

as branch prediction with fewer changes. Or the current design can be optimized to

obtain a more efficient output. Finally, the design chip tape-out can be created and a

product can be created.

29

REFERENCES

[1] Url-1 <https://www.qualcomm.com/news/onq/2023/09/what-is-risc-v-and-why-

were-unlocking-its- potential>, date of access 26.05.2024.

[2] Zhang Hongsheng et al 2020 J. Phys.: Conf. Ser. 1693 012192

[3] Patterson D., Hennessy J. (2018). Computer Organization and Design (RISC-V

Edition). Elsevier Inc.

[4] Url-2 <https://www.geeksforgeeks.org/difference-between-von-neumann-and-

harvard-architecture/>, date of access 26.05.2024.

[5] Wentzlaff (2013). Session 4 presentation: Computer Architecture ELE 475 / COS

475 Superscalar.Princeton University.

https://eleclass.princeton.edu/classes/ele475/spring_2018/lib/exe/fetch

.php?media=sd4.pdf

[6] Fasiku, A. I., Olawale, J. B., & Jinadu, O. T. (2012). A Review of Architectures

- Intel Single Core, Intel Dual Core and AMD Dual Core Processors

and the Benefits. International Journal of Engineering and

Technology, 2.

[7] Waterman A., Lee Y., Patterson D. A., Asanovic K. (2016). The RISC-V

Instruction Set Manual, Volume I: User- Level ISA, Version 2.1

(Publication No. UCB/EECS-2016-118). Electrical Engineering and

Computer Sciences University of California at Berkeley.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-

118.html

[8] Url-3 <https://www.sifive.com>, date of access 26.05.2024.

[9] Url-4 <https://pulp-platform.org/implementation.html>, date of access

26.05.2024.

[10] Tozlu, Y., Yılmaz, Y. (2021). Design And Implementation of A 32-Bit RISC-

V Core

[11] T, G., Muraleedharan, A., & Varghese, K. (2020). Design of a 32-bit, dual

pipeline superscalar RISC-V processor on FPGA (thesis).

[12] A. A. Kılıç, M. K. Ertem, “Hornet RISC-V Core,” GitHub, Sep. 26, 2023.

https://github.com/mskertem/RISC-V (accessed Jan. 2024)

[13] Parthasarathi, D. R. (2018, July 24). Computer architecture. Pipeline Hazards

– Computer Architecture. https://www.cs.umd.edu/~meesh/411/CA-

online/chapter/pipeline-hazards/index.html

30

APPENDICES

APPENDIX A: RTL Schematics

31

APPENDIX A

Figure A.1 : RTL Schematic of the Top Module in Vivado

32

Figure A.2 : RTL Schematic of the Core_wb Module in Vivado

33

CURRICULUM VITAE

Name Surname : Abdullah Aykut KILIÇ

Place and Date of Birth : Kayseri, 20.05.2001

E-Mail : kabdullahaykut@gmail.com

34

CURRICULUM VITAE

Name Surname : Mustafa Kerem ERTEM

Place and Date of Birth : Ankara, 18.04.2002

E-Mail : msk.ertem@gmail.com

Experience

• TUBITAK BILGEM TUTEL – Kocaeli, Turkey June – July 2023

• ITU Aerospace Research Center – Istanbul, Turkey June – July 2022

