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FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A
LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM

SUMMARY

Various methods have been tried to ensure transfer and processing performance in
studies with high-dimensional datasets used. In case studies with processors, it has
been observed that the processing speed is insufficient. The necessity of using FPGA
for improvement has been emphasized and various studies have been carried out.
FPGA provides advantages with its parallel working capability and high flexibility. It
enables design perfectionism with the ability to run different processes together, low
latency and different optimization options.For the study, ground penetrating radar will
be used to detect an object in front of the obstacle. It is designed to enable the
application of image recognition, by reprocessing data obtained in a computer
environment. A matrix of images is data that has been transmitted from RADAR. A

clutter removal algorithm and a RNMF algorithm are used for image processing.

It is intended to use Ground Penetrating Radar in this study for the detection of objects
that are hidden by obstacles. The aim is to make it possible to use image detection by
reprocessing received data in the electronic environment. A matrix of image data is
transmitted to this detection from the RADAR system. Data access is provided
independently of the processor by using Direct Memory Access (DMA), thereby
reducing CPU load. This results in increased processing speed and reduced cycle
times. By using custom hardware, it is possible to achieve maximum efficiency by
completing the operation on your processor simultaneously in different blocks. This
increases the performance of processing and reduces cycle timesThe time difference
obtained in the custom thread enables you to make use of it over multiple loops,
resulting in shorter processing times. In this study, different configurations and their
results will be focused on transferring RADAR data to the FPGA system, applying the

RNMEF algorithm to the data and accelerating this process.

xiil



Xiv



1. INTRODUCTION

1.1 Project Introduction and Followed Steps

This senior design project paper named “FPGA Implementation for On-Site Target
Detection with a Low Cost and Portable Ground Penetrating Radar System.” is within
the scope of the TUBITAK 1001 Supporting Scientific and Technological Research
Projects, and this project paper is continuation of the previously written and proven C
based RNMF algorithm on ZedBoard Zyng-7000 Development Board. Throughout
this project, it is aimed to obtain clutter-free target data with rnmf algorithm as fast as

possible by using the capabilities of the Zyng-7000 SoC.

In the first part of the project, it is aimed that the radar data read from buried objects
1s simultaneously read via UART connection of FPGA board. For that purpose, two
different approaches are presented by use of FPGA UART peripheral. Both approaches
verified by observing sending input data on the TeraTerm terminal screen. Accurate
target and clutter GPR images are observed on MATLAB screen after UART
implementation. Therefore, it is ensured that the written UART based driver operates

in algorithm flawlessly.

After the UART driver is implemented in the design accurately. Standard input data
necessity is revealed. To that end, it is decided to send text document including input
data from Intel processor-based machine to FPGA card in a single column format. As
will be explained in more detail in the related chapter, the number of digits of the input

data can be specified as well.

The second part of this project includes hardware implementation of the RNMF code
snippets by writing HDL based IPs. There was a Custom IP design which was
previously defined. However, this was not applicable for the implementation in the
project due to no handshake protocol defined in the IP. So, a Verilog based handshake
protocol was written for the IP and tested in the algorithm and verified it is correctness
by observing target and clutter GPR images on MATLAB. After observing the

operation duration with this newly created IP is long, it is deducted that memory-based



IPs are not sufficient to speed up the algorithm. Hence thorough research was done in
the field of Custom IPs. FPGAs parallelism feature was performed by operating
several AXI Lite based parallel Custom IPs at the same time. Besides, after getting
satisfactory results this feature was also applied for the Stream based IPs. AXI Lite
and AXI Stream based IPs are created and compared their features and concluded that

stream-based IPs will improve the RNMF algorithm duration drastically.

After the IP characteristic is determined. The need for a DMA entity arose since data
transaction between DDR memory and stream-based IPs are only available with the
entity of DMA. In the third part of this project DMA properties and advantages are
thoroughly researched and explained in the related chapter in this report. As a result, a
great improvement has been occurred as the data is transferred directly between the IP

and memory without passing through the processor.

As a last step of the project, Vitis HLS tool was explained in the last chapter in depth
where you can produce stream-based IPs by writing C code. Optimization techniques
such as pipelining was explained and applied to the newly created IPs. With the aim
of achieving initiation interval as 1, accumulation and parallelism optimization
techniques are introduced in the last chapter. Besides, optimization differences

between Vitis HLS tools are introduced in the last chapter as well.

The last chapter of this report includes realistic constraints, conclusions, and
recommendations where cost of the project, social, environmental, and economic
impacts of the project and the last but not least the implications of the project and

suggestions for the future is explained.

1.2 Purpose of Project

As previously defined in the first phase of the TUBITAK. Robust nonnegative matrix
factorization (RNMF) model is chosen for detecting and classifying buried objects.
For detection of buried objects, it is obligatory to separate the clutter in the radar image

from the target object. In this senior design project, it is aimed to:

¢ Simultaneously reading input data from Radar machine to FPGA in floating-
point number and making sure that the algorithm produces target and clutter

data properly.



e C(lassifying code snippets with regard to arithmetic operations and as a result
deciding which code snippets will be implemented on PL side of the FPGA
for the purpose of speeding up the algorithm.

2. BASIC INFORMATION AND CONCEPTS

2.1 Xilinx Vivado, Vitis and Hls IDEs General Information

Xilinx Vivado Design Suite is a CAD software which enables electronics engineers to
program FPGA cards in the most general sense. In doing so, engineers have options to
use different HDL languages such as Verilog, VHDL or SystemVerilog. Verilog
language is opted for this senior project since better grasping on hardware modelling.
Vivado software also offers many no-charge IP cores which help engineers to design
and debug their projects. As will be seen in the following chapters, many Vivado IPs
were used throughout this senior project such as ILA, AXI Interconnect, DMA and
MIG. Vivado Design Suite also enables engineers to synthesize, place and route and
produce bitstream file the HDL code. Furthermore, Vivado tool produces a timing
report which is extremely important for digital designs in terms of determining whether

the design is working in time or not.

In this senior project Xilinx ZedBoard Zyng-7000 SoC FPGA and Artix-7 FPGA based
Nexys 4 DDR boards were used. ZedBoard includes dual ARM Cortex-A9 hard
processors on its PS side and MicroBlaze soft processor is utilized in the Nexys 4
DDR. Vivado offers Vitis tool for programming these processors. After building C
based code on Vitis environment, an .elf file under debug file is created which includes
assembly code waiting to be burning on instruction memory of hard or soft processor.
Besides that, Vitis tool offers an optimization level which is detailed in the following
chapters and thanks to this option it is able to speed up running duration of algorithm

on processor.

High Level Synthesis (HLS) is a very advantageous tool itself. The primary reason is
that the tool gives the opportunity to easily write very complex algorithms by

synthesizing C/C++ functions into RTL. It also shows users the total latency of these



C/C++ based functions on FPGA card. In the analysis section, the tool allows users to
easily inspect the code by pointing out where the code stalls too much. Moreover, by
implementing various pragmas to the code it is possible to optimize and speed up the
code drastically. As will be seen in the following chapters pipeline pragma is used in
all hardware due to the fact that pipelining enables parallel execution in PL side of the

FPGA.

2.2 FPGA Introductions Used in Project

Xilinx ZedBoard Zyng-7000 SoC Development Board is mainly used in this senior
project. However, Artix-7 FPGA based Nexys 4 DDR board helped us to understand
the concept of the RNMF algorithm in MicroBlaze soft processor. Due to the oscillator
frequency in Nexys 4 DDR is 100 MHz in peripheral and processor itself some
improvements are easily observed as will be seen in the following chapters contrary to
ZedBoard where hard processor oscillator is about 666 MHz and improvements is

defeated to this high frequency.

2.2.1 Xilinx ZedBoard Zynq-7000 SoC

RNMF algorithm previously performed on MATLAB in C language and after making
sure that it is working as it should this C based algorithm is intended to move a mobile
device. SoC devices are the best option for algorithms like RNMF where such a high
number of iterations as 10000 and arithmetic operations. This is because SoC devices
are integrated circuits which include both PS and PL sections within. The PS section
includes a powerful CPU, memory interfaces, pins, analog/digital converters, and 1/0O
peripherals such as UART, USB, ENET, SPI. PL sections contain LUTs, and Flip-
Flops as every FPGA board contains. Hence the presence of these two sections on the
SoC devices at the same time provides great opportunity for the user. Zyng-7000 SoC

architecture can be seen in Figure 1.
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Figure 2.1: Zynqg-7000 Architecture

As will be seen on the following chapters, algorithm can be optimized and accelerated
by converting intensive arithmetic operation code snippets to hardware in the PL
section and by keeping code snippets that contain lots of memory transition in the PS

section. Additionally since the algorithm deals with 2 different array big arrays as

X[46848] and target[46848] there is a need for a high capacity memory.

As a result of all these explanations, utilizing ZedBoard whose features are listed

below, has great advantages in this senior project.

Figure 2.2: Xilinx ZedBoard Zyng-7000 SoC



* Dual-core ARM Cortex™-A9 processor
* DDR3 512 MB
* On-board USB-JTAG Programming

* USB OTG 2.0 and USB-UART

2.2.2 Nexys 4 DDR

Nexys 4 DDR is a pure programmable logic FPGA device including Artix-7. The
biggest advantage of this FPGA board is that it contains a large DDR2 memory namely
128 MB. Since it is not contained in any hard processor some hardware utilization
improvements will be more visible in this device as will be explained in target data

utilization via DMA concept.

2.3 FPGA Configurations

FPGA boards can be configured in many different settings according to intended use
likewise Zyng-7000 SoC devices use a multi-stage boot process that supports both

non-secure and secure boot [1].

By default, ZedBoard uses SD Card configuration mode [1]. Configuration modes can

be switched with MIO[8:2] boot mode pins according to the table below.

Table 2.1: ZedBoard Configuration Modes

MIO[6] MIO[5] MIO[4] MIO[3] MIO[2]
Xilinx TRM= | Boot Mode[4] | Boot Mode[0] | Boot Mode[2] | Boot Mode[1] | Boot Mode[3]
JTAG Mode
Cascaded 0
JTAG
Independent 1
JTAG
Boot Devices
JTAG 0 0 0
Quad-SPI 1 0 0
SD Card 1 1 0
PLL Mode
PLL Used 0
PLL 1
Bypassed
Bank Voltages
MIO Bank 500 3.3V
MIO Bank 501 1.8V

As can be seen from the table, the MIO[8:7] pins are used to set the I/O bank voltages,
they are fixed and cannot be changed. JP8, JP9 and JP10 jumpers on the board are set
to GND which designates JTAG mode as seen on the Figure 1 for the reason that many

different designs and codes will be written and tested throughout the project.



Figure 2.3: Jumper settings

3. DATA ACQUISITION

To bring in instant target detection feature to the project, communication between the
radar machine and the FPGA had to be established. For that reason, the UART module,
which is already available in the Zyng-7000 SoC, is used. Transmission speed is left
as default 11520 bauds (bit/s) rate. In this section, two different methods where each

uses different C libraries, are introduced.

3.1 Data Transfer by Using Standard Input Output Functions

In order to obtain data from radar device dynamically, Following C code, which
includes the simple standard input and output functions as printf() and scanf(), has

been written.

int main ()

init_platform() ;
xil printf (" basladi™); //bilgilendirme

char str[12] = {};
t va

str)
= -of (str, NULL) ;
X[1i] = wal;

xil printf("vVeri alimi sonlandi"); //bilgilendirme

cleanup platform();
return 0;

Figure 3.1 : Simple data transferring C code.



As seen on the line 14, size of the input data is consisting of 12 digits, of which 1 is

considered as decimal dot, 1 is considered as whole number and the rest is considered

a decimal number. Moreover, it should be pay attention that data are saved as float

data type after converting from char data type with the use of strtof() function for the

reason that variables required for the RNMF algorithm to work must be float data

type.

Throughout the project, X array denotes input data from radar device. Accuracy of the

data received on the input X array was verified on the Vitis debug interface as seen

Figure 3.2.

= Variab... s Break..

Name
- [46833]
- [46834]
- [46835]
- [46836]
©0- [46837]
9= [46838]
09- [46839]
0= [46840]
- [46841]
- [46842]
- [46843]
- [46844]
©0- [46845]
09- [46846]
- [46847]
5¢ Add new expressio

€ Expre... &2 | B\ Modul.. % Regist...

%K &8

Type
float
float
float
float
float
float
float
float
float
float
float
float
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t B |

Value

9.3895913
9.3722940
9.3608496
0.36128980
0.3727699
0.3980416
©.4887656
©.42711208
9.4452485
9.4648001
0.4883383
0.5182853
8.5544885
©.5933188
0.6300787

= a

-

Figure 3.2 : Accuracy of the obtaining data

3.2 Data Transfer by Using UART Protocol

Since the RNMF algorithm requires a lot of data, and the FPGA card utilizing USB-

to-UART Bridge is likely to fail in data acquisition while getting big data, it has been

decided to use UART built-in functions in the project [2]. For this purpose, codes

shown in below was written.

Figure 3.3 : UART header file



XUartPs Uart_PS;

int uart(void)
= {
xil printf("V

R T e 2 s 2 S 2 R

tPs_LookupConfig (XPAR XUARTPS 0 DEVICE ID);
Config) {

= Config, Config->Baselddress);
if (status!
ARILURE ;

1
build.
if (status !

return XST FATLURE;

{&Uart PS, 11
e e e e e e e e ke ke ke

IZE] ;

tempChar;

X[i] = strtof(

= (XPAR_PS7_UART 1 BASEADDR) ;

Figure 3.4 : UART C file
On the lines between the 15th and 36th, the UART driver on the Zynq has been
initialized and self-tested to ensure that it is working correctly. Lastly, the baud rate

between the host computer and the FPGA is left as 115200 bauds.

XUartPs_RecvByte() functions that return 8-bit unsigned integer namely, u8 are used
for every input byte [3]. These bytes are recorded on tempStr array in every STRSIZE
loop in between the lines 43 and 46, and this loop size is selected as 12 for the same
reason as described in the section 3.1. Ability to change STRSIZE value gives

algorithm freedom to choose any desired input size.



As it seen on the line 47, strtof() function is used again since the RNMF algorithm
works float data type. Finally, while loop in between 48-50 lines was written to repeat
all these actions in each new received input row. Validation of the code was realized

by writing a simple code as Figure 3.5.

int status;
status = uart();
if (status l= XST SUCCESS) {
xil printf("Veri alimi hatali\r\n"};
¥
for(int i=0; i<N ; i++)
{
printf("%f ", X[1i]);
printf("%d ", i);

Figure 3.5: UART validation code
Terminal screen of the code output is shown in Figure 3.6 and as seen on the last row;

all 46848-input data is kept under X array.

& COM4 - Tera Term VT

Figure 3.6: TeraTerm output screen

4. SERIAL INPUT TEXT DATA SIZE ADJUSTMENT

It has been observed that the matrix sizes of Ground Penetrating Radar (GPR) images
from radar varies. However, RNMF C code is written in a format where input and
output data image sizes are standardized as 256 rows and 183 columns. Hence, there
is a need a standardization for the data coming from radar device as well. To this

respect, in order for these matrices to work in the RNMF algorithm, they must be
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converted an appropriate [256,183] form. This process was done by using MATLAB

tool.

The MATLAB code that will convert each incoming data into the appropriate form is

shown in Figure 4.1.
1-  data - importdata('normalized GER data.txt'): [ | =P 4001x17 double
al= normalized = imresize(data, [256 183]); normalized 256x183 double

Figure 4.1: Reshaping incoming data to appropriate format

With the help of this code, the GPR picture of the incoming data can be converted to
intended 256 x 183 matrix size as the following Figure 4.2.

100
150

200

250

20 40 60 80 100 120 140 160 180

Figure 4.2: GPR image of sample incoming data
FPGA development cards use UART serial communication protocol. Hence, proposed
standardization is in need of a .txt file in which, the incoming data is sorted serially

from top to bottom in a single column. The code realizing this operation is shown in

Figure 4.3.
= data = importdata('normalized GPR_data.txt'); data 4001x17 double
3= normalized = imresize(data, [256 183]); normalized 256183 double

3 - normalized tek sutun = normalized(:); inmrmallzed_telg_sut.x.jr.l 1 46848x1 double
4 - dlmwrite ('normalized GPR data tek sutun.txt', normalized tek sutun, 'precision', '%.10f");

Figure 4.3: Serial input text data adjustment

Sample radar data can be obtained in a .txt file as shown in Figure 4.4.
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p.4931376037
.4921420249
.4911084520
.4911223263
.4920091157
.4927064185
.4930951403
.4932757978
.4933390536

000 00 o0

Figure 4.4: Sample radar data in .txt file

It is important to note that, as described in 3.2 UART section, value of the input data
size namely, STRSIZE can be set as seen on the line 4 in Figure 4.3. It is set as 10

precision and throughout the project value was not changed.

5. RNMF APPLICATIONS

Since the data acquisition work is accomplished, in this section Robust Nonnegative
Matrix Factorization (RNMF) algorithm applications is introduced on FPGA

development cards.

Firstly, 64-bit static algorithm was run on FPGA card and its running time were
observed. Then the algorithm was converted to 32 bits by changing 64-bit double data
type into 32-bit float data type. Programmable logic (PL) part of the ZedBoard is not
required to run the RNMF algorithm, the reason for this the ARM Cortex-A9 hard
processor and PS UART on the Processing system (PS) are sufficient for the operation.

Therefore, no block design was made on VIVADO and no bitstream file was created.

5.1 64-Bit Static RNMF Algorithm

After the setup of the algorithm is done on VITIS, the math library required for the
RNMF algorithm to operate is included in the project from the Properties section as

shown in the Figure 5.1 below.
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Properties for mmf = [m] x

Settings S
Resource
Buikders « ® ARM V7 gec assembler Libraries (-1) SR ~
v C/C++ Build Generl
Build Variables « ® ARM VT gec compiler
Environment * Symbols
Logging
Settings
Tool Chain Editor
C/C++ General 2 ":Q"'”Q
Project Natures 2 Directaries
Project References ) Miscellaneous
Run/Debug Settings « & Inferred Options
Validation 5 Software Platform
& Processor Options
~ W ARM v7 gec linker
= General
3 Libraries Library search path (-L) §
2 Miscellaneous
3 Linker Script
v ed Options
9 Software Platform
% Processor Options
% ARM v7 Print Size

2 Apply and Close: Cancel

Figure 5.1: Math library inclusion to the project

After building the project and making connection of the FPGA with the PC. TeraTerm
tool was used to observe the target and clutter data which are the RNMF algorithm
output products. TeraTerm screen on Figure 5.2 shows that RNMF algorithm operates
on the Zyng-7000 SoC as it should. Log output is also saved as in the Figure 5.3 to

have knowledge of the operation duration and to create GPR images of target and

clutter data.

G COM4 - Tera Term VT

File Edit Setup Control Window Help

Figure 5.2: 64-bit RNMF algorithm TeraTerm screen
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B teraterm - Not Defteri = [ x

Dosya Duzen Bicim Goriinim Yardim

output took @02_677_462_932 clock cycles. "~
output took @4'34'".

TARGET DATA

0. ,0. ,0. ,0. ,0. ,0.0000¢
0,-0. ,-0. ,-0. ,-0. =0 ’
,0. ,0. ,0. ,0 ,0
000,-0. ,-0. Q] ,-0. ,-0.
,-0. ,-0. ,-0. ,-0. ,-0.000¢
o. ,-0. ,0. ,0. ,0. ,0.000¢
,-0 ,-0 ,0. ,0 ,0
,0 ,0 ,0. ,0 ,0
,-0 ,-0 ,-0. ,0 ,0
,0. ,0. ,0. ,0. ,0.
,0.0000566483687996,0.0000763878175118,0.0000777221681389,0.0000499064306396,0 . 0000000000000000, 0 . 000¢
0. ,0. ,0. ,0. ,0. ,0.0000¢ v
< >
St1,Stn 1 100%  Windows (CRLF) UTF-8

Figure 5.3: 64-bit RNMF log output

Operation duration of the RNMF algorithm was measured as 4 minutes and 34

seconds.

The accuracy of the operation can be checked by drawing the GPR pictures on
MATLAB both for the target and the clutter data separately. This code is seen Figure
5.4 below.

A— data = importdata('Raw _GPR data.txt');

2= raw_data = imresize(data, [256 183]);

3= subplot (1, 3,1)

4 — imagesc (raw_data);

5= title('Raw GPR Image Collected from Target Object')
€ target data = importdata('target.txt'):;

i target matrix = reshape(target data, 256, 183):;
9 clutter data = importdata('clutter.txt');

9= clutter matrix = reshape(clutter data, 256, 183);
10— subplot(1,3,2)
2k [l imagesc (target matrix);
12— title('Target Object Removed Clutter Image')
13— subplot (1, 3, 3)
14 — imagesc(clutter matrix);
15— title('Clutter (Object Removed) Image')

Figure 5.4: MATLAB code for drawing GPR image of data

As seen on the Figure 5.5 64-bit RNMF algorithm works as it should. However, 4’34’

is quite long duration for a quick target detection operation and needs to be reduced.
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Raw GPR Image Collected from Target ObjectTarget Object Removed Clutter Image Clutter (Object Removed) Image

Figure 5.5: 64-bit RNMF algorithm GPR images
5.2 32-Bit Static RNMF Algorithm

To speed up the operation duration algorithm is converted to 32-bit by converting all

64-bit double data type to 32-bit float data type.

As it seen from log by dividing each register data width into two, it is possible to

decrease operation duration about 42 seconds.

B teraterm - Not Defteri — O X

Dosya Duzen Bigim Gorinim Yardim

putput took @ee_561_461_518 clock cycles. ~
Ooutput took @3'52"".

TARGET DATA

o. ,0. ,0. ,0. ,0. ,0.0000¢
00,-0. ,-0. ,-0. ,-0. ,-0.
) ,0. ,0. ,0. ,0. ,0.
0000, -0. ,-0. ,-0. ,-0. ,-0.

,-0. ,-0. ,-0. ,-0. ,-0.00€
-0. ,-0. ,-0. ,0. ,0. ,0.0¢

,-0 ,-0 ,-0. ,0 ,0
,0. ,0. ,0. ,0. ,0.
,-0. ,-0. ,-0. ,0. ,0.
-0. ,0. ,0. ,0. ,0. ,0.000€¢
38922,0.0000558148385608,0.0000744710923755,0.0000762592317187,0.0000467549325549, 0. 0000000000000000 , €
0000,0. ,0. ,0. ,0. ,0. ,0. v
< >
St1,5tn 1 100%  Windows (CRLF) UTF-8

Figure 5.6: 32-bit RNMF log

As it seen on Figure 5.7 GPR images of output target and clutter data, it is possible to

say decreasing data width does not impact RNMF operation drastically.
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Clutter (Object Removed) Image

Raw GPR Image Collected from Target Object Target Object Removed Clutter Image

Figure 5.7: 32-bit RNMF algorithm GPR images

5.3 32-Bit Dynamic RNMF Algorithm

The “vart.h”and “uvart.c” files which are introduced in data acquisition section, are
added to the project to be able to bring in instant target detection feature to the project

for as shown in the Figure 5.8.

file Edit  Search Xilinx Project Window Help
Bl R DM E O F ey

. Explorer & 7= 0 f@mmtne )@ mine  @uarne  Buath
§°"’"°""‘ * s 0.798563147269275, 0.563810313750292, 0.946861372992078, 0.692607864133552, CRAE A2

& platformn 136 0.206864524677802, .868628750403045, 0.22831472004754, 0.797284714832664, U mathh
2 mm_in_initialize.c 137 X 161, 0 4768 }; u swingh
& mf_in_initislizes 138 o mmfinh

& 139 dnt iter; u sqth

1 e it

1 ; pe

142 static float varargin_2[46848]; //double float a cevrildi o gl

143 int target_tmp; gh,

1 float norms; //double float a cevrildi U uarth
e o statush

uart.h dosyalar eklenmistir o mm_in(fioat(, float(]) : void

//UART iizerinden dinamik veri alinacaga icin silinmistir
//static const float X[46848) = { 0.43865282017039, 0.4

//double float a gevrildi

627544,

1
/1 ©.444237602792398, ©.444275665546633, 0.444316493296919, 0.444359287230958 };

/ /

152 4nt status;
153 status = uart(); //uart fonksiyonu cagariliyor ve
if (status |= XST_SUCCESS) {

xil_printf(“Veri alimi hatali\r\n");

X[N] arcayine giris verisi alinayor

B 5 )
¥ Xiincspec 0
it » static float z1[46848); //double flost & gevrildi
¢ > float b; //double float a cevrildi
a S ~—r float MSXHL[256]; //double Float a cevrildi
i % o 5
Asistant 2 | CE X | float MitsX[183]; //double float a cevrildi

v & vart_mmf_32bit_system [System
@ uart_mmf_32bit [Appiication
B zed (Platform

/* rdim = 1; */
/* 8lcim isin */
/* lawbda = 0.003; */ v

@ Console Problems [ Vitis Log () Guidance Ly B & O vy = O | @ vits Serial Terminal 22 | ¥
Build Console [uart mmf_32bit, Debug] Click on + button 10 add a p¢
SR o Saed
arm-none-eabi-size uart_rnmf_32bit.elf |tee "uart_rnmf_32bit.elf.size™ @

text data bss dec hex filename

72316 2608 959712 1034636  fc98c uart_rnmf_32bit.elf
‘Finished building: uart_rnmf_32bit.elf.size"
18:16:11 Build Finished (took 15.7028s)

| 'sena’ | ciear
Wiitable Smartinsent | 157:1

Figure 5.8: 32-bit dynamic RNMF algorithm

TeraTerm screen on Figure 5.9 shows that communication between PC and FPGA

board is healthy.
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Figure 5.9: 32-bit dynamic RNMF terminal screen
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Figure 5.10: 32-bit dynamic rnmf log output

As it seen on Figure 5.10 operation duration of dynamic algorithm is observed longer
than static algorithm. The reason for this increase is the data acquisition from radar
device. This duration can be decreased by increasing bauds rate on the communication
line. By looking at the Figure 5.11, it can be validated that the UART driver that

created works as it should.
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Raw GPR Image Collected from Target ObjectTarget Object Removed Clutter Image Clutter (Object Removed) Image

Figure 5.11: 32-bit dynamic RNMF algorithm GPR images

6. HARDWARE IMPLEMENTATION OF RNMF ALGORITHM

6.1 Advance eXtensible Interface Communication Bus Protocol

Advanced eXtensible Interface Bus Protocol (AXI) was first released in 1996 by ARM
as part of AMBA (Advanced Microcontroller Bus Architecture). Shortly after its
appearance it became standard not just for microcontrollers but also for SoC and ASIC
parts. Now AXI standard basically defines how functional blocks or IPs communicate
with each other. Xilinx also adopted AXI protocol for their IP cores for the reason that
it provides so many improved features such as high throughput and performance as
well as allowing burst transactions. In 2011, ARM released the last version of their
bus protocol which is called AXI4 (AMBA 4.0). Zynq device that we use in this senior

project also uses AXI interfaces to PS and PL communicate with each other.
There are two types of AXI interfaces:
e Stream
» AXI4-Stream: For high-speed streaming data.
e Memory Mapped
» AXI4(Full AXI4): For high-performance memory-mapped requirements.

» AXI4-Lite: For simple, low-throughput memory-mapped communication.
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Every AXI interface contains two essential IPs called Master and Slave as seen in
Figure 1 and as seen in this Figure 1 there are five independent channels between

Master and Slave.

Address

AXI
Master Address

Response

Figure 6.1: AXI Master and Slave IPs
AXI Master is responsible for initiating write and read transactions and AXI Slave is

responsible for responding to these transactions initiated by the AXI Master.

6.1.1 AXI Memory Mapped Interface

Memory mapped denoting an address which is specified by the master IP within the

transaction. It is possible write to or read from Slave IP in this type of interface[4].

For the AXI4-Lite only a single beat data transfer to a specified address per transaction
is possible.That is why it has a very poor performance and is not preferred for advanced

applications.

However, resulting from the fact that Full-AXI4 allows to sending up continuous beats

up to 256 data in other words burst, Full-AXI4 offers better performance.

6.1.1.1 AXI Memory Mapped Interface Channel Signals

Inside of each 5 independent channels there are 3 main signals called ready, valid and
data which build the channel. These channel signals can be seen in Figure 2. Channels
can contain additional signals according to the user’s request. These additional signals
can be exemplified as len, size, id and cache. It is important to note that all these main

signals are synchronous to the rising edge of the clock.
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AXI valid R AXI
MASTER | SLAVE
data -
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Figure 6.2: AXI Memory Mapped Interface Channel Signals
e Ready: This flag notifies Master IP that Slave IP is ready to receive data.

e Valid: This flag notifies Slave IP that Master IP transferring valid data.

e Data: As the name indicates, it contains the data, and its size can be varied

according to specification.

e Len: This signal, which is being sent form Master IP to Slave IP, indicates the

length of the burst operation.

e Size: This signal notifies Slave IP how long the transferred widths for each beat of

data will be.

e [d: This signal is used to distinguish the transactions from each other by assigning
different ids to Master IPs. As will be seen on the future project designs AXI

Interconnect communicate with different IPs by using this signal.

e Cache: By setting cache capability, Master IP can respond to transaction in a faster
time with the data it has already on its own buffer or cache. It is used to speed up

the transactions in the AXI Interconnect.

6.1.2 AXI Stream Interface

This interface is used in a block where a dedicated process is perpetually performed
on the data and sends out this output data to its slave. In this interface, Master IP does
not need to provide an address to the Slave IP for transferring data. Furthermore,
direction of the data always from Master IP to Slave IP. Basically, in AXIS interface
Master IP is always and only writing to its Slave IP and no address for this data transfer

is required[5].
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6.1.2.1 AXI Stream Interface Channel Signals

In this One Write Channel, there are 1 more signal named last is contained as well as
3 main signals. This last flag is responsible for indicating last bit on the input data

stream. This flag are shown is Figure 3.

/ A ready 4 A
> = valid ~ >
- (
w2 > wn
[ > data 1
data N7 < > w1
last -
e/ —

Figure 6.3: AXI Stream Interface Channel Signals
e Valid: This flag notifies Slave IP that Master IP is whether transferring last data in

the stream or not.

6.2 Updating Custom IP Writing Handshake Protocol

As can be seen on line 11930 of the “rnmf_in.c” file, nested for loop was used to obtain
the target data on the algorithm. Since there are too many iterations; algorithm spends

lots of time in this nested loop.

for (i1ter = 0; i1ter < I

=
—| for (10
= for (il =

target tmp = 10 + (il <<
target [target_tmp] = X[target_tmp] - W[i0] * H[i1];

Figure 6.4: Time wasting 3 nested loops

By utilizing PL section of the FPGA, operation duration can be speed up for the reason
that the FPGA has so many DSPs in it. The steps shown for the custom IP design have

been followed.

This IP contains 5 registers and has a Lite interface. This IP considered Slave in respect

to the ARM CORTEX-A9 processor in the PS section.

Separate floating-point IPs have been added to the project for multiplying and

subtracting. Since algorithm will be working on 32-bit float variables, single floating-
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point precision is chosen as precision of inputs. Then, active low reset pin is added.

Latency has not been changed to not violate positive WNS value.

Then, a new Verilog file is created from Add Sources => Add or create design sources.
Multiplication and subtraction blocks have been added to the newly created Verilog
file by instantiating from the floating_point_0.veo file. For this, the following

sequence is followed. IP Sources — floating point 0 — Instantiation Template.

The created Verilog file can be seen on Figure 6.5 below.

_hakanpga_denaloring_repal_mh_1.0
Q W - X B8 X 7 E O o

Figure 6.5: custom_ip.v file

X, W, H are specified as input and T as output. Valid and ready signals are also defined
for both inputs and output variables. Since floating_point_0_mul is a multiplication
block, variable W is assigned to data A, variable H to data B and variable x_mul_h
assigned to result data. Then, variable X is assigned to data A of floating_point_0_sub
block, variable x_mul_h is assigned to data B, and variable T to result data. t_ready
signal value is defined always 1 due to the fact that PS side is always ready to accept

the answer whenever the IP finishes the computation.

Thereafter, custom_ip_top.v file created for the required handshake protocol between

the IP and ARM CORTEX-A9 processor. Code is shown in Figure 6.6 below.
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Figure 6.6: custom_ip_top.v file

As it seen on the always block in below after transition on signal inform_valid

occurred, that means that block is ready to receive new X, W, H, input signals.

Figure 6.7: always block in custom_ip_top.v

On another block as it seen in below after ready and valid signals are both equals to 1
that means that handshake is done, and we can process and receive another inputs to

the newly created custom IP to calculate the equation T = X — W*H.

Figure 6.8: always block in custom_ip_top.v

These always blocks are needed for every input namely, X, W and H.

Lastly, a testbench file is written as seen on Figure 6.9 to test the accuracy of the

handshake top module.
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Figure 6.9: Custom IP testbench file

Top module is verified on the simulation screen on Figure 6.10. This result shows that
the handshake mechanism works on the custom IP as it should and this IP can be

utilized in the RNMF algorithm.

testbench_behav.wcfg

Q W a a X « I« [ o

439489 ns| )

4 inform_valid

W [tj31:0]

Figure 6.10: Simulation output

The variable T, which holds the result of all these multiplication and subtraction
operations, is assigned to the 4th register of the custom IP block, and the inform_valid
variable required for the custom IP to work is assigned to the 3rd register. The zeroth
register of the block is assigned to the X variable, the 1st register to the W variable,
and the 2nd register to the H variable. These register assignments are important for

data exchange between PS and PL components.

All these are shown in the VIVADO interface as in the Figures 6.11 and 6.12 below.

Figure 6.11: IP internal register assignments
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wire [C_S_AXI_DATA_WIDTH-1:0] T.|

Figure 6.12: IP internal register assignments continious

Finally, on component.xml tab merge changes are done. Thus, IP is made ready by

clicking Re-Package IP from the Review and Package section.

After all of these IP creation process, it is time to implement this IP in the RNMF
algorithm. For this project, both the ARM processor on the PS part and the
programmable logics on the PL part of the ZedBoard will be needed. For that matter
it is needed to create .xsa file on VIVADO.

The block design of the hardware that will be uploaded to ZedBoard has been created

as it appears on the Figure 6.12.

fle fdt  flow Tooks Repgrs Window layout View Help Quick Access Ready
s Mo~ ® 5 » B & E = Default Layout v
Flow Navigator ERL IR BLOCK DESIGN - system_custom_ip *

~ PROJECT MANAGER
& sen

Q s + ® A, C o |= DefaultView v o
e Templates ;
< 1P Catalog 3
T BT ps7_0_axi_periph
ol rst_ps7_0_100M
Cre: i+ s00.A%
Open Block 1 A< multiply_substract ¢ 0
: [+t ARESETN I';(-I
Generate Block Design g +H—— s0.ACK RS MOOAX! 4 i + 5000
3z jebug_sys.rst bt SOOARESETN WM ——= 00_axi_aclk
~ SIMULATION 8 ~ MOOACK 500_axi_aresetn
- = MOO_ARESETN
Run Simulation ‘ I " tract ton
% Processor System Res nyfigply_substract_custom
g processing_system7_0 AXI Interconnect
v RTLANALYSIS
DOR + I {D DOR
> Open Elaborated Design
FIXED_IO 4 {D FIXEDIO
USBINDO +
ASINTHESS MAXLGPO o ittt ry
P Run Synthesis — M_AXI_GPO_ACLK ZYNO‘ TTCO.WAVED OUT = Validate Design X
TICOWAVEY_OUT =
SIOMWAVR U @  voidation successtul There are no errors o critical wamings in this design.
FOLK CLKO ot —)

» Run Implementation

¥ IMPLEMENTATION FOLK RESETON p— [ox |
ZYNQ7 Processing System

¥ PROGRAM AND DEBUG

Figure 6.13: Block design of the hardware

After creating the .xsa file, it is imported to the VITIS tool. That file is selected for

creating the platform which the application will run inside.

“custom_ip.h”and “custom_ip.c” files were created as in the Figure 6.14 and 6.15 in

order to access the registers of the custom IP created before.
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| #include "custom_ip.h"

Figure 6.14: custom_ip.c file

Eile Ed Search Xilinx Project Window Help
El I Be R e O IV IRICEY D

= & mmicustom ip_system K mmf_custom_ip (& custom_iph | [ custom_ipc
witndet A_wh_H

r

. #define X WH_H
 winclude “xi

M| 4
5 wdafine X_WH_S00_AXI_SLV_REGA_OFFSET 8
5 Wdefine X_WH 500 AXI SV REGL OFFSET 4
7 wdefine X_WH_S00_AXI_SLV_REG2_OFFSET 8
5 wdefine X WH_S00_AXI SLV_REG3 OFFSET 12
9 define X_WH_S00_AXI_SLV_REGA_OFFSET 16
16

11 #define X_WH_mhriteReg(BaseAddress, RegOffset, Data) \
12 write((BaseAddress) + (RegOffset), (float)(Data))
13

“ #define X_WH_mkiriteRegReady(BaseAddress, RegOffset, Data) \
writeReady((BaseAddress) + (RegOffset), (u3z)(Data))

17- #define X_WH_mReadReg(BaseAddress, RegOffset) \

18 read((Baseddress) + (Reg0ffset))

20 //xilio.h

1= static INLINE float read(UINTPTR Addr)

22

23 return *(volatile float *) Addr;

24 }

25

26 [/xilio.h

27=static INLINE void write(UINTPTR Addr, float Value)

2 {
29 #ifndef ENABLE_SAFETY

30 volatile float *Localaddr = (volatile float *)Addr;
ES =LocalAddr = Value;

17 #else

33 ¥st1_RegUpdate(Addr, Value);

4 #endif

35 }

37 //xilio.h

8= static INLINE veid writeReady(UINTPTR Addr, u32 Value)

39 {
40 #ifndef ENABLE_SAFETY

41 volatile u3? *LocalAddr = (volatile u32 *)Addr;
42 *LocalAddr = Value;

43 Welse
44 Xst)_RegUpdate(Addr, Value);
45 wandif

Figure 6.15: custom_ip.h file

Writable

Smart Insert 2:15

Quick Access|

Updated “rnmf_in.c” file can be seen on Figure 6.16. Since the IP is triggered with the

transition of the inform_valid signal. This signal value changed before reading T value

every time from O to 1 in order to read result value from IP register 4 which represents

the T signal.

file Edit Search Xilinx Project Window Help

memcpy (8H[@], &dvi[0], 183U * sizeof(float)); //doubl

& et n Senste.c for (iter = 0; iter < 10000; iterss) {

i mmf in_terminaten for (i0
for (i1
L
- /target|targ 5 twp] - W[i0] * H[11];
. int inform_va miyor
i rtwtypesh //Girdiler 1
& signe v X_WH_siriteRegReady (XPAR_X_WH_0_S00_AXI_BASEADDR,X_WH_S60_AXI_SLV_REG3_OFFSET,inform_valid);
- — — X_WH_miriteReg(XPAR_X_WH_0_500_AXI_BASEADOR,X_WH_S00_AXI_SLV_REGO_OFFSET,X[target_tmp]);//x
~Assistant 12 | 2080 % = X_WH_miiriteReg (XPAR_X_WH ¥ i
B custom._system_wrapper [Piztiorm X_WH_mhiriteReg(XPAR_X_WH
S T inform_valid = 1;//Tp calis

X_WH_mkiriteRegReady(XPAR_X_WH_0_S00_AXI_BASEADDR,X_WH_S00_AXI_SLV_REG3_OFFSET,inform_valid);
18 target[target_tmp] = X_WH_nReadReg(XPAR_X_WH_O_S00_AXI_BASEADOR, X_WH_S@0_AXI_SLV_REGA_OFFSET);

1 b_abs(target, varargin_2);
88 for (target tmo = 0; target tmp < 46848; target tmpes) |

She BvReGvOr I DIMEEr o~ |Quick Access| | [ Design  Debug
. Exploter &2 =R 77 0|4 metcustom_ip_system S mmf_custom ip (& custom_ipc (& mm? | outine 22| =8
v B ~ g EARN o %

@ absc static float 71[46848]; i1 U mathh

& absh i //double t U swingh

£ custom_ipc U mmf_inh
& custom jph u sath

& maine o sumn

& mainn u signn

i platiorm configh u avsh

& platformc  uarth

B plattormh . 4 xstatush

@ mmf in_initialize.c e deta.pew = eshape(raw dstd,199:256) 5 2/ U custom_iph
& mmf_in_initializeh samcpy (101, AIVRLO1, aizaef(Float) < 8 kil o mm_in(float]), fioat() : void

@ Console Problems [1] vitis Log (D) Guidance

Build Console [rmf_custom_ip, Debug]

text data  bss  dec  hex filename

72588 2608 059712 1034908  fcadc romf_custom_ip.elf
“Finished building: rnaf_custom_ip.elf.size’

16:27:45 Build Finished (took 5s.231ms) I

<
[& mmt_custom_ip

Figure 6.16: updated rnmf_in.c file
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After building the project and making connection of the FPGA with the PC. Log
operation is made on the TeraTerm to observe and draw the output GPR images of the
algorithm. The output of target and clutter data is seen on the terminal screen as shown

in the Figure 6.17.

I COM4 - Tera Term VT
Flle Edit Setup Control Wlnduw Help

01..0005:
DHDDHDDHDDHDDHDD -(0.0000000000000000

11 304308 . 000134045 00013 001217375 0
000 1DDHDDHDDH 0. 0000001 0o, 0. 0oa0f DDDH 0. DDHDDHDDHDDHD 0. ﬂDDDl ,-0.000000
DDHDDHDD -(.0000000000000001 {1. 00000000000 1 10 1. LDHDDHDDHDDHDDHD
10,-0..000A00000000000, -0 000500000000000, ~0..000A00A000000G0, -0, 0030000000000 -0, 000000000000, -0, 000A00A0CN00000, -, Cn0oodn00u0o0no 0.0}
I00000000000000, -0.0000000000000000,, ~01. 0000A00A00A00A00,~0.0000000000000000, -0 0000000000000000 ,-0..1 HDDHDDHDDHDDDHDD (. DDHDDHDDHDDHDDHD ~(1. 00000000)
10000000,-0..0000000000000000 -0 0000000000000000 ,~0..0000000000000000, -(0. 0003000000000000, ~0. 0000000000000000, -0, 0000000000000000, -1, 000000000000000|
D DDHDDHDDHDDHDDHD 0. DHDDHHDDHDDHDDHD 0. DHDDHDDHDDHDDDHD ﬂ DHDDHDDHDDHDDHDD 0. HDDDHDDHDDHDDHDD (. DDHDDHDDHDDDHDDH DHDDHDDHDDHDDHDD ~(0. 0000000}
019 1054, 0175 1 247744l

& - 51, -0. 000626018 - 014 . .| 000222]

UDDUDDUDDUDDUDDU -{1..0000000000000000 ﬂDDﬂDDlLDDﬂDDﬂDD . 0000000000000000, -0, 0000000000000000, -0, 0000000000000)
. 0000000000000000, -0 0000000000000000, -10. 0000000000000000, 0. 0000000000000000, 0. 0000000000000000, 0. 0000000000000000,0.0000)
0.0

Figure 6.17: Terminal screen

The running time of the algorithm was measured as 21 minutes. As it seen the
algorithm took so long. This can be explained as follows: As a result of adding custom
IP, number of operations which were one beforehand are increased to 6 and also
because the AXI communication requires 4 clock cycles to read and write the registers.
For this reason, the algorithm time is extended. However, since the FPGA can

implement functions parallel. By using parallel IPs this failure can be overcome.

As can be seen from the MATLAB outputs on Figure 6.18, the custom IP is working

correctly.

Raw GPR Image Collected from Target Object Target Object Removed Clutter Image Clutter (Object Removed) Image

Figure 6.18: GPR images
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7. PARALLEL PROCESSING OF FPGA

7.1 Parallelism On Nexys 4DDR

One of the great things that FPGA boards have is that they can process data parallelly
i.e., Custom IPs that created at the PL part yields their operation results in one clock
cycle. Thus, throughput can increase drastically. As seen on the former section
utilizing one and only Custom IP do not have ability to speed up the RNMF algorithm.
Aim is that utilizing any number of Custom IP in PL part parallelly to speed up the
process.

3= void target_loop(float X[GPR_SIZE], float W[W_SIZE], fleat H[H SIZE], float target[GPR_SIZE]){
4 int i@, i1;

5 int target_tmp;

6 loop_256: for (i@ = @; 1@ < 256; iB++) {

7 loop_183: for (il = @; il < 183; il++) {

8 target_tmp = i@ + (il << 8);

9 target[target_tmp] = X[target_tmp] - W[i®] * H[il];

10 }

11 3

12 }

Figure 7.1: Aimed nested loop function
Aimed nested function block on Figure 7.1 is analyzed via Vivado HLS tool as seen
on the Figure 7.2 with the aim of making sure that the parallelism can legitimately

reduce the clock cycle of the operation process.

Performance Estimates
= Timing
= Summary

‘ Clock | Target ‘ Estimated ‘ Uncertainty ‘
|apck | 1000ns | 8263ns | 125ns |

= Latency

= Summary

Latency (cycles) Latency (absolute) Interval (cycles)
min | max min ‘ max min ‘ max Type
562689 | 562689 | 5.627 ms | 5627 ms | 562689 | 562689 | none

= Detail
# Instance

= Loop

Latency (cycles) Initiation Interval
Loop Name min max Iteration Latency | achieved | target | Trip Count | Pipelined
- loop_256 | 562688 | 562688 2198 - - 256 no
+loop_183 2196 2196 12 - - 183 no

Figure 7.2: Necessary clock cycle of the nested function to give correct results
Primer loop which is named as loop_256 needs 2198 clock cycle to operate. So, the
original nested loop function needs 256*2198=562688 clock cycle and 1 for the input

signal reception. Totally 5625689 clock cycle is needed to whole process to complete.

Different algorithms are tested. It is decided that utilizing 16 Custom IPs parallelly
gives satisfying results. It should also be noted that utilizing more Custom IPs
parallelly gives better operation results. However, there is a tradeoff between speed

and the utilization of the resources of the FPGA as FFs and LUTs.
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A sample code is given on Figure 7.3 and performance estimates utilizing 16 parallel

target code line parallelly is given on Figure 7.4.

void target_loop(float X[OPR_SIZE], Float W[W_SIZE], float H[H SIZE], Float target[SPR_SIZE]}(

Float W_tenp;

PRIt

i 183 ;

target[target_tap + (i2 << 9)]

get[target_tap + (i2 << 9)]

i2e0;

.

0
- A[target_twm + (i2 <c §)] - W_tenp * H[i1 + £2];
+ X[target_tm + (i2 < 8)] - U_tewp * H[31 + i2];
« X[target_ten + (32 <« )] - Wteap * H[iL + §2];

Figure 7.3: A sample code utilizing 4 parallel line

By using parallelism, it is possible to decrease 5625689 to 33025 as seen on the

estimates.

Performance Estimates

Timing
Summary
Clock | Target | Estimated | Uncertainty
ap_clk | 10.00ns | 10409 ns 125ns
= Latency
= Summary
Latency (cycles) | Latency (absolute) | Interval (cycles)
min | max min max min | max | Type

33025 | 33025

D344 ms | 0344 ms | 33025 | 33025 | none

= Detail
T Intanct
1 Loop
[ Latency (cycles) [ Initiation Interval |
| LoopName | min | max | heration Latency | achieved | target | Trip Count | Pipelined
|~ loop.256 | 33024 | 33024 2| - - | 256 | o
[ “ioop183 | 126 | 126 2| - | - | 3| no

Figure 7.4: Performance estimates for 16 parallel target code line

Proposed solution is applied to the design by connecting 16 Custom IP to the

MicroBlaze soft processor on Nexys 4DDR as in Figure 7.5 and the written C code is

changed accordingly.

float H_temp;
int start, t_valid, i2;
for(il = @ ; i1 < 183 ;
H_temp = H[il];
for(i@ = @ ; i@ < 256 ; i@ += 16){
target_tmp = i0 + (il << 8);
for(i2 = @ ; i2 < 16 ; i2++){
/% TARGET_IP(@)
start = 1;//IP calisiyor

i144){

TARGET_IP_H_liriteRegStart(XPAR_TARGET_IP_TARGET_IP_V2_6_S_AXI_BASEADDR, SLV_REGB_OFFSET, start);

TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_
TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_
TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_
start Tp durdu

TARGET_IP_H liriteRegStart(XPAR TARGET IP_TARGET IP_V2 @ S AXI BASEADDR, SLV_REG@_OFFSET, start);
t_valid = TARGET_IP_H ReadRegT Valid(XPAR_TARGET IP_TARGET IP_V2 @ S _AXI BASEADDR, SLV_REGA_OFFSET);

while(t_valid != @){ //wait until the valid signal

t_valid = TARGET_IP_H_ReadRegT Valid(XPAR_TARGET_IP_TARGET_IP_V2_@_S_AXI_BASEADDR, SLV_REG4_OFFSET);

_AXT_BASEADDR, SLV_REGI_OFFSET, X[target_tmp + i2]);
_AXT_BASEADDR, SLV_REG2_OFFSET, W[i6 + i2]);
_AXT_BASEADDR, SLV_REG3_OFFSET, H_temp);

//start
//t_valid

//t_valid

}
target[target_tmp + i2] = TARGET_IP_H_ReadReg(XPAR_TARGET_IP_TARGET IP_V2_@_S_AXI_BASEADDR, SLV_REGS_OFFSET);

12445
/* TARGET_IP(1)

start = 15//1P calisiyor

TARGET_IP_H_liriteRegStart(XPAR_TARGET_IP_TARGET_IP_V2_1_S_AXI_BASEADDR, SLV_REGB_OFFSET, start);

TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_:
TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_
TARGET_IP_H_liriteReg(XPAR_TARGET IP_TARGET IP V2 :
start Ip durdu

TARGET_IP_H liriteRegStart(XPAR TARGET IP_TARGET IP V2 1 S AXI BASEADDR, SLV_REG@_OFFSET, start);
t_valid = TARGET_IP_H_ReadRegT Valid(XPAR_TARGET IP_TARGET IP V2 1 S AXI BASEADDR, SLV_REGA_OFFSET);

while(t_valid != @){ //wait until the valid signal

t_valid = TARGET_IP_H_ReadRegT Valid(XPAR_TARGET_IP_TARGET_IP_V2 1 S_AXI_BASEADDR, SLV_REG4_OFFSET);

_AXT_BASEADDR, SLV_REG1_OFFSET, X[target_tmp + i2]);
_AXT_BASEADDR, SLV_REG2_OFFSET, W[i8 + i2]);
_AXI_BASEADDR, SLV_REG3_OFFSET, H_temp);

//start
//t_valid

//t_valid

}
target[target_tmp + i2] = TARGET_IP_H_ReadReg(XPAR_TARGET_IP_TARGET IP_V2_1_S_AXI_BASEADDR, SLV_REGS_OFFSET);

12445
/* TARGET_IP(2)

start = 15//1P calisiyor

TARGET_IP_H_liriteRegStart(XPAR_TARGET_IP_TARGET_IP_V2_2_S_AXI_BASEADDR, SLV_REGB_OFFSET, start);

TARGET_IP_H_liriteReg(XPAR_TARGET_TP_TARGET_IP_V2_:
TARGET_IP_H_liriteReg(XPAR_TARGET_IP_TARGET_IP_V2_
TARGET_IP_H_liriteReg(XPAR_TARGET IP_TARGET IP V2
start Ip durdu

TARGET_IP_H liriteRegStart(XPAR TARGET IP_TARGET IP_V2 2 S AXI BASEADDR, SLV_REG@_OFFSET, start);
t_valid = TARGET IP_H_ReadRegT Valid(XPAR_TARGET IP_TARGET IP_V2 2 S AXI BASEADDR, SLV_REGA_OFFSET);

while(t valid != @){ //weit until the valid signal

_AXT_BASEADDR, SLV_REG1_OFFSET, X[target_tmp + i2]);
_AXT_BASEADDR, SLV_REG2_OFFSET, W[i8 + i2]);
_AXI_BASEADDR, SLV_REG3_OFFSET, H_temp);

//start
//t_valid

Figure 7.5: Altered C code utilizing 16 parallel IPs
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Figure 7.6: Proposed design on Nexys 4 DDR
Altered C code is operated on the proposed design and the resulting GPR images is

obtained as seen on Figure 7.7 correctly.

Target Object Removed Clutter Image Clutter (Object Removed) Image

50 100 150 50 100 150

Figure 7.7: GPR images obtained with utilized parallel IPs
Operation results for a different proposal design is given as Table 6.1. But it should be
noted that since the whole operation takes up too long on Nexys 4 DDR because of the

low throughput of the card. These proposal operations tested for 2 iterations.
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Table 7.1: Operation times for different proposals on Nexys 4 DDR

Proposals | Original | Altered 16 | 1 1P 4 parallel | 8 parallel | 16
C Code parallel C IP IP parallel
code IP
Time 0.4450” 0.4237” |0.5548” | 0.5375” | 0.5336” | 0.5333”

As seen on the Table 7.1 best result is achieved on the altered code with 16 parallel
line which is run on the design using 64 Kbyte cache memory. This result can be
interpreted as that parallelism can speed up the operation duration. However rapid
acquiring of data can increase up the performance of the algorithm as seen on the
altered 16 parallel C code which runs on the design using cache memory. This result
gives idea of using the DMA block on the design which enables the system to acquire
data on DDR directly to the custom IPs on the PL section instead transferring to

processor on the PS.

7.2 Parallelism On Zynq-7000 SoC

Same parallelism idea is tested on the ZedBoard as seen on Figure 7.8 and the

operation results for different proposals is given on Table 7.2.

Pttt A b A E A+ 440

HHHHHHERE

H

(U571

Figure 7.8: Zyng-7000 SoC design utilizing 16 parallel IP
As seen on the Table 7.2 it is not a good practice to run code on a memory based
custom IPs even if parallelism is utilized. The reason is that ARM CORTEX-A9
processor in the PS section of the Zyng-700 SoC is operate in high frequency, 666

MHz to be exact. Operating in 100 MHz PL section does not improve the performance
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the system on the contrary it slows down the process because of the transmitting
signals between PS and PL. As a conclusion stream-based IP and utilizing DMA can

yield a higher performance.

Table 7.2: Operation times for different proposals on Zyng-7000 SoC

Altered Codes Parallelism
Optimization | for(i0=0;i0<256;i10++ | for(il=0;i1<183;il++) 11P 41Ps | 8IPs | 16
Levels ) for(10=0;10<256;i0+=16 1Ps
for(i1=0;11<183;il++ | )
) for(i2=0;12<16;i12++)
-00 3'54” 342”7 16'26” | 16'14” | 16'12” | 16'10”
-03 115" 116" 12'10” | 12107 | 1212 | 12'12”

8. DIRECT MODULE ACCESS (DMA) UTILIZATION ON FPGA

8.1 DMA Utilization on Nexys 4DDR

RNMF Algorithm with single AXI Lite interfaced custom IPs which performs T = X
— W * H calculation completed process in 20.1205 seconds for 20 iterations. It is
obvious that the duration needs to be improved. Also, as it concluded from the former
section there is a need for special module to acquire data quicker. That module is called
Direct Module Access (DMA). What DMA simply does is to transmit data from
memory (DDR2 SDRAM) to intellectual property (IP) for each and every entry of data
in each clock cycle. Thus, data does not need to be processed in the processor. In that
way without any primary functions get involved i.e., fetch, decode, execute, and write

back it is possible to calculate output of operation in a clock cycle.

DMAs in the whole project is configured as simple mode since the whole data in the
memory is consecutive. It is also learned that for non-consecutive data DMA offers
Scatter Gather Mode as seen on the Figure 8.1. Width of Buffer Length Register set as
26. This value represents the maximum value DMA can transmit which is 2726 =

67,108,864 byte.
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% Re-customize IP X

AXI Direct Memory Access (7.1) /
@ Documentation ' IP Location

0 show disabled ports ComponentName ax_dma_0

() Enable Scatter Gather Engine

() Enable Micro DMA

[wmm of Buffer Length Register (8-26) |26 | mts]
Address Width (32-64) 32 oits
(] Enable Read Channel [¥/) Enable Write Channel

Number of Channels | 1 Number of Channels 1
Memory Map Data Width | 32 ~ Memory Map Data Widtn | 32
Stream Data Width E ~ Stream Data Width 2
Max Buret Size 15 - Wax Burst Size i v
(0 Allow Unaligned Transfers (0 Allow Unaligned Transfers

< s

Figure 8.1: DMA Configurations
S_AXI_LITE port on DMA module is used for configuration i.e., flags, registers. Two
more slave ports are added to the AXI SmartConnect module named as SO2_AXI and
S03_AXI. These ports allow DMA to read data from memory map. M_AXI_MM2S
(AXI4 Memory Map Read) and M_AXI_S2MM (AXI4 Memory Map Write) ports on
DMA module are responsible for this reading and writing operation respectively.

Mentioned ports can be seen on Figure 8.2.
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Figure 8.2: DMA ports
It can be also seen from the Figure 8.2 that DMA module is compatible with the AXI
Stream interface to communicate with other IPs. This interface enables transmitting

data in every clock cycle. AXI4 Stream Slave (S2MM) and AXI4 Stream Master
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(MM2S) are the ports that allow reading from and writing to peripheral IPs,
respectively. Additional two more DMA module which only performs reading form
memory, is added to the design for the reason that 3 total namely X, W and H data are
needed to calculate target data. Selecting only reading operation on DMA

configuration interface can be seen on Figure 3.

AX| Direct Memory Access (1.1) Pl

@ Documensztan P Locaon

Quide for mees iformaton The tex

TUSER W (g 1200

fr T

Figure 8.3: Selecting reading operation on DMA Figure 8.4: Tlast signal
To calculate the target data AXI Stream Interfaced Floating Point IPs are used on the
Vivado Repository. Optional TLAST flag are added to the transmitted data to make
data transaction over DMA reliable. TLAST flag designates the last bit of the
transmitted data frame. Hence this flag is used to indicate the of the transaction.

Created IP on the design can be seen on the Figure 8.5.
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Figure 8.5: Design
To ensure that reading and writing from peripheral IPs are working correctly, debug

signals are added to the ports (S2MM) and (MM2S), respectively. With helping of the
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ILA (Internal Logic Analyzer) block it is easier to observe internal signals. ILA and

the debug signals are seen on the Figure 8.6.

rst_mig_7series_0_81M

x_wh_stream_ip

sk
aresetn

System N

system_ila_0

<+ sLor0_ax

Figure 8.6: ILA and debug signals
Original code snippet that aimed to utilize with the DMA module is seen on the Figure
8.7. As it seen on the code X, W and H arrays hold 46848, 256 and 183 data in the
arrays respectively. X and target arrays in this original code holds each 256 data in its
columns starting from up to bottom. This behavior continues for each column from

left side of the matrix to the right. This is shown in Figure 8.8.

{/ fcolumn

t_tmp] - W[i0] * H[il];

Figure 8.7: Original code

256 veri

| |
183 veri

Figure 8.8: X[46848] and target[46848] array algorithm
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It can be also shown that target array data values are acquired starting from beginning

of the row to the end of the row as stated as black arrow on Figure 8.8.

Since the original code expects continuity for the W and H arrays, as in the array X,
two new arrays named W_Temp and H_Temp are created. As in the original code
does, W_Temp array repeats whole 256 W data over 183 times continuously. And
H_Temp array repeats each H data value 256 times one by one. These arrays are shown

on Figure 9.

for (iter = @; iter < 1000; iter++) {
[T [ Temporary Arrays//// /1111111111,
int temp = @;
for(int col = @ ; col < 183 ; col++){
for(int row = @ ; row < 256 ; row++){
W_temp[temp] = W[row];
temp++;
}
¥
temp = 0;
for(int col = @ ; col < 183 ; col++){
for(int row = @ ; row < 256 ; row++){
H_temp[temp] = H[col];
temp++;

Figure 8.9: Newly created temporary W and H arrays
On VITIS SDK DMA configurations are made as seen on the Figure 8.10. This

configuration enables transmission of data.

e e e e g mp ey e e e m ey

" N P _
R R e L
11931 /4 /

T

=X,
/1 1=Wu

11934 //DMA_2 = H
11935 XAxiDma my_DMA_XT, my_DMA_W, my_DMA_H;
11936 XAxiDma_Config *my_DMA_config XT, *my_DMA_config W, *my_ DMA_config_H;
11937 my_DMA_config_XT = XAxiDma_lookupConfigBaseAddr (XPAR_AXI_DMA_@_BASEADDR);
11938 my_DMA_config_W = XAxiDma_LookupConfigBaseAddr(XPAR_AXI_DMA_1_ BASEADDR);
11939 my_DMA_config_H = XAxiDma_lookupConfigBaseAddr (XPAR_AXT_DMA_2_BASEADDR);
11940 XAxiDma_CfgInitialize(&my_DMA_XT, my_DMA_config_XT):
11941 XAxiDma_CfgInitialize(&my DMA W, my DMA_config W);
11942 XAxiDma_CfgInitialize(&my DMA H, my_ DMA_config H);

11043 Eeesdossoolol oo oo oo ook ook ook ok

Figure 8.10: DMA Configurations
Necessary codes to utilize DMA in the design properly is shown in Figure 8.11. These

codes can be explained as below.

Since MicroBlaze soft processor in the design uses a 64 Kbyte cache memory, deleting
data in cache and making sure that the data that is wanted to transmit resides in the
DDR2 SDRAM. Then DMA to Device (DDR to IP) and the Device to DMA (IP to
DDR) data transmission codes are added. Afterwards, it is waited for the transmitting
process to complete successfully. With the last code it is made sure that the target data

values are resides in DDR.
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d in the DDR memory

XAXIDMA DEVICE TOC DMA) ;

y_DMA XT,XAXTDMZ DMA TOC_DEV

Figure 8.11: DMA utilization codes
ILA Trigger Setup is made as seen on the Figure 8.12. ILA block triggers when the
t_valid flag on the W array is set.

Trigger Setup - hw_ila_1 Capture Setup - hw_ila_1

a + = o,

Name Operator Radix Value Port Comparator Usage
slot_2: axi_dma_1_M_AXIS_MM2S : TVALID == v | ~ | R(0-to-1 transition) probe30[0] 1 of1

0 (logical zero)

1 (logical one}

X (dontcare)

R (0-to-1 transition)
F (1-to-0 transition}

Figure 8.12: Trigger Setup
ILA observations are shown in Figure 8.13. It is seen that X, W and H array transmits
data from DDR to IP according to the plan. X array transmits 46848 data sequentially,
W array transmits 256 data in a repeating session 183 times and H array transmits 183
data repetitively 256 times for each of the value. In Figure 8.13, 200 data inputs are

observed. Therefore, it is logical that H array seems to remain constant.

60000000

Figure 8.13: ILA observations
The target[46848] array and the data written to DDR over DMA is shown in Figure
8.14 and in Figure 8.15 respectively. From the two figures it can be said that the DMA

is working according to plan.
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Figure 8.15: Data written DDR over DMA
Lastly the whole Rnmf algorithm is run. Target and Clutter data are obtained in less

time successfully on Figure 8.16.

Target Object Removed Clutter Image Clutter (Object Removed) Image

50 50

100 100
150 150

200 200

250 250

50 100 150 50 100 150

Figure 8.16: Resulting GPR images.
8.2 DMA Utilization on Zynq-7000 SoC

To utilize DMA module as well in ZedBoard, design shown in Figure 8.17 is built.

Design procedure is almost identical except for the DMA structure.

Figure 8.17: Design on ZedBoard

While configuring DMAs in the design, Max Burst Size is chosen as maximum 256
bits, as shown in Figure 18. This value determines the size of the packet in each

transmission of the DMA block using AXI Stream interface. To increase the
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performance of the system this chosen as maximum. By this means it is aimed that the

high throughput can be achieved.

Number of Channels 1 Number of Channels 1

Memory Map Dala Width = 32 v Memory Map Data Width | 32
Stream Data Width 2 ~ Stream Data Width 32

[Max Burst Size 256 vl [Max Burst Size 256 vl

Figure 8.18: DMA Max Burst Size configuration
Zynq architecture offers High Performance (HP) Slave Ports to allow the IPs in the
Programmable logic (PL) side of the FPGA to reach in a fast manner directly to the
data in the DDR memory without visiting the processor. This can be seen on the Zynq

internal design as shown in Figure 8.19.

Zynq Block Design Summary Report
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MUX cPo__ f' { o Snoop Contral unt | o
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USE 1 oo 256 K8
ENET D | ‘Core Sigt Interconnect SRaM
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MO FLASH Memary +
(53:16) Imeriaces Le— ) B ”
4 SRAWNOR Memory Inkertaces
[ hasD ] <
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— < to Memary - Controsier
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Figure 8.19: HP Slave Ports on Zynq Architecture
PL side of the FPGA operates in 100 MHz. Data length is 32 bits. Thus, the bandwidth
on HP line is 100 MHz * 32 bits, 400MBps.

Table 8.1 shows the operating durations for different optimization selections. As it
seen from the table aimed performance is not met in the ZedBoard. The reason for this
is that ARM CORTEX-A9 processor in the Zynq architecture is already operates in
very high frequencies namely 666 MHz.

Table 8.1: Operation durations on ZedBoard

Optimizations Without DMA With DMA
-00 3'54” 4'29”
-03 115” 1'44”
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9. CREATING HARDWARE VIA VIVADO HLS

9.1 HLS Utilization on Nexys 4DDR

VITIS High-Level Synthesis enables creating hardware by means of writing pure C
based codes. Code snippets in “rnmf_in.c” file will be tried to be converting into
hardwares by utilizing Vitis HLS. Original code snippet that is going to be hardware
on Vitis HLS can be seen on Figure 9.1, 9.2, and 9.3. b_abs() function prints the
absolute value of target[46848] array data to the varargin_2[46848] array before the
first loop. After necessary operations are performed in the first loop, array z1[46848]
is obtained at the end of the loop. b_sign() function detects the sign of the data of the
target array before the second loop starts. Newly obtained array is multiplied with the

z1[46848] array to produce the output target[46848] array.

Figure 9.1: b_abs() function

ign(float 8 —

Figure 9.3: Code snippet is going to be hardware

Original loop can be simplified as shown in Figure 9.4 and 9.5. Simplified function

has 2 loops and two functions. Thus, provides higher performance.

40



[¢ my_loop.cpp [" my_loop.h 2 [¢] my_loop_tb.cpp
| #ifndef MY LOOP_

2 #define MY _LOOP_
3 #define INPUT_SIZE 46848 //256%183 = 46848

4

5 wvoid my_loop_hw(float target in[INPUT SIZE], float target out[INPUT _SIZE]);
6 #endif

Figure 9.4: Simplified functions header code

[¢] my_loop.cpp £ . [8 my_loop.h | [€ my_loop_tb.cpp
1 #include "my_loop.h"
#include <math.h> //fabsf(), fmaxf()

//HLS kullanarak yaratilacak olan IP

5-void my_loop_hw(float target_ in[INPUT_SIZE], float target_out[INPUT_SIZE]){

float a_x; //zl[target_tmp] ile esdeger

float b_x; //b_sign(target[target_tmp]) ile esdeger

float norms;

int target_tmp;

my_loop: for (target_tmp = ©; target tmp < INPUT_SIZE; target tmp++) {
norms = fabsf(target_in[target_tmp]); //norms = varargin_2[target tmp] - 0.00015;
a_x = fmaxf(0.0, norms); /[/zl[target tmp] = fmaxf(0.0, norms);

(S R N WY N

@D 0~

//b_sign(target) ile esdeger

if (target_in[target_tmp] < 0.0) {b_x = -1.9;}
else if (target_in[target_tmp] > 0.8) {b_x = 1.0;}
else {if (target in[target tmp] == 0.0) {b_x = 0.0;}}

target_out[target_tmp] = b_x * a_x; [//target[i®] *= z1[i@] ile esdeger

[al== R =T+ - T s R R Wy

et

Figure 9.5: Simplified C++ functions
A new testbench file is written in order to make sure that newly created simplified
code gives the same result as original code. In this testbench file, my_loop_hw()
represents the hardware function, while loop_sw() represents the code that is currently
running correctly in the software. These both functions are run with the same input
signals and the output signals are compared. In this way accuracy of the simplified

code is verified. Testbench file can be shown as Figure 9.6.
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target_in[i0]

1
ut_hw [ INPUT_
ut_sw[INPUT_S

< INPUT_SIZE
_out_hw[il] !

_out_hw([il], target_out sw[il]);

s e < ct_tmp++) |
t_tm

Figure 9.6: Testbench file
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Before running the testbench file, since HLS contains more than one function, the
my loop hw() function to be converted to hardware was written in Project Settings —

Synthesis — Top Function.

It can be seen in Figure 9.7 that the simplified code after Run C Simulation gives the

same results as the code already used in the software.

B Console 2 @] Errors| & Warnings
Vivado HLS Console
INFO: [HLS 200-10] Setting target device to 'xc7al@@t-csg324-1"
INFO: [SIM 211-4] €SIM will launch GCC as the compiler.

~Csd ' is up to date.
Total error: @
PASSED

B -1] CSim done with @ errors.
INFD [SIM 211,3] R CHOROR R CROR O OROR R CSIM flnlsh KRR R OOR RO OROR
Finished € simulation.

Figure 9.7: Testbench output
Run C Synthesis is used to synthesize the function. The output obtained after the

synthesis is given in Figure 9.8.

Performance Estimates

= Timing
= Summary
Clock Target Estimated | Uncertainty
ap_clk | 10,00 ns 8718 ns 1.25 ns
= Latency
= Summary
Latency (cycles) Latency (absolute) Interval (cycles)
min max min max min max Type
374785 | 374785 | 3748 ms | 3.748 ms | 374785 | 374785 | none

= Detail

< Instance
= Loop
Latency (cycles) Initiation Interval
Loop Name min max Iteration Latency | achieved | target | Trip Count | Pipelined
- my_loop 374784 | 374784 8 - - 46848 no

Figure 9.8: Synthesis output
As can be seen, the hardware completes the operation in 8.718 nanoseconds at each
clock. In this way, setup and hold time requirements are fulfilled. In other words, slack
is positive. The hardware finishes its work in a total of 374785 clock cycles. As seen
from the loop part, the amount of data in the array is 46848, each iteration takes 8 clock
cycles, 1 clock cycle is spent to read the data from the memory. Operation duration =
374785 = 46848 * 8 + 1 is calculated as can be seen from the pipeline part, pipeline is

not used in this code.
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Utilization Estimates

= Summary
Name BRAM_18K | DSP48E FF LUT URAM
DsP
Expression - - 0 337
FIFO - -
Instance - 3 341 350
Memory
Multiplexer - 56
Register - - 188 -
Total 0 3 529 743 0
Available 270 240 | 126800 | 63400
Utilization (%) 0 1 =) 1 0

Figure 9.9: Utilization
As can be seen in Figure 9.9, since the hardware uses multiplication on line 19, 3
floating point multipliers (DSP48E) have been added to the hardware. The hardware
also uses 529 FF and 743 LUT.

In the HLS interface, the blocks in which the elapsed time in each iteration is spent

can be observed in detail by clicking on the Analysis section[6].

e —— e e O B T
= =]
;,:j -T-
e O -
N = |
[ o
| =
)| | S -

Figure 9.10: Analysis section
As a result of the synthesis, the Verilog code of the hardware is observed as shown in

Figure 9.11.

It Explorer # ° O |[[2 myloopcpp B my looph | [d my loop_th.cpp my_loop_w_csimlog [ i) Synthesis(solutionT)(my | = Schedule Viewer(solution _|wré my_loop i £ =8
~ &5 my_loop_tw 14/ ~
all Includes 2/ RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and OpenCL

3// Version: 2020.1

J;:z:(’;m &7 Copyright (C) 1986-2020 Xilinx, Inc. ALl Rights Reserved.
« ¢ solationt b
® constraints 7
£ csim & timescale 1 ns / 1 ps
~ B impl E
& misc 0 (* CORE_GENERATION_INFO="my_loop_hw,hls_ip_2020_1, {HLS_INPUT_TYPE=cxx,HLS_INPUT_FLOAT=1,HLS_TNPUT_FIXED-0,HLS_INPUT_PART-xc7al00t-.
1
v & verllog 12module my_loop_hw (
 my_loop_tw_ap_fcmp_0_no_ds; 3 ap_c1k,
 my_loop_w_sp_tmul 2_max.d:|| 14 ap_rst,
wl femp_3cudv 1t ap_start,

ul_3bkb.v 16 ap_done,
17 ap_idle,
18 ap_ready,
target_in_address@,
target_in_ced,

21 target_in_qe,

22 target_out_address,
target_out_ced,

24 target_out_wed,

25 target_out_de

26);

28parameter  ap_ST_fsm_statel = 9°dl;

2oparsmeter  ap_ST fsm_statez = 9'd2;

Ioparameter  ap_ST fsm_state3 = 9'd4;

3lparameter  ap_ST fsm_stated = 9'ds; .
< >

Figure 9.11: Verilog code of the hardware
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To verify the functionality of the Verilog code written by HLS, Run C/RTL
Cosimulation was performed. The correctness of the process was observed on the

console screen as shown in Figure 9.12.

E Console 2 . @] Errors| & Wamings| ‘= DRCs AR E mEy¥vZ =0
Vivado HLS Console

## quit ~
INFO: [Common 17-206] Exiting xsim at Wed Apr 5 19:14:03 2023...

INFO: [COSIM 212-316] Starting C post checking ...

Total error: @
PASSED

INFO: [COSIM 212-100@] *** C/RTL co-simulation finished: PASS ***

INFO: [COSIM 212-211] II is measurable only when transaction number is greater than 1 in RTL simulation. Otherwise, they will be marked as all NA. If user wants to calculat
Finished C/RTL cosimulation.

Figure 9.12: Successful Run C/RTL Cosimulation
9.2 AXT Stream Compatible Hardware on Nexys 4DDR

In order to speed up the RNMF algorithm and to read the data on the hardware created
in each clock cycle, the hardware created was made compatible with AXI Stream. For
this, input and output data were selected Interface — mode — axis from the VIVADO
HLS Directive Editor window. In addition, Interface — mode — ap_ctrl none was
selected from the same window to cancel the control port. For faster and shorter
running hardware, Directive — Pipeline was activated. The created pragmas can be

seen in Figure 9.13.

5-void my_loop_hw(hls::stream<axis_data> &target_in, hls::stream<axis_data> &target_out){
6 #pragma HLS INTERFACE ap_ctrl none port=return
7 #pragma HLS INTERFACE axis register both port=target out
8 #pragma HLS INTERFACE axis register both port=target_in
9 float a_x; //zl[target _tmp] ile esdeger
10 float b_x; //b_sign(target[target_tmp]) ile esdeger
11 float norms;
12 int target_tmp;
13 axis_data local_read, local_write; //read and write from stream interface
14 my_loop: for (target_tmp = ©; target tmp < INPUT_SIZE; target_tmp++) {

15 #pragma HLS PIPELINE

Figure 9.13: Pragmas

As can be seen in Figure 9.14, the interface of the hardware by performing C Synthesis
has signals such as valid and ready that provide communication on the AXI Stream
interface. However, as can be seen, the last signal, which is important in the use of

DMA, could not be obtained.
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Interface

= Summary
RTL Ports Dir | Bits Protocol Source Object C Type
ap_clk in 1 | ap_ctrl_none my_loop_hw | return value
ap_rst_n in 1 | ap_ctrl_none my_loop_hw | return value
target_in_TDATA in 32 axis target_in pointer
target_in_TVALID in 1 axis target_in pointer
target_in_TREADY out 1 axis target_in pointer
target_out TDATA out 32 axis target_out pointer
target_out TVALID | out 1 axis target_out pointer
target_out_TREADY in 1 axis target_out pointer

Figure 9.14: Hardware interface

To solve this problem, the header file has been reorganized and is shown in Figure

9.15. In order to enable DMA usage, target_in and target_out data are defined as

axis_data format with last flag.

[& my_loop.cpp

[s my_loop.h [€] my_loop_tb.cpp =l my_loop_hw_csim.log i my_loop_hw.y = Simulat

1 #ifndef MY_LOOP_
2 #define MY _LOOP_

3 #include <hls_stream.h> //axi stream header dosyasi
4 #include "ap int.h" //ap int header dosyasi

5 #define INPUT_SIZE 46848 //256%183 = 46848

float data; //veri

6
7o struct axis_data {
8
9

ap_uint<1l> last; //last bit

18 };
11

12 woid my_loop_hw(hls::stream<axis_data> &target_in, hls::stream<axis_data> &target_out);

13 #endif

Figure 9.15: AXI Stream compatible version of the header file

The vectors in my_loop.cpp have been adapted to the stream interface. In addition, the

last bit representing the last data has been assigned. The file is shown in Figure 9.16.

€l my_loop.cpp i3 ._[H my_loop.h €] my_loop_tb.cpp =l my_loop_hw_csim.log il my_loop_hwv | 2l Simulation(solutior
1 #include "my_loop.h"
2 #include <math.h> //fabsf(), fmaxf()

3

4 f/HLS kullanarak yaratilacak olan IP

5=void my_loop_hw(hls::stream<axis_data> &target_in, hls::stream<axis_data> &target_out){
6 #pragma HLS INTERFACE ap_ctrl none port=return

7 #pragma HLS INTERFACE axis register both port=target_out

8 #pragma HLS INTERFACE axis register both port=target_in

float a_x; //zl[target_tmp] ile esdeger

float b_x; //b_sign(target[target_tmp]) ile esdeger

float norms;

int target_tmp;

axis_data local_read, local write; //read and write from stream interface
my_loop: for (target_tmp = @; target_tmp < INPUT_SIZE; target_tmp++) {

15 #pragma HLS PIPELINE

16
17
18
19

20

local_read = target_in.read(); //okuma islemi
norms = fabsf(local read.data) - 0.80015; //norms = varargin_2[target_tmp] - 6.00015;
a_x = fmaxf(0.0, norms); f/z1[target_tmp] = fmaxf(©.9, norms);

//b_sign(target) ile esdeger

if (local_read.data < ©.8) {b_x = -1.0
else if (local_read.data > 0.8) {b_x =
else {if (local_read.data == 08.0) {b_x

H
1.0;}
= 0.8;})

local write.data = b_x * a_x; //target[i@] *= z1[i@] ile esdeger

if(target_tmp == (INPUT_SIZE-1)){ //last bit son degerde iken uretilir
local _write.last = (ap_uint<1>)1;

Jelse{

local write.last = (ap_uint<1>)0;
}
target out.write(local_write);

Figure 9.16: AXI Stream compatible hardware code
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The adaptation process to the AXI Stream interface continued in the testbench code.

The changes made are shown in Figure 9.17.

nt

rget_in_sw,

©_out_swlill);

t_in[i0] *= z1[i0];

Figure 9.17: AXI Stream compatible Testbench
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C/RTL Cosimulation was run, and a successful result was obtained as shown in Figure
9.18.

Vivado HLS Console
run: Time (s): cpu = @@:00:02 ; elapsed = 60:00:11 . Memory (MB): peal
## quit
INFO: [Common 17-206] Exiting xsim at Wed Apr 5 23:39:24 2023...
N

o U 2-316] Starting C post checking ...
Total error: @
PASSED

NFO: 051N 2-1000] *** C/RTL co-simulation finished: PASS ***
INFO: [COSIM 212-211] IT is measurable only when transaction number i:
Finished C/RTL cosimulation.

Figure 9.18: Successful simulation result

Synthesis was performed and the last bit was obtained as seen in the new interface.

Interface
= Summary
RTL Ports Dir | Bits Protocol Source Object CType

ap_clk in 1 | ap_ctrl_none my_loop_hw | return value
ap_rst._n in 1 | ap_ctrl_none my_loop_hw | return value
target_in_TDATA in 32 axis target_in_V_data pointer
target_in_TVALID in 1 axis target_in_V_last_V pointer
target_in_TREADY out 1 axis target_in_V_last V pointer
target_in_TLAST in 1 axis target_in_V_last .V pointer
target_out_TDATA out 32 axis target_out_V_data pointer
target_out_TVALID out 1 axis | target_out V_last V pointer
target_out_TREADY in 1 axis | target_out V_last V pointer
target_out_TLAST out 1 axis | target_out V_last_V pointer

Figure 9.19: Hardware interface
It can be said that the performance setup and hold time requirements in the synthesis
result are complied with, and the hardware runs faster by reducing the processing time

to 46863 clock cycles thanks to Pipeline. The outputs are shown in Figure 9.20.

Performance Estimates
= Timing

= Summary

Clock Target Estimated | Uncertainty

ap_clk | 10.00 ns 8718 ns 1.25ns
B Latency
= Summary

Latency (cycles) Latency (absolute) Interval (cycles)

min max min max min max | Type
46863 | 46863 | 0469 ms | 0469 ms | 46863 | 46863 | none
= Detail
# Instance
=t Loop
Latency (cycles) Initiation Interval
Loop Name min max | lteration Latency | achieved | target | Trip Count | Pipelined
- my_loop 46861 | 46861 15 1 1 46848 yes

Figure 9.20: Performance output
Finally, as shown in Figure 9.21, Export RTL is selected, and the hardware design is

finalized.

B Console 23 . @) Errors| & Warnings| ‘= DRCs

Vivado HLS Console

INFO: [IP_Flow 19-1686] Generating 'Simulation’ target for IP "my_loop_hw_ap_fpext_6_no_dsp 32'...
WARNING: [IP_Flow 19-4832] The IP name 'my_loop_hw_ap fptrunc_© no_dsp 64' you have specified is long. Th
INFO: [IP_Flow 19-1686] Generating 'Synthesis® target for IP 'my_loop_hw_ap_fptrunc_0_no_dsp_64'...
INFO: [IP_Flow 19-1686] Generating 'Simulation® target for IP 'my_loop_hu_ap_fptrunc_0_no_dsp_64'...
INFO: [IP_Flow 19-234] Refreshing IP repositories

INFO: [IP_Flow 19-1704] No user IP repositories specified

INFO: [IP_Flow 19-2313] Loaded Vivado IP repository 'C:/Xilinx/Vivado/2020.1/data/ip'.

0. Qmmon 961 Exiting Vivado at Wed Apr 5 23:44:13 2023...

I 20
Finished export RTL.

Figure 9.21: Hardware design
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9.3 Integration Of the Hardware With The RNMF Algorithm

The created IP was added to the design together with the DMA as shown in Figure
9.22.

L WI_FAID_IVIMIZDE J:
my_loop_hw_0
= — target_in

axi_dma_3
= P target_in_TVALID target_out — =
—| 4 target_in_TREADY Vivado™ HLS target_out TVALID » z M_AXI_MM2S - fi}
= P target_in_TDATA[31:0] target_out TREADY 4 o - M_AXI_S2MM
EaLi A ' SRS H+ S_AXIS_S2MM - T
= P target_in_TLAST[0:0] target_out_TDATA[31:0] » N . _clk M_AXIS_MM2S - frmed
s_axi_lite_as
ap_clk target_out_TLAST[0:0] » m_a)u_ mr‘_nZs aclk mm2s_prmry_reset_out_n
ap_rst_n - -

) s2mm_prmry_reset_out_n
m_axi_sZmm_aclk - - -

My_loop_hw (Pre-Production)

; mm2s_introut
axi_resein -

- s2mm_introut
microblaze_0_axi_periph

(] A

AXI| Direct Memory Access

Figure 9.22: Hardware IP
In the design, it is aimed to speed up the RNMF algorithm by adding DMA and DMA

of the written hardware to speed up the target data. The whole design can be seen in
Figure 9.23.

etz 0

- =
“.f"—‘Ht.“‘“ MicroBlaze ™
ol B> L — ST, - .

Figure 9.23: Full design
The DMA configuration and data transfer codes that will provide the connection

between the manufactured hardware and DDR are shown in Figure 9.24 and Figure
9.25 in the rnmf _in.c file.
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! /*************************************************************************[
XAxiDma my DMA_ LOOP;

i XAxiDma_Config *my DMA config LOOP;

i my DMA config LOOP = XAxiDma_LookupConfigBaseAddr(XPAR_AXI DMA 3 BASEADDR);
XAxiDma_CfgInitialize(&my DMA_LOOP, my_DMA config LOOP});

f 3 3 e ke R e S e R R R R o R SR RO R SR R SO R HOR R ROR R SRR ROk Rk R ko ok

Figure 9.24: DMA configuration codes
LTI LT T DL 1100111010001
/

b_abs(target, varargin_ 2);
for (target_tmp = @; target tmp < 46848; target tmp++) {
norms = varargin_2[target_tmp] - @.00015;
varargin_ 2[target tmp] -= @.00015;
z1[target_tmp] = fmaxf (0.0, norms); //double float a cevrildi
[//z1[target_tmp] = fmax(8.8, norms);
¥

b_sign(target);
for (i@ = @; 1@ < 46848; i6++) {
target[i08] *= z1[i@];

/

FILELELELEI LRI TEREEIERIERTEAERTELERTELET LRI SRS R IER LRI ER AP ER LR AR
/fwrites back target from cache to DDR2 SDRAM
//make sure that transmitted and received data arrays are stored in the DDR memory
Xil_DCacheFlushRange( (UINTPTR)target, sizeof(float) * 46848);
//Copying float data(target) from DDR2 SDRAM to the IP
XAxiDma_SimpleTransfer (&my_DMA_LOOP, (UINTPTR)target, 46848 * sizeof(float), XAXIDMA_DMA_TO_DEVICE);
/fOverwrite float data(target) from IP to the DDRZ SDRAM
XAxiDma_SimpleTransfer(&my DMA_LOOP, (UINTPTR)target, 46848 * sizeof(float), XAXIDMA_DEVICE_TO_DMA);

while ((XAxiDma_Busy(&my_DMA_LOOP,XAXIDMA_DEVICE_TO_DMA)) || (XAxiDma_Busy(&my_ DMA_LOOP,XAXIDMA_DMA_TO_DEVICE))){/* Wait */};
//finvalidate the cache for the received data’s memory range
Xil_DCacheInvalidateRange( (UINTPTR)target, 46848 * sizeof(float));

LIHEEIHETEI PR R PRI E LT LT R R R LT ni i

Figure 9.25 DMA data transfer codes
RNMEF was set to the original iteration number of 10000 and tested. In the GPR images

shown in Figure 9.28, it can be observed that the generated hardware works

successfully.

Target Object Removed Clutter Image Clutter (Object Removed) Image

100 100
150 150
200 200
250 250
50 100 150 50 100 150

Figure 9.26: GPR images
Finally, the number of iterations was set to 2 and the speed was measured. The running
time of the algorithm was 0.3531 seconds. This is considerably faster than the time

before the hardware was created (1.5896 seconds), as expected.
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9.4 HLS Hardware Test on Zynq-7000 SoC

Created code is tested on the ZedBoard. Design for this test can be seen on the Figure

9.29.

Figure 9.27: Design for ZedBoard

Operation durations are given as Table 9.1.

Table 9.1: Operation durations on ZedBoard

Optimization | Without Hardware | With Hardware
-03 1'15” 00’38”

As it seen form the Table 9.1 newly created hardware improves performance of the

RNMF algorithm drastically.
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10. REALISTIC CONSTRAINTS AND CONCLUSIONS

10.1 Practical Application of this Project

The practical application of this project is its use as image processing in portable radar
systems. It can be integrated into other systems where the RNMF algorithm is applied

to the image data.

10.2 Realistic Constraints

Xilinx Nexys4 DDR, Zedboard FPGA devices and Vivado Software are paid.

However, these were provided by the faculty laboratory.

10.3 Standards

The project was executed in adherence to the IEEE guidelines.

10.4 Health and Safety Concerns
This project does not include health and safety concerns.
10.5 Conclusion

The data delivered by the RADAR system has been effectively handled on the FPGA,
and the image processing calculation has been essentially accelerated by the FPGA
parallel operation capability and the DMA method. Capacity and design processes of
Nexys4 DDR and Zedboard FPGA models are included. It can be foreseen that
distinctive calculations other than RNMF will be quickened in FPGA systems with

comparative approaches.

10.6 Future Work and Recommendations

This project focuses on the development of a solution using FPGA for object detection
with GPR technology. The application area of the project covers various areas where

the detection of objects hidden by obstacles is very important. We aim to improve the
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overall performance of the system by addressing realistic constraints such as
processing speed and data management through the use of FPGAs and custom
hardware design. This project contributes to the development of image recognition
capabilities and lays the foundation for further research and development in the field

of GPR-based object detection.
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