

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JUNE, 2023

FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A
LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM

Hakan DURAK

Ebubekir İNAL

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

uygundur
Berna Örs Yalçın

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE, 2023

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A
LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM

SENIOR DESIGN PROJECT

Hakan DURAK
(040150245)

Ebubekir İNAL

(040170238)

Project Advisor: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

DÜŞÜK MALİYETLİ VE TAŞINABİLİR YER NÜFUZ EDEN RADAR
SİSTEMİ İLE YERİNDE HEDEF TESPİTİ İÇİN FPGA UYGULAMASI

LİSANS BİTİRME TASARIM PROJESİ

Hakan DURAK
(040150245)

Ebubekir İNAL

(040170238)

Proje Danışmanı: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

JUNE, 2023

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ
 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Hakan DURAK
(040150245)

Ebubekir İNAL
(040170238)

We are submitting the Senior Design Project Report entitled as “PROJECT TITLE”. The
Senior Design Project Report has been prepared as to fulfill the relevant regulations of the
Electronics and Communication Engineering Department of Istanbul Technical
University. We hereby confirm that we have realized all stages of the Senior Design Project
work by ourselves and we have abided by the ethical rules with respect to academic and
professional integrity .

v

FOREWORD

We express our sincere gratitude and appreciation to our esteemed advisor, Prof. Dr.
Sıddıka Berna Örs Yalçın, for her invaluable guidance, unwavering support, and
profound knowledge throughout the duration of our Senior Design Project. We would
also like to extend our gratitude to the other assistants and staff members who have
assisted us during the course of this project. Finally, we would like to acknowledge
the Electronics and Communication Engineering Department of Istanbul Technical
University for providing us with the necessary resources and facilities to carry out this
project. We are grateful for the opportunities and guidance offered by the department,
which have been crucial to our academic and professional development.

June, 2023

Hakan DURAK
 Ebubekir İNAL

vi

TABLE OF CONTENTS

Page

FOREWORD .. v
TABLE OF CONTENTS .. vi
ABBREVIATIONS ... viii
LIST OF TABLES ... iix
LIST OF FIGURES ... x
SUMMARY .. xiii

 INTRODUCTION .. 1
Project Introduction and Followed Steps ... 1

... 2
 BASIC INFORMATION AND CONCEPTS .. 3

 Xilinx Vivado, Vitis and HLS General Information .. 3
 FPGA Introductions Used in Project .. 4
2.2.1 Xilinx ZedBoard Zynq-7000 SoC ... 4
2.2.2 Nexys 4 DDR .. 6
 FPGA Configurations ... 6

 DATA TRANSFER .. 7
 Data Transfer by Using Standard Input Output Functions 7
 Data Transfer by Using UART Protocol .. 8

 SERIAL DATA TRANSFER ADJUSTMENT.. 10
 RNMF APPLICATIONS ... 12

 64-Bit Static RNMF Algorithm .. 12
 32-Bit Static RNMF Algorithm .. 15
 32-Bit Dynamic RNMF Algorithm .. 16

 HARDWARE IMPLEMENTATION OF RNMF ALGORITHM 18
 Advenced eXtensible Interface Communication Bus Protocol 18
6.1.1 AXI Memory Based Interface ... 19

6.1.1.1 AXI Memory Based Interface Channel Signals 19
6.1.2 AXI Stream Interface .. 20

6.1.2.1 AXI Sream Interface Channel Signals ... 21
 Updating Custom IP by Writing Handshake Protocol 21

 PARALLEL PROCESSING ON FPGA .. 28
 Parallelism on Nexys 4 DDR ... 28
 Parallelism on Zynq-7000 SoC .. 31

 DIRECT MODULE ACCESS (DMA) UTILIZATION ON FPGA 32
 DMA Utilization on Nexys 4 DDR .. 32
 DMA Utilization on Zynq-7000 SoC ... 38

 CREATION HARDWARE WITH VIVADO/VITIS HLS 40
 HLS Utilization on Nexys 4 DDR .. 40
 AXI Stream Compatible Hardware On Neyxs 4 DDR 45
 Integration Of The Hardware With The RNMF Algorithm 49
 HLS Hardware Test on Zynq-7000 SoC .. 51

 REALISTIC CONSTRAINTS AND CONCLUSIONS 52

vii

 Practical Application of this Project ... 52
 Realistic Constraints ... 52
 Standards .. 52
 Health and Safety Concerns ... 52
Conclusion .. 52
 Future Work and Recommendations .. 52

REFERENCES ... 54

viii

ABBREVIATIONS

AXI : Advanced Extensible Interface

ARM : Advanced RISC Machines

CPU : Central Processor Unit

DDR SDRAM: Double Data Rate Synchronous Dynamic Random-Access Memory

DMA : Direct Memory Access

FPGA : Field Programmable Gate Array

GPR : Ground Penetrating Radar

HDL : Hardware Description Language

HLS : High Level Synthesis

HP : High Performance

IP : Intellectual Property

ILA : Internal Logic Analyzer

PC : Personal Computer

PL : Programmable Logic

PS : Programmable System

RAM : Random Access Memory

RADAR : Radio Detection and Ranging RNMF

RNMF : Robust Nonnegative Matrix Factorization

UART : Universal Asynchronous Receiver Transmitter

VHDL : Very High –Speed Integrated Circuit Hardware Description Language

ix

LIST OF TABLES

Page

 ZedBoard Configuration Modes. .. 6
 Operation times for different proposals on Nexys 4 DDR...................... 31
 Operation times for different proposals on Zynq-7000 SoC................... 32

Table 8.1 : Operation durations on ZedBoard ... 39
Table 9.1 : Operation durations on ZedBoard. .. 51

x

LIST OF FIGURES

Page

 Zynq-7000 Architecture. ... 5
 Xilinx ZedBoard Zynq-7000 SoC ... 5
 Jumper settings .. 7

Figure 3.1 : Simple data transferring C code. ... 7
Figure 3.2 : Accuracy of the obtaining data. ... 8
Figure 3.3 : UART header file. ... 8
Figure 3.4 : UART C file. ... 9
Figure 3.5 : UART validation code. .. 10
Figure 3.6 : TeraTerm output screen. .. 10
Figure 4.1 : Reshaping incoming data to appropriate format. 11
Figure 4.2 : GPR image of sample incoming data .. 11
Figure 4.3 : Serial input text data adjustment. .. 11
Figure 4.4 : Sample radar data in .txt file. ... 12
Figure 5.1 : Math library inclusion to the project ... 13
Figure 5.2 : 64-bit RNMF algorithm TeraTerm screen ... 13
Figure 5.3 : 64-bit RNMF log output .. 13
Figure 5.4 : MATLAB code for drawing GPR image of data 14
Figure 5.5 : 64-bit RNMF algorithm GPR images .. 15
Figure 5.6 : 32-bit RNMF log ... 15
Figure 5.7 : 32-bit RNMF algorithm GPR images .. 16
Figure 5.8 : 32-bit dynamic RNMF algorithm .. 16
Figure 5.9 : 32-bit dynamic RNMF terminal screen ... 17
Figure 5.10 : 32-bit dynamic RNMF terminal screen ... 17
Figure 5.11 : 32-bit dynamic RNMF algorithm GPR images 18
Figure 6.1 : AXI Master and Slave IPs. .. 19
Figure 6.2 : AXI Memory Mapped Interface Channel Signals. 20
Figure 6.3 : AXI Stream Interface Channel Signals. .. 21
Figure 6.4 : Time wasting 3 nested loops. .. 21
Figure 6.5 : custom_ip.v file. .. 22
Figure 6.6 : custom_ip_top.v file. ... 23
Figure 6.7 : always block in custom_ip_top.v .. 23
Figure 6.8 : always block in custom_ip_top.v.. .. 23
Figure 6.9 : Custom IP testbench file. ... 24
Figure 6.10 : Custom IP testbench file. ... 24
Figure 6.11 : IP internal register assignments. .. 24
Figure 6.12 : IP internal register assignments continious. .. 25
Figure 6.13 : Block design of the hardware .. 25
Figure 6.14 : custom_ip.c file. .. 26
Figure 6.15 : custom_ip.h file. .. 26
Figure 6.16 : updated rnmf_in.c file .. 26

xi

Figure 6.17 : Terminal screen. .. 27
Figure 6.18 : GPR images. .. 27
Figure 7.1 : Aimed nested loop function... 28
Figure 7.2 : Necessary clock cycle of the nested function to give correct results. ... 28
Figure 7.3 : A sample code utilizing 4 parallel line. ... 29
Figure 7.4 : Performance estimates for 16 parallel target code line. 29
Figure 7.5 : Altered C code utilizing 16 parallel IPs. ... 29
Figure 7.6 : Proposed design on Nexys 4 DDR. ... 30
Figure 7.7 : GPR images obtained with utilized parallel IPs. 30
Figure 7.8 : Zynq-7000 SoC design utilizing 16 parallel IP. 31
Figure 8.1 : DMA Configurations. .. 33
Figure 8.2 : DMA ports. .. 33
Figure 8.3 : Selecting reading operation on DMA. ... 34
Figure 8.4 : Tlast signal... 34
Figure 8.5 : Design. ... 34
Figure 8.6 : ILA and debug signals. .. 35
Figure 8.7 : Original code. .. 35
Figure 8.8 : X[46848] and target[46848] array algorithm. 35
Figure 8.9 : Newly created temporary W and H arrays. ... 36
Figure 8.10 : DMA Configurations. .. 36
Figure 8.11 : DMA utilization codes. ... 37
Figure 8.12 : Trigger Setup 37
Figure 8.13 : ILA observations. .. 37
Figure 8.14 : target[46848] array. ... 38
Figure 8.15 : Data written DDR over DMA. .. 38
Figure 8.16 : Resulting GPR images ... 38
Figure 8.17 : Design on ZedBoard ... 38
Figure 8.18 : DMA Max Burst Size configuration ... 39
Figure 8.19 : HP Slave Ports on Zynq Architecture ... 39
Figure 9.1 : abs() function. .. 40
Figure 9.2 : b_sign() function. .. 40
Figure 9.3 : Code snippet is going to be hardware.. 40
Figure 9.4 : Simplified functions header code. ... 41
Figure 9.5 : Simplified C++ functions. ... 41
Figure 9.6 : Testbench file. ... 42
Figure 9.7 : Testbench output. .. 43
Figure 9.8 : Synthesis output. ... 43
Figure 9.9 : Utilization. ... 44
Figure 9.10 : Analysis section. .. 44
Figure 9.11 : Verilog code of the hardware. ... 44
Figure 9.12 : Successful Run C/RTL Cosimulation. .. 45
Figure 9.13 : Pragmas. .. 45
Figure 9.14 : Hardware interface. ... 46
Figure 9.15 : AXI Stream compatible version of the header file. 46
Figure 9.16 : AXI Stream compatible hardware code. ... 46
Figure 9.17 : AXI Stream compatible Testbench. .. 47
Figure 9.18 : Successful simulation result. ... 48
Figure 9.19 : Hardware interface. ... 48
Figure 9.20 : Performance output. .. 48
Figure 9.21 : Hardware design. ... 48

xii

Figure 9.22 : Hardware IP. .. 49
Figure 9.23 : Full design. .. 49
Figure 9.24 : DMA configuration codes. .. 50
Figure 9.25 : DMA data transfer codes. .. 50
Figure 9.26 : GPR images. .. 50
Figure 9.27 : Design for ZedBoard. .. 51

xiii

FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A
LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM

SUMMARY

Various methods have been tried to ensure transfer and processing performance in

studies with high-dimensional datasets used. In case studies with processors, it has

been observed that the processing speed is insufficient. The necessity of using FPGA

for improvement has been emphasized and various studies have been carried out.

FPGA provides advantages with its parallel working capability and high flexibility. It

enables design perfectionism with the ability to run different processes together, low

latency and different optimization options.For the study, ground penetrating radar will

be used to detect an object in front of the obstacle. It is designed to enable the

application of image recognition, by reprocessing data obtained in a computer

environment. A matrix of images is data that has been transmitted from RADAR. A

clutter removal algorithm and a RNMF algorithm are used for image processing.

 It is intended to use Ground Penetrating Radar in this study for the detection of objects

that are hidden by obstacles. The aim is to make it possible to use image detection by

reprocessing received data in the electronic environment. A matrix of image data is

transmitted to this detection from the RADAR system. Data access is provided

independently of the processor by using Direct Memory Access (DMA), thereby

reducing CPU load. This results in increased processing speed and reduced cycle

times. By using custom hardware, it is possible to achieve maximum efficiency by

completing the operation on your processor simultaneously in different blocks. This

increases the performance of processing and reduces cycle timesThe time difference

obtained in the custom thread enables you to make use of it over multiple loops,

resulting in shorter processing times. In this study, different configurations and their

results will be focused on transferring RADAR data to the FPGA system, applying the

RNMF algorithm to the data and accelerating this process.

xiv

1

 INTRODUCTION

 Project Introduction and Followed Steps

This senior design project paper named “FPGA Implementation for On-Site Target

Detection with a Low Cost and Portable Ground Penetrating Radar System.” is within

the scope of the TUBITAK 1001 Supporting Scientific and Technological Research

Projects, and this project paper is continuation of the previously written and proven C

based RNMF algorithm on ZedBoard Zynq-7000 Development Board. Throughout

this project, it is aimed to obtain clutter-free target data with rnmf algorithm as fast as

possible by using the capabilities of the Zynq-7000 SoC.

In the first part of the project, it is aimed that the radar data read from buried objects

is simultaneously read via UART connection of FPGA board. For that purpose, two

different approaches are presented by use of FPGA UART peripheral. Both approaches

verified by observing sending input data on the TeraTerm terminal screen. Accurate

target and clutter GPR images are observed on MATLAB screen after UART

implementation. Therefore, it is ensured that the written UART based driver operates

in algorithm flawlessly.

After the UART driver is implemented in the design accurately. Standard input data

necessity is revealed. To that end, it is decided to send text document including input

data from Intel processor-based machine to FPGA card in a single column format. As

will be explained in more detail in the related chapter, the number of digits of the input

data can be specified as well.

The second part of this project includes hardware implementation of the RNMF code

snippets by writing HDL based IPs. There was a Custom IP design which was

previously defined. However, this was not applicable for the implementation in the

project due to no handshake protocol defined in the IP. So, a Verilog based handshake

protocol was written for the IP and tested in the algorithm and verified it is correctness

by observing target and clutter GPR images on MATLAB. After observing the

operation duration with this newly created IP is long, it is deducted that memory-based

2

IPs are not sufficient to speed up the algorithm. Hence thorough research was done in

the field of Custom IPs. FPGAs parallelism feature was performed by operating

several AXI Lite based parallel Custom IPs at the same time. Besides, after getting

satisfactory results this feature was also applied for the Stream based IPs. AXI Lite

and AXI Stream based IPs are created and compared their features and concluded that

stream-based IPs will improve the RNMF algorithm duration drastically.

After the IP characteristic is determined. The need for a DMA entity arose since data

transaction between DDR memory and stream-based IPs are only available with the

entity of DMA. In the third part of this project DMA properties and advantages are

thoroughly researched and explained in the related chapter in this report. As a result, a

great improvement has been occurred as the data is transferred directly between the IP

and memory without passing through the processor.

As a last step of the project, Vitis HLS tool was explained in the last chapter in depth

where you can produce stream-based IPs by writing C code. Optimization techniques

such as pipelining was explained and applied to the newly created IPs. With the aim

of achieving initiation interval as 1, accumulation and parallelism optimization

techniques are introduced in the last chapter. Besides, optimization differences

between Vitis HLS tools are introduced in the last chapter as well.

The last chapter of this report includes realistic constraints, conclusions, and

recommendations where cost of the project, social, environmental, and economic

impacts of the project and the last but not least the implications of the project and

suggestions for the future is explained.

 Purpose of Project

As previously defined in the first phase of the TUBITAK. Robust nonnegative matrix

factorization (RNMF) model is chosen for detecting and classifying buried objects.

For detection of buried objects, it is obligatory to separate the clutter in the radar image

from the target object. In this senior design project, it is aimed to:

 Simultaneously reading input data from Radar machine to FPGA in floating-

point number and making sure that the algorithm produces target and clutter

data properly.

3

 Classifying code snippets with regard to arithmetic operations and as a result

deciding which code snippets will be implemented on PL side of the FPGA

for the purpose of speeding up the algorithm.

 BASIC INFORMATION AND CONCEPTS

 Xilinx Vivado, Vitis and Hls IDEs General Information

Xilinx Vivado Design Suite is a CAD software which enables electronics engineers to

program FPGA cards in the most general sense. In doing so, engineers have options to

use different HDL languages such as Verilog, VHDL or SystemVerilog. Verilog

language is opted for this senior project since better grasping on hardware modelling.

Vivado software also offers many no-charge IP cores which help engineers to design

and debug their projects. As will be seen in the following chapters, many Vivado IPs

were used throughout this senior project such as ILA, AXI Interconnect, DMA and

MIG. Vivado Design Suite also enables engineers to synthesize, place and route and

produce bitstream file the HDL code. Furthermore, Vivado tool produces a timing

report which is extremely important for digital designs in terms of determining whether

the design is working in time or not.

In this senior project Xilinx ZedBoard Zynq-7000 SoC FPGA and Artix-7 FPGA based

Nexys 4 DDR boards were used. ZedBoard includes dual ARM Cortex-A9 hard

processors on its PS side and MicroBlaze soft processor is utilized in the Nexys 4

DDR. Vivado offers Vitis tool for programming these processors. After building C

based code on Vitis environment, an .elf file under debug file is created which includes

assembly code waiting to be burning on instruction memory of hard or soft processor.

Besides that, Vitis tool offers an optimization level which is detailed in the following

chapters and thanks to this option it is able to speed up running duration of algorithm

on processor.

High Level Synthesis (HLS) is a very advantageous tool itself. The primary reason is

that the tool gives the opportunity to easily write very complex algorithms by

synthesizing C/C++ functions into RTL. It also shows users the total latency of these

4

C/C++ based functions on FPGA card. In the analysis section, the tool allows users to

easily inspect the code by pointing out where the code stalls too much. Moreover, by

implementing various pragmas to the code it is possible to optimize and speed up the

code drastically. As will be seen in the following chapters pipeline pragma is used in

all hardware due to the fact that pipelining enables parallel execution in PL side of the

FPGA.

 FPGA Introductions Used in Project

Xilinx ZedBoard Zynq-7000 SoC Development Board is mainly used in this senior

project. However, Artix-7 FPGA based Nexys 4 DDR board helped us to understand

the concept of the RNMF algorithm in MicroBlaze soft processor. Due to the oscillator

frequency in Nexys 4 DDR is 100 MHz in peripheral and processor itself some

improvements are easily observed as will be seen in the following chapters contrary to

ZedBoard where hard processor oscillator is about 666 MHz and improvements is

defeated to this high frequency.

2.2.1 Xilinx ZedBoard Zynq-7000 SoC

RNMF algorithm previously performed on MATLAB in C language and after making

sure that it is working as it should this C based algorithm is intended to move a mobile

device. SoC devices are the best option for algorithms like RNMF where such a high

number of iterations as 10000 and arithmetic operations. This is because SoC devices

are integrated circuits which include both PS and PL sections within. The PS section

includes a powerful CPU, memory interfaces, pins, analog/digital converters, and I/O

peripherals such as UART, USB, ENET, SPI. PL sections contain LUTs, and Flip-

Flops as every FPGA board contains. Hence the presence of these two sections on the

SoC devices at the same time provides great opportunity for the user. Zynq-7000 SoC

architecture can be seen in Figure 1.

5

Figure 2.1: Zynq-7000 Architecture

As will be seen on the following chapters, algorithm can be optimized and accelerated

by converting intensive arithmetic operation code snippets to hardware in the PL

section and by keeping code snippets that contain lots of memory transition in the PS

section. Additionally since the algorithm deals with 2 different array big arrays as

X[46848] and target[46848] there is a need for a high capacity memory.

As a result of all these explanations, utilizing ZedBoard whose features are listed

below, has great advantages in this senior project.

Figure 2.2: Xilinx ZedBoard Zynq-7000 SoC

6

• Dual-core ARM Cortex™-A9 processor

• DDR3 512 MB

• On-board USB-JTAG Programming

• USB OTG 2.0 and USB-UART

2.2.2 Nexys 4 DDR

Nexys 4 DDR is a pure programmable logic FPGA device including Artix-7. The

biggest advantage of this FPGA board is that it contains a large DDR2 memory namely

128 MB. Since it is not contained in any hard processor some hardware utilization

improvements will be more visible in this device as will be explained in target data

utilization via DMA concept.

 FPGA Configurations

FPGA boards can be configured in many different settings according to intended use

likewise Zynq-7000 SoC devices use a multi-stage boot process that supports both

non-secure and secure boot [1].

By default, ZedBoard uses SD Card configuration mode [1]. Configuration modes can

be switched with MIO[8:2] boot mode pins according to the table below.

Table 2.1: ZedBoard Configuration Modes

As can be seen from the table, the MIO[8:7] pins are used to set the I/O bank voltages,

they are fixed and cannot be changed. JP8, JP9 and JP10 jumpers on the board are set

to GND which designates JTAG mode as seen on the Figure 1 for the reason that many

different designs and codes will be written and tested throughout the project.

7

Figure 2.3: Jumper settings

 DATA ACQUISITION

To bring in instant target detection feature to the project, communication between the

radar machine and the FPGA had to be established. For that reason, the UART module,

which is already available in the Zynq-7000 SoC, is used. Transmission speed is left

as default 11520 bauds (bit/s) rate. In this section, two different methods where each

uses different C libraries, are introduced.

 Data Transfer by Using Standard Input Output Functions

In order to obtain data from radar device dynamically, Following C code, which

includes the simple standard input and output functions as printf() and scanf(), has

been written.

Figure 3.1 : Simple data transferring C code.

8

As seen on the line 14, size of the input data is consisting of 12 digits, of which 1 is

considered as decimal dot, 1 is considered as whole number and the rest is considered

a decimal number. Moreover, it should be pay attention that data are saved as float

data type after converting from char data type with the use of strtof() function for the

reason that variables required for the RNMF algorithm to work must be float data

type.

Throughout the project, X array denotes input data from radar device. Accuracy of the

data received on the input X array was verified on the Vitis debug interface as seen

Figure 3.2.

Figure 3.2 : Accuracy of the obtaining data

 Data Transfer by Using UART Protocol

Since the RNMF algorithm requires a lot of data, and the FPGA card utilizing USB-

to-UART Bridge is likely to fail in data acquisition while getting big data, it has been

decided to use UART built-in functions in the project [2]. For this purpose, codes

shown in below was written.

Figure 3.3 : UART header file

9

Figure 3.4 : UART C file

On the lines between the 15th and 36th, the UART driver on the Zynq has been

initialized and self-tested to ensure that it is working correctly. Lastly, the baud rate

between the host computer and the FPGA is left as 115200 bauds.

XUartPs_RecvByte() functions that return 8-bit unsigned integer namely, u8 are used

for every input byte [3]. These bytes are recorded on tempStr array in every STRSIZE

loop in between the lines 43 and 46, and this loop size is selected as 12 for the same

reason as described in the section 3.1. Ability to change STRSIZE value gives

algorithm freedom to choose any desired input size.

10

As it seen on the line 47, strtof() function is used again since the RNMF algorithm

works float data type. Finally, while loop in between 48-50 lines was written to repeat

all these actions in each new received input row. Validation of the code was realized

by writing a simple code as Figure 3.5.

Figure 3.5: UART validation code

Terminal screen of the code output is shown in Figure 3.6 and as seen on the last row;

all 46848-input data is kept under X array.

Figure 3.6: TeraTerm output screen

 SERIAL INPUT TEXT DATA SIZE ADJUSTMENT

It has been observed that the matrix sizes of Ground Penetrating Radar (GPR) images

from radar varies. However, RNMF C code is written in a format where input and

output data image sizes are standardized as 256 rows and 183 columns. Hence, there

is a need a standardization for the data coming from radar device as well. To this

respect, in order for these matrices to work in the RNMF algorithm, they must be

11

converted an appropriate [256,183] form. This process was done by using MATLAB

tool.

The MATLAB code that will convert each incoming data into the appropriate form is

shown in Figure 4.1.

Figure 4.1: Reshaping incoming data to appropriate format

With the help of this code, the GPR picture of the incoming data can be converted to

intended 256 x 183 matrix size as the following Figure 4.2.

Figure 4.2: GPR image of sample incoming data

FPGA development cards use UART serial communication protocol. Hence, proposed

standardization is in need of a .txt file in which, the incoming data is sorted serially

from top to bottom in a single column. The code realizing this operation is shown in

Figure 4.3.

Figure 4.3: Serial input text data adjustment

Sample radar data can be obtained in a .txt file as shown in Figure 4.4.

12

Figure 4.4: Sample radar data in .txt file

It is important to note that, as described in 3.2 UART section, value of the input data

size namely, STRSIZE can be set as seen on the line 4 in Figure 4.3. It is set as 10

precision and throughout the project value was not changed.

 RNMF APPLICATIONS

Since the data acquisition work is accomplished, in this section Robust Nonnegative

Matrix Factorization (RNMF) algorithm applications is introduced on FPGA

development cards.

Firstly, 64-bit static algorithm was run on FPGA card and its running time were

observed. Then the algorithm was converted to 32 bits by changing 64-bit double data

type into 32-bit float data type. Programmable logic (PL) part of the ZedBoard is not

required to run the RNMF algorithm, the reason for this the ARM Cortex-A9 hard

processor and PS UART on the Processing system (PS) are sufficient for the operation.

Therefore, no block design was made on VIVADO and no bitstream file was created.

 64-Bit Static RNMF Algorithm

After the setup of the algorithm is done on VITIS, the math library required for the

RNMF algorithm to operate is included in the project from the Properties section as

shown in the Figure 5.1 below.

13

Figure 5.1: Math library inclusion to the project

After building the project and making connection of the FPGA with the PC. TeraTerm

tool was used to observe the target and clutter data which are the RNMF algorithm

output products. TeraTerm screen on Figure 5.2 shows that RNMF algorithm operates

on the Zynq-7000 SoC as it should. Log output is also saved as in the Figure 5.3 to

have knowledge of the operation duration and to create GPR images of target and

clutter data.

Figure 5.2: 64-bit RNMF algorithm TeraTerm screen

14

Figure 5.3: 64-bit RNMF log output

Operation duration of the RNMF algorithm was measured as 4 minutes and 34

seconds.

The accuracy of the operation can be checked by drawing the GPR pictures on

MATLAB both for the target and the clutter data separately. This code is seen Figure

5.4 below.

Figure 5.4: MATLAB code for drawing GPR image of data

As seen on the Figure 5.5 64-bit RNMF algorithm works as it should. However, 4’34’’

is quite long duration for a quick target detection operation and needs to be reduced.

15

Figure 5.5: 64-bit RNMF algorithm GPR images

 32-Bit Static RNMF Algorithm

To speed up the operation duration algorithm is converted to 32-bit by converting all

64-bit double data type to 32-bit float data type.

As it seen from log by dividing each register data width into two, it is possible to

decrease operation duration about 42 seconds.

Figure 5.6: 32-bit RNMF log

As it seen on Figure 5.7 GPR images of output target and clutter data, it is possible to

say decreasing data width does not impact RNMF operation drastically.

16

Figure 5.7: 32-bit RNMF algorithm GPR images

 32-Bit Dynamic RNMF Algorithm

The “uart.h”and “uart.c” files which are introduced in data acquisition section, are

added to the project to be able to bring in instant target detection feature to the project

for as shown in the Figure 5.8.

Figure 5.8: 32-bit dynamic RNMF algorithm

TeraTerm screen on Figure 5.9 shows that communication between PC and FPGA

board is healthy.

17

Figure 5.9: 32-bit dynamic RNMF terminal screen

Figure 5.10: 32-bit dynamic rnmf log output

As it seen on Figure 5.10 operation duration of dynamic algorithm is observed longer

than static algorithm. The reason for this increase is the data acquisition from radar

device. This duration can be decreased by increasing bauds rate on the communication

line. By looking at the Figure 5.11, it can be validated that the UART driver that

created works as it should.

18

Figure 5.11: 32-bit dynamic RNMF algorithm GPR images

 HARDWARE IMPLEMENTATION OF RNMF ALGORITHM

 Advance eXtensible Interface Communication Bus Protocol

Advanced eXtensible Interface Bus Protocol (AXI) was first released in 1996 by ARM

as part of AMBA (Advanced Microcontroller Bus Architecture). Shortly after its

appearance it became standard not just for microcontrollers but also for SoC and ASIC

parts. Now AXI standard basically defines how functional blocks or IPs communicate

with each other. Xilinx also adopted AXI protocol for their IP cores for the reason that

it provides so many improved features such as high throughput and performance as

well as allowing burst transactions. In 2011, ARM released the last version of their

bus protocol which is called AXI4 (AMBA 4.0). Zynq device that we use in this senior

project also uses AXI interfaces to PS and PL communicate with each other.

There are two types of AXI interfaces:

 Stream

 AXI4-Stream: For high-speed streaming data.

 Memory Mapped

 AXI4(Full AXI4): For high-performance memory-mapped requirements.

 AXI4-Lite: For simple, low-throughput memory-mapped communication.

19

Every AXI interface contains two essential IPs called Master and Slave as seen in

Figure 1 and as seen in this Figure 1 there are five independent channels between

Master and Slave.

Figure 6.1: AXI Master and Slave IPs

AXI Master is responsible for initiating write and read transactions and AXI Slave is

responsible for responding to these transactions initiated by the AXI Master.

6.1.1 AXI Memory Mapped Interface

Memory mapped denoting an address which is specified by the master IP within the

transaction. It is possible write to or read from Slave IP in this type of interface[4].

For the AXI4-Lite only a single beat data transfer to a specified address per transaction

is possible.That is why it has a very poor performance and is not preferred for advanced

applications.

However, resulting from the fact that Full-AXI4 allows to sending up continuous beats

up to 256 data in other words burst, Full-AXI4 offers better performance.

6.1.1.1 AXI Memory Mapped Interface Channel Signals

Inside of each 5 independent channels there are 3 main signals called ready, valid and

data which build the channel. These channel signals can be seen in Figure 2. Channels

can contain additional signals according to the user’s request. These additional signals

can be exemplified as len, size, id and cache. It is important to note that all these main

signals are synchronous to the rising edge of the clock.

20

Figure 6.2: AXI Memory Mapped Interface Channel Signals

 Ready: This flag notifies Master IP that Slave IP is ready to receive data.

 Valid: This flag notifies Slave IP that Master IP transferring valid data.

 Data: As the name indicates, it contains the data, and its size can be varied

according to specification.

 Len: This signal, which is being sent form Master IP to Slave IP, indicates the

length of the burst operation.

 Size: This signal notifies Slave IP how long the transferred widths for each beat of

data will be.

 Id: This signal is used to distinguish the transactions from each other by assigning

different ids to Master IPs. As will be seen on the future project designs AXI

Interconnect communicate with different IPs by using this signal.

 Cache: By setting cache capability, Master IP can respond to transaction in a faster

time with the data it has already on its own buffer or cache. It is used to speed up

the transactions in the AXI Interconnect.

6.1.2 AXI Stream Interface

This interface is used in a block where a dedicated process is perpetually performed

on the data and sends out this output data to its slave. In this interface, Master IP does

not need to provide an address to the Slave IP for transferring data. Furthermore,

direction of the data always from Master IP to Slave IP. Basically, in AXIS interface

Master IP is always and only writing to its Slave IP and no address for this data transfer

is required[5].

21

6.1.2.1 AXI Stream Interface Channel Signals

In this One Write Channel, there are 1 more signal named last is contained as well as

3 main signals. This last flag is responsible for indicating last bit on the input data

stream. This flag are shown is Figure 3.

Figure 6.3: AXI Stream Interface Channel Signals

 Valid: This flag notifies Slave IP that Master IP is whether transferring last data in

the stream or not.

 Updating Custom IP Writing Handshake Protocol

As can be seen on line 11930 of the “rnmf_in.c” file, nested for loop was used to obtain

the target data on the algorithm. Since there are too many iterations; algorithm spends

lots of time in this nested loop.

Figure 6.4: Time wasting 3 nested loops

By utilizing PL section of the FPGA, operation duration can be speed up for the reason

that the FPGA has so many DSPs in it. The steps shown for the custom IP design have

been followed.

This IP contains 5 registers and has a Lite interface. This IP considered Slave in respect

to the ARM CORTEX-A9 processor in the PS section.

Separate floating-point IPs have been added to the project for multiplying and

subtracting. Since algorithm will be working on 32-bit float variables, single floating-

22

point precision is chosen as precision of inputs. Then, active low reset pin is added.

Latency has not been changed to not violate positive WNS value.

Then, a new Verilog file is created from Add Sources ⇨ Add or create design sources.

Multiplication and subtraction blocks have been added to the newly created Verilog

file by instantiating from the floating_point_0.veo file. For this, the following

sequence is followed. IP Sources → floating_point_0 → Instantiation Template.

The created Verilog file can be seen on Figure 6.5 below.

Figure 6.5: custom_ip.v file

X, W, H are specified as input and T as output. Valid and ready signals are also defined

for both inputs and output variables. Since floating_point_0_mul is a multiplication

block, variable W is assigned to data A, variable H to data B and variable x_mul_h

assigned to result data. Then, variable X is assigned to data A of floating_point_0_sub

block, variable x_mul_h is assigned to data B, and variable T to result data. t_ready

signal value is defined always 1 due to the fact that PS side is always ready to accept

the answer whenever the IP finishes the computation.

Thereafter, custom_ip_top.v file created for the required handshake protocol between

the IP and ARM CORTEX-A9 processor. Code is shown in Figure 6.6 below.

23

Figure 6.6: custom_ip_top.v file

As it seen on the always block in below after transition on signal inform_valid

occurred, that means that block is ready to receive new X, W, H, input signals.

Figure 6.7: always block in custom_ip_top.v

On another block as it seen in below after ready and valid signals are both equals to 1

that means that handshake is done, and we can process and receive another inputs to

the newly created custom IP to calculate the equation T = X – W*H.

Figure 6.8: always block in custom_ip_top.v

These always blocks are needed for every input namely, X, W and H.

Lastly, a testbench file is written as seen on Figure 6.9 to test the accuracy of the

handshake top module.

24

Figure 6.9: Custom IP testbench file

Top module is verified on the simulation screen on Figure 6.10. This result shows that

the handshake mechanism works on the custom IP as it should and this IP can be

utilized in the RNMF algorithm.

Figure 6.10: Simulation output

The variable T, which holds the result of all these multiplication and subtraction

operations, is assigned to the 4th register of the custom IP block, and the inform_valid

variable required for the custom IP to work is assigned to the 3rd register. The zeroth

register of the block is assigned to the X variable, the 1st register to the W variable,

and the 2nd register to the H variable. These register assignments are important for

data exchange between PS and PL components.

All these are shown in the VIVADO interface as in the Figures 6.11 and 6.12 below.

Figure 6.11: IP internal register assignments

25

Figure 6.12: IP internal register assignments continious

Finally, on component.xml tab merge changes are done. Thus, IP is made ready by

clicking Re-Package IP from the Review and Package section.

After all of these IP creation process, it is time to implement this IP in the RNMF

algorithm. For this project, both the ARM processor on the PS part and the

programmable logics on the PL part of the ZedBoard will be needed. For that matter

it is needed to create .xsa file on VIVADO.

The block design of the hardware that will be uploaded to ZedBoard has been created

as it appears on the Figure 6.12.

Figure 6.13: Block design of the hardware

After creating the .xsa file, it is imported to the VITIS tool. That file is selected for

creating the platform which the application will run inside.

“custom_ip.h”and “custom_ip.c” files were created as in the Figure 6.14 and 6.15 in

order to access the registers of the custom IP created before.

26

1
#include "custom_ip.h"

Figure 6.14: custom_ip.c file

Figure 6.15: custom_ip.h file

Updated “rnmf_in.c” file can be seen on Figure 6.16. Since the IP is triggered with the

transition of the inform_valid signal. This signal value changed before reading T value

every time from 0 to 1 in order to read result value from IP register 4 which represents

the T signal.

Figure 6.16: updated rnmf_in.c file

27

After building the project and making connection of the FPGA with the PC. Log

operation is made on the TeraTerm to observe and draw the output GPR images of the

algorithm. The output of target and clutter data is seen on the terminal screen as shown

in the Figure 6.17.

Figure 6.17: Terminal screen

The running time of the algorithm was measured as 21 minutes. As it seen the

algorithm took so long. This can be explained as follows: As a result of adding custom

IP, number of operations which were one beforehand are increased to 6 and also

because the AXI communication requires 4 clock cycles to read and write the registers.

For this reason, the algorithm time is extended. However, since the FPGA can

implement functions parallel. By using parallel IPs this failure can be overcome.

As can be seen from the MATLAB outputs on Figure 6.18, the custom IP is working

correctly.

Figure 6.18: GPR images

28

 PARALLEL PROCESSING OF FPGA

 Parallelism On Nexys 4DDR

One of the great things that FPGA boards have is that they can process data parallelly

i.e., Custom IPs that created at the PL part yields their operation results in one clock

cycle. Thus, throughput can increase drastically. As seen on the former section

utilizing one and only Custom IP do not have ability to speed up the RNMF algorithm.

Aim is that utilizing any number of Custom IP in PL part parallelly to speed up the

process.

Figure 7.1: Aimed nested loop function

Aimed nested function block on Figure 7.1 is analyzed via Vivado HLS tool as seen

on the Figure 7.2 with the aim of making sure that the parallelism can legitimately

reduce the clock cycle of the operation process.

Figure 7.2: Necessary clock cycle of the nested function to give correct results

Primer loop which is named as loop_256 needs 2198 clock cycle to operate. So, the

original nested loop function needs 256*2198=562688 clock cycle and 1 for the input

signal reception. Totally 5625689 clock cycle is needed to whole process to complete.

Different algorithms are tested. It is decided that utilizing 16 Custom IPs parallelly

gives satisfying results. It should also be noted that utilizing more Custom IPs

parallelly gives better operation results. However, there is a tradeoff between speed

and the utilization of the resources of the FPGA as FFs and LUTs.

29

A sample code is given on Figure 7.3 and performance estimates utilizing 16 parallel

target code line parallelly is given on Figure 7.4.

Figure 7.3: A sample code utilizing 4 parallel line

By using parallelism, it is possible to decrease 5625689 to 33025 as seen on the

estimates.

Figure 7.4: Performance estimates for 16 parallel target code line

Proposed solution is applied to the design by connecting 16 Custom IP to the

MicroBlaze soft processor on Nexys 4DDR as in Figure 7.5 and the written C code is

changed accordingly.

Figure 7.5: Altered C code utilizing 16 parallel IPs

30

Figure 7.6: Proposed design on Nexys 4 DDR

Altered C code is operated on the proposed design and the resulting GPR images is

obtained as seen on Figure 7.7 correctly.

Figure 7.7: GPR images obtained with utilized parallel IPs

Operation results for a different proposal design is given as Table 6.1. But it should be

noted that since the whole operation takes up too long on Nexys 4 DDR because of the

low throughput of the card. These proposal operations tested for 2 iterations.

31

Table 7.1: Operation times for different proposals on Nexys 4 DDR

Proposals Original

C Code

Altered 16

parallel C

code

1 IP 4 parallel

IP

8 parallel

IP

16

parallel

IP

Time 0.4450’’ 0.4237’’ 0.5548’’ 0.5375’’ 0.5336’’ 0.5333’’

As seen on the Table 7.1 best result is achieved on the altered code with 16 parallel

line which is run on the design using 64 Kbyte cache memory. This result can be

interpreted as that parallelism can speed up the operation duration. However rapid

acquiring of data can increase up the performance of the algorithm as seen on the

altered 16 parallel C code which runs on the design using cache memory. This result

gives idea of using the DMA block on the design which enables the system to acquire

data on DDR directly to the custom IPs on the PL section instead transferring to

processor on the PS.

 Parallelism On Zynq-7000 SoC

Same parallelism idea is tested on the ZedBoard as seen on Figure 7.8 and the

operation results for different proposals is given on Table 7.2.

Figure 7.8: Zynq-7000 SoC design utilizing 16 parallel IP

As seen on the Table 7.2 it is not a good practice to run code on a memory based

custom IPs even if parallelism is utilized. The reason is that ARM CORTEX-A9

processor in the PS section of the Zynq-700 SoC is operate in high frequency, 666

MHz to be exact. Operating in 100 MHz PL section does not improve the performance

32

the system on the contrary it slows down the process because of the transmitting

signals between PS and PL. As a conclusion stream-based IP and utilizing DMA can

yield a higher performance.

Table 7.2: Operation times for different proposals on Zynq-7000 SoC

 Altered Codes Parallelism
Optimization
Levels

for(i0=0;i0<256;i0++
)
for(i1=0;i1<183;i1++
)

for(i1=0;i1<183;i1++)
for(i0=0;i0<256;i0+=16
)
for(i2=0;i2<16;i2++)

1 IP 4 IPs 8 IPs 16
IPs

-O0 3’54’’ 3’42’’ 16’26’’ 16’14’’ 16’12’’ 16’10’’

-O3 1’15’’ 1’16’’ 12’10’’ 12’10’’ 12’12’’ 12’12’’

 DIRECT MODULE ACCESS (DMA) UTILIZATION ON FPGA

 DMA Utilization on Nexys 4DDR

RNMF Algorithm with single AXI Lite interfaced custom IPs which performs T = X

– W * H calculation completed process in 20.1205 seconds for 20 iterations. It is

obvious that the duration needs to be improved. Also, as it concluded from the former

section there is a need for special module to acquire data quicker. That module is called

Direct Module Access (DMA). What DMA simply does is to transmit data from

memory (DDR2 SDRAM) to intellectual property (IP) for each and every entry of data

in each clock cycle. Thus, data does not need to be processed in the processor. In that

way without any primary functions get involved i.e., fetch, decode, execute, and write

back it is possible to calculate output of operation in a clock cycle.

DMAs in the whole project is configured as simple mode since the whole data in the

memory is consecutive. It is also learned that for non-consecutive data DMA offers

Scatter Gather Mode as seen on the Figure 8.1. Width of Buffer Length Register set as

26. This value represents the maximum value DMA can transmit which is 2^26 =

67,108,864 byte.

33

Figure 8.1: DMA Configurations

S_AXI_LITE port on DMA module is used for configuration i.e., flags, registers. Two

more slave ports are added to the AXI SmartConnect module named as S02_AXI and

S03_AXI. These ports allow DMA to read data from memory map. M_AXI_MM2S

(AXI4 Memory Map Read) and M_AXI_S2MM (AXI4 Memory Map Write) ports on

DMA module are responsible for this reading and writing operation respectively.

Mentioned ports can be seen on Figure 8.2.

Figure 8.2: DMA ports

It can be also seen from the Figure 8.2 that DMA module is compatible with the AXI

Stream interface to communicate with other IPs. This interface enables transmitting

data in every clock cycle. AXI4 Stream Slave (S2MM) and AXI4 Stream Master

34

(MM2S) are the ports that allow reading from and writing to peripheral IPs,

respectively. Additional two more DMA module which only performs reading form

memory, is added to the design for the reason that 3 total namely X, W and H data are

needed to calculate target data. Selecting only reading operation on DMA

configuration interface can be seen on Figure 3.

 Figure 8.3: Selecting reading operation on DMA Figure 8.4: Tlast signal

To calculate the target data AXI Stream Interfaced Floating Point IPs are used on the

Vivado Repository. Optional TLAST flag are added to the transmitted data to make

data transaction over DMA reliable. TLAST flag designates the last bit of the

transmitted data frame. Hence this flag is used to indicate the of the transaction.

Created IP on the design can be seen on the Figure 8.5.

Figure 8.5: Design

To ensure that reading and writing from peripheral IPs are working correctly, debug

signals are added to the ports (S2MM) and (MM2S), respectively. With helping of the

35

ILA (Internal Logic Analyzer) block it is easier to observe internal signals. ILA and

the debug signals are seen on the Figure 8.6.

Figure 8.6: ILA and debug signals

Original code snippet that aimed to utilize with the DMA module is seen on the Figure

8.7. As it seen on the code X, W and H arrays hold 46848, 256 and 183 data in the

arrays respectively. X and target arrays in this original code holds each 256 data in its

columns starting from up to bottom. This behavior continues for each column from

left side of the matrix to the right. This is shown in Figure 8.8.

Figure 8.7: Original code

Figure 8.8: X[46848] and target[46848] array algorithm

25
6

ve
ri

183 veri

36

It can be also shown that target array data values are acquired starting from beginning

of the row to the end of the row as stated as black arrow on Figure 8.8.

Since the original code expects continuity for the W and H arrays, as in the array X,

two new arrays named W_Temp and H_Temp are created. As in the original code

does, W_Temp array repeats whole 256 W data over 183 times continuously. And

H_Temp array repeats each H data value 256 times one by one. These arrays are shown

on Figure 9.

Figure 8.9: Newly created temporary W and H arrays

On VITIS SDK DMA configurations are made as seen on the Figure 8.10. This

configuration enables transmission of data.

Figure 8.10: DMA Configurations

Necessary codes to utilize DMA in the design properly is shown in Figure 8.11. These

codes can be explained as below.

Since MicroBlaze soft processor in the design uses a 64 Kbyte cache memory, deleting

data in cache and making sure that the data that is wanted to transmit resides in the

DDR2 SDRAM. Then DMA to Device (DDR to IP) and the Device to DMA (IP to

DDR) data transmission codes are added. Afterwards, it is waited for the transmitting

process to complete successfully. With the last code it is made sure that the target data

values are resides in DDR.

37

Figure 8.11: DMA utilization codes

ILA Trigger Setup is made as seen on the Figure 8.12. ILA block triggers when the

t_valid flag on the W array is set.

Figure 8.12: Trigger Setup

ILA observations are shown in Figure 8.13. It is seen that X, W and H array transmits

data from DDR to IP according to the plan. X array transmits 46848 data sequentially,

W array transmits 256 data in a repeating session 183 times and H array transmits 183

data repetitively 256 times for each of the value. In Figure 8.13, 200 data inputs are

observed. Therefore, it is logical that H array seems to remain constant.

Figure 8.13: ILA observations

The target[46848] array and the data written to DDR over DMA is shown in Figure

8.14 and in Figure 8.15 respectively. From the two figures it can be said that the DMA

is working according to plan.

38

Figure 8.14: target[46848] array

Figure 8.15: Data written DDR over DMA

Lastly the whole Rnmf algorithm is run. Target and Clutter data are obtained in less

time successfully on Figure 8.16.

Figure 8.16: Resulting GPR images.

 DMA Utilization on Zynq-7000 SoC

To utilize DMA module as well in ZedBoard, design shown in Figure 8.17 is built.

Design procedure is almost identical except for the DMA structure.

Figure 8.17: Design on ZedBoard

While configuring DMAs in the design, Max Burst Size is chosen as maximum 256

bits, as shown in Figure 18. This value determines the size of the packet in each

transmission of the DMA block using AXI Stream interface. To increase the

39

performance of the system this chosen as maximum. By this means it is aimed that the

high throughput can be achieved.

Figure 8.18: DMA Max Burst Size configuration

Zynq architecture offers High Performance (HP) Slave Ports to allow the IPs in the

Programmable logic (PL) side of the FPGA to reach in a fast manner directly to the

data in the DDR memory without visiting the processor. This can be seen on the Zynq

internal design as shown in Figure 8.19.

Figure 8.19: HP Slave Ports on Zynq Architecture

PL side of the FPGA operates in 100 MHz. Data length is 32 bits. Thus, the bandwidth

on HP line is 100 MHz * 32 bits, 400MBps.

Table 8.1 shows the operating durations for different optimization selections. As it

seen from the table aimed performance is not met in the ZedBoard. The reason for this

is that ARM CORTEX-A9 processor in the Zynq architecture is already operates in

very high frequencies namely 666 MHz.

Table 8.1: Operation durations on ZedBoard

Optimizations Without DMA With DMA

-O0 3’54’’ 4’29’’

-O3 1’15’’ 1’44’’

40

 CREATING HARDWARE VIA VIVADO HLS

 HLS Utilization on Nexys 4DDR

VITIS High-Level Synthesis enables creating hardware by means of writing pure C

based codes. Code snippets in “rnmf_in.c” file will be tried to be converting into

hardwares by utilizing Vitis HLS. Original code snippet that is going to be hardware

on Vitis HLS can be seen on Figure 9.1, 9.2, and 9.3. b_abs() function prints the

absolute value of target[46848] array data to the varargin_2[46848] array before the

first loop. After necessary operations are performed in the first loop, array z1[46848]

is obtained at the end of the loop. b_sign() function detects the sign of the data of the

target array before the second loop starts. Newly obtained array is multiplied with the

z1[46848] array to produce the output target[46848] array.

Figure 9.1: b_abs() function

Figure 9.2: b_sign() function

Figure 9.3: Code snippet is going to be hardware

Original loop can be simplified as shown in Figure 9.4 and 9.5. Simplified function

has 2 loops and two functions. Thus, provides higher performance.

41

Figure 9.4: Simplified functions header code

Figure 9.5: Simplified C++ functions

A new testbench file is written in order to make sure that newly created simplified

code gives the same result as original code. In this testbench file, my_loop_hw()

represents the hardware function, while loop_sw() represents the code that is currently

running correctly in the software. These both functions are run with the same input

signals and the output signals are compared. In this way accuracy of the simplified

code is verified. Testbench file can be shown as Figure 9.6.

42

Figure 9.6: Testbench file

43

Before running the testbench file, since HLS contains more than one function, the

my_loop_hw() function to be converted to hardware was written in Project Settings →

Synthesis → Top Function.

It can be seen in Figure 9.7 that the simplified code after Run C Simulation gives the

same results as the code already used in the software.

Figure 9.7: Testbench output

Run C Synthesis is used to synthesize the function. The output obtained after the

synthesis is given in Figure 9.8.

Figure 9.8: Synthesis output

As can be seen, the hardware completes the operation in 8.718 nanoseconds at each

clock. In this way, setup and hold time requirements are fulfilled. In other words, slack

is positive. The hardware finishes its work in a total of 374785 clock cycles. As seen

from the loop part, the amount of data in the array is 46848, each iteration takes 8 clock

cycles, 1 clock cycle is spent to read the data from the memory. Operation duration =

374785 = 46848 ∗ 8 + 1 is calculated as can be seen from the pipeline part, pipeline is

not used in this code.

44

Figure 9.9: Utilization

As can be seen in Figure 9.9, since the hardware uses multiplication on line 19, 3

floating point multipliers (DSP48E) have been added to the hardware. The hardware

also uses 529 FF and 743 LUT.

In the HLS interface, the blocks in which the elapsed time in each iteration is spent

can be observed in detail by clicking on the Analysis section[6].

Figure 9.10: Analysis section

As a result of the synthesis, the Verilog code of the hardware is observed as shown in

Figure 9.11.

Figure 9.11: Verilog code of the hardware

45

To verify the functionality of the Verilog code written by HLS, Run C/RTL

Cosimulation was performed. The correctness of the process was observed on the

console screen as shown in Figure 9.12.

Figure 9.12: Successful Run C/RTL Cosimulation

 AXI Stream Compatible Hardware on Nexys 4DDR

In order to speed up the RNMF algorithm and to read the data on the hardware created

in each clock cycle, the hardware created was made compatible with AXI Stream. For

this, input and output data were selected Interface → mode → axis from the VIVADO

HLS Directive Editor window. In addition, Interface → mode → ap_ctrl_none was

selected from the same window to cancel the control port. For faster and shorter

running hardware, Directive → Pipeline was activated. The created pragmas can be

seen in Figure 9.13.

Figure 9.13: Pragmas

As can be seen in Figure 9.14, the interface of the hardware by performing C Synthesis

has signals such as valid and ready that provide communication on the AXI Stream

interface. However, as can be seen, the last signal, which is important in the use of

DMA, could not be obtained.

46

Figure 9.14: Hardware interface

To solve this problem, the header file has been reorganized and is shown in Figure

9.15. In order to enable DMA usage, target_in and target_out data are defined as

axis_data format with last flag.

Figure 9.15: AXI Stream compatible version of the header file

The vectors in my_loop.cpp have been adapted to the stream interface. In addition, the

last bit representing the last data has been assigned. The file is shown in Figure 9.16.

Figure 9.16: AXI Stream compatible hardware code

47

The adaptation process to the AXI Stream interface continued in the testbench code.

The changes made are shown in Figure 9.17.

Figure 9.17: AXI Stream compatible Testbench

48

C/RTL Cosimulation was run, and a successful result was obtained as shown in Figure

9.18.

Figure 9.18: Successful simulation result

Synthesis was performed and the last bit was obtained as seen in the new interface.

Figure 9.19: Hardware interface

It can be said that the performance setup and hold time requirements in the synthesis

result are complied with, and the hardware runs faster by reducing the processing time

to 46863 clock cycles thanks to Pipeline. The outputs are shown in Figure 9.20.

Figure 9.20: Performance output

Finally, as shown in Figure 9.21, Export RTL is selected, and the hardware design is

finalized.

Figure 9.21: Hardware design

49

 Integration Of the Hardware With The RNMF Algorithm

The created IP was added to the design together with the DMA as shown in Figure

9.22.

Figure 9.22: Hardware IP

In the design, it is aimed to speed up the RNMF algorithm by adding DMA and DMA

of the written hardware to speed up the target data. The whole design can be seen in

Figure 9.23.

Figure 9.23: Full design

The DMA configuration and data transfer codes that will provide the connection

between the manufactured hardware and DDR are shown in Figure 9.24 and Figure

9.25 in the rnmf_in.c file.

50

Figure 9.24: DMA configuration codes

Figure 9.25 DMA data transfer codes

RNMF was set to the original iteration number of 10000 and tested. In the GPR images

shown in Figure 9.28, it can be observed that the generated hardware works

successfully.

Figure 9.26: GPR images

Finally, the number of iterations was set to 2 and the speed was measured. The running

time of the algorithm was 0.3531 seconds. This is considerably faster than the time

before the hardware was created (1.5896 seconds), as expected.

51

 HLS Hardware Test on Zynq-7000 SoC

Created code is tested on the ZedBoard. Design for this test can be seen on the Figure

9.29.

Figure 9.27: Design for ZedBoard

Operation durations are given as Table 9.1.

Table 9.1: Operation durations on ZedBoard

Optimization Without Hardware With Hardware
-O3 1’15’’ 00’38’’

As it seen form the Table 9.1 newly created hardware improves performance of the

RNMF algorithm drastically.

52

10. REALISTIC CONSTRAINTS AND CONCLUSIONS

10.1 Practical Application of this Project

The practical application of this project is its use as image processing in portable radar

systems. It can be integrated into other systems where the RNMF algorithm is applied

to the image data.

10.2 Realistic Constraints

Xilinx Nexys4 DDR, Zedboard FPGA devices and Vivado Software are paid.

However, these were provided by the faculty laboratory.

10.3 Standards

The project was executed in adherence to the IEEE guidelines.

10.4 Health and Safety Concerns

This project does not include health and safety concerns.

10.5 Conclusion

The data delivered by the RADAR system has been effectively handled on the FPGA,

and the image processing calculation has been essentially accelerated by the FPGA

parallel operation capability and the DMA method. Capacity and design processes of

Nexys4 DDR and Zedboard FPGA models are included. It can be foreseen that

distinctive calculations other than RNMF will be quickened in FPGA systems with

comparative approaches.

10.6 Future Work and Recommendations

This project focuses on the development of a solution using FPGA for object detection

with GPR technology. The application area of the project covers various areas where

the detection of objects hidden by obstacles is very important. We aim to improve the

53

overall performance of the system by addressing realistic constraints such as

processing speed and data management through the use of FPGAs and custom

hardware design. This project contributes to the development of image recognition

capabilities and lays the foundation for further research and development in the field

of GPR-based object detection.

54

REFERENCES

[1] ZedBoard_Configuration and Booting Guide

[2] ZedBoard User Guide

[3]
 https://xilinx.github.io/embeddedsw.github.io/uartps/doc/html/api/group__uar
tps__v3__11.html#ga60240486c69f6167ab13194ced5e8bb>

[4] https://support.xilinx.com/s/article/1053914?language=en_US

[5] AMBA® AXI™ and ACE™ Protocol Specification

[6] Vitis High-Level Synthesis User Guide

