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DESIGN AND IMPLEMENTATION OF HIGH-PERFORMANCE DUAL 

ISSUE RISC-V CORE 

SUMMARY 

According to Cheng, the technical marketing director of Qualcomm, RISC-V has gone 

a significant way since its establishment by University of California, Berkeley in 2010 

due to its resilience and cost-saving advantages when it is compared to proprietary 

ISAs [1]. It is crucial to understand how the RISC-V ISA is important. The main 

benefits coming from the open-source and simple environment. This has motivated 

people to design numerous cores and make it publicly available on many platforms. 

Thus, people have been able to inspire from each other's design and develop further 

improved cores and SoCs.  

 

The purpose of this paper is to advance the pre-designed single-issue Hornet core by 

Istanbul Technical University students to a dual-issue architecture and clarify every 

component of the design. The dual-issue architectures mainly benefit from 

approximately double instruction throughput. This design approach may confuse the 

designers in terms of potential hazards which may occur during the operation of the 

core. In this paper, we strived to find intelligent solutions for complicated structure of 

the dual-issue architecture. 

 

The general methodology which has been followed throughout this research consists 

of three main parts: Setting-up the RISC-V toolchain environment and running the 

existing design, understanding it and developing the new architecture. There are both 

pros and cons of improving an existing design. The advantageous part is to simply 

focus on what can be further enhanced; however, the unfavorable part is to strive to 

make sense of the components of the existing design. Therefore, it may take a long 

time and may necessitate consulting to the designers. Although, it has been more 

straightforward the stage of dealing with the existing design compared to the stage of 

developing the dual-issue architecture. The design of dual-issue primarily requires 

issuing two instructions at every clock cycle to the pipelines. This job entails a tedious 

brainstorming to figure out the details and complications which may occur. Therefore, 

in this study, the design process has been divided into stages and first, has been started 

from the overall picture then gone into details. 

 

In essence, RISC-V carries significant importance in terms of its flexibility and low-

cost nature. This allows many organizations to develop their own cores and SoCs in 

order to realize their projects. In this paper, it is aimed to advance a previous work to 

have better performance and higher instruction throughput. While doing this, the dual-

issue architecture has been selected as the main attitude. This is because, it had been 

turned out to be an optimum solution when the many research papers had been 

analyzed where the performance improvements are broadly close to %80 percent [2]. 
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ÇİFT İŞLEMLİ RISC-V ÇEKİRDEĞİNİN TASARIMI VE 

İMPLEMENTASYONU 

ÖZET 

2010 yılında Kaliforniya Üniversitesi, Berkeley tarafından geliştirilen RISC-V 

mimarisi Qualcomm'un teknik pazarlama direktörü Cheng'e göre, özel ISA’lara 

kıyasla sahip olduğu dayanıklılık ve maliyet avantajları sayesinde kuruluşundan bu 

yana kayda değer bir yol kat etmiştir [1]. RISC-V ISA'nın önemini kavramak kritik 

öneme sahiptir. Bu önemin temel faydaları açık kaynaklı ve kolay kullanılabilir 

yapısından gelmektedir. Bu sayede birçok çekirdek tasarımı yapılmış ve bu tasarımlar 

çeşitli platformlarda herkese açık hale getirilmiştir. Böylelikle tasarımcılar 

birbirlerinden ilham alarak daha gelişmiş çekirdekler ve SoC'ler üretebilmişlerdir. 

Bu çalışmasının amacı, İstanbul Teknik Üniversitesi öğrencilerinin tasarladığı Hornet 

çekirdeğini çift işlemli bir mimariye yükseltmek ve tasarımın her bir bileşenini 

açıklığa kavuşturmaktır. Çift işlemli çekirdek mimarileri, birim zamanda yaklaşık 

olarak iki kat daha fazla sayıda işlem gerçekleştirebilmesiyle öne çıkmaktadır. Ancak 

bu tasarım yaklaşımı, çekirdeğin çalışma esnasında ortaya çıkabilecek potansiyel 

problemler açısından tasarımcıları zorlayabilmektedir. Bu çalışmada, çift işlemli 

çekirdek mimarisinin karmaşık yapısı için verimli çözümler üretilmeye çalışılmıştır. 

Araştırma boyunca izlenen genel metodoloji üç ana bölümden oluşmaktadır: RISC-V 

toolchain’in kurulması ve mevcut tasarımın çalıştırılması, mevcut tasarımın 

anlaşılması ve yeni mimarinin geliştirilmesi. Halihazırda varolan bir tasarımı 

geliştirmenin hem avantajları hem de dezavantajları vardır. Olumlu yanı, tasarımın 

temel kısmından ziyade üzerine koyulabiliecek gelişmiş özelliklere odaklanabilmektir. 

Dezavantajı ise, bir başkası tarafından tasarlanmış komplike bir sistemi anlamaya 

çalışmaktır. Bu yönüyle yoğun bir çalışma gerektirebilir ve tasarımcılarla görüşüp 

onların bakış açısını anlamak gerekmektedir. Varolan tasarımı anlamdırma aşaması, 

çift işlemli mimariyi geliştirme aşamasına kıyasla daha kolay olsa da; çift işlemli 

tasarımın asıl amacı her saat döngüsünde işlem hatlarına iki komut göndermektir. Bu 

özellik, ortaya çıkabilecek problemli ve karmaşık durumları çözmek için detaylı bir 

inceleme gerektirmektedir, dolayısıyla bu çalışmada tasarım süreci aşamalara ayrılmış 

olup, öncelikle genel resimden başlanarak daha sonra detaylara inilmiştir. 

Özet olarak, RISC-V mimarisi esnekliği ve düşük maliyeti açısından önemli bir yere 

sahiptir. Bu sayede birçok kuruluş kendi çekirdeklerini ve SoC'lerini 

geliştirebilmektedir. Bu çalışmada, öncesinde İstanbul Teknik Üniversitesi öğrencileri 

tarafından geliştirilmiş olan Hornet çekirdeğini daha iyi performans ve daha yüksek 

işlem verimi elde edecek şekilde geliştirmek hedeflenmektedir. Bu amaçla, yapılan 

literatür taramasında performans artışının genellikle %80'e yakın olduğu 

görüldüğünden çift işlemli çekirdek mimarisinin geliştirilmesi kararlaştırılmıştır [2]. 
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 INTRODUCTION 

In the rapidly evolving environment of embedded systems and high-performance 

computing, the demand for efficient and powerful processor architectures is 

continuously growing. Traditional single-issue processors face limitations in 

meeting the increasing computational requirements of modern applications like 

artificial intelligence, image processing etc. The RISC-V instruction set 

architecture provides an excellent solution for processor design. But unfortunately, 

there is not enough high-performance design for RISC-V architecture.  

The main objective of this project is to improve the performance of the Hornet core 

developed by ITU students. This performance increase is aimed to be achieve by 

converting the current single issue core into a dual issue structure. First of all, 

various performance tests were performed to observe that the core, which is the 

only issue, is working properly. Then, the structure of this single issue core was 

analysed and a new architecture was developed to make this core as dual issue core 

with higher performance. This new architecture has been finalised through various 

revisions and has been applied to the current core with various changes in the code.  

Basically, a dual-core architecture with more performance than the existing single-

core architecture has been created.  

As a result of this project, a dual-issue core with RISC-V architecture, which has 

not many equivalents both in the market and in the academic field, will be obtained. 

The higher performance of this core, which can fetch two instructions at once, will 

enable it to come to the forefront in applications that require more processing 

power but not so complicated applications such as image processing, artificial 

intelligence and deep learning in basic manner. In addition, the fact that this core 

has an open source architecture such as RISC-V will make the design more 

accessible to all parties. 
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 PROCESSORS AND CORES 

 General Core Design 

The processors in use today are based on two different architectures, Neumann and 

Hardvard. The main difference between these two architectures lies in their access to 

memory. In the Harvard architecture, memory is divided into two for data and 

instrumentation, while in the Neumann architecture, memory is shared. Data and 

instruction are carried at the same time. The remaining parts are common for both 

architectures. These parts are basically arithmetic and logic unit (ALU), control unit, 

programme counter, registers and memory. 

The ALU is responsible for performing basic operations. These operations consist of 

arithmetic operations such as addition and subtraction and logic operations such as and 

or. Registers are memory elements that store the necessary information while the ALU 

is running. The control unit controls the rest of the processor by generating various 

signals during operations. Lastly, memory stores the necessary registers, data and 

instructions [3]. 

Figure 2.1 : Architecture Comparison [4] 
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Cores are classified according to the number of instructions they can execute in a single 

cloclk cycle. These are single issue and multiple issue cores. Multiple issue cores are 

specially called Dual issue if they can execute two instructions in a single cycle. 

2.1.1 Single-issue cores 

A microprocessor type known as a single-issue processor is limited to executing a 

single instruction each clock cycle. The ability of the processor to send instructions to 

the execution units for processing is referred to as "issue" in the context of computer 

architecture. A single instruction can only be executed per a clock cycle in a single-

issue processor; multiple instructions cannot be executed at the same time by the 

processor. In contrast, several instructions can be issued and carried out concurrently 

during a single clock cycle in superscalar architectures. 

Single-issue processors are easier to design and build because of their simplicity, but 

they might not be able to process instructions as quickly as more complicated 

superscalar processors. With instruction-level parallelism, superscalar processors—

which can execute many instructions at once—may be able to attain even better 

performance. They do, however, also typically have more intricate designs and 

demand more hardware. Single-issue processors are frequently found in embedded 

systems, simpler computing devices, or applications with lower computational 

demands that can be met with a simpler design while still achieving the necessary 

performance. 

 

2.1.2 Dual-issue cores 

A microprocessor that has the ability to issue and carry out two instructions each clock 

cycle is known as a dual-issue processor. The ability of the processor to send 

instructions to the execution units for processing is referred to as the "issue" in 

computer architecture. The processor can benefit from instruction-level parallelism, in 

which two instructions are carried out concurrently throughout each clock cycle, 

thanks to the dual-issue capabilities. Comparing this to single-issue processors, more 

instruction throughput and better performance may result.  

A dual-issue processor features multiple continuously operating execution units and a 

pipeline intended to accommodate the simultaneous processing of two instructions. 

Because this architecture can take use of instruction-level parallelism, it makes better 
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use of the resources that are available. As a subset of superscalar architecture, dual-

issue processors are capable of carrying out multiple instructions at once. Processors 

with numerous execution units that can issue and execute several instructions each 

clock cycle are referred to as "superscalar" processors. A particular class of superscalar 

processors known as dual-issue processors is dedicated to processing two instructions 

at once. 

While dual-issue processors may perform better than single-issue processors due to 

their additional complexity, more complex design and control logic are also needed. 

In more complex and high-performance computing systems, when utilizing 

instruction-level parallelism is essential to improving overall performance, dual-issue 

processors are frequently found. Multiple issue core can be classified in two different 

ways: static and dynamic. 

 

2.1.2.1 Static Multiple Issue 

In a static multiple issue, the programmer or the compiler must determine which 

independent instructions can run simultaneously. The processor schedules instructions 

statically onto a number of pipelines or execution units. To find parallelism, this 

method necessitates the use of a complex compiler or programmer, which is not always 

practical or effective. Its capability to use parallelism across a large range of 

instructions is one advantage; nevertheless, it may be restricted by the compiler's 

ability to detect parallelism and requires a significant amount of compiler support. 

 

2.1.2.2 Dynamic Multiple Issue 

Dynamically recognizing separate instructions at runtime and allocating them to 

different execution units for parallel execution is known as dynamic multiple issue, or 

dynamic instruction scheduling. Instead of relying on compiler instructions or human 

intervention, dynamic multiple issues use hardware techniques to detect parallelism. 

This is in contrast to static multiple issues. Unlike static multiscalar scheduling, which 

is based on availability and dependencies, the dispatching of instructions to execution 

units allows for more adaptable and flexible scheduling. Because dynamic multiple 

issues can adjust to changes in program behavior as it is being executed, they may be 

able to achieve higher performance in scenarios when the compiler may not be able to 

identify all available parallelism. “Static multiple issue” architecture was chosen for 

this core design. In the design, the first pipeline can execute only integer and branch 
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instructions. In addition to that, second pipeline can execute only integer and memory 

instructions. A simple representation of this structure is as in the Figure 2.2. 

 

 

Figure 2.2 : Dynamic Multiple Issue Structure [5] 

 

The CPU receives various commands from the outside world in order to perform the 

necessary operations, and these commands are called instructions. These instructions 

have a binary structure for machines to understand and they consist of a certain number 

of bits. The structure formed by these instructions coming together, containing 

instruction properties and names, is called Instruction set arctirecture (ISA). 

Depending on this structure preference, cores based on different architectures can be 

designed. In RISC-V this is one of the ISAs [6]. 

 RISC-V 

RISC-V is an instruction set architecture (ISA) developed and maintained by RISC-V 

International (formerly the RISC-V Foundation). It is used to create custom processors 

for a range of uses, including supercomputers and embedded systems. In contrast to 

proprietary processor designs, custom processors targeting a range of end applications 

can be developed using the open-source RISC-V instruction set architecture (ISA). 

RISC-V is designed around a simple, modular ISA that can be extended with optional 

features. The base ISA includes a minimal set of instructions for basic computational 

needs, while additional standard extensions cover floating-point operations, atomic 

operations, and vector processing, among others. This modularity is a key strength of 

RISC-V, allowing it to be tailored for a wide range of applications from 

microcontrollers to high-performance computing. The architecture is also notable for 

its simplicity and efficiency [7].  
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The RISC-V ISA, which was first created at the University of California, Berkeley, is 

regarded as the fifth generation of processors based on the reduced instruction set 

computer (RISC) architecture. It has grown a lot in popularity recently because of its 

openness and technical advantages. With over 3,000 members, RISC-V International 

is currently in charge of overseeing the standard. As of the end of 2022, the 

organization had shipped over 10 billion chips with RISC-V cores. Many 

implementations of RISC-V are available, both as open-source cores and as 

commercial IP products.  

For example, the SiFive Freedom Platform, based on RISC-V, offers a family of SoCs 

that cater to various market needs from low-power to high-performance applications. 

Additionally, the PULP (Parallel Ultra-Low Power) platform from ETH Zurich and 

the University of Bologna showcases RISC-V's potential in ultra-low-power 

computing for IoT applications [8][9]. Also, major tech companies like NVIDIA, 

Western Digital, and Google have shown interest in RISC-V, indicating its potential 

to disrupt the processor market. 

Because of the architecture's ability to give the processor more straightforward 

instructions to complete a variety of jobs, RISC-V has grown in popularity. It also 

speeds up time to market by allowing designers to generate thousands of possible 

bespoke processors. Additionally, the shared processor IP reduces the time needed for 

program development. Some advantages of RISC-V are as follows: 

• Because of its open-standard design, the industry may collaborate and innovate 

together.  

• Common ISA: Since all processors may utilize the same architecture, this 

facilitates software development. From small embedded systems to the biggest 

supercomputers, designers can customize their creations to meet market 

demands by using the same basic ISA.  

• RISC-V ISAs are different from earlier ISAs in that they can be tailored to 

meet specific needs. The availability of more compact, modular, and energy-

efficient solutions   

• Open-source reference designs, software composition analysis tools, and 

security extensions are sources of security features. Furthermore, because the 

RISC-V architecture is open-source, all of its components can be thoroughly 
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examined in the public domain, removing any potential for back doors or 

hidden channels.   

 Literature Review 

This project is based on the paper “Design and Implementation of a 32-bit RISC-

V Core”. [10] In this paper, the single-issue RISC-V Core which is designed by 

ITU students is revealed. It was seen that there could be further improvements on 

this core. To figure out what could be done, various studies are examined. There 

are many perspectives including application specific accelerators, dual-core 

architectures, dual-issue and multiple-issue architectures. Besides, it turned out that 

there is no previous research about dual-issue RISC-V Core in Turkey. 

Thus, different approaches about dual-issue cores are examined. A researcher 

Hongsheng designed and tested a dual-issue RISC-V processor [2]. In that study, 

first a single-issue processor is designed then it is extended to a dual-issue 

processor. The fetched data in Instruction Fetch (IF) stage is doubled and 

Instruction Decode (ID) stage is modified accordingly. Execution (EX) stage unit 

is doubled and a data hazard unit is added to prevent complications. The main idea 

is to use the same modules to extend the single-issue processor to dual-issue core 

which reduces the design complexity. Consequently, the final design was subjected 

to performance analysis and it turned out that the dual-issue processor was 80% 

faster than the single-issue processor (Figure 2.3) while maintaining just a slight 

difference between power consumption (Figure 2.4) [2].  

 

Figure 2.3 : Comparison Between Needed Number of Cycles to Run Test 

Programs with Single-Issue and Dual-Issue RISC-V processors [2] 
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Figure 2.4 : Comparison Between Power Consumption of Single-Issue and Dual-

Issue RISC-V processors [2] 

A group of researchers from the Indian Institute of Science designed a 32-bit dual 

pipeline superscalar RISC-V processor on an FPGA. The architecture was 

proposing fetching two sequential instructions in the IF stage from Instruction 

Cache (I-Cache). And one or two of the instructions are issued by Instruction 

Issuing Unit (IIU) depending on dependencies in between. Because the architecture 

is just capable of executing two integer instructions or one integer and one floating 

point instructions. Besides the two instruction fetching, branch prediction unit is 

also implemented. This unit is used in the EX stage in order to predict the next 

Program Counter (PC) value. Thus, the processor becomes faster. In conclusion, 

on Virtex-7 FPGA, the processor is tested via CoreMark benchmark and the dual-

issue RISC-V processor was 13% faster than Arm Cortex-M4 Processor (Table 

2.1) [11]. 

Processor CoreMark/MHz 

Dual-Issue RISC-V 3.84 

Cortex-M4 (NXP Kinetis K70) 3.40 

Cortex-M3 (STM32L152) 3.34 

Cortex-M0+ (Atmel SAM D20) 2.46 

Cortex-M0 (STM32F051C8 2.33 

Table 2.1 : Comparison Between Cortex and RISC-V processors [11] 
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When the mentioned designs are examined it is seen that dual-issue RISC-V 

processors can provide faster processing compared to well-known processors and 

they consume less power compared to single-issue RISC-V processors. Also 

extending single-issue processors to dual-issue processors improves the 

performance significantly. Thus, these properties convinced us to extend the 

single-issue Hornet core to dual-issue core. 

 Hornet Core and Dual issue  

Hornet is a single-issue core that implements the M extension of RISC-V 

developed by ITU students. This core is designed to run more efficiently in 

applications requiring less power like microcontroller systems.  The core is 

designed in a modular way to make it easier to add, remove and modify, and all 

steps in the design of the core are documented. Because of these features, Hornet 

is a core that is open to be made dual issue. The fact that it has detailed 

documentation and the designers of the core are more easily accessible minimises 

the disadvantages and incomprehensions that may arise during the design of the 

new core. For these reasons, it was decided to design our dual issue core based on 

the Hornet core.  In addition, instead of designing a dual issue core from scratch, it 

is aimed to dual issue an existing core in the market. The main motivation here is 

to create a more efficient core with less labour and research time. Considering the 

real life conditions, it is seen how important this is for product development. As a 

result, it was decided to make the Hornet core dual issue, which required first 

understanding the structure of the Hornet core and also running the core smoothly. 

 PREPARING THE ENVIRONMENT 

This was basically the first physical step that we have taken in order to develop a 

further core. Validating the current core and ensuring the installation steps was quite 

important to create a solid project. The following steps mostly originated from the 

“Design and Implementation of a 32-bit RISC-V Core” paper [1], however some 

problems are fixed and documented in our Github [12]. The main stages are setting up 
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the Linux environment, RISC-V GNU toolchain installation, test code compilation and 

running, and the last step is simulation. 

 

3.1 Setting up the linux environment 

RISC-V GNU Toolchain can only be utilized on a Linux environment, this is why it is 

used. The Linux operating system is set on a UTM virtual machine which makes it 

easier to set up the Linux environment. The installation steps can be found in many 

sources, after setting up the Linux operating system, toolchain should be installed. 

 

3.2 GNU toolchain installation 

First and foremost, the main and the additional prerequisites are installed. After 

cloning the toolchain, it is configured with related prefixes and multilib generators. 

Then, “make” command is executed. In this step if python cannot be found, the 

following code can be executed in order to have a compatible version of python and 

execute “make” again. 

• # Install python 2 

sudo apt install python 
# Make python refer to python3 
sudo apt install python-is-python3 
# Prepare for a clean build 

make distclean 
sudo rm -rf <prefix-dir-specified-at-configure-time> 
# Configure and make 
./configure --prefix=... --with-multilib-generator="..." 
make 2>&1 | tee build.log 

 

After toolchain installation is done successfully, its directory should be added to path 

in order to compile codes. 

 

3.3 Compiling and running a test code 

Before running a code it should be compiled. For this purpose “.elf”, “.bin” and “.data” 

files were created respectively. Then a script is executed which utilizes a “c wrapper 

file” to make the original test code with “.c” extension compatible with the simulator. 

 

3.3.1 Simulation and validation 

To simulate the core, Verilator and GTKWave are installed. Verilator is actually used 

to simulate the core and GTKWave is used to observe the signal waves. To verify the 

core a test code is written including all the combinations of arithmetic and logic 
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operations (Figure 3.2) and it is observed that except from floating point and 38 bit 

shift operation everything works properly. The shift operation can be done maximum 

with 32 bits and in order to utilize floating point operations FPU (Floating Point Unit) 

should be added to the design. 

 

 
Figure 3.1 : Bubble Sort Input and Correct Output Values 
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Figure 3.2 : All Possible Arithmetic and Logic Operations 

 

And also the bubble sort algorithm is executed successfully (Figure 3.3) in the core 

and the source code can be seen in Figure 3.1. The outputs are given in data_wb_dat_i 

signal. 

 

 

 
Figure 3.3 : Simulation of Bubble Sort Algorithm Execution 

 
Besides, it is tested how the core behaves when there is a dependency between 

consecutive instructions. To do that the code of the hazard detection module was 

observed and it is seen that the hazard detection module sets “stall_IF” signal to 1 and 

the pipeline is stalled at that duration. In the below simulation figure the behavior of 

the core is simulated when there is a hazard. When the “r_sum” is attempted to be 

summed with “10” the hazard_stall signal is set to “1” and pipeline is stalled. 
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Figure 3.4 : The Test Function for the Hazard Detection 

 

 

Figure 3.5 : It is seen that the hazard_stall signal is set to 1 on the red line. 

 DESIGNING THE DUAL-ISSUE CORE 

 Extracting the Register File From Hornet 

The register file is used to assign registers that are used in compiler to physical registers 

that essentially make the real arithmetic and logical operations. In the previous single-

issue core the register file was embedded to core. However, in order to develop a dual-

issue processor it is needed to separate the register file from the core and use it as a 

common block for both pipelines. To realize this design all the code lines related to 

the register file are isolated from the core and defined into a new module called 

“register bank” (Figure 4.3). Then all the necessary input and output ports are defined 

and connected to the core (Figure 4.1). While extracting the register file from the core 
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all the registers and wires that are defined in the new modules should be defined with 

the exact same bit number. 

 

 

Figure 4.1 : The Input and Output Port Connections of the Register Bank 

 

The general hierarchy is aimed to be separate instruction memory, data memory and 

register bank. Those three common modules are connected to both pipelines. In the 

Figure 4.2 a single pipeline (core.v) and a separate register bank (reg_bank) are given 

and their instances are created then connected with each other under “core_wb.v”. 

 

 

Figure 4.2 : The General Hierarchy 
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Figure 4.3 : The Completely Separated Register Bank Module 

 

The new configuration with extracted register bank is tested with bubble sort algorithm 

via Vivado simulations and compared with the original core and the result is turned 

out to be that the modified core is working properly. The simulation with original core 

and modified core can be seen in Figure 4.4 and Figure 4.5 respectively. 

 

 

Figure 4.4 : The Bubble Sort Simulation with the Original Core 

 

 

Figure 4.5 : The Bubble Sort Simulation with the Modified Core 
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 Separation of Data Memory and Instruction Memory 

The memory designed for Hornet Core is designed as a single module including both 

data and instruction memory. Since the new core to be designed will have a dual issue 

structure, these memories must be separate and can be manipulated independently of 

each other. Therefore, data memory and instruction memory, which are normally in 

the same module, have been redesigned as separate modules. In the Figure 4.7, it can 

be seen that the new instruction memory and data memory. The Figure 4.6 shows the 

memory in the combined state. 

 

Figure 4.6 : RTL Schematic of Combined Instruction Memory and Data Memory 

 

 

Figure 4.7 : RTL Schematic of Separated Instruction Memory and Data Memory 
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 Fetching Instructions 

In the stage of developing the initial single-issue processor to create a dual-issue 

processor, it had first planned to fetch instructions one by one to each core in each 

clock cycle then fetching two instructions simultaneously to both pipes in order to 

make the developing procedure easier. However, this step is skipped because it turned 

out to be logically more sensible to transform single port instruction memory to dual 

port instruction memory and fetch two instructions simultaneously. The process of 

modifying instruction memory is given in the next paragraph. 

 Instruction Memory 

Instruction memory has been redesigned for the new core with dual issue core 

structure. The design, which previously could only send one instruction output in one 

clock cycle, has been made capable of sending two instructions in one clock cycle. 

Each instruction sends an instruction to a pipeline. Thanks to this change, the 

instructions sent in a single clock cycle are executed simultaneously. 

Figure 4.8 : Verilog Code for Separated Instruction Memory 
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 Dual Issue Hazards 

The most compelling part of designing a dual-issue processor is undoubtedly the 

presence of hazards. Hazards can be divided into two: Structural hazards and data 

hazards. The case in which the two instructions cannot be executed simultaneously can 

be named as structural hazard where the data hazard implies the data dependency 

between two consecutive instructions means that the result of current instruction is 

dependent on the result of prior instruction [13]. Resolution of hazards comprises two 

main parts: Detection of the hazard and stall of the pipeline.  Detection is done by 

hazard units which check the source registers of the current instruction and the 

destination register of the previous instruction and the functional types of the 

instructions as well. On the other hand, stall operation is simply implies feeding the 

same PC to the processor and placing no-operation instruction to the pipeline stages. 

That basically completes the hazard algorithm. 

 The Prototype of The Dual Issue Core 

Figure 4.9 : Block Diagram of The First Prototype  

After separating instruction memory and data memory, the output port of instruction 

memory is doubled. This was the first step to fetch two instructions at a time to the 

core. However, this little step necessitates a very-well planned design. In order to make 

the core simpler and tidier it is decided that one of the pipelines will execute only 

branch and ALU operations, on the other side the second pipeline will just execute 

memory and ALU operations. Thus, the first design component is that this architecture 

necessitates an issue unit that forwards incoming instructions to the pipelines 

according to their instruction types. 
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In a regular single pipeline processor, there is just a single hazard detection unit that 

detects hazards such as structural hazards, data hazards etc. between sequential 

instructions that are fetched to the pipeline. However, in the dual-issue case, there are 

two pipelines which are operating simultaneously. That phenomena generates a second 

type of hazard that is the dependencies or the structural hazards between instructions 

that are fetched simultaneously to the pipelines. For this reason, a second type of 

hazard unit which is responsible for detecting the data dependencies or structural 

hazards between the parallel instructions that are going to be fetched to the pipelines 

is created in the issue unit. 

In order to update the PC regularly, the PC logic unit is designed. This unit is in charge 

of updating PCs depending on the hazard signals which are generated from the hazard 

detection units within the pipeline and also in the issue unit as well. The PC is desired 

to be increased by eight regularly, because in each clock cycle, two instructions are 

needed to be read. However, in case of hazard, the PC may need to be partially or fully 

stalled. That is to say, if just one of the hazard units sends a signal to the PC logic unit, 

then the PC needs to be partially stalled which means it needs to be increased by four. 

However, if there is a hazard in two of the hazard units then the PC should be stalled 

completely. 

Furthermore, the dual hazard unit is desired to detect hazards between parallel 

instructions before they are fetched, and update PC according to the hazard situations. 

The problem with this design is timing. In the base core design, hazard detection is 

made on the decode stage, the decoded instruction information is sent to the hazard 

unit then it decides whether there is a hazard or not and according to that, it stalls the 

pipe and PC. On the contrary, the proposed design comprises a third hazard unit in 

issue unit, in other words, just before the fetch operation. Consequently, it is decided 

that there is a timing issue and all of the hazard units should be in the same stage, in 

order to control the PC properly. 

 The Finalized Design 

The major part of designing a dual-issue core based on a single-issue core is the 

instruction issuing and hazard handling. Fetching two instructions at a time may cause 

numerous problems. Thus, the design has been made considering those cases. In this 
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section, mostly the instruction and hazard signal flow are discussed. In this 

perspective, there are three essential units: Instruction memory, PC logic unit, issue 

unit and hazard units.  

 

 

Figure 4.10 : The Block Diagram of the Overall Design 

 

To begin with the instruction memory, it outputs two instructions at a single clock 

cycle to the issue unit. Issue unit checks the instructions’ types and the current hazard 

situations in order to fetch the instructions to each pipeline since one of the pipelines 

executes memory and ALU operations while the other one executes branch and ALU 

operations. Moreover, it sends a “pc_increment” signal to the PC logic unit in order it 

to make a decision on the amount of pc increment. The fetched instructions are 

decoded in each pipeline, and thereafter hazard checks are made by two regular hazard 

units and one dual hazard unit. The generated stall signals from all three units are sent 

to the issue unit and the PC logic unit, in order to control the instruction flow. 

Eventually, the PC logic unit determines the next PC value according to the stall, 

branch, CSR and PC increment signals. This PC is plugged into the instruction 

memory for the next instructions to be obtained. This structure can be seen in Figure 

4.10. Besides, RTL schematics are given in Figure A.1 and Figure A.2. 

4.7.1 Modification of the Register File 
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Register file has 32-bit 32 registers. In the initial case for the Hornet core there was 

just a single pipeline which utilizes the register file from two read and one write port. 

However, the developed dual-issue core necessitates two separate access to the register 

file from each pipeline since both pipelines have ability to handle register operations. 

In order to satisfy this condition the register file has been modified such that there are 

four read ports and two write ports. Besides, the internal structure, other control and 

status signals are modified according to the dual-issue structure.  

Figure 4.11 : Schematic View of the Initial Register Bank and the Modified Register 

Bank 

 

4.7.2 Implementation of the Issue Unit 

The issue unit simply covers the functionality of issuing each instruction to appropriate 

pipelines according to their opcodes. This module has two main parts: First is to 

decode the instructions and assess the instruction type depending on the opcodes. 

Second is to evaluate two consecutive instructions and determine whether both of them 

or just the first one or none of them are going to be sent according to the Table 4.1. In 
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addition, the issue unit also determines which instruction is going to which pipeline 

since the first pipeline executes branch and ALU operations while the second pipeline 

executes memory and ALU operations. Besides, it is important to emphasize that no 

second instruction is issued if the first instruction is a branch operation. Because if the 

condition of the branch operation is satisfied then jump operation would be held and 

the executed second instruction would be a hazard. 

 Table 4.1 : Instruction Issue Logic Table 

 

The issue unit checks some status signals and generates some status signals as well. 

Firstly, the stall signals which are generated from the hazard units are checked in order 

to decide whether to forward instructions or not. If there is a hazard signal then the 

issue unit just stalls the instruction to the next clock cycle. If there is no hazard signal 

then it runs the given logic in the Table 4.1. The status signals are “issue_stall, 

pc_increment, priority”. The first, 1-bit “issue_stall” signal is utilized in the pipeline 

in order to decide stalling the pipeline and this signal is generated if the pipeline is 

expected not to execute any instruction, in other words to execute no-operation (NOP). 

The second, 32-bit “pc_increment” signal is utilized in the “pc_logic” unit in order to 

decide how much the PC needs to be increased depending on whether there is a stalled 

operation or not. And the third, 1-bit “priority” signal is designed for the “dual hazard 

unit”. This signal specifies which pipeline is fetched by the primary instruction. The 

Incoming Instructions Issued Instructions Status Signals 

1. Instruction 

Type 

2. Instruction 

Type 

1. Pipeline 2. Pipeline  

Memory-1 Memory-2 NOP Memory-1 issue_stall_0 = 1, issue_stall_1 = 0 

priority = 1, pc_increment = 4 

Memory Branch Branch Mem issue_stall_0 = 0, issue_stall_1 = 0 

priority = 1, pc_increment = 8 

Branch Mem Branch NOP issue_stall_0 = 0, issue_stall_1 = 1 

priority = 0, pc_increment = 4 

Mem Alu Alu Mem issue_stall_0 = 0, issue_stall_1 = 0 

priority = 1, pc_increment = 8 

Alu Mem Alu Mem issue_stall_0 = 0, issue_stall_1 = 0 

priority = 0, pc_increment = 8 

Alu Branch Branch Alu issue_stall_0 = 0, issue_stall_1 = 0 

priority = 1, pc_increment = 8 

Branch Alu Branch NOP issue_stall_0 = 0, issue_stall_1 = 1 

priority = 0, pc_increment = 4 

Branch-1 Branch-2 Branch-1 NOP issue_stall_0 = 0, issue_stall_1 = 1 

priority = 0, pc_increment = 4 

Alu-1 Alu-2 Alu-1 Alu-2 issue_stall_0 = 0, issue_stall_1 = 0 

priority = 0, pc_increment = 8 
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functionality of the “priority” signal is going to be further detailed in the 

“implementation of the dual hazard unit” section. 

 

 

Figure 4.12 : Schematic View of the Issue Unit 

 

4.7.3 Implementation of the PC Logic Unit 

In the original single-issue design the PC used to be assigned in the same module with 

the rest of the core. However, in the dual-issue design there are two separate modules 

for the pipeline stages and the PC is assigned under another module named 

“PC_logic”. The assigned PC goes through a couple of modules then arrives at the 

pipelines as it is mentioned in the finalized design.  

 

 

Figure 4.13 : The Schematic View of the PC_logic Unit 

 

This unit mainly calculates the next value of the PC considering several factors such 

as reset, branch and stall signals. The stall signals are generated from three separate 
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hazard units. Two of them are from within pipelines and the third one is from the dual 

hazard unit. If any one of the stall signals is generated then the PC is directly stalled, 

otherwise increased by “pc_increment” value from the issue unit. The PC logic unit 

might be able to handle jump operations as well. Thus, “take_branch” signal controls 

whether to jump to “take_branch_addr” or just use the new PC value. There are also 

CSR and reset controls which are compulsory for the core to work properly. 

 

 

Figure 4.14 : PC Logic Unit Block Diagram 

 

stall_0     stall_1 stall_dual PC 

0 0 0 +pc_increment 

0 0 1 +0 

0 1 0 +0 

0 1 1 +0 

1 0 0 +0 

1 0 1 +0 

1 1 0 +0 

1 1 1 +0 

Table 4.2 : PC Logic Truth Table 

 

4.7.4 Implementation of the Dual Hazard Unit 

In the single-issue processor, the hazard detection unit checks the source registers 1 

and 2 from the decode stage and destination register from the execute stage. However, 

in the dual-issue processor design to detect the hazard between parallel instructions, 

the dual hazard unit utilizes source registers and destination register all from decode 
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stage as it is seen in Figure 4.15, since instructions to be compared need to be ones 

which are fetched in the same clock cycle.  

 

Figure 4.15 : The Schematic View of Dual Hazard Unit 

In order to implement the dual hazard unit, first the opcodes of the decoded instructions 

from both pipes are obtained, besides, the source registers and the destination registers 

from both pipes are accepted as an input. The most tricky part about the dual hazard 

unit is to evaluate these parameters. It is crucial to determine which instruction 

between pipes is the primary in terms of the execution order. This is accomplished by 

checking the priority bit which tells the core which instruction has the priority in the 

instruction memory. To make it clear, if it is assumed that the instruction which 

belongs to the first pipe is the primary, then the source registers of the instruction going 

through the first pipe and the destination register of the instruction going through the 

second pipe along with the opcode are analyzed and a dual hazard situation is 

determined. 
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Figure 4.16 : Verilog Codes for the Dual Hazard Unit 

 

Figure 4.17 : Verilog Codes for the Dual Hazard Unit (Continued) 

 REALISTIC CONSTRAINTS AND CONCLUSIONS 
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 Open-source softwares, which all parties can use without any restrictions, has gained 

importance and popularity in recent years. In this study, it is aimed to increase 

performance by turning the previously designed open-source single issue (hornet) into 

a core dual issue. This design is completely open to everyone's contribution and 

update. In addition, this design is planned to be used in various low-power, high-

performance applications and in the field of education. 

 Practical Application of this Project 

This work can be used in a variety of applications that require low power and are not 

very complex. With artificial intelligence becoming popular again, computing units 

have begun to be needed in edge applications. This design may be a suitable solution 

for those computational units. 

 Realistic Constraints 

5.2.1 Social, environmental and economic impact 

More optimized operation of the system indirectly causes power consumption to be 

less than alternatives. In this way, its negative impact on the environment will be 

reduced. Additionally, there is no need to pay any fee to produce this design. If the 

design is turned into a product, this product will have positive economic impacts on 

the country. In addition, in case of encountering various embargo dangers, this product 

will constitute an alternative and will be able to undertake critical tasks in important 

areas like the defense industry. 

5.2.2 Cost analysis 

Many things to be done within the scope of this project will be carried out through 

software, so the costs will be relatively less. Programs such as Xilinx Vivado and 

Github repo that will be used during the development of the project are free for 

students. In addition, the FPGA we will use costs approximately 10,000 TRY and is 

provided free of charge by the school's lab. Finally, two engineers allocate a total of 

16 hours a week for the project. Considering the 9-month working period and the 

salary of a newly graduated engineer, the cost of this project in terms of labor is 

144,000 TRY.  
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5.2.3 Standards 

Since project is not working on a subject that relies on protocols such as 

communication systems, the number of standards we use in the project will be 

relatively less. The standards we will use are as follows: The RISC-V Instruction Set 

Manual  IEEE Standards which is relevant with the project 

5.2.4 Health and safety concerns 

This project has no visible or invisible health and safety concerns. 

 Future Work and Recommendations 

This work is completely open source so that it can be developed further in the future. 

By making various additions to the dual issue design architecture, a higher 

performance core can be obtained by turning it into a multiple issue. Or, this design 

can become more performant by using different performance-enhancing methods such 

as branch prediction with fewer changes. Or the current design can be optimized to 

obtain a more efficient output. Finally, the design chip tape-out can be created and a 

product can be created. 
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APPENDICES 

APPENDIX A: RTL Schematics 
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APPENDIX A 

 

 

 

 
Figure A.1 : RTL Schematic of the Top Module in Vivado 
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Figure A.2 : RTL Schematic of the Core_wb Module in Vivado 
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