
i 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ISTANBUL TECHNICAL UNIVERSITY 

ELECTRICAL-ELECTRONICS FACULTY 

SENIOR DESIGN PROJECT 

JANUARY, 2023 

FPGA Implementation for OnSite Target Detection with a Low Cost and Portable 

Ground Penetrating Radar System  

 

Muhammed Furkan ERTURAL 

Çisem KURT 

ELECTRONICS AND COMMUNICATION ENGINEERING 

DEPARTMENT 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRONICS AND COMMUNICATION ENGINEERING 

DEPARTMENT 

 

JANUARY, 2023 

ISTANBUL TECHNICAL UNIVERSITY  

ELECTRICAL-ELECTRONICS FACULTY 

 

FPGA Implementation for OnSite Target Detection with a Low Cost and Portable 

Ground Penetrating Radar System  

 

SENIOR DESIGN PROJECT 

 

 

Muhammed Furkan ERTURAL 

(040180122) 

 

Çisem KURT 

(040200790) 

 

 

Project Advisor: Prof. Dr. Berna Örs Yalçın 

Project Co-Advisor: Prof. Dr. Işın Erer 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Düşük Maliyetli ve Taşınabilir Yer Nüfuz Eden Radar Sistemi ile Yerinde Hedef 

Tespiti için FPGA Uygulaması 

LİSANS BİTİRME TASARIM PROJESİ 

 

 
 

 Muhammed Furkan ERTURAL 

(040180122) 

 

Çisem KURT 

(040200790) 

 

Proje Danışmanı: Prof. Dr. Berna ÖRS YALÇIN 

Proje Yardımcı Danışmanı: Prof. Dr. Işın ERER 

 

 

OCAK, 2023 

 

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ 

İSTANBUL TEKNİK ÜNİVERSİTESİ  

 ELEKTRİK-ELEKTRONİK FAKÜLTESİ 

 

 



iv 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

Muhammed Furkan ERTURAL       

(040180122) 

We are submitting the Senior Design Project Interim Report entitled as “FPGA 

Implementation for OnSite Target Detection with a Low Cost and Portable Ground 

Penetrating Radar System”. The Senior Design Project Report has been prepared as to 

fulfill the relevant regulations of the Electronics and Communication Engineering 

Department of Istanbul Technical University. We hereby confirm that we have realized all 

stages of the Senior Design Project Interim Report by ourselves, and we have abided by 

the ethical rules with respect to academic and professional integrity.  

Çisem KURT        

(040200790) 



v 

FOREWORD 

First of all, we would like to thank our project advisor Prof. Dr. Sıddıka Berna ÖRS 

YALÇIN, who helped us with her knowledge and experience in this project and is 

understanding in every respect, Prof. Dr. Işın ERER who is our assistant advisor and 

Prof. Dr. Selçuk PAKER who is supported us for their support and assistance during 

the project. We would also like to thank RA. Orhan APAYDIN and Canberk TATLI 

who worked with us on this project. Finally, we would like to express our endless 

gratitude to our families who have supported us and made all kinds of sacrifices 

throughout our university life. 

 

 

January 2023 Çisem KURT 

Muhammed Furkan ERTURAL 

 

 

 

  

 

  



vi 

 

  



vii 

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................................ v 

TABLE OF CONTENTS ....................................................................................................... vii 

ABBREVIATIONS ................................................................................................................. ix 

LIST OF FIGURES ................................................................................................................ xi 

SUMMARY  ............................................................................................................................ xv 

ÖZET          ............................................................................................................................. xvi 

 INTRODUCTION ................................................................................................................ 1 

     About the Report .............................................................................................................. 1 

     Purpose of Project ............................................................................................................ 2 

     Project Steps ..................................................................................................................... 2 

 BASIC INFORMATION AND CONCEPTS .................................................................... 4 

    Xilinx Vivado Environment General Information ........................................................... 5 

     VITIS IDE General Information ...................................................................................... 5 

     Zedboard Development Kit General Information ............................................................ 6 

     Zynq-7000 All Programmable System On Chip .............................................................. 8 

     Vivado Tutorial .............................................................................................................. 10 

DATA TRANSFER WITH UART SERIAL COMMUNICATION PROTOCOL ....... 18 

     UART Serial Communication Protocol ......................................................................... 18 

     Architectural Design of Zynq-7000 ............................................................................... 20 

     Hello World Test Application ........................................................................................ 22 

     Failed Data Transfer Applications ................................................................................. 26 

           ................................................ 26 

          AXI UART_LITE block diagram and C code application ................................... 28 

          Only Zynq-7000 processor block diagram and C code application  ..................... 32 

     Successful Data Transfer Implementation ..................................................................... 36 

RNMF APPLICATION ON VITIS ................................................................................... 43 

    4  RNMF Algorithm ........................................................................................................... 43 

     Information About GPR Image ...................................................................................... 44 

     Literatur Review ............................................................................................................. 44 

  RNMF Application VITIS C Code ................................................................................. 47 

 ................................. 54 



viii 

     Implementation of Floating-Point Numbers on Vivado ................................................. 54 

          754 Format floating point numbers arithmetic calculations ........................ 54 

          Floating-Point IP Generator (7.1) custom IP design ............................................. 56 

     Custom IP Design in Vivado .......................................................................................... 58 

     Block Design of Project ................................................................................................. 67 

     Vitis Code of Project ...................................................................................................... 69 

REALISTIC CONSTRAINTS AND CONCLUSIONS ................................................... 71 

     Practical Application of This Project ............................................................................. 71 

     Realistic Constraints ....................................................................................................... 71 

          Social, environmental and economic impact ......................................................... 71 

          Cost analysis .......................................................................................................... 72 

          Standarts ................................................................................................................ 72 

          Health and safety concerns .................................................................................... 72 

 Future Work and Recommendations .................................................................................. 72 

 Conclusion .......................................................................................................................... 73 

REFERENCES ....................................................................................................................... 74 

CURRİCULUM VITAE ........................................................................................................ 76 

CURRİCULUM VITAE ........................................................................................................ 77 

 

 

 

 

 

 

  

 

 

 

 

 



ix 

ABBREVIATIONS  

AC    : Alternative Current  

 

ASIC   : Application Specific Integrated Circuit 

 

       AXI                                   : Advanced eXtensible Interface 

BRAM              : Block Random Access Memory 

 

CANBUS   : Controller Area Network Bus 

 

CPU   : Central Process Unit 

 

DC    : Direct Current 

 

DDR    : Double Data Rate Synchronous Dynamic Random-Access 

Memory 

 

DMA   : Direct Memory Access 

 

       DSP                                   : Digital Signal Processing 

EMI   : Electromagnetic Interference 

 

FPGA              : Field Programmable Gate Array 

GMAC    : Galois Message Authentication Code 

 

GPR              : Ground Penetrating Radar 

 

GPIO   : General Purpose Input and Output 

 

HDL               : Hardware Description Language 

 

HLS   : High Level Synthesis 

 

IDE   : Integrated Development Environment 

 

I2C    : Inter-Intergrated Circuit 

 

IEEE   : Institute of Electrical and Electronics Engineers 

 

IP                : Intellectual Property 

 

LED   : Light Emission Diode 

 

LUT   : Look-Up Table 

 

MCU   : Micro Controller Unit 



x 

 

MIO    : Multi Input-Output 

 

MMC   : Multi Media Card 

 

NMF   : Non-negative Matrix Factorization 

 

OTG   : On The Go 

OLED   : Organic Light Emitting Diode 

PS   : Programmable Software 

 

PL   : Programmable Logic 

 

RNMF    : Robust Nonnegative Matrix Factorization 

 

RPN   : Region Proposal Network 

 

RXD   : Receive Data 

 

SD   : Secure Digital Memory Card 

 

SDIO   : Secure Digital Input Output 

 

SDSoC   : Software Defined System On Chip 

 

SDK   : Software Development Kit 

 

SPI   : Serial Peripheral Interface 

 

SoC   : System on Chip 

TXD   : Trasmit Data 

 

UART    : Universal Asynchronous Receiver Transmitter 

USART   : Universal Synchronous Receiver Transmitter 

 

USB   : Universal Serial Bus 

JTAG   : Joint Test Action Group 

VHDL   : Very High Speed Integrated Circuit Hardware 

Description Language 



xi 

LIST OF FIGURES 

           Page 

Figure 2.1: ZedBoard Development Kit……………………………………...……...………...6 

Figure 2.2: Zynq-7000 All Programmable SOC ................................................................... …8 

Figure 2.3: Creating a New Project…………………………………………………...........…10 

Figure 2.4: Naming the Project ………...………………………………………………….....10 

Figure 2.5: Determining the Project Type …………………………………………….…......11 

Figure 2.6: Selecting the Card to Use ...................................................................................... 11 

Figure 2.7: Creating the Block Design .……………………………………………………...12 

Figure 2.8: Naming the Block Design ..................................................................................... 12 

Figure 2.9: Adding the Processor ............................................................................................ 13 

Figure 2.10: Making Automatic Connections of the Processor .............................................. 13 

Figure 2.11: Customizing the Processor .................................................................................. 14 

Figure 2.12: Transitioning to the Vitis Platform ..................................................................... 14 

Figure 2.13: Creating a New Application Project ................................................................... 15 

Figure 2.14: Creating a New Workspace on the Vitis Platform.............................................. 15 

Figure 2.15: Embedding the Block Design in the Project  ...................................................... 16 

Figure 2.16: Adjusting the Block Design on Vitis .................................................................. 16 

Figure 2.17: Adding New Platform Template ......................................................................... 17 

Figure 2.18: Adding Main Source Code ................................................................................. 17 

Figure 3.1: UART Data Frame Format ................................................................................... 19 

Figure 3.2: Architectural Design of the Zynq-7000 Chip ....................................................... 20 

Figure 3.3: UART Access of Zynq-7000 Chip ....................................................................... 21 

Figure 3.4: Hello World Test Application Block Design........................................................ 22 

Figure 3.5: Hello World Test Application C Code ................................................................. 23 

Figure 3.6: Making Hello World Project UART Communication Settings ............................ 24 

Figure 3.7: Build the Project ................................................................................................... 24 

Figure 3.8: Obtaining the Output on the Terminal with the Test Code Applied on the                            

Vitis Platform ........................................................................................................................... 25 

Figure 3.9: AXI GPIO Block Diagram for Radar Data Transfer via UART .......................... 26 

Figure 3.10: AXI GPIO C Code for Radar Data Transfer via UART ..................................... 27 

Figure 3.11: AXI UART_PS LITE Block Diagram for Radar Data Transfer via UART ...... 28 

Figure 3.12: AXI UART_PS LITE C Code for Radar Data Transfer via UART ................... 29 



xii 

Figure 3.13: Observed Read Data in TeraTerm Terminal ...................................................... 31 

Figure 3.14: Zynq-7000 Processor Block Diagram for Radar Data Transfer via UART ....... 32 

Figure 3.15: Zynq-7000 C Code for Radar Data Transfer via UART .................................... 33 

Figure 3.16: Observed Read Data in TeraTerm Terminal ...................................................... 34 

Figure 3.17: Real Radar Measurement Data ........................................................................... 35 

Figure 3.18: Block Design of Successful Data Transfer Implementation .............................. 36 

Figure 3.19: Vitis C Code of Successful Data Transfer Implementation ............................... 37 

Figure 3.20: FPGA Programmed Correctly, FPGA Display ................................................... 39 

Figure 3.21: Sending Data From Terminal to FPGA .............................................................. 39 

Figure 3.22: Data Read From Terminal .................................................................................. 40 

Figure 3.23: Last Data Read From Terminal .......................................................................... 40 

Figure 3.24: Data Sent to FPGA ............................................................................................. 41 

Figure 3.25: Data Read From Terminal .................................................................................. 42 

Figure 4.1: Raw GPR Image Collected from Target Object ................................................... 45 

Figure 4.2: Target Object Removed Clutter Image ................................................................. 45 

Figure 4.3: Clutter (Object Removed) Image ......................................................................... 46 

Figure 4.4: RNMF Vitis Main C Code (1-38)......................................................................... 47 

Figure 4.5: RNMF Vitis Main C Code (39-76)....................................................................... 48 

Figure 4.6: RNMF Vitis Main C Code (76-105)..................................................................... 49 

Figure 4.7: RNMF Algorithm Vitis C Code (rnmf_in.c) ........................................................ 49 

Figure 4.8: Time Analysis Terminal Result ............................................................................ 52 

Figure 4.9: Target Data Removed Form Clutter by RNMF Algorithm .................................. 52 

Figure 4.10: Clutter Data ......................................................................................................... 53 

Figure 5.1: Single Precision IEEE-754 Floating-Point Standard ............................................ 55 

Figure 5.2: Floating Point (7.1) IP .......................................................................................... 56 

Figure 5.3: IP Package Type Selection ................................................................................... 57 

Figure 5.4: Naming the IP Packet ........................................................................................... 57 

Figure 5.5: Configuring Interface Settings .............................................................................. 58 

Figure 5.6: Edit IP ................................................................................................................... 58 

Figure 5.7: Operation Selection .............................................................................................. 59 

Figure 5.8: Selection of Precision of Input ............................................................................. 59 

Figure 5.9: Interface Options Settings .................................................................................... 60 

Figure 5.10: IP7 Main Verilog Code (1-27) ............................................................................ 61 

Figure 5.11: IP7 Main Verilog Code (27-46) .......................................................................... 61 



xiii 

Figure 5.12: IP7 TestBench Verilog Code (1-27) ....................................................................62 

Figure 5.13: IP7 Main Verilog Code (27-46) ..........................................................................63 

Figure 5.14: Simulation Results ...............................................................................................63 

Figure 5.15: Register Assignments ..........................................................................................64 

Figure 5.16: Register Assignments Module .............................................................................64 

Figure 5.17: Block Design of Project ......................................................................................66 

Figure 5.18: Schematic of Project ............................................................................................67 

Figure 5.19: Vitis C Code of Project .......................................................................................68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A 

LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM 

SUMMARY 

In recent years, the processing speed and processing capacity of images have become 

increasingly important in ground-penetrating radar technologies. Mobile radars 

developed for the detection of buried objects are of great importance for use in military 

and civilian life. For this reason, studies are being carried out for the ability to perform 

fast operations on radars. 

In order to accelerate the image processing algorithms made in ground-penetrating 

mobile radar systems, applications such as optimizing the software are made, but they 

are insufficient. In order to make up for this shortcoming, in this project, one of the 

large matrix multiplications written for image processing has been designed to transfer 

to hardware. Thus, when the matrix multiplication part, which will provide 

communication between the FPGA and the SoC on it, is passed, a joint design of 

hardware and software has been made so that the multiplication process is performed 

much faster than the processor through the FPGA. 

Since the software and hardware will work together for the mobile ground penetrating 

radar system, the Verilog hardware design language (HDL) was preferred on the 

Zedboard and FPGA, which is a Field Programmable Gate Arrays (FPGA) with 

System On-Chip (SoC) in the previous works of the project. The target image and the 

clutter are separated from each other by running the RNMF algorithm, which is a 

program written in C language using the Zynq-7000 processor. It has been observed 

that this decomposition is faster than using only the processor since it is done using 

FPGA. 

 



xvi 

 

DÜŞÜK MALİYETLİ,TAŞINABİLİR YERE NÜFUZ EDEN RADAR 

SİSTEMİ İLE YERİNDE ETKİN KARGAŞA GİDERME VE HEDEF 

TESPİTİ 

ÖZET 

Son yıllarda gelişen yere nüfuz eden radar teknolojilerinde görüntülerin işlenme hızı 

ve işlenme kapasitesi giderek önem kazanmıştır. Gömülü cisimlerin tespiti için 

geliştirilen mobil radarlar askeri ve sivil yaşamda kullanım için büyük bir önem 

taşımaktadır. Bu sebeple radarlar üzerinde hızlı işlem yapabilme kabiliyeti için 

çalışmalar yapılmaktadir. 

Yere nüfuz eden mobil radar sistemlerinde yapılan görüntü işleme algoritmalarını 

hızlandırabilmek için yazılımların optimize edilmesi gibi uygulamalar yapılmakta 

ancak yetersiz kalmaktadır. Bu eksikliği giderebilmek için bu projede görüntü işleme 

için yazılmış olan büyük matris çarpımlarından birini donanıma aktarma tasarımı 

yapılmıştır. Böylece donanım ve üzerinde bulunan işlemci arasında haberleşme 

sağlanacak matris çarpım kısmına geçildiğinde çarpma işlemi Alan Programlanabilir 

Kapı Dizileri (FPGA) aracılığıyla işlemciden çok daha hızlı bir şekilde 

gerçekleştirilmesi için donanım ve yazılım ortak bir tasarım yapılmıştır. 

Mobil yere nüfuz eden radar sistemi için yazılım ve donanım ortak çalışacağından 

dolayı projenin daha önceki çalışmalarında üzerinde System On-Chip (SoC) bulunan 

bir  Alan Programlanabilir Kapı Dizileri (FPGA) olan Zedboard ve FPGA üzerinde 

Verilog donanım tasarlama dili (HDL) tercih edilmiştir. Zynq-7000 işlemcisi 

kullanılarak C dilinde yazılmış bir program olan RNMF algoritması çalıştırılarak 

hedef görüntü ve clutter birbirinden ayrıştırılmıştır. Bu ayrıştırmanın FPGA 

kullanılarak yapıldığından sadece işlemci kullanılarak yapılana göre daha hızlı olduğu 

gözlemlenmiştir.



1 

 INTRODUCTION 

 About the Project 

This report is the report of the senior design project named “FPGA Implementation for 

On-Site Target Detection with a Low Cost and Portable Ground Penetrating Radar 

System” and describes the work done within the scope of the senior design project. 

The project, which is within the scope of the TUBUTAK 1001 Supporting Scientific 

and Technological Research Projets, covers the on-site detection of buried objects with 

the ground penetrating radar system. However, this graduation project includes the 

part of the TUBITAK project, where the radar data read from buried objects is 

simultaneously read, transferred to the ZedBoard development board and processed on 

the processor to obtain clutter-free data.  

The first part of this report includes the Vivado Program used throughout the project, 

the Vitis IDE where C codes are written and compiled, the ZedBoard which is the 

development board used, the Zynq-7000 SOC, and the tutorial on creating projects, 

developing and testing C code.  

The second part of this report deals generally with reading data from ground 

penetrating radar. In this context, UART serial communication protocol, accessing and 

configuring the UART protocol on ZedBoard, testing the simple Hello World 

application that tests the card is working, tried and unsuccessful applications to read 

data from the radar with the UART serial communication protocol, and finally, 

successful with the UART serial communication protocol from the radar. The 

application that enables data to be read will be explained. 

The third part of this report covers the removal of clutter from the data by processing 

the data read from the ground penetrating radar with the RNMF algorithm. In this 

section, the RNMF algorithm, GPR image, literature review on previous studies in 

these areas and the execution of the C code of the RNMF algorithm written in the Vitis 

interface on the block design designed in the Vivado program will be explained. 



2 

The fourth part of this report is generally about the hardware implementation of the 

software implemented RNMF algorithm. In this section, Vivado CUSTOM IP design, 

block diagram used in the project and Vitis code of the project will be explained. 

The final section of this report deals with realistic constraints, conclusions and 

recommendations. In this section, the application areas of the study, realistic design 

constraints, the cost of the project, the standards for which the project is suitable, the 

social, environmental and economic impacts of the project, health and safety risks, the 

implications of the project and suggestions for the future will be explained. 

 Purpose of Project 

Ground penetrating radar system is a widely used method for finding buried non-

metallic objects. Existing and modeled methods for detecting and classifying buried 

objects require data from multiple targets. In order to detect the buried target object, it 

is necessary to separate the clutter in the radar image from the target object. 

This project covers the first phase of the TUBITAK project, which is being studied for 

the detection of buried objects, and the application of clearing up the confusion. With 

this graduation project aimed to: 

• simultaneous reading of the data from the radar in the correct format, 

• Implementation of the RNMF (Robust Nonnegative Matrix Factorization) 

algorithm previously performed on Matlab in the C language and Vitis 

interface of the read data 

• Accelerating the project by hardware implementation of the implemented 

RNMF algorithm 

 Project Steps  

In this section, the operations carried out during the project will be explained. 

First, a literature search was conducted on the RNMF algorithm and GPR image to be 

used in the project. Then, a test code was written to prove that the ZedBoard 

development board works correctly. With the test code, the sentences "Hello World" 

and "Successfully ran Hello World application" were observed from the terminal, it 



3 

was ensured that the card was working correctly. In the first stage of data acquisition, 

it was requested to take the data online. However, because the ZedBoard development 

board works with the Linux operating system, but the computer we use has the 

Windows operating system, positive results could not be obtained. Afterwards, it was 

decided by our advisor to transfer the data offline. For this, the working logic of the 

UART serial communication protocol was investigated. Block design was created in 

Vivado for data transfer. Various block designs and C codes were tried until the data 

was read correctly. These applications are described in detail in Chapter 3. The Zynq-

7000 processor was added to the created design. At this stage, based on the 

architectural design of the Zynq-7000 chip, it has been learned that the card can 

communicate with the UART protocol directly over the Multi Input-Output (MIO) 

ports. Then it is configured so that the UART protocol can work in the Vitis interface. 

The data in the text file has been read successfully with the UART protocol. However, 

since the data from the radar is in exponential form, it is not in a format suitable for 

processing. Since these data are read from the text file in string form, operations related 

to clutter removal could not be performed. Accordingly, the data format needs to be 

regulated in order to process the data. Since the data is in double format in the RNMF 

code, the data received as strings are converted to double type. However, since the 

function used at this stage limits the number of data received, the data is converted to 

float data type. This section has been completed by taking the data transfer in the 

correct format. After the data is received in the correct format, the RNMF algorithm 

reads the data from the text file via the terminal, not as a constant, in the Vitis interface. 

Since the most repeated operations of this algorithm are matrix multiplication and 

subtraction, this part is implemented on hardware. Thus, the operation of the code is 

shortened in time. In the hardware part, IP Floating Point Integrator has been added, 

which performs multiplication and subtraction of floating-points. These IPs were 

instantiated and the main code was written. After the testbench code was written to 

test the system, it was observed that the design worked correctly in the simulation. 

Then the custom IP is packed. A block design consisting of Zynq-7000 and custom IP 

was created. After the design was synthesized, implemented and the bitstream file was 

produced, exported hardware. Next, a new platform is created by importing the 

hardware file into the Vitis interface. The main code is implemented by calling the 

hardware-customized registers within the appropriate functions in the header file.



4 

 BASIC INFORMATION AND CONCEPTS 

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can 

be electrically programmed to become almost any kind of digital circuit or system [1]. 

A field-programmable gate array (FPGA) is an integrated circuit that can be 

programmed or reprogrammed to the required functionality or application after 

manufacturing. They are formed by a two-dimensional array of programmable logic 

cells and managed switches. Logic cells can be configured to implement a function 

and with connections between programmable keys and logic cells can be established 

to make new configurations. Digital hardware is implemented by programming logic 

cells and switches in this way. Important characteristics of field-programmable gate 

arrays include lower complexity, higher speed, volume designs and programmable 

functions. After the circuit is designed and synthesized using hardware description 

languages such as Verilog, Very High-Speed Integrated Circuit Hardware Description 

Language (VHDL), the data string containing the desired logic cell and switch 

configuration is embedded in the FPGA with the help of a cable. They provide a 

number of compelling advantages over fixed-function Application Specific Integrated 

Circuit (ASIC) technologies such as standard cells [2]. It is cheaper to produce than 

ASIC structures and takes less time to prepare circuits. In addition, the feature of being 

programmable again and again gives the opportunity to make new additions for the 

developers, and also provides an opportunity to fix the errors. FPGAs consist of an 

array of programmable logic blocks, including general logic, memory and multiplier 

blocks, digital signal processing blocks, of potentially different forms, surrounded by 

a programmable routing fabric that enables programmable interconnection of blocks. 

In FPGA, the "programmable" concept means an ability to program a feature into the 

chip after completion of silicon manufacturing. This customization is made possible 

by the programming technology, which is a method that can cause a change in the 

behavior of the pre-fabricated chip after fabrication, in the “field,” where system users 

create designs. Thus, chips produced in a single type can be programmed and used for 

many different purposes. 

 



5 

  Xilinx Vivado Environment General Information 

Xilinx Vivado Environment is an interface software used to program FPGAs 

developed by Xilinx company [3]. This package, which includes many programs that 

enable to make block-level design, facilitate the packaging of the designed hardware, 

design hardware over Matlab, turn the code written according to a certain rule with 11 

the C language into hardware, this package has managed to become a great solution in 

FPGA design by eliminating the errors and accelerating as the updates arrive [4]. Thus, 

Xilinx has provided great convenience to designers by collecting solutions from many 

areas with Vivado in one package. Vivado’s 2020.2 version, was used in this project 

with the licensed by Istanbul Technical University (ITU). Since the design will be run 

with a processor in this project to run the RNMF algorithm, the Vitis tool has been 

installed with Vivado. 

The Verilog language is a language used for designing a digital system like a 

microprocessor or a flip-flop. It supports a design at many levels of abstraction like: 

behavioral level,register-transfer level, gate level. It provides the digital system 

designer with the ability to define a digital system at a wide range of abstraction levels, 

while at the same time providing access to computer-aided design software to help in 

the design process at these levels. Structurally similar to the C language will be 

preferred in digital system design [5]. 

 Vitis IDE General Information 

This research work employs a Xilinx ZedBoard Xynq-7000 SoC series FPGA, which 

can enable to combine embedded software programmability of an existing ARM 

processor with programmable FPGA. In this FPGA has a dual core ARM Cortex A9 

processor which is the main material to write a software program to the board. FPGAs 

programmable logic parts consists of several Block Random Access Memories 

(BRAMs), Digital Signal Processing (DSP) blocks, programmable I/O pins, 

configurable logic blocks, transceivers and Analog to Digital converters, AXI 

interconnects that connecting FPGA and processor [9]. Xilinx Vitis environment is an 

software interface used to program SoCs on the FPGA with C and/or C++ language. 

Vitis IDE is a complete set of graphical and command-line developer tools that include 

the Vitis compilers, analyzers, and debuggers to build applications, analyze 



6 

performance bottlenecks, and debug accelerated algorithms, developed in C, C++, or 

OpenCL™ APIs. Vitis is for writing software to run in an FPGA and is the 

combination of a couple of different previous Xilinx tools, including what was Xilinx 

SDK, Vivado High-Level Synthesis (HLS), and SDSoC. The functionality of each of 

these is now merged together under Vitis. Writing a C/C++ code to run on a processor 

in a design which is created in Vivado. This code ends up being partially used to 

configure and control elements of the hardware design – it’s easier to rebuild, tweak, 

and debug on the Vitis IDE than the hardware portion is. Vitis is used to write C/C++ 

codes on IPs on a previously created block design in Vivado and perform operations 

on them. It is a platform that takes some I/O pins built-in and accelerates certain data 

processing functions through software by placing them in hardware with software 

languages such as C/C++. 

 ZedBoard Development Kit General Information 

The ZedBaord Development Kit is a low cost, complete, ready to use digital circuit 

development platform based on the Xilinx Zynq-7000 all programmable SoCs 

XC7Z020-CLG484 tightly coupled dual core ARM Cortex A9 processors. [6] Target  

Figure 2.1: ZedBaord Development Kit 



7 

applications include video processing, software acceleration and general Zynq-7000 

prototyping. Zedboard Development Kit is optimized for high performance logic and  

offers more capacity, higher performance and more DSP blocks than earlier designs.  

The apperance of the Zedboard Zynq-7000 ARM/FPGA SoC Development board can 

be seen in Figure 2.1 [6] 

The features of the Zedboard device can be listed as follows: 

• Xilinx Zynq-7000 all programmable SoC XC7Z020-CLG484 

• Dual-core ARM Cortex™-A9 processor 

• DDR3 512 MB 

• Quad-SPI Flash 256 MB 

• On-board USB-JTAG Programming 

• Ethernet 10/100/1G  

• USB OTG 2.0 and USB-UART 

• Oscillator 33.333 MHz (PS), 100 MHz (PL) 

• 128x32 OLED Display 

• 12V 5A AC/DC regulator 

• Logic Level 3.3V 

• 85k logic cells 

• Around 1.3 million ASIC gates 

• 53.200 look-up tables (LUT) 

• 106.400 flip-flops 

• 560 kB of BRAM organized to 140 units, each containing 2048 by 18-bit 

storage 

• 220 DSP slices (Multiplier-Accumulator) organized to 18 x 25 

• 276 GMACs 

• USB-UART Bridge 

• 8 user LEDs 

• 8 user Switches 

• SD Card connector 

• Digilent USB-JTAG port for FPGA programming and communication 

 

 



8 

 Zynq-7000 All Programmable System on Chip 

System on Chip (SoC) is an integrated electronics circuits which is made up with one 

base layer contains all peripherals, inputs/outputs, pins, analog/digital converters etc. 

at the substrate level. SoC is a hardware platform for different modules so they can 

with each other effectively and efficiently [7]. SoC includes almost all electronics and 

computer architecture system in a one base layer. Depending on the design, functions 

such as signal processing, wireless communication, artificial intelligence can be 

implemented in a system reduced to a chip size. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Zynq-7000 All Programmable SOC 

 

The features of the Zynq-7000 SoC device can be listed as follows: 

• Zynq-7000 devices are equipped with dual-core ARM Cortex-A9 processors 

integrated with 28nm Artix-7 or Kintex®-7 based programmable logic for 

excellent performance-per-watt and maximum design flexibility.  

• Up to 6.6M logic cells  

• Offered with transceivers ranging from 6.25Gb/s to 12.5Gb/s 



9 

• Zynq-7000 devices enable highly differentiated designs for a wide range of 

embedded applications including multi-camera drivers assistance systems and 

4K2K Ultra-HDTV. 

• MCU, FPGA architecture 

• Dual ARM® Cortex®-A9 MPCore™ with CoreSight™ Core Processor 

• 256 KB ram size 

• DMA peripherals 

• CANbus, EBI/EMI, Ethernet, I²C, MMC/SD/SDIO, SPI, UART/USART, 

USB OTG connections 

• 766 MHz speed 

• Artix™-7 FPGA, 85K Logic Cells 

• 130 I/O Pins [13] 

 

The apperance of the Zynq-7000 ARM/FPGA SoC can be seen in Figure 2.2 [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 Vivado Tutorial 

In this section, the stages of creating a project in Vivado, transitioning to Vitis 

Integrated Development Environment (IDE) environment, creating a project in Vitis 

Integrated Development Environment will be explained. 

Firstly, the Vivado program is opened and the "Create a New Project" option is clicked 

to create a new project. 

 

  

 

 

 

 

 

 

 

 

 Figure 2.3: Creating a New Project 

The new project is given a name and saved under the C folder on the computer and in 

a folder with a user name that does not contain Turkish characters. 

 

 

Figure 2.4: Naming the Project 



11 

The project type is selected as it does not contain the Register Transfer Level (RTL) 

project and resources.  

 

 
 

Figure 2.5: Determining the Project Type 

 

Since the project will be carried out on the Zedboard Development card, the card to be 

worked on has been selected as the ZedBoard Zynq Evaluation and Development Kit 

from the Boards section at this stage. Then, the project opening process was completed 

by clicking the Finish button on the page that opened [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Selecting the Card to Use 



12 

Since the block design is being worked on in the created project, a new block design 

is opened from the Intellectual Property (IP) Integrator section. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Creating the Block Design 

 

For the block design, the name is given in accordance with the project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Naming the Block Design 

 

First, the processor to be worked on is added to the block design. Since the processor 

for this project is ZYNQ, the name of the processor is added to the design by typing 

the ADD IP button shown in the figure. 

 

 

 

 

 



13 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Adding the Processor 

 

When Run Block Automation is clicked, the screen shown in Figure 2.10 opens. After 

the settings are selected as in the figure, the connections of the processor are completed 

automatically. 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.10: Making Automatic Connections of the Processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Customizing the Processor 

After the block design is completed, the HDL Wrapper file is generated from the block 

diagram created by right-clicking on the "Sources" section. Thus, the project part in 

the Vivado interface is completed and the transition to the Vitis IDE is made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Transitioning to the Vitis Platform 

  

When transitioning from Vivado to Vitis Platform, a new platform project is created 

to write code under the created workspace. 



15 

 

Figure 2.13: Creating a New Application Project 

  

A new workspace is created and named with an appropriate name under the C folder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Creating a New Workspace on the Vitis Platform 

 

The HDL Wrapper file created during the block design phase is added to the platform 

for the code to work properly in the block design. This file is under the folder where 

the block design was created before. 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Embedding the Block Design in the Project 

 

Since the data will be received and processed in an offline environment, the operating 

system setting is selected as standalone. In the processor part, the cortexa9_0 part 

continues to work without making any changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Adjusting the Block Design on Vitis 

 

 

 



17 

After adding the platform to work on, a draft suitable for the project is selected. This 

draft can be selected as an empty C draft, as well as a Hello World draft. In this project, 

the Hello World draft was chosen and Vitis code was written. In this draft, it is easier 

to implement because the platform header file is compact. 

Figure 2.17: Adding New Platform Template 

By pressing the Finish button, the new project (Figure 2.18) is opened successfully. 

After that, a new C project is opened under the src folder and the projects are carried 

out. 

 

Figure 2.18: Adding New Platform Template 



18 

 IMPLEMENTATION of APPLICATIONS on FPGA 

 UART Serial Communication Protocol 

UART is a type of serial communication protocol in which data is transmitted and 

received one bit at a time over a single communication line or channel. It stands for 

Universal Asynchronous Receiver Transmitter, and it allows devices to transmit and 

receive data asynchronously (without a fixed clock rate). This means that the sender 

and receiver do not need to be precisely synchronized in order to communicate. UART 

is commonly used in embedded systems and in communication between computers 

and devices, such as printers, keyboards, and mice. 

UART uses a combination of a start bit, which signals the start of a transmission, and 

a stop bit, which signals the end of a transmission, to enable the receiver to synchronize 

with the sender and accurately receive the data. UART also allows for the use of parity 

bits, which can be used for error detection.  

High dependability and a long transmission distance are benefits of asynchronous 

serial communication. A UART is frequently used in data communications and control 

systems because it enables full-duplex communication in serial communications. 

Consequently, it is frequently utilized in data interchange between peripherals 

and processor. By adding a few more control bits and utilizing a shift register, the 

UART transfers data from parallel to serial on the transmitter side and back again on 

the reception side. The UART appears as an 8-bit write-read parallel interface on the 

other end [20]. 

To perform full-duplex data transfer with a basic UART, just two signal lines—one 

for receive and one for transmit—are required. To regulate the UART receive and 

transmit, a local clock signal that is significantly faster than the baud rate is generated 

using a baud rate generator. The serial signals are received at RXD by the UART 

receiver block, which transforms them to parallel data. Bytes are converted into serial 

bits using the basic frame format by the UART transmitter block, which then sends 

those bits across the TXD line. The data line's high logic state is present while the 

transmitter is not in use. A "Start Bit" is inserted to a beginning of every word that is 



19 

to be communicated if the UART is activated for transmission. The start bit is used to 

compel the clock in the peripheral receiver to synchronize with the clock in the 

transmitter and to notify the peripheral receiver that such a word containing data is 

going to be delivered. Following the transmission of the start bit, the specific data bits 

of a word are. The receiver sampling at the wire roughly halfway through to the period 

given to each bit to identify whether it is a "1" or a "0". Each bit is broadcast for the 

exact same amount of time as all the previous bits. The transmitters add a parity bit 

that was created in the transmitter module once the complete data word has been sent.  

If the transmitter delivers another frame, the new word's Start bit can be transmitted as 

soon as the preceding word's stop bit is sent [10]. 

Figure 3.1: UART Data Frame Format [Y*] 

 

 

 

 

 

 

 



20 

 Architectural Design of Zynq-7000 

In this project, the data received from the ground penetrating radar must be transferred 

to the FPGA for processing. UART serial communication protocol is used for data 

transfer. Therefore, ZedBaord's UART connections must be made. In line with the 

researches, it has been seen that it can be done directly from the Multi Input-Output 

inputs of the zynq-7000 without the need for special IPs such as UART_LITE or 

UART_PS to communicate with the UART. The architectural design of the Zynq-7000 

chip is given in Figure 3.2. 

Figure 3.2: Architectural Design of the Zynq-7000 Chip [11] 

 

 



21 

Therefore, Multi Input-Outputs are used to communicate with UART. Zedboard's 

UART/USB port is accessed via MI48 and MIO_49 pins. Thus, MIO48 and MIO49, 

which are related to the UART, are activated.  

 

Figure 3.3: UART Access of Zynq-7000 Chip [11] 

 

 

 

 

 

 

 

 

 

 

 



22 

 Hello World Application 

First, we checked whether the ZedBoard development board we used in the project is 

working. This basic project is one of the testing program that shows us we can access 

FPGA and write a C/C++ code in the ARM processor core. For this, we created a 

simple block design and wrote a test code. We did the creating the project in the Vitis 

interface and block design according to the steps given in section 2.4. Only the Zynq-

7000 processor has been added to the block design. As shown in Section 3.2, the 

UART port of the Zynq-7000 processor was accessed from the Multi Input-Output 

port. Therefore, the block design given in figure 3.4 was sufficient for the test  

Figure 3.4: Hello World Test Application Block Design 

application. The designed block design has been validated by automatically. Block 

design was designed in Vivado interface and translated into hardware language. After 

the HDL Wrapper file is produced from the block diagram, synthesis, implementation 

and bitstream file production processes are performed respectively. Finally, the 

hardware platform created is exported and a file is produced in xsa format and the 

hardware design is completed in the Vivado program. Later, the prepared hardware 

platform was added to the Vitis interface, which is Vivado's software tool, in XSA 



23 

format. A new workspace is created on the Vitis platform and a Hello World template 

project is created. The code in Figure 3.5 is the C code written for testing.  

Figure 3.5: Hello World Test Application C Code 

With the #include<stdio.h> line, the general C library is included so that the general 

functions in the project can work. The #include“platform.h” line has been added to 

enable Hello World test application to work on block design. The 

#include“xil_printf.h” line is used in the project to write data to the terminal. In the 

main code part, the platform on which the application will run is initialized with the 

init_platform() command. Then, the expressions to be observed in the terminal are 



24 

given in the print() function. The platform used is released with the cleanup_platform() 

command and the code is terminated. 

Figure 3.6: Making Hello World Project UART Communication Settings 

During the communication of UART with Zedboard, the port to which it is connected 

on the computer is selected. Data settings are selected by default. The data to be sent  

is set to 8 bits long, 1 bit set to stop bit, and no parity bit (Digilent,2017). Baud Rate 

is updated to 115200 in accordance with the Block diagram. The project is built and 

run with Run as -> Hardware. 

 

 

 

Figure 3.7: Build the Project 

As a result, the terms "Hello World" and "Successfully ran Hello World application" 

were observed from the terminal as shown in Figure 3.8. 

 



25 

 

Figure 3.8: Obtaining the Output on the Terminal with the Test Code Applied on the 

Vitis Platform 

Thus, the Zedboard development board used has been proven to work. 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 Failed Data Transfer Applications 

To collect the data in the right format, experiments with various block designs and C 

scripts have been conducted. This section will discuss applications for data 

transmission from radar to FPGA that have been tried but failed.  

3.4.1 AXI GPIO block diagram and C code application  

 First, the Zynq-7000 SoC ARM processor was added to the block diagram. Then AXI 

GPIO IP was added to print the data. BRAM and block memory generator are used to 

hold data in memory. Processor system reset, AXI Connector and AXI BRAM 

Controller came automatically when other IPs are added. The designed block diagram 

has been validated by automatically. 

Figure 3.9: AXI GPIO Block Diagram for Radar Data Transfer via UART 

 

Block diagram was designed in Vivado IP Integrator Section and translated into 

hardware language. Afterwards, the necessary Verilog code was automatically 

generated, hardware platform was added to the Vitis interface, which is Vivado's 

software tool, in .xsa format. After opening a new project in the Vitis interface and 

selecting the Hello World platform, the C code in figure 3.10 was written. 



27 

 

Figure 3.10: AXI GPIO C Code for Radar Data Transfer via UART 

 

Memory is dynamically made available for radar data. Then the GPIO is initialized. It 

is intended to read the radar data with the scanf function in the while loop. Afterwards, 

the read data is wanted to be written to the terminal with GPIO. However, this code 

and block diagram were not suitable for both the transfer and format of the data. The 

desired result was not achieved. 

 

 

 

 

 

 

 

 

 

 

#include <stdio.h> 
#include "platform.h" 
#include "xparameters.h" 
#include "xgpio.h" 
 
int main() 
{ 
 init_platform(); 
 int N=46848; 
 int Status; 
 int i=0; 
 u8 *radarData; 
 radarData = malloc(sizeof(u8)*(N)); 
  
 Status = XGpio_Initialize(&Gpio, GPIO_EXAMPLE_DEVICE_ID); 
 if(status!= XST_SUCCESS){ 
  xil_printf("Gpio initialization failed...\n\r"); 
  return XST_FAILURE; 
 } 
 while(1){ 
  scanf("%s",radar); 
  XGpio_DiscreteWrite(&Gpio,radar[i]); 
  i++;   
 } 
 cleanup_platform(); 
 return 0; 
} 



28 

3.4.2 AXI UART_LITE block diagram and C code application  

It has been determined that data transfer with AXI GPIO is neither possible nor 

appropriate. As a result, the UART serial communication protocol was researched, and 

it was agreed that UART would be used for data transfer. As a result, the ZYNQ-7000 

CPU and AXI Uartlite IP were immediately added to the block diagram and connected. 

It appeared automatically to link the Processor reset system to the AXI Interconnect 

Uartlite and Zynq-7000. 

Block diagram was designed in Vivado IP Integrator Section and translated into 

hardware language. Afterwards, the necessary Verilog code was automatically 

generated, hardware platform was added to the Vitis interface, which is Vivado's 

software tool, in .xsa format. After opening a new project in the Vitis interface and 

selecting the Hello World platform, the C code in figure 3.12 was written. 

 

Figure 3.11: AXI UART_PS LITE Block Diagram for Radar Data Transfer via 

UART 

 



29 

Figure 3.12: AXI UART_PS LITE C Code for Radar Data Transfer via UART 

#include <stdio.h> 
#include <stdlib.h> 
#include "xil_types.h" 
#include "xuartps.h" 
#include "xparameters.h" 
 
#define dataSize    5095*3   
#define headSize    10    
#define fileSize dataSize + headSize 
 
int main(){    
 u8 *radarData; 
 u32 receivedBytes=0; 
 u32 totalReceivedBytes=0; 
 u32 status; 
 u32 transmittedBytes=0; 
 u32 totalTransmittedBytes=0; 
 XUartPs_Config *myUartConfig; 
 XUartPs myUart; 
 
 radarData = malloc(sizeof(u8)*(fileSize)); 
 
 myUartConfig = XUartPs_LookupConfig(XPAR_PS7_UART_1_DEVICE_ID); 

 status = XUartPs_CfgInitialize(&myUart, myUartConfig,  
     myUartConfig->BaseAddress); 

 if(status != XST_SUCCESS) 
  print("UART initialization failed...\n\r"); 
 
 status = XUartPs_SetBaudRate(&myUart, 115200); 
 if(status != XST_SUCCESS) 
  print("Baud rate initialization failed...\n\r"); 
 
 while(totalReceivedBytes < fileSize){ 
  

receivedBytes=XUartPs_Recv(&myUart, 
(u8*)&radarData[totalReceivedBytes], 
fileSize);   

 totalReceivedBytes += receivedBytes; 
 } 
 
 for (int i=0;i<fileSize; i++) 

xil_printf("%0x",radarData[i]);  
      // to see what we sent via UART 
      //read data from ddr 
 for(int i=headSize;i<fileSize;i++) 
  radarData[i];           
      // data can be processing in this part 
 
 //send data back to the computer 
 while(totalTransmittedBytes< fileSize){ 
 
 transmittedBytes = XUartPs_Send(&myUart,  

(u8*)&radarData [totalTransmittedBytes],1);              
 totalTransmittedBytes += transmittedBytes; 
 
 } 
 
} 
 



30 

In the code, first of all, the necessary libraries are added. The library "stdio.h" is for 

general C functions, "stdlib.h" is for the malloc function, "xuartps.h" is for functions 

that contain the configuration of the UART protocol, "xil_types.h" is for the xil_printf 

function, and "xparameters.h" is the library used to initialize drivers. 

Then, in order to test different sizes of the data and increase the understandability of 

the code, data sizes were determined with define. Variable radarData to receive data 

from radar, variable receivedBytes to assign radar data transferred with UART 

protocol, variable totalReceivedBytes to keep the total number of radar data 

transferred, variable status to control UART protocol status, variable transmittedBytes 

to send received radar data to the terminal, the variable totalTransmittedBytes to 

control the total number of radar data sent to the terminal and myUartConfig variable 

to make the configuration settings of the UART protocol is defined. 

In the main body, first of all, memory has been made in the dimensions determined by 

the malloc function for the radar data to be received. Then, the UART protocol is 

configured by sending the necessary parameters into the XUartPs_LookupConfig 

function, which is taken from the header file, and the result is assigned to the status 

variable. 

With the if statement, it is checked whether the configuration step has been carried out 

successfully. If the configuration is unsuccessful, the "UART initialization failed" 

sentence is observed from the terminal. The baud rate of the UART protocol is set with 

the XUartPs_SetBaudRate function and assigned to the status variable. With the if 

statement, it is checked whether the baud rate setting is successful or not. If the baud 

rate is wrong, the "Baud rate initialization failed" sentence is observed from the 

terminal.  

In the first while loop, the total received data is updated, which is used to collect all 

the data received via the UART. The for loop is used to see what data is being sent via 

the UART. Secondly, the for loop has been added for data processing stages on the 

received data. If the data acquisition is completed successfully, the RNMF algorithm 

will be implemented in this part. The last while loop is used to send the processed data 

back from the UART to the computer and update the transmitted byte pointer. In this 

way, it will be checked whether the data read from the terminal and the data sent are 



31 

the same. By integrating the C code written into the designed block diagram, the data 

in Figure 3.13 is observed from the terminal. However, these data are different from 

the sent data both in format and value. Therefore, it has been observed that this block 

diagram is also not suitable for UART serial communication. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Observed Read Data in TeraTerm Terminal 

 

 

 

 

 

 

 

 



32 

3.4.3 Only Zynq-7000 processor block diagram and C code  

When the block diagrams and C codes explained in sections 3.4.1 and 3.4.2 did not 

give successful results for data transfer, it was learned that the UART port of the 

Zedboard was accessed with MIOs, as explained in section 3.2. Therefore, it is thought 

that there is no need to use AXI GPIO and AXI UART_LITE in the block diagram.  

Figure 3.14: Zynq-7000 Processor Block Diagram for Radar Data Transfer via 

UART 

For this reason, the block diagram was created by adding only the Zynq-7000 

processor, without adding any extra IP. DDR and Fixed_IO outputs are taken from the 

processor, the clock setting is made by default. Then the generated block diagram is 

validated. The hardware part is completed by generating HDL Wrapper file from the 

created diagram. By exporting the hardware, the coding part was made in the Vitis 

interface. 



33 

 

Figure 3.15: Zynq-7000 C Code for Radar Data Transfer via UART 

First of all, necessary libraries are added in the code. The library "stdio.h" is for general 

C functions, "platform.h" is for init_platform and cleanup_platform functions, 

"xuartps.h" is for functions that contain the configuration of the UART protocol. 

Variable *Config_0 of type XUartPs_Config is defined for Configuration data 

structure, variable UART_PS_0 is of type XUartPs which contains information about 

UART to make UART configurations. 

In the main body, first, the platform is initialized with the init_platform() function. 

Status is defined to control the status of the UART, and N is defined for the total 

number of radar data sent.  

XUartPs_LookupConfig looks up the device configuration based on the unique device 

ID. With the if statement, it is checked whether this value is equal to NULL, if it is, it 

#include <stdio.h> 
#include "platform.h"  
#include "xuartps.h" 
 
XUartPs_Config *Config_0; 
XUartPs Uart_PS_0; 
 
int main() 
{    

init_platform(); 
 int status; 
 int N=46848; 
 
 Config_0 = XUartPs_LookupConfig(XPAR_XUARTPS_0_DEVICE_ID); 
 
 if(NULL==Config_0){ 
  return XST_FAILURE; 
 } 
 Status = XUartPs_CfgInitialize(&Uart_PS_0,Config_0,Config_0-

>BaseAddress); 
 if(status!= XST_SUCCESS){ 
  return XST_FAILURE; 
 } 

char dizi[N]; 
while(1){ 

      scanf("%s",dizi); 
      printf("%s",dizi); 
      } 
      cleanup_platform(); 
      return 0; 
} 
 



34 

means that the device could not be configured and the XST_FAILURE value is 

returned without further processing. With the XUartPs_CfgInitialize function, a 

specific XUartPs instance is initialized to be ready for use. The device's data format is 

set to 8 data bits, 1 stop bit and no parity by default. With the if statement, it is checked 

whether the status value is different from XST_SUCCESS, if it is, it means that the 

UART configuration has not been done successfully and the code ends by returning 

the XST_FAILURE value without further action. 

An array of type char and size N is defined for receiving radar data. The reason why 

this variable is char type is because radar data will be read from the text file. Then, 

within the while loop, the radar data is read one by one from the text file with the scanf 

function and written to the buffer with the printf function. It is checked whether the 

values written from the terminal are the same as the values sent. 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 3.16: Observed Read Data in TeraTerm Terminal 



35 

The values read from the terminal in Figure 3.16 and the actual radar data in Figure 

3.17 are exactly the same. Thus, a radar data obtained from the measurement was taken 

in order from left to right in the terminal and displayed on the terminal, and the 

acquisition of the radar data was successfully performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

Figure 3.17: Real Radar Measurement Data 

 

With this application, radar data was taken from the text file and correct values could 

be observed from the terminal. But the received data format is not suitable for 

processing. In order for radar data to be processed in the RNMF algorithm, it must be 

of double or float data type. However, the data we observe is of char type and is not 

suitable for processing. In the next step, the data received is converted to double or 

float data type and proceeded. 

 



36 

 Succesful Data Transfer Implementation 

In Section 3.4.3, we managed to receive the data via UART. However, the received 

data could not be processed because it was not in the desired format. Therefore, we 

need to convert the data we receive in string form to a double or float type suitable for 

processing. For this reason, the block diagram in Figure 3.18 was designed firstly. This 

block diagram was created using only the Zynq-7000 processor, on the basis that 

ZedBoard's UART connection can be provided from MIOs. 

Figure 3.18: Block Design of Successful Data Transfer Implementation  

Then the generated block diagram is validated. The hardware part is completed by 

generating HDL Wrapper file from the created diagram. By exporting the hardware, 

the coding part was made in the Vitis interface. 

 

 

 

 

 

 

 



37 

 

Figure 3.19: Vitis C Code of Successful Data Transfer Implementation  

First of all, necessary libraries are added in the code. The library "stdio.h" is for general 

C functions, "platform.h" is for init_platform and cleanup_platform functions, 

"xuartps.h" is for functions that contain the configuration of the UART protocol. 

Variable *Config_0 of type XUartPs_Config is defined for Configuration data 

structure, variable UART_PS_0 is of type XUartPs which contains information about 

UART to make UART configurations. 

#include <stdio.h> 
#include "platform.h" 
#include "xil_printf.h" 
#include <stdlib.h> 
#include "xuartps.h" 
 
XUartPs_Config *Config_0; 
XUartPs Uart_PS_0; 
 
int main() 
{ 
   init_platform(); 
 int status; 
 Config_0 = XUartPs_LookupConfig(XPAR_XUARTPS_0_DEVICE_ID); 
 if(NULL == Config_0){ 
  return XST_FAILURE; 
 } 

 Status = XUartPs_CfgInitialize(&Uart_PS_0,Config_0,Config_0-
>BaseAddress); 

 if(status!= XST_SUCCESS){ 
  return XST_FAILURE; 
 } 
 int N = 46848; 
 int i = 0; 
 int count = 0; 
 float *X; 
 X=malloc(N); 
 char dizi[N]; 
 for(i=0;i<N;i++){ 
  scanf("%s",dizi); 
  X[i] = strtof(dizi,NULL); 
  printf("%.7f ",X[i]); 
  printf("%d ",count); 
  count++; 
  if(i == N-1){ 
      cleanup_platform(); 
      return X; 
  } 

} 
} 



38 

In the main body, first, the platform is initialized with the init_platform() function. 

Status is defined to control the status of the UART. 

XUartPs_LookupConfig looks up the device configuration based on the unique device 

ID. With the if statement, it is checked whether this value is equal to NULL, if it is, it 

means that the device could not be configured and the XST_FAILURE value is 

returned without further processing. With the XUartPs_CfgInitialize function, a 

specific XUartPs instance is initialized to be ready for use. The device's data format is 

set to 8 data bits, 1 stop bit and no parity by default. With the if statement, it is checked 

whether the status value is different from XST_SUCCESS, if it is, it means that the 

UART configuration has not been done successfully and the code ends by returning 

the XST_FAILURE value without further action. 

N is defined for the total number of radar data sent and i is defined as index to use in 

for loop. The count variable is defined in order to control how many data are read. X 

pointer of type float is defined to be used in the processing of data after conversion 

from string type to float type. Later, this variable X is dynamically made available in 

memory with the malloc function. A char type array is defined to read radar data with 

UART. 

In the for loop, firstly, data is read from the radar with the scanf function. These data, 

read in string format, are converted to float type with the strtof function and transferred 

to the variable X. By repeating this process N steps, X array is filled one by one. In 

order to control the sent and received data, each data is printed to the terminal with 

printf. In addition, to see how many data have been read, the count variable is also 

printed after each data read. In order for this part to be integrated as a function in the 

whole code in later operations, the X array is returned in the if block. 

 

 

 

 

 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

                       

                    Figure 3.20: FPGA Programmed Correctly, FPGA Display 

 

The blue LED, which indicates that the FPGA board has been programmed correctly 

and without errors, is on as shown in Figure 3.19. With TeraTerm, the data in the text 

file is sent to the FPGA side. 

 

 

 

 

 

 

Figure 3.21: Sending Data From Terminal to FPGA 

 



40 

Figure 3.22: Data Read From Terminal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Last Data Read From Terminal 

Figure 3.21 shows the first data read from the terminal and Figure 3.22 shows the last 

data read from the terminal. It has been proven that these data agree with the data in 

Figure 3.23. 



41 

 

Figure 3.24: Data Sent to FPGA 

 

With the code in Figure 3.18, the data is taken in float type. Radar data is of double 

type. For this, double type data was obtained by making a few changes on the code. 

For this, float *X as double *X, X[i] = strtof(array,NULL) as X[i] = 

strtod(array,NULL) and printf("%.7f ", X[i]) line is changed to printf("%.15f ", X[i]) 

because it has 15 digits in double type. The data read with this code is given in Figure 

3.22. 

 

 

 

 

 

 

 

 

 

 



42 

 

 

Figure 3.25: Data Read from Terminal 

 

At this stage, looking at the last read data and the number of read data, the data in both 

float and double data types are ready to be processed and read correctly. However, 

while 48844 data can be read in float data type, 24573 data can be read in double data 

type. This is due to the size of the buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 RNMF APPLICATION ON VITIS 

In this section, what the RNMF algorithm is, for what purpose it is used, what the GPR 

picture is, the literature review on these issues, and finally the C code and outputs of 

the RNMF algorithm implemented in the Vitis interface will be explained.  

 RNMF Algorithm 

NMF algorithm has become very popular in recent years for those who produce results 

by processing data with the importance of data science. The NMF algorithm aims to 

automatically extract hidden layers from data consisting of high-dimensional matrices 

and predicts the solution of data-driven problems such as matrices reduction, 

unsupervised learning, and classification problems. 

 

The most critical problem encountered in ground penetrating radar (GPR) studies is 

the clutter that reflects back to the radar from the ground and obscures the targeted 

image. Clutter prevents the images of objects under the ground and makes it difficult 

to detect. In this project, RNMF, which is an improved version of the NMF algorithm, 

was used to detect the real image by separating the data collected from the field by the 

ground penetrating radar system from the clutter. The GPR image is represented by a 

rectangular matrix X with dimensions M × N, where M is the depth index and N is the 

number of antenna positions. The X rectangular matrix consists of two parts, the target 

and the clutter. Using the RNMF optimization algorithm, the X matrix is assumed to 

be sparsely degraded and decomposes it from a sparse error matrix S as non-negative 

W and H matrices defined as the data matrix [12]. Thus, the optimization formula 

proposed by the NMF algorithm will be updated as RNMF. By iteratively solving the 

optimization problem in this new formula, the S matrix will be 0, the W and H values 

will be found by normalizing. 

 

 

 

 



44 

 Information About GPR Image 

In this study, ground penetrating radar (GPR) image of 256x183 size was obtained by 

measuring with vivaldi antennas. The GPR image, which was defined as X above, 

consists of the target and the clutter. In the RNMF algorithm, the X image is considered 

to be sparsely distorted and defined as X = W*H+S. 

 

 

 Literatur Review 

In matrix factorization model, three essential questions need answering: 1) existence, 

whether the nontrivial NMF solutions exist; 2) uniqueness, under what assumptions 

NMF is, at least in some sense, unique; 3) effectiveness, under what assumptions NMF 

is able to recover the “right answer.” [14,17]. A method called robust NMF (RNMF) 

was proposed, which has a better clutter removal effect than other low-rank and sparse 

decomposition methods, but the solution process is still not fast enough due to its 

iterative characteristics [15].As a more advanced version of NMF, the RNMF 

algorithm is used in remote sensing and image processing studies to detect objects and 

distinguish undesired effects from the target. RNMF is more successful than other 

decomposition methods in reducing the error rate at the output to 0 by putting a small 

amount of error on the input data and in distinguishing the object to be detected from 

the clutter [16,18]. 

The radar image (raw image) obtained in the simulations using real data in the 

MATLAB environment in the previous studies of the project is given in Figure 4.1. 

Target image is observed in Figure 4.2 and clutter image is observed in Figure 4.3. The 

target and clutter were separated by running the RNMF algorithm on the Zynq-7000 

processor, which was written in the Matlab environment and then translated into C 

language. 

 

 

 



45 

 

Figure 4.1: Raw GPR Image Collected from Target Object 

 

 

Figure 4.2: Target Object Removed Clutter Image 

 



46 

 

Figure 4.3: Clutter (Object Removed) Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 RNMF Application VITIS C Code 

In this project, the RNMF algorithm is used to distinguish the data received from the 

radar as clutter and target, and consequently to remove the complexity. Simpler and 

shorter C codes to implement the RNMF algorithm are available in the literature. 

However, since the code written in this project is aimed to work on FPGA, the code is 

arranged to be applicable in FPGA. Since there are many matrix multiplications in this 

code and it will take a long time to perform these operations in software, the hardware 

designed and designed system of matrix multiplications is integrated into the software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: RNMF Vitis Main C Code (1-38) 



48 

In the code written before, the target variable was defined as a fixed array and the 

values were initialized. Since this variable is the data to be received from the radar, in 

this project, it was taken from the radar with the code written in the third section.   

In Figure 4.4, rnmf_in, rnmf_in_terminate and rnmf_in_initialize header files are 

included first, as the rnmf algorithm consists of many interconnected .c files in main 

fumction. Other header files have been added for time analysis and for general 

functions to work. UART configuration is done to receive data from UART. The target 

and clutter variables are defined globally. To read radar data from UART, the code 

written in section 3 is performed under the data_receive function. 

Figure 4.5: RNMF Vitis Main C Code (39-76) 

In Figure 4.5, the values to be used are initialized. With the data_receive function, data 

is read from the radar. With the rnmf_in function, the code in which the RNMF 

algorithm is written is processed. With the XTime_GetTime function, it is calculated 

how long the code is processed and in the clock cycle.  

 



49 

 

The target variable obtained from the processing of the RNMF algorithm with the for 

loop and the clutter variable are printed to the terminal. 

Figure 4.6: RNMF Vitis Main C Code (76-105) 

#include <math.h> 
#include <string.h> 
#include "rnmf_in.h" 
#include "sqrt.h" 
#include "sum.h" 
#include "sign.h" 
#include "abs.h" 
 
void rnmf_in(float target[46848], float clutter[46848],float X[46848],int 
N) 
{ 
  int i; 
  float W[256]; 

  static const float dv0[256] = { 0.80747046945450007, 0.26463438417187…} 
  float H[183]; 
  static const float dv1[183] = { 0.197970832005718, 0.624752290113142…} 
  int iter; 
  int i0; 
  int i1; 
  static float varargin_2[46848]; 



50 

  

  int target_tmp; 
  float norms; 
 
  static float z1[46848]; 
  float b; 
  float MSXHt[256]; 
  float MWtSX[183]; 
 
  memcpy(&W[0], &dv0[0], sizeof(float) << 8); 
  memcpy(&H[0], &dv1[0], 183U * sizeof(float)); 
  for (iter = 0; iter < 10000; iter++) { 
    for (i0 = 0; i0 < 256; i0++) { 
      for (i1 = 0; i1 < 183; i1++) { 
        target_tmp = i0 + (i1 << 8); 
        target[target_tmp] = X[target_tmp] - W[i0] * H[i1]; 
      } 
    } 
 
    b_abs(target, varargin_2); 
    for (target_tmp = 0; target_tmp < 46848; target_tmp++) { 
      norms = varargin_2[target_tmp] - 0.00015; 
      varargin_2[target_tmp] -= 0.00015; 
      z1[target_tmp] = fmax(0.0, norms); 
    } 
 
    b_sign(target); 
    for (i0 = 0; i0 < 46848; i0++) { 
      target[i0] *= z1[i0]; 
    } 
 
    for (target_tmp = 0; target_tmp < 256; target_tmp++) { 
      norms = 0.0; 
      b = 0.0; 
      for (i0 = 0; i0 < 183; i0++) { 
        i1 = target_tmp + (i0 << 8); 
        norms += target[i1] * H[i0]; 
        b += X[i1] * H[i0]; 
      } 
 
      norms -= b; 
      MSXHt[target_tmp] = -norms; 
      if (norms > 0.0) { 
        MSXHt[target_tmp] = 0.0; 
      } 
    } 
    norms = 0.0; 
    for (i0 = 0; i0 < 183; i0++) { 
      norms += H[i0] * H[i0]; 
    } 
 
    for (target_tmp = 0; target_tmp < 256; target_tmp++) { 
      W[target_tmp] = MSXHt[target_tmp] * W[target_tmp] / 

fmax(W[target_tmp] * norms, 1.0E-20); 
    } 



51 

 

 

Figure 4.7: RNMF Algorithm Vitis C Code (rnmf_in.c) 

 

for (target_tmp = 0; target_tmp < 183; target_tmp++) { 
      MWtSX[target_tmp] = 0.0; 
      norms = 0.0; 
      b = 0.0; 
      for (i0 = 0; i0 < 256; i0++) { 
        i1 = i0 + (target_tmp << 8); 
        norms += W[i0] * target[i1]; 
        b += W[i0] * X[i1]; 
      } 
 
      norms -= b; 
      MWtSX[target_tmp] = -norms; 
      if (norms > 0.0) { 
        MWtSX[target_tmp] = 0.0; 
      } 
    } 
 
    norms = 0.0; 
    for (i0 = 0; i0 < 256; i0++) { 
      norms += W[i0] * W[i0]; 
    } 
 
    for (target_tmp = 0; target_tmp < 183; target_tmp++) { 
      H[target_tmp] = MWtSX[target_tmp] * H[target_tmp] / fmax(norms * 
        H[target_tmp], 1.0E-20); 
    } 
 
    for (i0 = 0; i0 < 256; i0++) { 
      MSXHt[i0] = W[i0] * W[i0]; 
    } 
 
    norms = sum(MSXHt); 
    b_sqrt(&norms); 
    b = 1.0 / norms; 
 
    for (i0 = 0; i0 < 256; i0++) { 
      W[i0] *= b; 
    } 
 
    for (i0 = 0; i0 < 183; i0++) { 
      H[i0] *= norms; 
    } 
  } 
 
  for (i0 = 0; i0 < 256; i0++) { 
    for (i1 = 0; i1 < 183; i1++) { 
      clutter[i0 + (i1 << 8)] = W[i0] * H[i1]; 
    } 
  } 
 
} 



52 

The code written in accordance with the RNMF algorithm explained in section 4.1 is 

in figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Time Analysis Terminal Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Target Data Removed Form Clutter by RNMF Algorithm 



53 

 

 

 

 

 

 

Figure 4.10: Clutter Data 

 

The target data removed from the clutter by the RNMF algorithm, in Figure 4.9, and 

the clutter-generating clutter data, in Figure 4.10, are observed from the terminal. 

 

 

 



54 

 HARDWARE IMPLEMENTATION OF RNMF ALGORITHM 

In this section, the hardware implementation of the line of code, which includes matrix 

multiplication and subtraction, which was previously done in software in the RNMF 

code, will be explained. Therefore, a custom IP is designed for the following line of 

code. 

target[target_tmp] = X[target_tmp] - W[i0] * H[i1] 

Block design is created with the designed IP and Zynq-7000 processor. After the 

created block design is synthesized, implemented, and the bitstream file is produced, 

the hardware is exported and the data is sent to the appropriate registers in the line 

where the operation is performed in the Vitis part. 

 Implementation of Floating-Point Numbers on Vivado 

Since Verilog or VHDL digital hardware languages operate on bits, it is not easy to do 

arithmetic with floating-point numbers. Actually, in Vivado, arithmetic operations can 

be done by defining floating point numbers in real data type. But the real data type 

cannot be synthesized. This method cannot be used for this project, as synthesis and 

implementation processes are required after the design is created. Therefore, a special 

code is required for the arithmetic operations of floating-point numbers. Vivado 

defines floating point numbers in IEEE-754 format. In this case, there are two methods 

for dealing with floating points. The first is to write the Verilog code that will multiply 

and subtract in accordance with the IEEE-754 format by including the float_pkg.all 

and float_generic_pkg.all libraries, and the other is to create a design using the Float 

IP Generator (7.1) custom IP already available in the Vivado IP Catalog [24]. 

5.1.1 IEEE 754 Format floating point numbers arithmetic calculations 

Numerous applications, including signal processing, scientific computations, etc., 

make extensive use of floating-point math and calculations using it. Because there is 

no requirement for large dynamic number ranges or to scale the values, floating point 

arithmetic techniques are simpler than others. However, due to the restricted number 

of circuits, implementing floating points on hardware is rather difficult. Researchers 

are instructed on how to implement the IEEE-754 floating point standard since it is 

essential to processor performance [21].  



55 

Calculations using binary integers are done by supposing a certain location for the 

comma. The accuracy of the number is really altered by moving the comma. As a 

result, binary number format is offered for values with various sensitivities. These 

sensitivities are guaranteed to be within a specific standard by the IEEE-754 standard 

[26,29]. 

Figure 5.1: Single Precision IEEE-754 Floating-Point Standard 

According to this standard, floating point numbers consist of three parts. The most 

important bit, the Sign part, indicates whether the number is negative or positive, the 

exponent part indicates the biased part of the decimal part of the number, and the 

mantissa part indicates the decimal part of the number. Single precision is equal to the 

float type in the programming language, has a maximum precision of 6 digits, and 

holds a 32-bit number. Double precision is equal to the double type in the software 

language, it has a maximum precision of 15 digits and holds a 64-bit number. Sign bit 

is one bit in both double precision and single precision. The exponent part is 8 bits in 

single precision, 11 bits in double precision, and the mantissa part is 23 bits in single 

precision and 52 bits in double precision [23]. 

𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 − 𝑝𝑜𝑖𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 = (-1)s  * m * 2e 

With this formula, the multiplication of two numbers in floating-point numbers is 

performed with the following steps. Sign bits XOR, mantissa parts are multiplied and 

the exponent exponents are added to get the result. In floating-point numbers, the sum 

of two numbers is performed by shifting the exponent of the smaller number until it 

equals the exponent of the larger number, and then adding the two values [27,28]. 

VHDL or Verilog code can be written according to the algorithm described to perform 

these operations in Vivado. Another method suitable for this format is to include the 

float_pkg.all and float_generic_pkg.all libraries and perform operations by generating 



56 

var float x. But since the libraries written in this method are compatible with Vivado 

2008 version, it is necessary to update the libraries [24,25]. 

5.1.2 Floating-Point IP Generator (7.1) custom IP design  

Floating Point IP, available in Vivado IP Catalog → Math Functions, is used for 

floating point arithmetic operations. The floating point AXI IP has data ports named  

Figure 5.2: Floating Point (7.1) IP  

S_AXIS_A and S_AXIS_B to be used in arithmetic operations, a port named 

S_AXIS_OPERATION where the operation to be performed is selected, an operation 

result port named M_AXIS_RESULT, asynchronous clock signal called aclk and 

asynchronous reset signal called aresetn. This IP performs arithmetic operations using 

DSP blocks. Input type can be changed from Precision of Inputs tab to half precision, 

single precision, double precision or custom precision. In addition, how much delay 

the process will have, the reset pin and the ready pin can also be configured. Because 

the floating point IPsi uses DSP blocks, it performs transactions quickly. Therefore, in 

this project, floating point transactions were made using this IP [22]. 

 



57 

 Custom IP Design of Floating-Point Arithmetic in Vivado 

In this section, the custom ip designed to perform the arithmetic operation performed 

in the software will be explained. The line that performs the T = X - (W*H) arithmetic 

operation by taking a float value from the X, W and H arrays in each loop within the 

for loopin the software will be made in the hardware part.  

First of all, the project is opened in Vivado. Click on Tools → Create and Package 

New IP button. 

 

 

 

 

 

 

 

 

Figure 5.3: IP Package Type Selection 

Since the Floating-Point has an IP AXI4-Stream interface, IP Package type is selected 

as AXI4 Peripheral. 

 

 

 

 

 

 

 



58 

Figure 5.4: Naming the IP Packet 

The IP packet is named ip7 and the place where it will be saved is chosen as the folder 

where the final block design will be created. 

 

 

 

 

 

 

 

 

 

Figure 5.5: Configuring Interface Settings 

Since the data will come from the Zynq processor, the mode has been selected as the 

slave for this interface and the number of registers has been updated as 6 due to the 

variables X, W, H, T, valid and ready. 

 

 

 

 

 

 

 

 

 

Figure 5.6: Edit IP 



59 

Since the registers will be edited and other operations will be coded in the created IP, 

the Edit IP option is selected. In the project that opens, we first add the floating-point 

IPs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Operation Selection 

First we add the IP that do the multiplication for the (W * H) operation. 



60 

Figure 5.8: Selection of Precision of Input 

Precision type is selected as single because float values will be multiplied. 

 

Figure 5.9: Interface Options Settings  

A ready input is added to be able to observe the signs in the simulation. In order to 

minimize the delay, Latency is updated as 1 and reset pin is added. The same steps are 

repeated to add the subtract block by selecting subtract in the operator selection 

section.  

Then the added IP needs to be implemented into the code. For this, the Verilog code 

is copied from the floating_point_0.veo file from IP Sources → floating_point_0 → 

Instantiation Template.  



61 

Figure 5.10: IP7 Main Verilog Code (1-27)  

X, W, H are defined as input, T as output, and valid and ready variables are defined 

for these variables. 

 

Figure 5.11: IP7 Main Verilog Code (27-46) 



62 

Since floating_point_0 makes multiplication block, W variable is directed to A data, 

H variable to B data and res variable to result data. Then, the variable X is directed to 

the A data of the floating_point_1 function, the res variable to the B data, and the T 

variable to the result data for subtraction. In order to test that the written code works, 

the testbench code is written and observed in the simulation. 

Figure 5.12: IP7 TestBench Verilog Code (1-27) 

For the module defined in the main Verilog code, the inputs are reg and the outputs 

are defined as wire. The module in the main code is initialized. 



63 

Figure 5.13: IP7 Main Verilog Code (27-46) 

First, the clock signal, input signals, valid signals and reset signal are pulled to low. A 

clock pulse is created by changing the clock signal at 5ns intervals. When the 

simulation starts, the reset signal is pulled to high. Inputs are assigned float values. 

These values are oriented by converting from IEEE-754 floating point format to 

hexadecimal format. The variables X_valid, W_valid, H_valid and T_ready are set 

high so that the results of the operations are observed. 

Figure 5.14: Simulation Results 



64 

W is multiplied by H and written to the variable m_axis_result_data. This value is then 

subtracted from X. Simulation results with the sent values give correct results. Thus, 

it has been proven that the designed system works. 

Figure 5.15: Register Assignments 

 

The variable T, which holds the process result, is assigned to register 3, and the 

variable ready_tmp, which holds the process result is ready, is assigned to register 5. 

 

Figure 5.16: Register Assignments Module  

 



65 

register 0 is directed to variable X, register 1 to variable W, register 2 to variable H, 

register 4 to valid variables. These register assignments are important when sending 

and receiving data in the Vitis interface. 

All changes made are saved in the edit project and the IP is packaged. Currently 

designed IP is in use and operational. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

 Block Design of Project 

A block design is created using the IP, designed in Section 5.2, and the Zynq-7000 

processor. Since the designed IP is an AXI Peripheral, AXI Interconnect provides the 

connection between it and the Zynq-7000 processor. It comes automatically with the 

addition of Processor Reset System and AXI Interconnect Zynq-7000 processor. The 

frequency of the FCLK_CLK0 signal was changed to 10 MHz from the Clock 

Configuration → PL Fabric Clocks tab by double-clicking on the Zynq-7000 

processor. 

Figure 5.17: Block Design of Project  

 

Output Products are produced after block design is evaluated. After the output products 

are successfully created for all blocks in the block design, HDL Wrapper is produced 

from the design. The steps of synthesis, implementation and bitstream file generation 

are done respectively. The designed hardware is exported with the Export Hardware 

option and a .xsa file is produced. 

 

 

 

 

 

 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Schematic of Project 

 

The schematic representation of the whole system is shown in Figure 5.18. 

 

 

 

 

 



68 

 

 Vitis C Code of Project 

By following the Vitis project creation steps described in Chapter 2, the hardware 

file is imported and a new project is created. 

 

 

 

 

Figure 5.19: Vitis C Code of Project 

 

The "platform.h" header is included to initialize the platform, the "xparameters.h" 

header to use the XPAR_IP7_0_S00_AXI_BASEADDR variable of the ip file, the 

"ip7.h" header to access the ports of the designed IP, and the "xil_io.h" header for the 

WriteReg and ReadReg functions. In the main function, since the variables X, W, H 

are inputs in the equation, they are sent into the mWriteReg function according to the 

registers where the IP is directed in the hardware using the BaseAddr and Reg_Offset 

variables. The third variable in the function is the hexadecimal form of the data. When 

the valid variable was high when observed in the simulation, the data was processed 

and the result was produced. Therefore, the valid variable is sent as 0xf high with the 

appropriate register to the mWriteReg function. The correct result was observed when 



69 

the T_ready variable was high in the simulation. For this, the state of T_ready is 

observed in the while loop until T_ready is high in the code. When T_ready is high, 

the result of T is retrieved from the mReadReg function with the appropriate register 

value. 

 

 

 

 

  



70 

 REALISTIC CONSTRAINTS AND CONCLUSIONS 

  Practical Application of This Project 

Ground penetrating radar, which can be the application area of the study, is used to 

find objects buried in the ground in many different sectors. Especially in the detection 

of anti-personnel mines, radars used in the military field need to process the image and 

clear the confusion for target detection. Matrix decompositions to be implemented in 

the project are relatively simple algorithms for FPGA implementation, which are 

widely used in the processing of ground penetrating radar images. By implementing a 

successful image processing algorithm such as robust negative matrix decomposition 

on FPGA, a portable, inexpensive and fast solution will be developed directly on the 

radar. 

 Realistic Constarints 

Many realistic constraints were encountered during the design. The fact that the data 

used is of floating-point type has been the most difficult part of the project. It both 

made it difficult to receive data on the Vitis interface and caused some situations such 

as the insufficient number of DSPs on the card in the Vivado interface, requiring the 

use of a special IP. Therefore, the operation of the project has slowed down. In 

addition, the fact that the project is within the scope of  TUBITAK 1001 projects 

caused time to be lost due to the preparation of extra reports and presentations. 

6.2.1 Social, environmental and economic impact 

Ground penetrating radar is an extremely safe measurement method that does not 

require digging, used to find buried objects. It emerges as a very useful and safe 

technique in mine exploration for military purposes.  

With the addition of suitable (low transaction cost and robust clutter) clutter removal 

and detection methods to be developed for the mobile system, the whole system will 

find a wide market opportunity as a compact, mobile and low-cost product, and will 

appeal to civilian or military users from all walks of life. 



71 

The ability of these application to implement on FPGA and SoC will provide great 

advantages in terms of speed. 

6.2.2 Cost analysis 

In this project, all the steps implemented on the computer and hardware devices are 

planned to be used. The programs that will be used are provided by ITU and Xilinx. 

A junior engineer’s salary is assumed to be 5$/hour. The project will take 28 weeks 

with respect to EHB4901E and EHB4902E lectures AKTSs. 

Salary = 5$ * 5.5 hour * 28 weeks = 770 $ for per student 

ZedBoard Zynq-7000 ARM/FPGA SoC Development Board = 500$   

Sum = 1270 $ 

6.2.3 Standards 

Throughout the project, hardware designs were based on IEEE's Verilog and VHDL 

standards and IEEE-754 Floating-Point standard. Likewise, the C model was 

completed with reference to the C99 standard. In addition, TUBITAK Standards were 

complied with.  

6.2.4 Health and safety concerns 

OnSite Effective with a Low Cost, Portable Ground Penetrating Radar System Clutter 

Clearing and Targeting is an extremely safe measurement method for locating buried 

objects. It is a very useful and safe technique in military mining exploration. 

 Future Work and Recommendations 

In order to improve this project, the steps applied with float value can also be applied 

with double values. In addition, in order to speed up the RNMF algorithm at the 

moment, the hardware part can be designed for operations in other lines, such as 



72 

matrix multiplication, division, shifting, etc., which are performed in hardware. Thus, 

the system will be accelerated even more. 

 Conclusion 

With this project, it is aimed to accelerate the system by realizing the matrix 

multiplication, which is a frequently performed operation in software, of RNMF, 

which is a clutter removal algorithm. For this, first of all, it was necessary to transfer 

the data from the radar to the computer. In the Vitis environment, the data was read 

from the text file and transferred to the computer and made ready for processing. In 

the Vitis environment, the RNMF algorithm was run with the data from the text file. 

It has been seen that the longest-running operation is matrix multiplication. Therefore, 

this line of operation is intended to be implemented in hardware. Implementation of 

floating-point numbers in hardware is quite difficult compared to other data types. 

Therefore, a special design is required. Methods to do this have been investigated. It 

was decided that the most suitable method for this project is the existing Floatimg-

Point IP Generator. A new private IP was designed using this custom IP located in 

Xilinx's own environment. Afterwards, a block design was created using the designed 

IP and Zynq-7000 processor. After the block design was synthesized, implanted and 

the bit file was produced, the system designed in the software part was used. Thus, the 

execution of the main code is accelerated and the number of clock cycles is reduced. 

 

 

 

 



73 

REFERENCES 

[1] Kuon, I., Tessier, R. and Rose, J., 2008. FPGA Architecture: Survey and 

Challenges.  

[2] Ashenden, P.J., 2007. Digital Design (VHDL): An Embedded Systems Approach 

Using VHDL, Morgan Kaufmann. 

[3] XILINX, 2020, "Vivado Design Suite User Guide". 

[4] MathWorks, Design digital FPGA, SoC FPGA, or ASIC hardware, https:// 

www.mathworks.com/discovery/hardware-design.html. (accessed Jan. 

02, 2023). 

[5] Thomas, D.E. and Moorby, P.R., (2002). The Verilog® Hardware Description 

Language, Kluwer Academic Publishers. 

[6]“ZedBoard - Digilent Reference,” digilent.com., 

https://digilent.com/reference/programmable-logic/zedboard/start 

(accessed Dec. 27, 2023). 

[7] Ishtiaq, A., Khan, M. U., Ali, S. Z., Habib, K., Samer, S., & Hafeez, E. (2021, January). 

A Review of System on Chip (SOC) Applications in Internet of Things (IOT) 

and Medical. In ICAME21, International Conference on Advances in 

Mechanical Engineering, Pakistan (pp. 1-10). 

[8] Zynq-7000 ARM/FPGA SoC https://www.digikey.com/en/products/detail/amd-

xilinx/XC7Z020-2CLG484I/3925763 (accessed Dec. 27, 2023). 

[9] Design, M. B. D. (2012). Vivado Design Suite Reference Guide 

[10] L. Zhang, Z. Chen, M. Zheng, and X. He, “Robust non-

negative matrix factorization,” Frontiers of Electrical and Electronic 

Engineering in China, vol. 6, no. 2, pp. 192–200, Feb. 2011, doi: 

10.1007/s11460-011-0128-0. 

[11] Xilinx, (2021). Vivado Design Suite Properties Reference Guide. 

 

[12] Kumlu, D. ve Erer, I., (2018) “Clutter removal in GPR images using non- 

negative matrix factorization”, Journal of Electromagnetic Waves and 

http://www.mathworks.com/discovery/hardware-design.html
https://www.digikey.com/en/products/detail/amd-xilinx/XC7Z020-2CLG484I/3925763
https://www.digikey.com/en/products/detail/amd-xilinx/XC7Z020-2CLG484I/3925763


74 

Applications, vol 32, no. 16, pp. 2055–2066, doi: 

https://doi.org/10.1080/09205071.2018.1489740 

[13] “Zynq-7000 SoC,” Xilinx. https://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.html 

[14] Y.-X. Wang and Y.-J. Zhang, “Nonnegative Matrix Factorization: A 

Comprehensive Review,” IEEE Transactions on Knowledge and Data 

Engineering, vol. 25, no. 6, pp. 1336–1353, Jun. 2013, doi: 

10.1109/tkde.2012.51. 

[15] H. Zhou, Y. Wang, Q. Liu and Y. Wang, "RNMF-Guided Deep Network for 

Signal Separation of GPR Without Labeled Data," in IEEE 

Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art 

no. 3507705, doi: 10.1109/LGRS.2021.3099161. 

[16] D. Kumlu and I. Erer, (2020) "Improved Clutter Removal in GPR by Robust 

Nonnegative Matrix Factorization," in IEEE Geoscience and Remote 

Sensing Letters, vol. 17, no. 6, pp. 958-962,  doi: 

10.1109/LGRS.2019.2937749. 

 

[17] N. B. Erichson, A. Mendible, S. Wihlborn, and J. N. Kutz, “Randomized 

nonnegative matrix factorization,” Pattern Recognition Letters, vol. 104, pp. 1–7, 

Mar. 2018, doi: 10.1016/j.patrec.2018.01.007. 

[18] L. Du, X. Li and Y. -D. Shen, "Robust Nonnegative Matrix Factorization via 

Half-Quadratic Minimization," 2012 IEEE 12th International 

Conference on Data Mining, 2012, pp. 201-210, doi: 

10.1109/ICDM.2012.39. 

[19] APU, A. P. U. (2012). XA Zynq-7000 All Programmable SoC First Generation 

Architecture.  

[20] “UART Protocol”, 2021,https://techdestek.net/2021/07/15/uart-protokolu/ 

[21] Fasi, M., & Mikaitis, M. (2021). Algorithms for stochastically rounded 

elementary arithmetic operations in IEEE 754 floating-point 

arithmetic. IEEE Transactions on Emerging Topics in 

Computing, 9(3), 1451-1466. 

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://techdestek.net/2021/07/15/uart-protokolu/


75 

[22] PG060, X. (2017). Floating-Point Operator V7. 1 LogicCore IP Product Guide. 

[23] Campos, N., Edirisinghe, E., Fatima, S., Chesnokov, S., & Lluis, A. (2023). 

Fpga implementation of a custom floating-point library. 

In Proceedings of SAI Intelligent Systems Conference (pp. 527-542). 

Springer, Cham. 

[24] Even, G., Mueller, S. M., & Seidel, P. M. (2000). A dual precision IEEE 

floating-point multiplier. Integration, 29(2), 167-180. 

[25] Louca, Cook and Johnson, "Implementation of IEEE single precision floating 

point addition and multiplication on FPGAs," 1996 Proceedings IEEE 

Symposium on FPGAs for Custom Computing Machines, 1996, pp. 

107-116, doi: 10.1109/FPGA.1996.564761. 

[26] R. K. Kodali, S. K. Gundabathula and L. Boppana, "FPGA implementation 

of IEEE-754 floating point Karatsuba multiplier," 2014 International 

Conference on Control, Instrumentation, Communication and 

Computational Technologies (ICCICCT), 2014, pp. 300-304, doi: 

10.1109/ICCICCT.2014.6992974. 

[27] K. Manolopoulos, D. Reisis and V. A. Chouliaras, "An efficient multiple 

precision floating-point multiplier," 2011 18th IEEE International 

Conference on Electronics, Circuits, and Systems, 2011, pp. 153-156, 

doi: 10.1109/ICECS.2011.6122237. 

[28] A. Akkas and M. J. Schulte, "A quadruple precision and dual double precision 

floating-point multiplier," Euromicro Symposium on Digital System 

Design, 2003. Proceedings., 2003, pp. 76-81, doi: 

10.1109/DSD.2003.1231903. 

[29] H. Yamada, T. Hotta, T. Nishiyama, F. Murabayashi, T. Yamauchi and H. 

Sawamoto, "A 13.3ns double-precision floating-point ALU and 

multiplier," Proceedings of ICCD '95 International Conference on 

Computer Design. VLSI in Computers and Processors, 1995, pp. 466-

470, doi: 10.1109/ICCD.1995.528909. 



76 

CURRICULUM VITAE 

 

 

 

 

Name Surname : Çisem KURT

   

Place and Date of Birth : Gönen -Turkey, 1999  

E-Mail : cisemkurt99@gmail.com 

Education: • B.Sc.                : Istanbul Technical University- Electronics and 

Communication Engineering (2020-2023)   

Professional Experience      : 07.2021 – 08.2021 İTÜ Embedded System Design 

Lab. Internship 

08.2021 – 09.2021 Tekhnelogos Software – Hardware 

Design Engineer Intern 

10.2021 – 03.2022 Tekhnelogos Software – Hardware 

Part Time Design Engineer  

03.2022 – Present Turkish Aerospace (TUSAŞ) – Part 

Time Design Engineer 

 

 

 

 

 

 

 

mailto:cisemkurt99@gmail.com


77 

 

CURRICULUM VITAE 

 

 

 

 

Name Surname : M. Furkan ERTURAL   

Place and Date of Birth : İstanbul -Turkey, 1997  

E-Mail : fertural@gmail.com 

Education: • B.Sc.                : Istanbul Technical University- Electronics and 

Communication Engineering (2018-2023)   

Professional Experience      : 07.2021 – 08.2021 ITU Embedded System Design 

Lab. Internship 

2021 - 2022: Embedded Sofware Systems Developer 

at TUBITAK RUTE, Part-Time Research Engineer 

2022 - 2022: Sofware Developer at SIEMENS-

ADVANTA, Part-Time Software Developer 

 

 

 

 

 

mailto:fertural@gmail.com

