ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

FPGA Implementation for OnSite Target Detection with a Low Cost and Portable
Ground Penetrating Radar System

SENIOR DESIGN PROJECT

Muhammed Furkan ERTURAL
Cisem KURT

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JANUARY, 2023

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

FPGA Implementation for OnSite Target Detection with a Low Cost and Portable
Ground Penetrating Radar System

SENIOR DESIGN PROJECT

Muhammed Furkan ERTURAL
(040180122)

Cisem KURT
(040200790)

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Prof. Dr. Berna Ors Yalcin
Project Co-Advisor: Prof. Dr. Isin Erer

JANUARY, 2023

ISTANBUL TEKNIiK UNiVERSITESI
ELEKTRIK-ELEKTRONIK FAKULTESI

Diisiik Maliyetli ve Tasinabilir Yer NUfuz Eden Radar Sistemi ile Yerinde Hedef
Tespiti icin FPGA Uygulamasi

LiSANS BITIRME TASARIM PROJESI

Muhammed Furkan ERTURAL
(040180122)

Cisem KURT
(040200790)

Proje Damsmani: Prof. Dr. Berna ORS YALCIN
Proje Yardimc1 Danismani: Prof. Dr. Isin ERER

ELEKTRONIK VE HABERLESME MUHENDISLiGi BOLUMU

OCAK, 2023

We are submitting the Senior Design Project Interim Report entitled as “FPGA
Implementation for OnSite Target Detection with a Low Cost and Portable Ground
Penetrating Radar System”. The Senior Design Project Report has been prepared as to
fulfill the relevant regulations of the Electronics and Communication Engineering
Department of Istanbul Technical University. We hereby confirm that we have realized all
stages of the Senior Design Project Interim Report by ourselves, and we have abided by
the ethical rules with respect to academic and professional integrity.

Muhammed Furkan ERTURAL ‘ ; '

(040180122)

N

_L/l'f’["':a
Cisem KURT '
(040200790)

FOREWORD

First of all, we would like to thank our project advisor Prof. Dr. Siddika Berna ORS
YALCIN, who helped us with her knowledge and experience in this project and is
understanding in every respect, Prof. Dr. Issn ERER who is our assistant advisor and
Prof. Dr. Selcuk PAKER who is supported us for their support and assistance during
the project. We would also like to thank RA. Orhan APAYDIN and Canberk TATLI
who worked with us on this project. Finally, we would like to express our endless
gratitude to our families who have supported us and made all kinds of sacrifices
throughout our university life.

January 2023 Cisem KURT
Muhammed Furkan ERTURAL

Vi

TABLE OF CONTENTS

Page

FOREWORD ..ottt sttt sttt e s b st et ne et e eneebe s e ene et %
TABLE OF CONTENTS ..ottt e et e e e e e aee e nna e Vil
ABBREVIATIONS .ttt e e e e e e et e e e s e e e nnaeeenneeas IX
LIST OF FIGURES ...ttt sttt sttt sttt Xi
SUMMOARY ettt ettt st ettt R et et e st e R e bt e Rt et e et re et et neane s XV
(@)74 = 1T T OO T TR XVi
1. INTRODUCTION ...ttt sttt et e e s e e e snae e e nseeeeneeeanneaeanneeeas 1
1.1 ADOUL The REPOIT ...t bbbt 1
1.2 PUIPOSE OF PIOJECTo.viiviiiieiieieie ettt bbb 2
1.3 PrOJECE SEEPS ...ttt bbbttt b et 2

2. BASIC INFORMATION AND CONCEPTS ... 4
2.1 Xilinx Vivado Environment General INfOrmationccocovvvviiieienniene e 5
2.2 VITIS IDE General INfOrmMation ..o 5
2.3 Zedboard Development Kit General INformationc.ccoovvvviiieieneinc e 6
2.4 Zyng-7000 All Programmable System On Chip ..o 8
2.5 VIVAAO TULOTIAL ..ottt 10
3.DATA TRANSFER WITH UART SERIAL COMMUNICATION PROTOCOL....... 18
3.1 UART Serial Communication ProtoColcccooeiieiiiieiiese e 18
3.2 Architectural Design Of ZYNQ-7000cccourimiiiieiineiiieseeee e 20
3.3 Hello World Test APPHCALIONocveiieiiiieiiieeie et 22
3.4 Failed Data Transfer APPlICALIONScccooiiiiiiiiiece e 26
3.4.1 AXI GPIO block diagram and C code application............cccoovviveniinnicnieeiieennens 26

3.4.2 AXI UART_LITE block diagram and C code applicationc.ccocevvevrnennnn. 28

3.4.3 Only Zyng-7000 processor block diagram and C code application 32

3.5 Successful Data Transfer IMmplementation ... 36
4. RNMF APPLICATION ON VITIS .ottt 43
i I N 1Y N T o] 4 1] OSSPSR 43
4.2 Information ADOUL GPR IMAJEcoiiiiiiiieiee s 44
4.3 LITEIatUI REVIBW....c.eiiiiiiiieitceee sttt sttt sttt bt sn e nbeebeeneenreas 44
4.4 RNMF Application VITIS C COUEccuuiiiiieiieie e 47
5.HARDWARE IMPLEMENTATION OF RNMF ALGORITHMccocoeienieee, 54

vii

5.1 Implementation of Floating-Point Numbers on Vivado...........ccccoeieniniiininiiicee, 54

5.1.1 IEEE 754 Format floating point numbers arithmetic calculations........................ 54

5.1.2 Floating-Point IP Generator (7.1) custom IP deSignccccooevereninenenieeeinnen, 56

5.2 Custom IP DeSigN iN VIVAAOD.......c.eiiiiiiiiinisieieie ettt 58
5.3 BIOCK DESIgN OF PrOJECLcouiiiiiiiieicie e 67
5.4 VitiS COAE OF PrOJECTciiiiieiieieee e 69
6.REALISTIC CONSTRAINTS AND CONCLUSIONS.......cccooiiiriieieese e 71
6.1 Practical Application of ThiS PrOJECTccviiiiiiiriiiie e, 71
6.2 REAIISTIC CONSIIAINTS. ...c.viiiieiiieiieeie ettt sreenae e 71
6.2.1 Social, environmental and eCONOMIC IMPACL..........ccevvrrieiierieieiiee e 71

6.2.2 COSE ANAIYSIS. ..c.vitiitiitietieieie ettt bttt bbbt ens 72

0.2.3 STANUAITS ..veeee bbb 72

6.2.4 Health and Safety CONCEIMS..........ccoiiiiiieieee e 72

6.3 Future Work and ReCOmMmMENdationS.........cccoveiiereiieiieie e 72
R A O] T [S]] FO SRRSO 73
REFERENGCES ..ottt sttt ettt ettt se e st seeneanas 74
CURRICULUM VITAEoocoiiiiiiiieieeseie st 76
CURRICULUM VITAEcooiiiiiiiiisiiiee sttt sttt 77

viii

ABBREVIATIONS

AC - Alternative Current

ASIC : Application Specific Integrated Circuit

AXI : Advanced eXtensible Interface

BRAM : Block Random Access Memory

CANBUS : Controller Area Network Bus

CPU : Central Process Unit

DC : Direct Current

DDR : Double Data Rate Synchronous Dynamic Random-Access
Memory

DMA : Direct Memory Access

DSP - Digital Signal Processing

EMI : Electromagnetic Interference

FPGA : Field Programmable Gate Array

GMAC : Galois Message Authentication Code

GPR : Ground Penetrating Radar

GPIO : General Purpose Input and Output

HDL : Hardware Description Language

HLS : High Level Synthesis

IDE . Integrated Development Environment

12C . Inter-Intergrated Circuit

IEEE . Institute of Electrical and Electronics Engineers

IP - Intellectual Property

LED > Light Emission Diode

LUT : Look-Up Table

MCU : Micro Controller Unit

MIO

MMC

NMF

OoTG

OLED

PS

PL

RNMF

RPN

RXD

SD

SDIO

SDSoC

SDK

SPI

SoC

TXD

UART

USART

USB

JTAG

VHDL

Description Language

: Multi Input-Output

: Multi Media Card

: Non-negative Matrix Factorization

: On The Go

: Organic Light Emitting Diode

: Programmable Software

: Programmable Logic

: Robust Nonnegative Matrix Factorization

: Region Proposal Network

: Receive Data

: Secure Digital Memory Card

: Secure Digital Input Output

: Software Defined System On Chip

: Software Development Kit

: Serial Peripheral Interface

: System on Chip

: Trasmit Data

: Universal Asynchronous Receiver Transmitter
: Universal Synchronous Receiver Transmitter
- Universal Serial Bus

- Joint Test Action Group

Very High Speed Integrated Circuit Hardware

LIST OF FIGURES

Page
Figure 2.1: ZedBoard Development Kit. ..o e 6
Figure 2.2: Zyng-7000 All Programmable SOC ... 8
Figure 2.3: Creating a New Project.........cooiiuiiiiiiiii e 10
Figure 2.4: Naming the PrOJECtoiiniirii e e 10
Figure 2.5: Determining the Project TYPec.oviiiiii e, 11
Figure 2.6: Selecting the Card 10 USE........coviiiiiiiiie e 11
Figure 2.7: Creating the BIOCK DeSIgNvovvinii e 12
Figure 2.8: Naming the BIOCK DESIQNccvoviiieiiiic et 12
Figure 2.9: Adding the PrOCESSONciieiiiiie e 13
Figure 2.10: Making Automatic Connections of the ProCessorccccoceveveiinenineeieinenn, 13
Figure 2.11: Customizing the PrOCESSONccviiiieieieiesie sttt 14
Figure 2.12: Transitioning to the Vitis Platformccccoooiiiii i 14
Figure 2.13: Creating a New Application Project.........c.cccvoveiieiiiie i 15
Figure 2.14: Creating a New Workspace on the Vitis Platform............ccccociviiiiiicien, 15
Figure 2.15: Embedding the Block Design in the Projectcccceveveiiiiniiineiiseieieen 16
Figure 2.16: Adjusting the Block Design 0N VitiS........cccoveiiiiiiiiic e 16
Figure 2.17: Adding New Platform Template...........ccccoeviiiiiicii e 17
Figure 2.18: Adding Main SOUICE COUEccuviiieiiieieite st 17
Figure 3.1: UART Data Frame FOrMAL.........cccoiiiiiiiiiiiieiiseseeeee s 19
Figure 3.2: Architectural Design of the Zyng-7000 Chipcccccveveiieiiciiiicceece e 20
Figure 3.3: UART Access of Zyng-7000 Chipcccoeiveiiiieiiecece e 21
Figure 3.4: Hello World Test Application BIOCK DeSIgN.........ccccuuveierenerenineseseseeieiees 22
Figure 3.5: Hello World Test Application C COdecocviiiiiiiiiieee e 23
Figure 3.6: Making Hello World Project UART Communication Settings..........c.ccccvvvevenne. 24
Figure 3.7: Build the PrOJECE.......eiiiiiii ittt 24
Figure 3.8: Obtaining the Output on the Terminal with the Test Code Applied on the
RV L3 11 (0] 1SS PSSRSS 25
Figure 3.9: AXI GPIO Block Diagram for Radar Data Transfer via UARTcccovvvvnenne. 26
Figure 3.10: AXI GPIO C Code for Radar Data Transfer via UARTcccccooveviiiiiciieciennn, 27
Figure 3.11: AXI UART_PS LITE Block Diagram for Radar Data Transfer via UART 28
Figure 3.12: AXI UART_PS LITE C Code for Radar Data Transfer via UART 29

Xi

Figure 3.13: Observed Read Data in TeraTerm Terminalccooeieiiiinininiiiineeeen 31

Figure 3.14: Zyng-7000 Processor Block Diagram for Radar Data Transfer via UART 32
Figure 3.15: Zyng-7000 C Code for Radar Data Transfer via UARTcccoccvvvvevveieciinnnn, 33
Figure 3.16: Observed Read Data in TeraTerm Terminalccccovvevviiiiieincie e, 34
Figure 3.17: Real Radar Measurement Data...........cceveieieiiiiniiecieeeeee e 35
Figure 3.18: Block Design of Successful Data Transfer Implementationcc.ccooevvennn. 36
Figure 3.19: Vitis C Code of Successful Data Transfer Implementationc.ccccccveienen. 37
Figure 3.20: FPGA Programmed Correctly, FPGA DisSplay..........ccccvvevviiniiieriiesiese e, 39
Figure 3.21: Sending Data From Terminal to FPGA ... 39
Figure 3.22: Data Read From Terminalccoiiiiiiiiiiiiese s 40
Figure 3.23: Last Data Read From Terminalccccoooiiiiieiiiii i 40
Figure 3.24: Data SENt 10 FPGAc.oiii ettt nne s 41
Figure 3.25: Data Read From Terminalccoiiiiiiiiiiii s 42
Figure 4.1: Raw GPR Image Collected from Target ODJect..........ccccvvvieiiniiiiiiicieeee, 45
Figure 4.2: Target Object Removed Clutter IMage........cccovveveeiiiiieiiese e 45
Figure 4.3: Clutter (Object RemoVved) IMAQEccccveieeiiiie e 46
Figure 4.4: RNMF Vitis Main C Code (1-38).....cccuuiieiiiiiiieiesisieseeeeee et 47
Figure 4.5: RNMF Vitis Main C Code (39-76).......cccuriiriiiriinienisiesieeie e 48
Figure 4.6: RNMF Vitis Main C Code (76-105)........ccceiiiiieiieiiiie e 49
Figure 4.7: RNMF Algorithm Vitis C Code (rnmf_in.C)c.ccooviiiiiiiiec e, 49
Figure 4.8: Time Analysis Terminal RESUIL...........ccoiiiiiiiiiieee e 52
Figure 4.9: Target Data Removed Form Clutter by RNMF Algorithmccocoooviiiinnn, 52
FIQUIe 4.10: CIUEEr DAtA........ceiiieieiciecieeie ettt s sta et beebeanaesneas 53
Figure 5.1: Single Precision IEEE-754 Floating-Point Standard..............cccccevvivveieeieciennn, 55
Figure 5.2: Floating POINt (7.1) IP ...cuooiiee et 56
Figure 5.3: IP Package TYPe SEIECTIONccooiiiiieiiieee e 57
Figure 5.4: Naming the [P PACKELc.ooiiiiiiiiie s 57
Figure 5.5: Configuring Interface SettingS.......ccccoveiiiiiiieiiiiie e 58
FIQUIE 5.6 EQIT IP oot et te e e 58
Figure 5.7: Operation SEIECTIONccoiiiiiiiiiiieee e 59
Figure 5.8: Selection of Precision Of INPULcccooiiiiiiii e 59
Figure 5.9: Interface Options SEtHINGSocoviiiiiiiie et 60
Figure 5.10: IP7 Main Verilog Code (1-27)....cccuuiieiiiiiiecie sttt 61
Figure 5.11: IP7 Main Verilog Code (27-46)........cccouiriiiiiiiiisesieeee e 61

Xii

Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:

IP7 TestBench Verilog Code (1-27)ccooueiieeiiiie e 62
IP7 Main Verilog Code (27-46)cceiueiieeiieieeie et 63
SIMUIALION RESUITS......c.veiiiiiiiieieeee e 63
ReQIStEr ASSIGNMENTSoivieiiiiecieete et e e e e sre e 64
Register Assignments Module............coooiiiiii 64
BIOCK DeSIgN OF PrOJECT ... s 66
SChemMatiC Of PrOJECT........vcieieee e 67
VitiS C Code OF PrOJECTocvveivieiece et 68

Xiii

Xiv

FPGA IMPLEMENTATION FOR ONSITE TARGET DETECTION WITH A
LOW COST AND PORTABLE GROUND PENETRATING RADAR SYSTEM

SUMMARY

In recent years, the processing speed and processing capacity of images have become
increasingly important in ground-penetrating radar technologies. Mobile radars
developed for the detection of buried objects are of great importance for use in military
and civilian life. For this reason, studies are being carried out for the ability to perform
fast operations on radars.

In order to accelerate the image processing algorithms made in ground-penetrating
mobile radar systems, applications such as optimizing the software are made, but they
are insufficient. In order to make up for this shortcoming, in this project, one of the
large matrix multiplications written for image processing has been designed to transfer
to hardware. Thus, when the matrix multiplication part, which will provide
communication between the FPGA and the SoC on it, is passed, a joint design of
hardware and software has been made so that the multiplication process is performed
much faster than the processor through the FPGA.

Since the software and hardware will work together for the mobile ground penetrating
radar system, the Verilog hardware design language (HDL) was preferred on the
Zedboard and FPGA, which is a Field Programmable Gate Arrays (FPGA) with
System On-Chip (SoC) in the previous works of the project. The target image and the
clutter are separated from each other by running the RNMF algorithm, which is a
program written in C language using the Zyng-7000 processor. It has been observed
that this decomposition is faster than using only the processor since it is done using
FPGA.

XV

DUSUK MALIYETLI,TASINABILIR YERE NUFUZ EDEN RADAR
SISTEMI ILE YERINDE ETKIiN KARGASA GIDERME VE HEDEF
TESPITI

OZET

Son yillarda gelisen yere niifuz eden radar teknolojilerinde goriintiilerin islenme hiz1
ve islenme kapasitesi giderek onem kazanmistir. GOmiilii cisimlerin tespiti i¢in
gelistirilen mobil radarlar askeri ve sivil yasamda kullanim i¢in biiylik bir dnem
tasimaktadir. Bu sebeple radarlar {izerinde hizli islem yapabilme kabiliyeti i¢in

caligsmalar yapilmaktadir.

Yere niifuz eden mobil radar sistemlerinde yapilan goriintii isleme algoritmalarini
hizlandirabilmek ic¢in yazilimlarin optimize edilmesi gibi uygulamalar yapilmakta
ancak yetersiz kalmaktadir. Bu eksikligi giderebilmek i¢in bu projede goriintii isleme
icin yazilmig olan biiylik matris carpimlarindan birini donanima aktarma tasarimi
yapilmistir. Boylece donanim ve iizerinde bulunan islemci arasinda haberlesme
saglanacak matris ¢arpim kismina gecildiginde ¢arpma islemi Alan Programlanabilir
Kap1 Dizileri (FPGA) araciligiyla islemciden cok daha hizli bir sekilde

gerceklestirilmesi icin donanim ve yazilim ortak bir tasarim yapilmstir.

Mobil yere niifuz eden radar sistemi i¢in yazilim ve donanim ortak c¢alisacagindan
dolay1 projenin daha dnceki galismalarinda tizerinde System On-Chip (SoC) bulunan
bir Alan Programlanabilir Kap1 Dizileri (FPGA) olan Zedboard ve FPGA (izerinde
Verilog donanim tasarlama dili (HDL) tercih edilmistir. Zyng-7000 islemcisi
kullanilarak C dilinde yazilmis bir program olan RNMF algoritmasi calistirilarak
hedef goriintli ve clutter birbirinden ayristirllmistir. Bu ayristirmanin FPGA
kullanilarak yapildigindan sadece islemci kullanilarak yapilana gore daha hizli oldugu

gozlemlenmistir.

XVi

1. INTRODUCTION

1.1 About the Project

This report is the report of the senior design project named “FPGA Implementation for
On-Site Target Detection with a Low Cost and Portable Ground Penetrating Radar
System” and describes the work done within the scope of the senior design project.
The project, which is within the scope of the TUBUTAK 1001 Supporting Scientific
and Technological Research Projets, covers the on-site detection of buried objects with
the ground penetrating radar system. However, this graduation project includes the
part of the TUBITAK project, where the radar data read from buried objects is
simultaneously read, transferred to the ZedBoard development board and processed on
the processor to obtain clutter-free data.

The first part of this report includes the Vivado Program used throughout the project,
the Vitis IDE where C codes are written and compiled, the ZedBoard which is the
development board used, the Zyng-7000 SOC, and the tutorial on creating projects,
developing and testing C code.

The second part of this report deals generally with reading data from ground
penetrating radar. In this context, UART serial communication protocol, accessing and
configuring the UART protocol on ZedBoard, testing the simple Hello World
application that tests the card is working, tried and unsuccessful applications to read
data from the radar with the UART serial communication protocol, and finally,
successful with the UART serial communication protocol from the radar. The
application that enables data to be read will be explained.

The third part of this report covers the removal of clutter from the data by processing
the data read from the ground penetrating radar with the RNMF algorithm. In this
section, the RNMF algorithm, GPR image, literature review on previous studies in
these areas and the execution of the C code of the RNMF algorithm written in the Vitis

interface on the block design designed in the Vivado program will be explained.

The fourth part of this report is generally about the hardware implementation of the
software implemented RNMF algorithm. In this section, Vivado CUSTOM IP design,
block diagram used in the project and Vitis code of the project will be explained.

The final section of this report deals with realistic constraints, conclusions and
recommendations. In this section, the application areas of the study, realistic design
constraints, the cost of the project, the standards for which the project is suitable, the
social, environmental and economic impacts of the project, health and safety risks, the

implications of the project and suggestions for the future will be explained.

1.2 Purpose of Project

Ground penetrating radar system is a widely used method for finding buried non-
metallic objects. Existing and modeled methods for detecting and classifying buried
objects require data from multiple targets. In order to detect the buried target object, it

IS necessary to separate the clutter in the radar image from the target object.

This project covers the first phase of the TUBITAK project, which is being studied for
the detection of buried objects, and the application of clearing up the confusion. With

this graduation project aimed to:
e simultaneous reading of the data from the radar in the correct format,

e Implementation of the RNMF (Robust Nonnegative Matrix Factorization)
algorithm previously performed on Matlab in the C language and Vitis

interface of the read data

e Accelerating the project by hardware implementation of the implemented
RNMF algorithm

1.3 Project Steps

In this section, the operations carried out during the project will be explained.

First, a literature search was conducted on the RNMF algorithm and GPR image to be
used in the project. Then, a test code was written to prove that the ZedBoard
development board works correctly. With the test code, the sentences "Hello World"
and "Successfully ran Hello World application” were observed from the terminal, it

was ensured that the card was working correctly. In the first stage of data acquisition,
it was requested to take the data online. However, because the ZedBoard development
board works with the Linux operating system, but the computer we use has the
Windows operating system, positive results could not be obtained. Afterwards, it was
decided by our advisor to transfer the data offline. For this, the working logic of the
UART serial communication protocol was investigated. Block design was created in
Vivado for data transfer. Various block designs and C codes were tried until the data
was read correctly. These applications are described in detail in Chapter 3. The Zyng-
7000 processor was added to the created design. At this stage, based on the
architectural design of the Zyng-7000 chip, it has been learned that the card can
communicate with the UART protocol directly over the Multi Input-Output (MIO)
ports. Then it is configured so that the UART protocol can work in the Vitis interface.
The data in the text file has been read successfully with the UART protocol. However,
since the data from the radar is in exponential form, it is not in a format suitable for
processing. Since these data are read from the text file in string form, operations related
to clutter removal could not be performed. Accordingly, the data format needs to be
regulated in order to process the data. Since the data is in double format in the RNMF
code, the data received as strings are converted to double type. However, since the
function used at this stage limits the number of data received, the data is converted to
float data type. This section has been completed by taking the data transfer in the
correct format. After the data is received in the correct format, the RNMF algorithm
reads the data from the text file via the terminal, not as a constant, in the Vitis interface.
Since the most repeated operations of this algorithm are matrix multiplication and
subtraction, this part is implemented on hardware. Thus, the operation of the code is
shortened in time. In the hardware part, IP Floating Point Integrator has been added,
which performs multiplication and subtraction of floating-points. These IPs were
instantiated and the main code was written. After the testbench code was written to
test the system, it was observed that the design worked correctly in the simulation.
Then the custom IP is packed. A block design consisting of Zyng-7000 and custom IP
was created. After the design was synthesized, implemented and the bitstream file was
produced, exported hardware. Next, a new platform is created by importing the
hardware file into the Vitis interface. The main code is implemented by calling the

hardware-customized registers within the appropriate functions in the header file.

2. BASIC INFORMATION AND CONCEPTS

Field-Programmable Gate Arrays (FPGAS) are pre-fabricated silicon devices that can
be electrically programmed to become almost any kind of digital circuit or system [1].
A field-programmable gate array (FPGA) is an integrated circuit that can be
programmed or reprogrammed to the required functionality or application after
manufacturing. They are formed by a two-dimensional array of programmable logic
cells and managed switches. Logic cells can be configured to implement a function
and with connections between programmable keys and logic cells can be established
to make new configurations. Digital hardware is implemented by programming logic
cells and switches in this way. Important characteristics of field-programmable gate
arrays include lower complexity, higher speed, volume designs and programmable
functions. After the circuit is designed and synthesized using hardware description
languages such as Verilog, Very High-Speed Integrated Circuit Hardware Description
Language (VHDL), the data string containing the desired logic cell and switch
configuration is embedded in the FPGA with the help of a cable. They provide a
number of compelling advantages over fixed-function Application Specific Integrated
Circuit (ASIC) technologies such as standard cells [2]. It is cheaper to produce than
ASIC structures and takes less time to prepare circuits. In addition, the feature of being
programmable again and again gives the opportunity to make new additions for the
developers, and also provides an opportunity to fix the errors. FPGAs consist of an
array of programmable logic blocks, including general logic, memory and multiplier
blocks, digital signal processing blocks, of potentially different forms, surrounded by
a programmable routing fabric that enables programmable interconnection of blocks.
In FPGA, the "programmable™ concept means an ability to program a feature into the
chip after completion of silicon manufacturing. This customization is made possible
by the programming technology, which is a method that can cause a change in the
behavior of the pre-fabricated chip after fabrication, in the “field,” where system users
create designs. Thus, chips produced in a single type can be programmed and used for

many different purposes.

2.1 Xilinx Vivado Environment General Information

Xilinx Vivado Environment is an interface software used to program FPGAs
developed by Xilinx company [3]. This package, which includes many programs that
enable to make block-level design, facilitate the packaging of the designed hardware,
design hardware over Matlab, turn the code written according to a certain rule with 11
the C language into hardware, this package has managed to become a great solution in
FPGA design by eliminating the errors and accelerating as the updates arrive [4]. Thus,
Xilinx has provided great convenience to designers by collecting solutions from many
areas with Vivado in one package. Vivado’s 2020.2 version, was used in this project
with the licensed by Istanbul Technical University (ITU). Since the design will be run
with a processor in this project to run the RNMF algorithm, the Vitis tool has been

installed with Vivado.

The Verilog language is a language used for designing a digital system like a
microprocessor or a flip-flop. It supports a design at many levels of abstraction like:
behavioral level register-transfer level, gate level. It provides the digital system
designer with the ability to define a digital system at a wide range of abstraction levels,
while at the same time providing access to computer-aided design software to help in
the design process at these levels. Structurally similar to the C language will be

preferred in digital system design [5].

2.2 Vitis IDE General Information

This research work employs a Xilinx ZedBoard Xyng-7000 SoC series FPGA, which
can enable to combine embedded software programmability of an existing ARM
processor with programmable FPGA. In this FPGA has a dual core ARM Cortex A9
processor which is the main material to write a software program to the board. FPGAs
programmable logic parts consists of several Block Random Access Memories
(BRAMs), Digital Signal Processing (DSP) blocks, programmable 1/O pins,
configurable logic blocks, transceivers and Analog to Digital converters, AXI
interconnects that connecting FPGA and processor [9]. Xilinx Vitis environment is an
software interface used to program SoCs on the FPGA with C and/or C++ language.
Vitis IDE is a complete set of graphical and command-line developer tools that include

the Vitis compilers, analyzers, and debuggers to build applications, analyze

performance bottlenecks, and debug accelerated algorithms, developed in C, C++, or
OpenCL™ APIs. Vitis is for writing software to run in an FPGA and is the
combination of a couple of different previous Xilinx tools, including what was Xilinx
SDK, Vivado High-Level Synthesis (HLS), and SDSoC. The functionality of each of
these is now merged together under Vitis. Writing a C/C++ code to run on a processor
in a design which is created in Vivado. This code ends up being partially used to
configure and control elements of the hardware design — it’s easier to rebuild, tweak,
and debug on the Vitis IDE than the hardware portion is. Vitis is used to write C/C++
codes on IPs on a previously created block design in Vivado and perform operations
on them. It is a platform that takes some 1/O pins built-in and accelerates certain data
processing functions through software by placing them in hardware with software

languages such as C/C++.

2.3 ZedBoard Development Kit General Information

The ZedBaord Development Kit is a low cost, complete, ready to use digital circuit
development platform based on the Xilinx Zyng-7000 all programmable SoCs
XC7Z020-CLG484 tightly coupled dual core ARM Cortex A9 processors. [6] Target

Figure 2.1: ZedBaord Development Kit

applications include video processing, software acceleration and general Zyng-7000

prototyping. Zedboard Development Kit is optimized for high performance logic and

offers more capacity, higher performance and more DSP blocks than earlier designs.
The apperance of the Zedboard Zyng-7000 ARM/FPGA SoC Development board can
be seen in Figure 2.1 [6]

The features of the Zedboard device can be listed as follows:

Xilinx Zyng-7000 all programmable SoC XC72020-CLG484
Dual-core ARM Cortex™-A9 processor

DDR3 512 MB

Quad-SPI Flash 256 MB

On-board USB-JTAG Programming

Ethernet 10/100/1G

USB OTG 2.0 and USB-UART

Oscillator 33.333 MHz (PS), 100 MHz (PL)

128x32 OLED Display

12V 5A AC/DC regulator

Logic Level 3.3V

85k logic cells

Around 1.3 million ASIC gates

53.200 look-up tables (LUT)

106.400 flip-flops

560 kB of BRAM organized to 140 units, each containing 2048 by 18-bit
storage

220 DSP slices (Multiplier-Accumulator) organized to 18 x 25
276 GMACs

USB-UART Bridge

8 user LEDs

8 user Switches

SD Card connector

Digilent USB-JTAG port for FPGA programming and communication

2.4 Zyng-7000 All Programmable System on Chip

System on Chip (SoC) is an integrated electronics circuits which is made up with one
base layer contains all peripherals, inputs/outputs, pins, analog/digital converters etc.
at the substrate level. SoC is a hardware platform for different modules so they can
with each other effectively and efficiently [7]. SoC includes almost all electronics and
computer architecture system in a one base layer. Depending on the design, functions
such as signal processing, wireless communication, artificial intelligence can be

implemented in a system reduced to a chip size.

Processing System
Flash Controller NOR, NAND, Multiport DRAM Controller
SRAM, Quad SPI DOR3, DDRAL, DOR2

AMBA® Interconnect

N—N
H MPCore

fid
Pl
2
2C
2
. AN . I NEON™ SIMD and FPU NEON™ SIMD and FPU
x
PI0

UART ARM® Cortex™ - A3 ARM? Gortox™ - A9
H Snoop Control Unit
2 SDI0
. with DMA . JTAG and Trace m
I i Dl .
wz':h sliﬁil AMBA® Interconnect :
: : : : Azss.escl'mm

General-Purpose
AXI Ports

L Programmable Logic PCle® Gen 2

T::nﬁ?'s':::ér (System Gates, DSP, RAM) 1-8 Lanes

Processor 1/0 Mux

Serial Transceivers

Multi-Standard /0s (3.3V & High Speed 1.8V)

Figure 2.2: Zyng-7000 All Programmable SOC

The features of the Zyng-7000 SoC device can be listed as follows:

e Zyng-7000 devices are equipped with dual-core ARM Cortex-A9 processors
integrated with 28nm Artix-7 or Kintex®-7 based programmable logic for
excellent performance-per-watt and maximum design flexibility.

e Upto 6.6M logic cells

e Offered with transceivers ranging from 6.25Gb/s to 12.5Gb/s

e Zyng-7000 devices enable highly differentiated designs for a wide range of
embedded applications including multi-camera drivers assistance systems and
4K2K Ultra-HDTV.

e MCU, FPGA architecture

e Dual ARM® Cortex®-A9 MPCore™ with CoreSight™ Core Processor

e 256 KB ram size

e DMA peripherals

e CANbus, EBI/EMI, Ethernet, 12C, MMC/SD/SDIO, SPIl, UART/USART,
USB OTG connections

e 766 MHz speed

o Artix™-7 FPGA, 85K Logic Cells

e 130 1/0 Pins [13]

The apperance of the Zyng-7000 ARM/FPGA SoC can be seen in Figure 2.2 [8]

2.5 Vivado Tutorial

In this section, the stages of creating a project in Vivado, transitioning to Vitis
Integrated Development Environment (IDE) environment, creating a project in Vitis

Integrated Development Environment will be explained.

Firstly, the Vivado program is opened and the "Create a New Project™ option is clicked

to create a new project.

¢ Vivado 20202

File Flow Tools Window Help Q- Quick Access

VIVADO'!

HLx Editions

Quick Start

Create Project >
Open Project >

Open Example Project >

Figure 2.3: Creating a New Project
The new project is given a name and saved under the C folder on the computer and in
a folder with a user name that does not contain Turkish characters.

New Project X

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. '

I Project namel [uaru)mjerd]

Project location: C:/Users/cisem

Create project subdirectory

Project will be created at: C;/Users/cisem/uart_project

o

Figure 2.4: Naming the Project

10

The project type is selected as it does not contain the Register Transfer Level (RTL)

project and resources.

4 New Project

Project Type
Specify the type of project to create. s

@) RTLProject
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis.

(+] Do not specify sources at this time

[Projectis an extensible Vitis platform

_Post-synthesis Project
You will be able to add sources, view device resources, run design analysis, planning and implementation.

1/O Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

fn

Figure 2.5: Determining the Project Type

Since the project will be carried out on the Zedboard Development card, the card to be
worked on has been selected as the ZedBoard Zynq Evaluation and Development Kit
from the Boards section at this stage. Then, the project opening process was completed
by clicking the Finish button on the page that opened [9].

4 New Project

Default Part
Choose a default Xilinx part or board for your project. [

Reset All Filters Install/Update Boards

Vendor: All v Name: | All v Board Rev: | Latest v
Search: | O v
Display Name Preview Vendor File Version Part I/OPin Count Board Rev Available [0Bs LUT Ele
Alpha-Data ADM-PCIE-7V3 N
p alpha-datacom 1.1 XCTvx6Q0tfg1157-2 1157 10 600 433200
Kintex-Ultrascale Alphadata board
alpha-datacom 1.0 Xcku060-ffval156-2-¢ 1156 10 520 33168C
Nexysé DDR
digilentinccom | 1.1 XC7a100tcsg324-1 324 c1 210 63400
Zedboard
digilentinccom 1.0 xc72020clg484-1 484 D3 200 53200
ZedBoard Zyng Evaluation and Development Kit 2 -
i Companion Carel Connections i(ﬂ] emavnetcom 1.4 XC72020cIg484-1 484 d 200 53200
S
Artix-7 ACTO1 Evaluation Platform Ui = .. R, .. P D v
< >

Figure 2.6: Selecting the Card to Use

11

Since the block design is being worked on in the created project, a new block design

is opened from the Intellectual Property (IP) Integrator section.

¥ IMPLEMENTATION
> Runimp! lementation

~ PROGRAM AND DEBUG

Copy the current selection on the clipboard

Figure 2.7: Creating the Block Design

For the block design, the name is given in accordance with the project.

PROJECT MANAGER - uart project ? x
Sources ?_00OX Project Summary 700X
Q = £ + o Overview | Dasnboard

Design Sources W
Constraints S (E
v Simulation Sources Project name: uart_project
sim_1 Project location: C:fUsers/cisem/uart_project
Utility Sources 7000
___ 4 Create Block Design x .
Mierarchy | Libraries _ Compile Orde Board Zynq Evaluation and Development Kit (xc7z020cig484-1)
| Please specify name of block design / defined
og
Properties 1
IDEs\gn name: Ides an uard ‘ I
Directory: & <Local to Project> v
Specify source set Design Sources v ard Zynq Evaluation and Development Kit
-~ fetcomzed:partl:1.4 P
- L - R
>

Figure 2.8: Naming the Block Design

First, the processor to be worked on is added to the block design. Since the processor
for this project is ZYNQ, the name of the processor is added to the design by typing
the ADD IP button shown in the figure.

12

BLOCK DESIGN - design_uart

Sources | Design Signals | Board > _or Diagam »0@ X
a & 2 o m * C Derouttien v o
design_uart
Search: O zyng| (1 match)
* ZYNQT Processing System
.+ 5
Properties ?_o@Ex
&
Tdl Console Messages |Log |Reports |Design Runs _ oo
a e E @
ToJ=Ct "PETT IENTER to select, ESC to cancel, Cir+Q for IP details ~

Figure 2.9: Adding the Processor

When Run Block Automation is clicked, the screen shown in Figure 2.10 opens. After
the settings are selected as in the figure, the connections of the processor are completed

automatically.

= B
= o+ C o Default view ~ =
pr ng_system7_0
DR |||
FXED_I0 =+ |||
— MAXGRPOACK ZYN M_AXLGPO }i

FCLK_CLKO
FCLK RESETO. N

ZYNQ7 Processing System

Figure 2.10: Making Automatic Connections of the Processor

13

¢ Run Block Automation X

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration options on the right.

Ql = a
= 5

Description

1 All Automation (1 out of 1 selected) 3 5
This option sets the board preset on the Processing System. All current properties will be overwritten by the board preset.

/) processing_system7_0 This action cannot be undone. Zynq7 block automation applies current board preset and generates external connections
far FIXED_IO, Trigger and DDR interfaces.

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box, if you wish to retain previous
configuration.

Instance: /processing_system7_0
Options
Make Interface External: FIXED_IO, DDR

Apply Board Preset: ol

Cross Trigger In:

Cross Trigger Out: Disable v

N

Figure 2.11: Customizing the Processor
After the block design is completed, the HDL Wrapper file is generated from the block
diagram created by right-clicking on the "Sources" section. Thus, the project part in
the Vivado interface is completed and the transition to the Vitis IDE is made.

File Edit Flow Tools Reports Window Layout View Help Q- Quick Access
u Validate Design
=, & Validate Desi | N
FELIET Ty Create and Package Mew IP...
v PROJECT MANAGEF iti
Create Interface Definition... Board > _Oon
L} Settings Enable Dynamic Function eXchange... o
Add Sources Run Tel Script...

Property Editor
Associate ELE Files...

L T Iz
anguage femp gn_2_wrapperv) (1)

¥ IP Catalog
Generate Memory Configuration File. ..

v IPINTEGRATOR Compile Simulation Libraries...

Create Block Desi XHub Sfores...

Open Block Desig Custom Commands '

Generate Block D Launeh Vitis IDE

Export Platform ©Q Language Templates

Lk Seftings...
—

v SIMULATION
Figure 2.12: Transitioning to the Vitis Platform

When transitioning from Vivado to Vitis Platform, a new platform project is created
to write code under the created workspace.

14

a hello-world-denemesi
File Edit Sea

- Vitis IDE [u} %
nc Project Window Help

5 | welcome 12 = =

W XILINX

a VITIS

VITIS
IDE

]]]
PROJECT PLATFORM RESOURCES
Create Application Project Add Custom Platform Vitis Documentation

Create Plafform Project Xilinx Developer

Create Library Project

Import Project

Figure 2.13: Creating a New Application Project

A new workspace is created and named with an appropriate name under the C folder.

+J Vitis IDE Launcher >

Select a directory as workspace

Vitis IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | ChUsers\hp\Desktophhello-world-denemesi v| | Browse...

[J Use this as the default and do not ask again
» Restore other Workspace

« Recent Workspaces
furkan ert
Yeni klasgr (2
vitis veni
data-transferi
workspace uart ps
deneme 02082022
rmf in test
silinecek test

zedboard-deneme

Launch Cancel

Figure 2.14: Creating a New Workspace on the Vitis Platform

The HDL Wrapper file created during the block design phase is added to the platform
for the code to work properly in the block design. This file is under the folder where

the block design was created before.

15

| Platform {
€3 Please select a platform to create the project]

Select a platform from repository

[Create a new platform from hardware (XSA)

Hardware Specification

Provide your XSA file or use a pre-built board description
<702
XSA File: | 2<706
€ zeu102
zcul06
zed -
wd Create Platform from XSA x
« . > Bubilgisayar > Masaustd » hello-world-denemesi » v o £ hello-world-denemesi klaser...
Dizenle ~ Yeni klasér s @
4 indirilenler e Ad Degistirme tarihi Tar Boyut
TUBITAK- bitirme metadata
Yeni idasor proje_hello_world.cache

22 Dropbox proje_hello_warld.gen

proje_hello_world.hw

@ OneDrive - Personal proje_hello_world.ip_user_files
Belgeler proje_hello_world.runs
proje_hello_world.sim

3 Bu bil
== Bubilgisayar proje_hello_world.srcs

3D Nesneler RemoteSystemsTempFiles
=) Belgeler I |_] tasarim_hello_world_wrapper.xsa

370 KB I 2

B Masausta
K Misitdar e
| Dosya adr: |tasarirmn_hello_world_wrapperxsa v‘ ~xsa".dsa; -
f
Back TIERT FRTSH T Gancel |

Figure 2.15: Embedding the Block Design in the Project

Since the data will be received and processed in an offline environment, the operating
system setting is selected as standalone. In the processor part, the cortexa9 0 part

continues to work without making any changes.

1 Platform
Choose a platform for your project. You can also create an application from XSA through the 'Create a new platform from hardware (XSA)' tab. |

[
[if Create a new platform from hardware (XSA) Select a platform from repository
[}
Hardware Specification
Ci\Users\hp\Desktophello-world-denemesivtasarim_hello_world_wrapperxsa
vek190
wmk180
zc702
XSA File: | 26708 Browse...
zeu102
zcu106
zed
ello_world
Software Specification
Specify the details for the initial domain to be added to the platform. More demains can be after the platform is created by double clicking the platform.spr file]
Operating system: | standalone ~
Processor: ps7_cortexad_0 ~
Note: A domain with selected operating system and processor will be added to the platform. The platform project can be modified later to add new domains or |

change settings.

Boot compenents
Generate boot components

@ < Back s Coneel

Figure 2.16: Adjusting the Block Design on Vitis

16

After adding the platform to work on, a draft suitable for the project is selected. This

draft can be selected as an empty C draft, as well as a Hello World draft. In this project,

the Hello World draft was chosen and Vitis code was written. In this draft, it is easier

to implement because the platform header file is compact.

+J Mew Application Project

Templates

Select a template to create your project.

Available Templates:

v SW development templates
Dhrystone
Empty Application
Empty Application (C++)
Hello World
IwlIP Echa Server
IwIP TCP Perf Client
IwlIP TCP Perf Server
IwlIP UDP Perf Client
IwIP UDP Perf Server
Memory Tests
OpenAMP echo-test
OpenAMP matrix multiplication Demo
OpenAMP RPC Demo
Peripheral Tests
RSA Authentication App
Zyng DRAM tests
Zyng FSBL

Find: S

O X

™

Hello World
Let's say ‘Hello World' in C.

< Back MNext > Cancel

Figure 2.17: Adding New Platform Template
By pressing the Finish button, the new project (Figure 2.18) is opened successfully.

After that, a new C project is opened under the src folder and the projects are carried

out.

aJ workspace_1712 - hello-warig-denemesi/sre/helloworid.c - Vits IDE
file Edit Search Xiirx Project Window Help
- R R R -

p
cleanup_platform();
return 8;

2 helloworld.c

ello World application");

Figure 2.18: Adding New Platform Template

17

3. IMPLEMENTATION of APPLICATIONS on FPGA

3.1 UART Serial Communication Protocol

UART is a type of serial communication protocol in which data is transmitted and
received one bit at a time over a single communication line or channel. It stands for
Universal Asynchronous Receiver Transmitter, and it allows devices to transmit and
receive data asynchronously (without a fixed clock rate). This means that the sender
and receiver do not need to be precisely synchronized in order to communicate. UART
is commonly used in embedded systems and in communication between computers
and devices, such as printers, keyboards, and mice.

UART uses a combination of a start bit, which signals the start of a transmission, and
a stop bit, which signals the end of a transmission, to enable the receiver to synchronize
with the sender and accurately receive the data. UART also allows for the use of parity
bits, which can be used for error detection.

High dependability and a long transmission distance are benefits of asynchronous
serial communication. A UART is frequently used in data communications and control
systems because it enables full-duplex communication in serial communications.
Consequently, it is frequently utilized in data interchange between peripherals
and processor. By adding a few more control bits and utilizing a shift register, the
UART transfers data from parallel to serial on the transmitter side and back again on
the reception side. The UART appears as an 8-bit write-read parallel interface on the
other end [20].

To perform full-duplex data transfer with a basic UART, just two signal lines—one
for receive and one for transmit—are required. To regulate the UART receive and
transmit, a local clock signal that is significantly faster than the baud rate is generated
using a baud rate generator. The serial signals are received at RXD by the UART
receiver block, which transforms them to parallel data. Bytes are converted into serial
bits using the basic frame format by the UART transmitter block, which then sends
those bits across the TXD line. The data line's high logic state is present while the

transmitter is not in use. A "Start Bit" is inserted to a beginning of every word that is

18

to be communicated if the UART is activated for transmission. The start bit is used to
compel the clock in the peripheral receiver to synchronize with the clock in the
transmitter and to notify the peripheral receiver that such a word containing data is
going to be delivered. Following the transmission of the start bit, the specific data bits
of aword are. The receiver sampling at the wire roughly halfway through to the period
given to each bit to identify whether it is a "1" or a "0". Each bit is broadcast for the
exact same amount of time as all the previous bits. The transmitters add a parity bit
that was created in the transmitter module once the complete data word has been sent.
If the transmitter delivers another frame, the new word's Start bit can be transmitted as
soon as the preceding word's stop bit is sent [10].

Start bit Word data Parity Stop bit
logic 0 | bit logic 1
| | (optonal) |

_M Do D1 D2 D3 D4 D5 D6 D7 PE E

Start by Incoming data sampled at the bit-pulse center Sample
detecting stop bit
transition

from logic 1

to logic 0

Figure 3.1: UART Data Frame Format [Y*]

19

3.2 Architectural Design of Zyng-7000

In this project, the data received from the ground penetrating radar must be transferred
to the FPGA for processing. UART serial communication protocol is used for data
transfer. Therefore, ZedBaord's UART connections must be made. In line with the
researches, it has been seen that it can be done directly from the Multi Input-Output
inputs of the zyng-7000 without the need for special IPs such as UART_LITE or
UART _PS to communicate with the UART. The architectural design of the Zyng-7000

chip is given in Figure 3.2.

Re-customize IP X
ZYNQT7 Processing System (5.5) s

© Documentation & Presets IP Location %} Import XPS Settings

Page Navigator Zyng Block Design Summary Report
Zynqg Block Design
— 7l 140 Peripherals P
) SPIO Settngs Application Processor Unit (APU)
PS-PL Configuration . SPI1 SWDT
e 12C0 »
. i (15:0) 12C 1 | ARM Cortex-A3 ARM Cortex -A9
Peripheral I/O Pins CANO SrEmles] oPU =0
CAN 1 A— Centrol Regs
UART 0 &4b
MIO Configuration o ART1__V " AXI
MUX IO N aic Snoop Control unit 1| AP
(MIO) DO v L] -y L | Slave
Clock Ccmfiguratiun &+ ~— D1 Channel 1 512 KB L2 Cache and Controller J Ports
UsBo___ W
USB 1 ocm 256 KB
DDR Configuration ENETO V| |, Ltz e SRAM
ENET 1 Central o
Bank1 — [y
., . MO FLASH Memory
SMC Timing Calculation (53:18) Fitaces o ‘L
4 SRAWNOR Memory Interfaces
|_NaND <=L
Interrupts QUAD SPI DEVC ‘ Programmable DDR2/3 L PDDR2
T Logic to Memory Controller

Ce s e
;
= 8 Ta [0l]
Ressts ‘ |Genersﬁm

Processing System(PS)

0(1]2[3
LTRTI-TE . 326 GP 320 GP C,&,ms config |'®@ | High Performamce XADC
mio gmio) _ PSPL Axl AXI AES/ AXI 32bi64b Slave
Clock Ports Master Slave SHA Ports
Ports Ports

Programmable Logic(PL)

o] []

Figure 3.2: Architectural Design of the Zyng-7000 Chip [11]

20

Therefore, Multi Input-Outputs are used to communicate with UART. Zedboard's
UART/USB port is accessed via M148 and MIO_49 pins. Thus, M1048 and M1049,

which are related to the UART, are activated.

Re-customize IP X
ZYNQT7 Processing System (5.5) I
@ Documentation &F Presets IP Location & Import XPS Settings

Page Navigator MIO Configuration Summary Report

Zyng Block Design Bank 0 I/O Voltage LVCMOS 3. v Bank 11/0 Voltage | LVCMOS 1. v

PS-PL Configuration «|[all = = F)

Peripheral I/0 Pins Search: @

MIO Configuration Peripheral 10 Signal 10 Type Speed Pullup Directi.. Polarity
ENET 1
Clock Configuration

¥ USB O MIO 28 .. 39 v
DDR Configuration USB 1

SMC Timing Calculation ¥/ SD0 MI040.45 v

SD1

Interrupts
UART 0

~| UART 1 MIO 48 .. 49 v

12C0
12C1
SPIO
SPI1

CANO

Fana v}

o] [omm]

Figure 3.3: UART Access of Zyng-7000 Chip [11]

21

3.3 Hello World Application

First, we checked whether the ZedBoard development board we used in the project is
working. This basic project is one of the testing program that shows us we can access
FPGA and write a C/C++ code in the ARM processor core. For this, we created a
simple block design and wrote a test code. We did the creating the project in the Vitis
interface and block design according to the steps given in section 2.4. Only the Zyng-
7000 processor has been added to the block design. As shown in Section 3.2, the
UART port of the Zyng-7000 processor was accessed from the Multi Input-Output

port. Therefore, the block design given in figure 3.4 was sufficient for the test

processing_system7_0

DOR + |||===[{> DDR
FIXED_IO |||meee™» FIXED_IO
I

USBIND_O + |||

- M_AXI_GPO + |ii

M_AXI_GPO_ACLK TTCO_WAVEQ_OUT (=
- ZYNQ. TTCO_WAVE1_OUT

TTCO_WAVE2_OUT f=

FCLK_CLKO

FCLK_RESETO_N r

ZYMNQT Processing System

Figure 3.4: Hello World Test Application Block Design

application. The designed block design has been validated by automatically. Block
design was designed in Vivado interface and translated into hardware language. After
the HDL Wrapper file is produced from the block diagram, synthesis, implementation
and bitstream file production processes are performed respectively. Finally, the
hardware platform created is exported and a file is produced in xsa format and the
hardware design is completed in the Vivado program. Later, the prepared hardware
platform was added to the Vitis interface, which is Vivado's software tool, in XSA

22

format. A new workspace is created on the Vitis platform and a Hello World template
project is created. The code in Figure 3.5 is the C code written for testing.

332/

34 * helloworld.c: simple test application

35

36 ¥ This application configures UART 16558 to baud rate 29688.
37 ¥ PST UART (Zyng) is not initialized by this application, since
38 * bogtrom/bsp configures it to baud rate 115260

39

T S

41 | UART TYPE BAUD RATE |
A2 | F

43 uartnssse Seee

R uartlite Configurable only in HW design

45 ps7_uart 115288 (configured by bootrom/bsp)

46 /

48 #include <stdic.h:

49 #include "platform.h”

58 #include "xil_printf.h"

51

52

53= int main()

54 {

55 init_platform();

56

57 print({"Hellc Worldinir");

58 print({"Successfully ran Hellc World applicaticn™);
59 cleanup_platform();

68 return 8;

51}

o

¥

Figure 3.5: Hello World Test Application C Code

With the #include<stdio.h> line, the general C library is included so that the general
functions in the project can work. The #include“platform.h” line has been added to
enable Hello World test application to work on block design. The
#include“xil printf.h” line is used in the project to write data to the terminal. In the
main code part, the platform on which the application will run is initialized with the

init_platform() command. Then, the expressions to be observed in the terminal are

23

given in the print() function. The platform used is released with the cleanup_platform()

command and the code is terminated.

L
32
338
34 * helloworld.c: simple test application
35 .
36 * This application configures UART 16558 to baud rate 96@8.) Connect to serial port X
37 * P57 UART (Zyng) is not initialized by this application, since Basic Setti
38 * bogtrem/bsp configures it to baud rate 1152880 asic ings
39 * Port: COM3| ~
T
41 * | UART TYPE BAUD RATE | Baud Rate: | 115200 ~
43 S
43 * ua’tn_T-SSB 9688.)) + Advance Settings
44 * wartlite Configurable only in HW design
45 * ps7_uart 1152e@ (configured by bootrom/bsp)
46 Data Bits: 8 ~
47
45 #include <stdic.h> Stop Bits: 1 -
49 #include "platform.h™
52 #include "xil_printf.h" Parity: None ~
Flow Control: | Mone ~
int main()
B
init platform();
print(“Helle Worldin\r"); Cancel
print("Successfully ran Hello World application™):
cleanup_platform();
return @;

Figure 3.6: Making Hello World Project UART Communication Settings

During the communication of UART with Zedboard, the port to which it is connected

on the computer is selected. Data settings are selected by default. The data to be sent

is set to 8 bits long, 1 bit set to stop bit, and no parity bit (Digilent,2017). Baud Rate
is updated to 115200 in accordance with the Block diagram. The project is built and

run with Run as -> Hardware.

D Conscle & |[E] Problems [VitisLog (1) Guidance

Build Console [hello_wordd_uygulama_denerme_1_0_systern, Debug]

fR:30:53 " Dulld of configuration Debiag Tor project belle world wygulass denese]
make all

Generating bif file for the systes project

generate_system bif.bat 51122 C:/Users/hp/Desktop/hello-world-denesesihello_world_1 |
sdcard_gen --xpfm C:/Users/hp/Desktop/hello-world-denesesifhello world_1 8/ /export/he
creating BOOT.BIN wsing C:ifUsers/hp/Desktopfhello-world-denesesi/hello_world_uygul as
Running C:/Milinx/witisz/ 2020.2/bin/bootgen -image C:fUsers/hp/Desktop/hello-world-dd

81:48:13 Budld Finfished (took 195.833ms)
™ F

Figure 3.7: Build the Project

As a result, the terms "Hello World" and "Successfully ran Hello World application™

were observed from the terminal as shown in Figure 3.8.

24

B Console | B Vitis Serial Terminal 52] (D Executables Dj Debug Shell Vitis Log [#l] Problems E Debugger Console
Connected to: Serial (COM3, 115200, 0, 8)

Connected to COM3 at 115200
Hello World

Successfully ran Helle World application

L(

Figure 3.8: Obtaining the Output on the Terminal with the Test Code Applied on the
Vitis Platform

Thus, the Zedboard development board used has been proven to work.

25

3.4 Failed Data Transfer Applications

To collect the data in the right format, experiments with various block designs and C
scripts have been conducted. This section will discuss applications for data

transmission from radar to FPGA that have been tried but failed.
3.4.1 AXI1 GPIO block diagram and C code application

First, the Zyng-7000 SoC ARM processor was added to the block diagram. Then AXI
GPIO IP was added to print the data. BRAM and block memory generator are used to
hold data in memory. Processor system reset, AXI Connector and AXI BRAM
Controller came automatically when other IPs are added. The designed block diagram

has been validated by automatically.

axi_gpio_0

ps7_0_axi_periph

I [btns_Sbits

rst_ps7_0_100M

—i|+ so0_axi
ACLK
ARESETN
S00_ACLK _n

- X MooAXI 4+
SO0_ARESETN WM

X Mo1AX +

MOOACK mEm
MOO_ARESETN
MO1_ACLK
MO1_ARESETN

mb_reset
bus_struct_reset[0:0]

AXI GPIO
axi_bram_ctrl 0

blk_mem_gen_0

—

N BRAM_PORTA =+ |}
BRAM_PORTB = |||

+ BRAM_PORTA
=+ BRAM_PORTB

Processor System Reset
Block Memory Generator

) M " -

AXI BRAM Controller

T

processing_system7_0 AXI Interconnect

—[> DDRO

[FIXED_I0.0

DDR +

FIXED_IO

USBIND_O +

M_AXI_GPO + {3

M_AXI_GPO_ACLK ZYNQ‘ TTCO_WAVED_OUT
TTCO_WAVET_OUT

TTCO_WAVE2 OUT

FCLK_CLKO

FCLK_RESETON

\TWIII

ZYNQ7 Processing System

Figure 3.9: AX1 GPIO Block Diagram for Radar Data Transfer via UART

Block diagram was designed in Vivado IP Integrator Section and translated into
hardware language. Afterwards, the necessary Verilog code was automatically
generated, hardware platform was added to the Vitis interface, which is Vivado's
software tool, in .xsa format. After opening a new project in the Vitis interface and

selecting the Hello World platform, the C code in figure 3.10 was written.

26

#include <stdio.h>
#include "platform.h"
#include "xparameters.h"
#include "xgpio.h"

int main()
{
init platform();
int N=46848;
int Status;
int i=0;
u8 *radarData;
radarData = malloc(sizeof(u8)*(N));

Status = XGpio_Initialize(&Gpio, GPIO_EXAMPLE_DEVICE_ID);
if(status!= XST_SUCCESS){
xil printf("Gpio initialization failed...\n\r");
return XST_FAILURE;
}
while(1){
scanf("%s",radar);
XGpio_DiscreteWrite(&Gpio,radar[i]);
it++;
}
cleanup_platform();
return 0o;

Figure 3.10: AXI GPIO C Code for Radar Data Transfer via UART

Memory is dynamically made available for radar data. Then the GPIO is initialized. It
is intended to read the radar data with the scanf function in the while loop. Afterwards,
the read data is wanted to be written to the terminal with GP10. However, this code
and block diagram were not suitable for both the transfer and format of the data. The

desired result was not achieved.

27

3.4.2 AX1 UART_LITE block diagram and C code application

It has been determined that data transfer with AXI GPIO is neither possible nor

appropriate. As a result, the UART serial communication protocol was researched, and
it was agreed that UART would be used for data transfer. As a result, the ZYNQ-7000
CPU and AXI Uartlite IP were immediately added to the block diagram and connected.

It appeared automatically to link the Processor reset system to the AXI Interconnect

Uartlite and Zyng-7000.

Block diagram was designed in Vivado IP Integrator Section and translated into

hardware language. Afterwards, the necessary Verilog code was automatically

generated, hardware platform was added to the Vitis interface, which is Vivado's

software tool, in .xsa format. After opening a new project in the Vitis interface and

selecting the Hello World platform, the C code in figure 3.12 was written.

rst_ps7_0_100M

slowest_sync_clk mb_reset
ext_reset_in bus_struct_reset[0:0]

.3

aux_reset_in peripheral_reset[0:0]
= mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral_aresetn[0:0]

Processor System Reset

processing_system7_0

+——== M_AXI_GPO_ACLK ZYNQ‘ TTCO_WAVEQ_OUT
TTCO_WAVE1_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N

ZYNQ7 Processing System

i

£

+ s00.AX

ACLK

ARESETN | o |
X

SOO_ARESETN H<—H

MOO_ACLK

MOO_ARESETN

SO00_ACLK E=E MOOAX 4§

AX| Interconnect

s

Q s_axi_aresetn

ook +[f— [DOR
XD 10 = |} O Fixeo o
UsBIND_O + ||| ps7_0_axi_periph
M_AXI_GPO - fiie] (+]

axi_uartlite_0

UART +||[=——> uvart.rtl

interrupt

s_axi_aclk

AXI Uartlite

Figure 3.11: AXI UART_PS LITE Block Diagram for Radar Data Transfer via

UART

28

#include <stdio.h>
#include <stdlib.h>
#include "xil_types.h"
#include "xuartps.h"
#include "xparameters.h"

t#tdefine dataSize 5095%*3
t#tdefine headSize 10
t#tdefine fileSize dataSize + headSize

int main(){
u8 *radarData;
u32 receivedBytes=0;
u32 totalReceivedBytes=0;
u32 status;
u32 transmittedBytes=0;
u32 totalTransmittedBytes=0;
XUartPs_Config *myUartConfig;
XUartPs myUart;

radarData = malloc(sizeof(u8)*(fileSize));

myUartConfig = XUartPs_LookupConfig(XPAR_PS7 UART_1 DEVICE_ID);
status = XUartPs_CfgInitialize(&myUart, myUartConfig,
myUartConfig->BaseAddress);
if(status != XST_SUCCESS)
print("UART initialization failed...\n\r");

status = XUartPs_SetBaudRate(&myUart, 115200);
if(status != XST_SUCCESS)
print("Baud rate initialization failed...\n\r");

while(totalReceivedBytes < fileSize){

receivedBytes=XUartPs_Recv(&myUart,
(u8*)&radarData[totalReceivedBytes],
fileSize);

totalReceivedBytes += receivedBytes;

}

for (int i=0@;i<fileSize; i++)
xil_printf("%0x",radarData[i]);

// to see what we sent via UART

//read data from ddr

for(int i=headSize;i<fileSize;i++)
radarData[i];

// data can be processing in this part

//send data back to the computer
while(totalTransmittedBytes< fileSize){

transmittedBytes = XUartPs_Send(&myUart,

(u8*)&radarData [totalTransmittedBytes],1);
totalTransmittedBytes += transmittedBytes;

}

Figure 3.12: AXI UART_PS LITE C Code for Radar Data Transfer via UART

29

In the code, first of all, the necessary libraries are added. The library "stdio.h" is for
general C functions, "stdlib.h" is for the malloc function, "xuartps.h" is for functions
that contain the configuration of the UART protocol, "xil_types.h" is for the xil_printf

function, and "xparameters.h™ is the library used to initialize drivers.

Then, in order to test different sizes of the data and increase the understandability of
the code, data sizes were determined with define. Variable radarData to receive data
from radar, variable receivedBytes to assign radar data transferred with UART
protocol, variable totalReceivedBytes to keep the total number of radar data
transferred, variable status to control UART protocol status, variable transmittedBytes
to send received radar data to the terminal, the variable totalTransmittedBytes to
control the total number of radar data sent to the terminal and myUartConfig variable

to make the configuration settings of the UART protocol is defined.

In the main body, first of all, memory has been made in the dimensions determined by
the malloc function for the radar data to be received. Then, the UART protocol is
configured by sending the necessary parameters into the XUartPs_LookupConfig
function, which is taken from the header file, and the result is assigned to the status

variable.

With the if statement, it is checked whether the configuration step has been carried out
successfully. If the configuration is unsuccessful, the "UART initialization failed"
sentence is observed from the terminal. The baud rate of the UART protocol is set with
the XUartPs_SetBaudRate function and assigned to the status variable. With the if
statement, it is checked whether the baud rate setting is successful or not. If the baud
rate is wrong, the "Baud rate initialization failed" sentence is observed from the

terminal.

In the first while loop, the total received data is updated, which is used to collect all
the data received via the UART. The for loop is used to see what data is being sent via
the UART. Secondly, the for loop has been added for data processing stages on the
received data. If the data acquisition is completed successfully, the RNMF algorithm
will be implemented in this part. The last while loop is used to send the processed data
back from the UART to the computer and update the transmitted byte pointer. In this

way, it will be checked whether the data read from the terminal and the data sent are

30

the same. By integrating the C code written into the designed block diagram, the data
in Figure 3.13 is observed from the terminal. However, these data are different from
the sent data both in format and value. Therefore, it has been observed that this block
diagram is also not suitable for UART serial communication.

T i

Y File Edit Setup Contrel Window Help
IBTRCRRCR'D RR"b"bbERCR"RRRRCBSR: H]

T Tera Term: Send file ot

Filename: | datal.but |

Fullpath: | ChUsers\hp\Desktophdatal bt |

Bytes transferred: 3400 (22.2%)
Elapsed time: 0:11 (290Bytes/s)

Help

Figure 3.13: Observed Read Data in TeraTerm Terminal

31

3.4.3 Only Zynqg-7000 processor block diagram and C code

When the block diagrams and C codes explained in sections 3.4.1 and 3.4.2 did not
give successful results for data transfer, it was learned that the UART port of the
Zedboard was accessed with MIOs, as explained in section 3.2. Therefore, it is thought
that there is no need to use AX1 GP10O and AXI UART_LITE in the block diagram.

processing_system7_0

DDR + |||===={"» DDR
FIXED_IO + |||we=el">» FIXED_IO
USBIND_O +|||
- M_AXI_GPO -+ [
M_AXI_GPO_ACLK TTCO_WAVEQ_OUT =
- ZYNQ. TTCO_WAVE1_OUT =
TTCO_WAVE2_OUT (=
FCLK_CLKD
FCLK_RESETO_N r

ZYNQ7T Processing System

Figure 3.14: Zyng-7000 Processor Block Diagram for Radar Data Transfer via
UART

For this reason, the block diagram was created by adding only the Zyng-7000
processor, without adding any extra IP. DDR and Fixed_IO outputs are taken from the
processor, the clock setting is made by default. Then the generated block diagram is
validated. The hardware part is completed by generating HDL Wrapper file from the
created diagram. By exporting the hardware, the coding part was made in the Vitis

interface.

32

#include <stdio.h>
#include "platform.h"
#include "xuartps.h"

XUartPs_Config *Config_o;
XUartPs Uart_PS_0;

int main()

{
init_platform();
int status;
int N=46848;

Config @ = XUartPs_LookupConfig(XPAR_XUARTPS_© DEVICE_ID);

if(NULL==Config_0){
return XST_FAILURE;

}

Status = XUartPs_CfgInitialize(&Uart_PS_©,Config ©,Config 0-

>BaseAddress);

if(status!= XST_SUCCESS){
return XST_FAILURE;

}

char dizi[N];

while(1){
scanf("%s",dizi);
printf("%s",dizi);

}

cleanup_platform();

return 0;

Figure 3.15: Zyng-7000 C Code for Radar Data Transfer via UART

First of all, necessary libraries are added in the code. The library "stdio.h™ is for general
C functions, "platform.h™ is for init_platform and cleanup_platform functions,
"xuartps.h" is for functions that contain the configuration of the UART protocol.
Variable *Config_ 0 of type XUartPs_Config is defined for Configuration data
structure, variable UART_PS_0 is of type XUartPs which contains information about
UART to make UART configurations.

In the main body, first, the platform is initialized with the init_platform() function.
Status is defined to control the status of the UART, and N is defined for the total

number of radar data sent.

XUartPs_LookupConfig looks up the device configuration based on the unique device
ID. With the if statement, it is checked whether this value is equal to NULL, if it s, it

33

means that the device could not be configured and the XST_FAILURE value is
returned without further processing. With the XUartPs_Cfglnitialize function, a
specific XUartPs instance is initialized to be ready for use. The device's data format is
set to 8 data bits, 1 stop bit and no parity by default. With the if statement, it is checked
whether the status value is different from XST_SUCCESS, if it is, it means that the
UART configuration has not been done successfully and the code ends by returning
the XST_FAILURE value without further action.

An array of type char and size N is defined for receiving radar data. The reason why
this variable is char type is because radar data will be read from the text file. Then,
within the while loop, the radar data is read one by one from the text file with the scanf
function and written to the buffer with the printf function. It is checked whether the

values written from the terminal are the same as the values sent.

1 COM3 - Tera Term VT - a bus
File Edit Setup Contrel Window Help

000007 e~ I]l 4.
Sn00000000000:

0000 il
400000000000000e-+
Qe-011 1

Figure 3.16: Observed Read Data in TeraTerm Terminal

34

The values read from the terminal in Figure 3.16 and the actual radar data in Figure
3.17 are exactly the same. Thus, a radar data obtained from the measurement was taken
in order from left to right in the terminal and displayed on the terminal, and the

acquisition of the radar data was successfully performed.

] .pe00R00P00B0000000e+85 2.232420118999999965e-85 5.706433461000000231e-84
6.798500000000000000e+06 -6.3854011516000000015e -84 8.858459239000000801e-83
1.329700000000000000e+07 -3.995300151999999633e-03 1.672324387000000134e-082
1.979550000000000000e+07 -4,2717921809999995980e-83 2.585515097000000082e-82
2.6294006000000000000e+07 -1.842366137999999921e-02 3.822945081999999992e-82
3.279250000000000000e+07 -1.223645123000000057-02 4.,188068385999999671e-082
3.9291006000000000000e+07 -2.8628846329999995901e-02 3.894511965999999936e-82
4.578950000000000000e+07 -3.283318239999999872e-02 7.318623566000000136e-82
5.228800000000000000e+07 -3.586412442000000212e-082 8.488452288999999429e-82
5.878650000000000000e+07 -4.088238032000000161e-02 9.509722447000000523e-82
6.528500000000000000e+07 -4.881489403000000005e-02 1.867720887000000035e-01
7.178350000000000000e+07 -5.863009133000000178e-02 1.179415716999999975e-81
7.828200000000000000e+07 -7.338613881000000116e-02 1.317864248999999936e-81
8.478050000000000000e+07 -9.820624750999999708e-02 1.558924468999999984e-081
9.1279006000000000000e+07 -1.135431013600000044e-01 1.9508625746000000105e-81
9.777750000000000000e+07 -1.3547615856000000033e-01 2.208787833799999999%6e-081
1.842760000000000000+08 -1.9816084299999999985e-01 2.988754198999999838e-01
1.1687745600000000000e+08 -1.7294752856000000071e-01 4.5092419239999599798e-01
1.172730000000000000e+08 -5.834653931000000071e-082 6.339771555000000003e-81
1.237715600000000000e+08 2.96B8579269999999985e-01 7.481616563999999858e-81
1.3627006000000000000e+08 5.918221389000000208e-01 3.954430427999999775e-81
1.367685000000000000e+08 4.994759879000000157e-01 8.490650215999999417e-02
1.4326706000000000000e+08 3.466823336000000033e-01 -2.92087437285999999900e-02
1.4976556000000000000e+08 2.415863329999999897e-01 -6.14727827200000011%e-02
1.562640000000000000e+08 1.677145770000000036e-01 -8.678478379000000068e-02
1.6276256000000000000e+08 9.722072791999999963e-02 -1.0288600335999999951e-01
1.6926106000000000000e+08 3.325466718000000266e-02 -1.822645169000000048e-01
1.757595000000000000e+08 -1.780804189999999938e-02 -9.584465849000000299%e-02
1.822580000000000000e+08 -6.144959774000000041e-02 -9.452376221000000078e-02
1.887565000000000000e+08 -1.216513579000000067e-01 -8.070665803000000385e-02
1.9525506000000000000e+08 -1.576797550000000048e-01 -4.,9742940165999999957e-02
2.8175356000000000000e+08 -1.782527677999999893e-01 -3.1513630955999999697e-02
2.082520000000000000e+08 -2.0846851474999999976e-01 -2.067759221999999897e-02
2.1475856000000000000e+08 -2.2936959196000000027e-01 -2.941133385000000051e-03
2.2124506000000000000e+08 -2.475833113600000007e-01 1.264869706999999950e-82
2.277475000000000000+08 -2.664013933000000112e-01 2.414585844000000092e-02
2.342460000000000000e+08 -2.929326782000000184e-01 3.82655924899999999%6e-82
2.40874456000000000000e+08 -3.1373045106000000213e-01 6.912888674999999317e-82
2.472430000000000000e+08 -3.228851879008008235e-01 8.775661787999999852e-82
2.537415600000000000e+08 -3.156920188999999821e-01 1.218286716000000043e-81
2.602400000000000000e+08 -3.184440895999999728e-01 1.292485677999999916e-081
2.667385000000000000e+08 -3.06681050100000018%e-01 1.3127269429959999924e-81
2.732370600000000000e+08 -3.2892929819999995985e-01 1.392329293000000023e-081
2.797355000000000000e+08 -3.0330108307999999822e-01 1.636594378999999992e-081

Figure 3.17: Real Radar Measurement Data

With this application, radar data was taken from the text file and correct values could
be observed from the terminal. But the received data format is not suitable for
processing. In order for radar data to be processed in the RNMF algorithm, it must be
of double or float data type. However, the data we observe is of char type and is not
suitable for processing. In the next step, the data received is converted to double or

float data type and proceeded.

35

3.5 Succesful Data Transfer Implementation

In Section 3.4.3, we managed to receive the data via UART. However, the received
data could not be processed because it was not in the desired format. Therefore, we
need to convert the data we receive in string form to a double or float type suitable for
processing. For this reason, the block diagram in Figure 3.18 was designed firstly. This
block diagram was created using only the Zyng-7000 processor, on the basis that

ZedBoard's UART connection can be provided from MIOs.

processing_system7_0

DOR + |||====={"» DDR
FIXED_IO + |||we=e"> FIXED_IO

USBIND_O + |||

- M_AXI_GPO i

M_AXI_GPO_ACLK TTCO_WAVED_OUT
- ZYNQ. TTCO_WAVE1_OUT
TTCO_WAVE2_OUT =

FCLK_CLKO

FCLK_RESETO_N r

ZYMNQT Processing System

Figure 3.18: Block Design of Successful Data Transfer Implementation

Then the generated block diagram is validated. The hardware part is completed by
generating HDL Wrapper file from the created diagram. By exporting the hardware,

the coding part was made in the Vitis interface.

36

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include <stdlib.h>
#include "xuartps.h"
XUartPs_Config *Config_o;
XUartPs Uart_PS_0;
int main()
{
init_platform();
int status;
Config @ = XUartPs LookupConfig(XPAR_XUARTPS_@ DEVICE_ID);
if(NULL == Config 0){
return XST_FAILURE;
}
Status = XUartPs_CfgInitialize(&Uart_PS_0,Config_0,Config 0-
>BaseAddress);
if(status!= XST_SUCCESS){
return XST_FAILURE;
}
int N = 46848;
int i = 9;
int count = 0;
float *X;
X=malloc(N);
char dizi[N];
for(i=0;i<N;i++){
scanf("%s",dizi);
X[i] = strtof(dizi,NULL);
printf("%.7f ",X[i]);
printf("%d ",count);
count++;
if(i == N-1){
cleanup_platform();
return_X;
}
}
}

Figure 3.19: Vitis C Code of Successful Data Transfer Implementation
First of all, necessary libraries are added in the code. The library "stdio.h™ is for general
C functions, "platform.h™ is for init_platform and cleanup_platform functions,
"xuartps.h" is for functions that contain the configuration of the UART protocol.
Variable *Config_0 of type XUartPs_Config is defined for Configuration data
structure, variable UART_PS 0 is of type XUartPs which contains information about
UART to make UART configurations.

37

In the main body, first, the platform is initialized with the init_platform() function.
Status is defined to control the status of the UART.

XUartPs_LookupConfig looks up the device configuration based on the unique device
ID. With the if statement, it is checked whether this value is equal to NULL, if it is, it
means that the device could not be configured and the XST_FAILURE value is
returned without further processing. With the XUartPs_Cfglnitialize function, a
specific XUartPs instance is initialized to be ready for use. The device's data format is
set to 8 data bits, 1 stop bit and no parity by default. With the if statement, it is checked
whether the status value is different from XST_SUCCESS, if it is, it means that the
UART configuration has not been done successfully and the code ends by returning
the XST_FAILURE value without further action.

N is defined for the total number of radar data sent and i is defined as index to use in
for loop. The count variable is defined in order to control how many data are read. X
pointer of type float is defined to be used in the processing of data after conversion
from string type to float type. Later, this variable X is dynamically made available in
memory with the malloc function. A char type array is defined to read radar data with
UART.

In the for loop, firstly, data is read from the radar with the scanf function. These data,
read in string format, are converted to float type with the strtof function and transferred
to the variable X. By repeating this process N steps, X array is filled one by one. In
order to control the sent and received data, each data is printed to the terminal with
printf. In addition, to see how many data have been read, the count variable is also
printed after each data read. In order for this part to be integrated as a function in the

whole code in later operations, the X array is returned in the if block.

38

- LT
0781502

B AVNET

/~J ZedBoard

DW

o FEFREF FRFEFF

Figure 3.20: FPGA Programmed Correctly, FPGA Display

The blue LED, which indicates that the FPGA board has been programmed correctly
and without errors, is on as shown in Figure 3.19. With TeraTerm, the data in the text
file is sent to the FPGA side.

T| Tera Term: Send file — X

Filename: ‘

Fullpath: ‘ C:‘\Users\cisem\Desktop\rnmf_da.
Bytes transferred: 603600 (63.9%)
Elapsed time: 0:56 (10.61KB/s)

Figure 3.21: Sending Data From Terminal to FPGA

39

< > -~
- B 8
o Estiatameiptit bttt e ®
] m subipBesEs Yopsonead émn m Sl S 2
T T T =
! < > =
= T Rl v LR B R e B e gt
e £l X e EoREY eI Ias eI RSy 2
254 mmmu.m B R L S N P A maw .mm‘ [e o o T e e i e a a ae a a a a a af i o =)
Bt F R R M R b goen I e e e =
,mmm.,mmmn.msammmmwmmmmmmmmmmmmnwmmamlmmmun mmmm.wmm : Eaat Ccooooooooooooooooooooo o Sl 7
m mmmmmmmmm mm wmmmummmmmmmm nwmmm mmmmmmmmmmmm : m, o £0 Or 00 00 £ 07 00 O 00 OFF 00 ©F 00 OFF 00 ©F 00 07 00 ©F 00 07 00 O H
R ML B M T S E RS e L Hale
Evgapearilchstieteasione mmmwwmmmwwmmm i O e CCEE S CEEEEEEEEEEEERE2EES o5
m nmummw mmm mmmm Zegel wwxmwn.m meumumm.m L LR =T =T = T YT =T ST % YT YT ST S ST TT YT ST YT YT ST ST YT T Y Y e
Sl TLERSRILSEETSYSSEESRRYNEE 0§ S
§3s mmmmmmmm .wmmmwmmmwmmmmwmmmmwmwmmmwmm .mwmmmm 4 : zm. _ S eSS EE eI TN AT eSS D c wd
S “hSfsEEiniosaiizovdeedossy £ 8
,mmnmmmmmmmnmmmmwm %4 nmmmuwmanmmmmmmmmummmmmmm . TRy = A e A A A =
=% mmmwmmnmwmnmn mmmn.«mmmmmmmmmmmmmmmmmmn mmmmn i = Ccoooooooooooooooooooooo oD o .m
Lt HoOR NNYRYTRRYCNERRYRYEYTNENEY £ S
SRR M e R R M e U L L RO LR _
r.xm mmmmmmmmum mm ummmmmmmmmmmmynmmnm mmwm mmwms 7m.mm : = O D D A D WD WD D D WD D MDD WD D D WD WD D WD WD D D D WD e m [s+]
v.xwmmmmmmmmmm umwmmmm - mmmmwmmnmmmmmmnm mmmmwmu« B = ST T W YT ST Y W ST ST T W ST ST W S ST ST W ST ST T W T T _|v_H =
wmm“ HOHH e e T e 5 o o BN e PR R el NS SRR S ES £
D u.mma.mo.wnnu mmmnammn.mmnz $3o 5 LT T P S T e N eI h el M A hLN O T T (0 [~ T S P~ ho] =
e b & LR BRI L
gl g aap S R A A e i 4 N+
mmmmwm;mmmmmmmmummmmmmmmwmmmwmmnmmmmmmmm .mmmmmm« iR m_n.v 1 ekt e e e e e L c =
b o S § ESESTSRREETEEERAEET8EsEEE 8 £
R CL et S LT M M PO M RN B M Hea=2d
mmmmmmmm_mmmwmm mmmmummmmmwmmmmmmmm mmmmmmmmmmmmu R © .m NS WD AT AT A A D AT D WD AT WD D D WD D D e D o D e D e | o
uuvuaumm.m = mamnmmn.m mmmmwmmmmm B wwmmmmmm mmm D m el b s s s S s s s R S i i M L T M R M S S M R R T s ..nﬂ.v —
B e c¥naiss RE e gysnUpeEate n.nmn 3 nmmma.mu z26% o W ioh L O T W T W OO O T 2 OO O WD O O O D A LT O D A c o
iR R B T SECENGEREREEREEN IR 8EE]EE I §
cofrugzals mmmmmmmmwmmmm R R HD N ORI (S g g g p P A e e e o 2
ERn e e e Y T C|PSTITRTITITTITITIITITIFITIE 9 o
SR A M B S S i R e R . [e e e e e e e e e e e e e e e e ™
qmmmmmmw mm mmmm;mm«mamammmmmmmmmmumywmmmm it : m‘ o _4 E dadddddaddddaddacssaadsdass o ©
.ummmmummmmmmmmmwmx %mmwmmmwmmm mmumwnmmmmmmmnmn. d e S A & SN OWOWNOW OO OWoOWnOWOSWn oW Sw e o ©
iR 3 | BV BEBESCRUBERKBEREBESORNEES ¢ 3
m,mmmmmmmmmmmmmmmmm 53 mmmmm £HH mwnmmmmmmmﬂmmmm SRR N L D QT TS ST ST TTTTTNTINTT ST SRS w =
bbb s s N 2 NBELOnIRYGTLYRYERTLOR2RRE T o
: mmmmmmmommmmmmnmm;nmmuw mmmmmmmmmmmmmwwmmmmmmmmmw HER i o SO I SOy T LR T G2 0D SR N T S S LD s e S <
R e R e 42 nsifondd L e e E g e o e e e e "
b mwmmwmmmmmmmmmwmm ST e ¥ e e LT b 2
T mmmwmmmmmmmmmmm@mmmmmm it bty 32 zlocSSSSasdasdsdacdadacasdad 3
T o L RATEA L BEORSPES A B et bt 3
e e s e e B T R e T T r Y P AT G
s JRabampiagtnctnt ummmmwmwmm%mmmmmmmm g L CECEECEECEEEEECREBEEEEEEE by
£ wm«mmmmmmmmmm mmmmmmm« .mmwmmmmmmmmmmmmmmmmmmmum um‘_ m_ AT T T T T T ST T TSNS T TN T TT T T TT N
i3 _Hmmmmmmwmmwmmmmmmmm% mwmwmwmwmsmm septtni e = RN rREaRET LR ESENRRTLRSEE DS
R T M R A DR R S e s) o) T P S0 ol 7 A e] T T e T iy o i £ o
il aiah s b 5
5 s Eoifsagial tiiogocrantanasfatis Sietaytulitts s PR R
g m,mmmwmmanwmumummm%mm SR En B n =y
M e N e e P e L

data read from the terminal. It has been proven that these data agree with the data in
40

Figure 3.23.

| mmf_data.txt - Not Defteri

Dosya Dizen Bicim Gorinim Yardim

JA39276775373725 0.43992322531254 @.440653084628225 0.4414541822197@9
.442311618815958 ©0.443209042553362 0.444128661331575 0.445052461724454
.445962127119049 ©.446839998744496 0.447669306513227 0.4484346970273
.A449122946183844 ©.449722513228569 0.450223969318866 ©.4506197257528082
.A450903908986891 0.4510730@35982385 0.451125663803424 0.451063073140157
.A450889245584625 0.45061045551872 @.450235425542152 0.449774468437324
.449239469899557 0.448643443158679 ©0.448000187%900981 0.447323964870294
.446629297720048 ©.445930615574379 0.445241652335368 0.444575244040126
.A443943177558539 ©.443355903696288 0.442822559534782 0.442358625556538
.A41946262185655 ©.441613659274027 ©.441355450689554 0.441172430387414
.A41063569452597 0.44102645579747 @.441056949902443 0.441150045350676
.A441299332101653 0.441497714777474 0.441737565364028 0.442018523472407
.A42308348465959 0.4426227346055206 0.44294540126129 ©.44326895435642

.A44358617325034 0.443890936773605 @.444177606685571 @.444441598904865

.444679234933935 0.444887811406819 0.445065580731656 ©0.445211676266832
.A445326228558211 ©.445409944928054 0.445464487194531 0.445491938865087
LAA5494985730565 0.44547658751225 @.445439980134207 0.445388659362444
.A45325926109917 ©0.445255141790602 0.445179670147622 0.445102246679231
.A445025633242813 0.4449518765332924 0.444883080312228 ©0.444820548019662
.A44765468799528 0.444718359907142 0.444679460222125 ©.444648746595021

.44462570833189 0.444609631407072 0.4445997024724 0.444594627672363

20 00 99 0 0000000000000 00000000

.A444593352379021 ©.444594577723516 ©.444596955001761 ©.444599333430377
LA441608478369584 0.444599409518221 0.444595342202198 0.444587482281709
LA4A5754413807538 0.444558959103994 0.444538017804814 0.444512709670502
LAAAAB3468217589 0.44445086567291 0.444415513236575 0.444378288449879

.A44340185184104 0,444301950072971 0.444264772479911 0.444229647163839
LA44197510640786 0.444169210081264 0.444145587557221 0.444127301024358
.A444114882636016 0.444108671510357 ©0.444108974753969 0.444115782836705
LA44128870954829 0.444148135786354 0.44417308941806 0.444203081449776

.A444237602792398 0.444275665546633 ©0.444316493296919 ©.444359287230958

Figure 3.24: Data Sent to FPGA

With the code in Figure 3.18, the data is taken in float type. Radar data is of double
type. For this, double type data was obtained by making a few changes on the code.
For this, float *X as double *X, X[i] = strtof(array,NULL) as X[i] =
strtod(array,NULL) and printf(*%.7f ", X[i]) line is changed to printf("%.15f ", X[i])
because it has 15 digits in double type. The data read with this code is given in Figure
3.22.

41

¥ COM4:115200bps - Tera Term VT - O X

File Edit Setup Control Window Help

240000 24194 0,445079340914649 24195 0,445225050917232 24196 0,445338411391928 24197 0,445420863883200 24198 ,445473888554861 24199 [,445409732579201 24200 0,444544276355
HS7 24201 [0,445389852225603 24202 0, 445325742054447 24203 01, 445253802208160 24204 0,445177081503410 24205 0,445098598160649 24206 0,445444524680000 24207 0,444876653292613
24208 (.444813468401203 24209 0.444757941664107 24210 0.444710762330244 24211 .444672114972566 24212 0.444641917683227 24213 0.400000000000000 24214 0.444591749663669 24
15 0.444501669362628 24216 0,444503905981998 24217 0,444507524600740 24218 0,444600960301352 24219 0.440299880206200 24220 0.444509744562580 24221 [.444502599140098 24222
0.4445681237196234 24223 0.444565195613500 24224 ([,444544500902808 24225 ([.444519302854240 24226 0.444444421320677 24227 0.444383598030333 24228 0.444344760381829 24220 0.
H4430592668576 24230 0.444268072121565 24231 0.4442322507152249 24232 0.436949002800000 24233 0,444146090185062 24234 0,444127093857130 24235 0,444113908999571 24236 0,444
407070687472 24237 0.444106685988342 24238 0.444112602243950 24239 1.440000000000000 24240 0.444196705457231 24241 0.444232026391233 24242 0.444270817962219 24243 0.444311
g‘iBUSﬁ??F 24244 0,444354203410441 24245 0, 465087633466500 24246 0,421877470681492 2424? 0,403832051420217 24248 0, 375706248652795 24249 1, 335068619620798 24250 0, 29094?20%

00 99 EE 21

2465 0,853026428426000 24266 0,505335366110637 24267 0. 428064813225705 24268 0. 388880066023381 24260 0,366108015050070 2470 0.419230843736535 24271 0.476346503000000 24 |
72 0.577310599963936 24273 0.611205975271072 24274 0,624063023676927 24275 0.615911380963735 24276 .590489980409041 24277 0.554048275862119 24278 0.500000000000000 24279
0.420320008206301 24280 0.423427863487101 24281 (.427638269476244 24282 0.438255974815762 24283 0.450644105732180 24284 0.465975641407900 24285 0.460628098586115 24286 0.
M50222980070515 24287 0.434819613470667 24298 0.416939993717501 24289 [.398976669636621 24290 0,382664196030625 24291 0.300000000000000 24292 0.343061854367951 24293 0,338 |
H49586473345 24204 ,335222023850725 24205 [.333084261235048 24206 (.331821431471919 24207 [1.317677263904000 24208 0.333341440045095 24209 0.336437483976588 24300 0,341383
207023571 24301 0,348320261933225 24302 0,357165924303253 24303 0,367531097097197 24304 0, 300000000000000 24305 0,414003636750912 24306 0,424950632276290 24307 0, 435272805
HEO66E 24308 0.444896571125743 24309 0.453739801679695 24310 0.471784088190200 24311 0.474707872416520 24312 0.479657525561669 24313 0.483575046219054 24314 [, 486482589457
B71 24315 (0,4089405946233375 24316 0,489373169092415 24317 0,400000000000000 24318 0,424985885348074 24319 0,482308953276859 24320 0,479491504907493 24321 0,476378484816433
24322 0.473146049360708 24323 0.455759819399700 24324 0.463290457136174 24325 0.460095492050131 24326 0.457012161132548 24327 0.454077215132862 24328 0.451322996090641 24
(29 0.448777739935275 24330 0,400000000000000 24331 0,441144580949012 24332 0,439945341505138 24333 0.439027056819765 24334 0.438367650477530 24335 [.437935089919240 24336
0.439062653950100 24337 0,437504552343247 24339 (.437663142032324 24339 0.437763198570655 24340 0.437867658050762 24341 0.437957158026676 24342 0.438018256725308 24343 (.
H00000000000000 24344 0,437912808549810 24345 0,4379145832050149 24346 0,4377018373956249 24347 0,437584846092099 24348 0,437474556550403 24349 0,432115020171800 24350 0,437
02309484861 24351 0.437338182766530 24352 0.437440450124205 24353 0.437619906956271 24354 0.437886045102634 24355 0.438245730895252 24356 0.400000000000000 24357 0440627
69177976 24359 0,441424047773797 24359 (1, 442279331400263 24360 0,443171734321429 24361 0,444087932439146 24362 0,459177192211950 24363 [, 446795334473173 24364 0, 447625206
50907 24365 0.448392088069745 24366 0.449082107092295 24367 .449683830980098 24368 0.450187681303572 24369 0.400000000000000 24370 0.451103030641740 24371 0.451045286680
759 24372 0,450976777372537 24373 0, 450603781804630 24374 0,450234551798715 24376 0,446763215253000 24376 0,448656212456045 24377 0,448014933491620 24378 0,447339236387900

4379 0. 59 1306 9 00 685 24384 (0,442351306265753 24385 (,441946344222751 24
B85 0. 441613380053435 24367 0. 441354006104512 24388 0.410608354185000 24380 0.441005708957300 24300 0. 441056520530860 24301 0.441150012010680 24352 0.441300091340842 24303
0.441400575553408 24304 [,441740776895251 24395 0. 400000000000000 24396 0.442954466544402 24397 0.443278663657051 24398 0,443596347783204 24390 0, 443901051083667 24400 0.
A44187511466130 24401 0.446885757002320 24402 0.444896976510019 24403 0. 445074669581680 24404 0,445220621795134 24405 0,445335073100118 24406 0,445418517213117 24407 0,445
H72655550714 24408 0.444548243470554 24409 (.445444800108477 24410 .445392333238278 24411 (.445328516047114 24412 0.445256714272593 24413 0.445180231999845 24414 0.402436
B79192500 24415 0,444949993330505 24416 0,444890424072121 24417 0,444817166126738 24418 0, 444761425321607 24419 0, 444713700413547 24420 (0, 444674407791272 24421 0, 400000000
El][lﬂ[ll] 24422 [0.444505282148071 24423 0.444590965050024 24424 0.444590573006555 24425 0.444592666134448 24426 0,444506088268309 24427 1.446014345644530 24426 0.444601376690
06 24429 0,444598116014164 24430 0,444591123950864 24431 0,444579961789197 24432 0, 444564043094702 24433 0,444543651994081 24434 0,400000000000000 24435 0, 444422222176168
24436 (.444384870387490 24437 0.444346451243380 24438 0.444307860545159 24430 0.444270179182521 24440 0.441750350744000 24441 0.444172850300781 24442 .444148584426041 24
M43 0.444120675477032 24444 0.444116647514116 24445 0,444100626772272 24446 0,444100461559675 24447 0.400000000000000 24448 0.444171348520102 24449 0.444200941401715 24450
0.444235030126202 24451 0,444272784342968 24452 [.444313304627615 24453 [.486486200124180 24454 0.432645966762707 24455 0.421870640067235 24456 0.403824680430524 24457 0.
B75702509044198 24458 [, 335076858492505 24459 0.28098050956107¢ 24460 0.200000000000000 24461 0.022794287933506 24462 0,000694817195592 24463 0,020007156201902 24464 0,086
781379024306 24465 6368.000000000000000 24466 0.348663208645006 24467 0.517916540363971 24468 0.686903723550328 24469 65049739467, 000000000000000 24470 D.943045904958315 2
H471 0,999656 125056745 24472 0,999761041790551 24473 0, 734632009976755 24474 0.612565257721027 24475 0,505333714594076 24476 0,420020692250523 24477 [,380849060321839 2447
B 0.300000000000000 24479 0.527112421766506 24480 0.577267647870920 24481 0.611149066058433 24462 0.623095081844326 24483 0.615777132077506 24484 0.591137114283000 24485 0
.513439871913165 24486 0,476012554105011 24487 0,446925058701719 24489 0,429006101685366 24489 0,423150615272309 24490 0,427421059924959 24491 0,400000000000000 24492 0,46
H138463070436 24493 (1.460619123793440 24494 (1.450211205893494 24495 (1.434794832182710 24496 0.416897746944462 24497 (,390970007073800 24499 [.368843061062483 24499 .35784
P206758483 24500 0,349389056358712 24501 0,343068519667369 24502 0,338484890945853 24503 0,335283253453733 24504 0, 300000000000000 24505 0,331875497279395 24506 0,33344934
2469510 24507 0,336544321722805 24508 0.341489628750077 24509 0.,348437180653878 24510 0.365026279071100 24511 0.379028602950676 24512 0.390858728370212 24513 040267206257
B410 24514 0.414144679324176 24515 0,425090499250618 24516 0,435408807752961 24517 0,400000000000000 24518 D, 468620429843146 24519 0.474799151235519 24520 0.47973687149568
b 24521 0.483642246154200 24522 0.486538053688360 24523 .488465895760650 24524 0.489450452504101 24525 0.488651955272638 24526 [.487116276573600 24527 [.484977380915206 2
{528 0,482381792042309 24529 [,479467873892015 24530 0,400000000000000 24531 0.466529980518811 24532 0,463264804307341 24533 0,460071575148765 24534 0,456989143870007 2453
b 0.454053002032532 24536 0,475088095869500 24537 0.446436352191922 24538 0.444377974324673 24530 [),442505088577449 24540 0.441100565453024 24541 0.439897374683649 24542 0 |
. 438976038245417 24543 0,400000000000000 24544 0,437539137941377 24545 0,437544778486355 24546 0,437615495915894 24547 0,437717062711233 24543 0,437825297106492 24549 0,497
B831505727700 24550 0.438014449167553 24551 (.438010187745601 24562 0.437972051699726 24553 0.437904664613708 24554 0.,437614421801329 24555 0.437709307180680 24556 0.43374
437422069 24557 0,437344263996615 24558 0,437324920376281 24559 0,437358910419378 24560 0,439458390402330 24561 0,437634786370695 24562 0,435935652666000 24563 0,43871208
Egg33g25%2554426335.6‘233;%%8%35%;56.5 0.4399125227720929 24566 0.440642400566583 24567 0.441443090989888 24568 0.442209313266935 24569 0.444503224830401 24570 044593901964 .

s
=
=
=
n
=
&
=
o
=5
=
-
=5
=
&
rs
=4
<]
&
=
=
&=
L2
=y
fax]
=
o
2
=
rs
=4
<]
&
=
=
=
&=
o
o
&
=
=
2
=
&=
=
=1
=
rs
=4
o
&
<
=
=
=
=
=
=
=
=
=
=
=
=
=
rs
=4
o
&
&
=
B
25
e
&
o3
=
o
=

Figure 3.25: Data Read from Terminal

At this stage, looking at the last read data and the number of read data, the data in both
float and double data types are ready to be processed and read correctly. However,
while 48844 data can be read in float data type, 24573 data can be read in double data
type. This is due to the size of the buffer.

42

4, RNMF APPLICATION ON VITIS

In this section, what the RNMF algorithm is, for what purpose it is used, what the GPR
picture is, the literature review on these issues, and finally the C code and outputs of

the RNMF algorithm implemented in the Vitis interface will be explained.

4.1 RNMF Algorithm

NMF algorithm has become very popular in recent years for those who produce results
by processing data with the importance of data science. The NMF algorithm aims to
automatically extract hidden layers from data consisting of high-dimensional matrices
and predicts the solution of data-driven problems such as matrices reduction,

unsupervised learning, and classification problems.

The most critical problem encountered in ground penetrating radar (GPR) studies is
the clutter that reflects back to the radar from the ground and obscures the targeted
image. Clutter prevents the images of objects under the ground and makes it difficult
to detect. In this project, RNMF, which is an improved version of the NMF algorithm,
was used to detect the real image by separating the data collected from the field by the
ground penetrating radar system from the clutter. The GPR image is represented by a
rectangular matrix X with dimensions M x N, where M is the depth index and N is the
number of antenna positions. The X rectangular matrix consists of two parts, the target
and the clutter. Using the RNMF optimization algorithm, the X matrix is assumed to
be sparsely degraded and decomposes it from a sparse error matrix S as non-negative
W and H matrices defined as the data matrix [12]. Thus, the optimization formula
proposed by the NMF algorithm will be updated as RNMF. By iteratively solving the
optimization problem in this new formula, the S matrix will be 0, the W and H values

will be found by normalizing.

43

4.2 Information About GPR Image

In this study, ground penetrating radar (GPR) image of 256x183 size was obtained by
measuring with vivaldi antennas. The GPR image, which was defined as X above,
consists of the target and the clutter. In the RNMF algorithm, the X image is considered

to be sparsely distorted and defined as X = W*H+S.

4.3 Literatur Review

In matrix factorization model, three essential questions need answering: 1) existence,
whether the nontrivial NMF solutions exist; 2) uniqueness, under what assumptions
NMF is, at least in some sense, unique; 3) effectiveness, under what assumptions NMF
is able to recover the “right answer.” [14,17]. A method called robust NMF (RNMF)
was proposed, which has a better clutter removal effect than other low-rank and sparse
decomposition methods, but the solution process is still not fast enough due to its
iterative characteristics [15].As a more advanced version of NMF, the RNMF
algorithm is used in remote sensing and image processing studies to detect objects and
distinguish undesired effects from the target. RNMF is more successful than other
decomposition methods in reducing the error rate at the output to 0 by putting a small
amount of error on the input data and in distinguishing the object to be detected from
the clutter [16,18].

The radar image (raw image) obtained in the simulations using real data in the

MATLAB environment in the previous studies of the project is given in Figure 4.1.

Target image is observed in Figure 4.2 and clutter image is observed in Figure 4.3. The
target and clutter were separated by running the RNMF algorithm on the Zyng-7000
processor, which was written in the Matlab environment and then translated into C

language.

44

20 40 60 80 100 120 140 160 180

Figure 4.1: Raw GPR Image Collected from Target Object

50

100

150

200

250

20 40 60 80 100 120 140 160 180

Figure 4.2: Target Object Removed Clutter Image

45

50

100

150

200

250

20 40 60 80 100 120 140 160 180

Figure 4.3: Clutter (Object Removed) Image

46

4.4 RNMF Application VITIS C Code

In this project, the RNMF algorithm is used to distinguish the data received from the
radar as clutter and target, and consequently to remove the complexity. Simpler and
shorter C codes to implement the RNMF algorithm are available in the literature.
However, since the code written in this project is aimed to work on FPGA, the code is
arranged to be applicable in FPGA. Since there are many matrix multiplications in this
code and it will take a long time to perform these operations in software, the hardware

designed and designed system of matrix multiplications is integrated into the software.

& project_141... & project_1412 [¢l main.c &2 | [mmf_inc

1 /* Include Files */

2 #include "rnmf_in.h"

3 #include "main.h"

4 #include "rnmf_in_terminate.h"
5 #include "rnmf_in_initialize.h"
#include "xtime 1.h"

#include "platform.h"
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include "xuartps.h"
12
13
14 XUartPs_Contig *Contig_0;
15 XUartPs Uart_PS_8;
17 double target[46848];
12 double clutter[46848];
19 /#* Function Declarations */
% 20 static void main_rnmf_in(void);

O 00 =~

P
,

/* Function Definitions */

fd P
000 =~ v N Pl b

1

S

#*

* Arguments : int argc

£

2 = const char * const argv[]
2 * Return Type : int

29 */

38

31=void data_alma(char *dizi,double*X,int N){
32 int i;

33 for(i=0;i<N;i++}{

34 scanf("%s",dizi);

35 X[i]=strtod(dizi,NULL);

36 ¥

37 }

38

Figure 4.4: RNMF Vitis Main C Code (1-38)

47

In the code written before, the target variable was defined as a fixed array and the
values were initialized. Since this variable is the data to be received from the radar, in

this project, it was taken from the radar with the code written in the third section.

In Figure 4.4, rnmf_in, rnmf_in_terminate and rnmf _in_initialize header files are
included first, as the rnmf algorithm consists of many interconnected .c files in main
fumction. Other header files have been added for time analysis and for general
functions to work. UART configuration is done to receive data from UART. The target
and clutter variables are defined globally. To read radar data from UART, the code

written in section 3 is performed under the data_receive function.

E project_141... A project_1412 lel main.c & | e rnmf_in.c rnmf_inh le| read.c L¢| xuartps_hw.c lel rnmf_in_term..
20
39=int main(int argc, const char * const argv[])

40 {
41 init platform();
s 42 int status;
43 Config_@=XUartPs_lLookupConfig(XPAR_XUARTPS_© DEVICE_ID);
44
45 status=XUartPs_CfgInitialize(&Uart_PS_0,Config_@,Config_8->BaseAddress);
46
a7 int N=10;
i A8 int i-8;
49 double *X;
58 X=malloc(N);
51 char dizi[188];
52 data_alma(dizi,X,N);
53
54 (void)argc;
55 (void)argv;
56 int loop clutter;
57 int loop target;
% 58 int a,b,c;
59 XTime tStart, tEnd;
60= /* Initialize the application.
61 You do not need to do this more than one time. */
62 ramf_in_initialize();
63
64e /* Invoke the entry-point functions.
65 You can call entry-point functions multiple times. */
66 XTime_GetTime(&tStart);
67 romf_in{target, clutter,X,N);
68 XTime_GetTime(&tEnd);
69 printf("Output took %1lu clock cycles.\n", 2*(tEnd - tStart));
70 printf("Output took %.2f us.\n",1.@ * (tEnd - tStart) / (COUNTS_PER_SECOND/1008000));
71 printf("\n\rtarget data\n\r");
72 for(loop_target = @; loop_target < 46848; loop_target++)
73 {
74
75 b = loop_target % 255;
76 if (h < 25A)

Figure 4.5: RNMF Vitis Main C Code (39-76)
In Figure 4.5, the values to be used are initialized. With the data_receive function, data
is read from the radar. With the rnmf _in function, the code in which the RNMF
algorithm is written is processed. With the XTime_GetTime function, it is calculated

how long the code is processed and in the clock cycle.

48

The target variable obtained from the processing of the RNMF algorithm with the for

loop and the clutter variable are printed to the terminal.

4 project_141... K project_1412 [g main.c 2 | € rmmf_inc mmf_in.h [€ read.c [¢] xuartps_hw.c [€] mmf_in_term...
70 printf("Output took %.2f us.\n",1.@ * (tEnd - tStart) / (COUNTS_PER_SECOND/1000800)):
71 printf("\n\rtarget data\n\r");

72 for(loop_target = @; loop_target < 46848; loop_target++)
73 {

74

75 b = loop_target % 255;

76 if (b < 256)

77 {

78 printf("%.16f,",target[loop_target]);

79 }

80 else

81 {

82 printf("%.16f\n",target[loop_target]);
83 !

84

35 }

86 printf("\n\rclutter data\n\r");

87 for(loop_clutter = 8; loop_clutter < 46848; loop_clutter++)
88 {

89

99 ¢ = loop_clutter % 255;

91 if (¢ < 256)

92 {

93 printf("%.16f,",clutter[loop_clutter]);
94 }

95 else

96

97 printf("%.16f\n", clutter[loop_clutter]);
98 1

99 }

100 printf("\n\rdata sent\n\r");

101

182 romf_in_terminate(};

183

104 return 0;

105 1

Figure 4.6: RNMF Vitis Main C Code (76-105)

#tinclude <math.h>
#include <string.h>
#include "rnmf_in.h"
#include "sqrt.h"
#include "sum.h"
#include "sign.h"
#include "abs.h"

void rnmf_in(float target[46848], float clutter[46848],float X[46848],int
N)
{

int i;

float W[256];

static const float dve[256]
float H[183];

static const float dv1[183]
int iter;

int io;

int i1;

static float varargin 2[46848];

{ 0.80747046945450007, 0.26463438417187..}

{ 0.197970832005718, 0.624752290113142..}

49

int target_tmp;
float norms;

static float z1[46848];
float b;

float MSXHt[256];

float MWtSX[183];

memcpy (&W[0], &dvO[0], sizeof(float) << 8);
memcpy(&H[0], &dv1[@], 183U * sizeof(float));
for (iter = 0; iter < 10000; iter++) {
for (i@ = 9; i@ < 256; io++) {
for (i1l = ©; il < 183; il++) {
target_tmp = i@ + (il << 8);
target[target_tmp] = X[target_tmp] - W[i@] * H[il];
}
}

b_abs(target, varargin_2);

for (target_tmp = 0; target_tmp < 46848; target_tmp++) {
norms = varargin_2[target_tmp] - 0.00015;
varargin_2[target_tmp] -= 0.00015;
z1[target_tmp] = fmax(0.0, norms);

}

b_sign(target);

for (i@ = 0; i0 < 46848; io++) {
target[i0] *= z1[i@];

}

for (target_tmp = 0; target_tmp < 256; target tmp++) {
norms = 0.0;
b =0.0;
for (i@ = @; i@ < 183; io++) {
il = target_tmp + (i@ << 8);
norms += target[il] * H[i@];
b += X[i1] * H[ie];
}

norms -= b;
MSXHt[target _tmp] = -norms;
if (norms > 0.0) {
MSXHt[target_tmp] = 0.0;
}
}

norms = 0.0;

for (i@ = 0; i@ < 183; ie++) {
norms += H[1@] * H[ie];

}

0; target_tmp < 256; target_tmp++) {
MSXHt[target_tmp] * W[target_tmp] /
fmax(W[target_tmp] * norms, 1.0E-20);

for (target_tmp
W[target_tmp]

50

for (target_tmp = ©; target_tmp < 183; target_ tmp++) {
MWtSX[target_tmp] = 0.0;
norms = 0.0;
b =0.0;
for (i@ = 0; i@ < 256; io++) {
il = i@ + (target_tmp << 8);
norms += W[i@] * target[il];
b += W[ie] * X[il];
}

norms -= b;
MWtSX[target_tmp] = -norms;
if (norms > 0.0) {
MWtSX[target_tmp] = 0.0;
}
}

norms = 0.0;

for (i@ = @; 10 < 256; i0++) {
norms += W[i@] * W[i@];

}

for (target_tmp = 0; target tmp < 183; target_tmp++) {
H[target_tmp] = MWtSX[target_tmp] * H[target_tmp] / fmax(norms *
H[target_tmp], 1.0E-20);
}

for (i@ = @; 10 < 256; i0++) {
MSXHt[i@] = W[i@] * w[ie];
}

norms = sum(MSXHt);
b_sqrt(&norms);
b =1.0 / norms;

for (i@ = 9; i@ < 256; ie++) {
W[ie] *= b;
}

for (i@ = 9; i@ < 183; ie++) {
H[i@] *= norms;
}
}

for (i@ = @; i@ < 256; ie++) {
for (i1 = @; i1 < 183; i1++) {
clutter[io + (i1 << 8)] = W[i@] * H[i1];
}
}

Figure 4.7: RNMF Algorithm Vitis C Code (rnmf_in.c)

51

The code written in accordance with the RNMF algorithm explained in section 4.1 is
in figure 4.7.

T COMS3 - Tera Term VT = O X
File Edit Setup Control Window Help

Dutput took 25493445129 us.

arget data

. 0000000000000000, 0. 0000000000000000,0.0000000000000000,0.0000000000000000,0.00
(0000000000000, 0.0000000000000000,0.0000000000000000,0.0000000000000000,0.000000
000000000,0.0000000000000000,-0.0000000000000000,-0.0000000000000000,-0.0000000
000000000, -0.0000000000000000,-0.0000000000000000,-0.0000000000000000,-0. 0000000
00000000, 0. 0000000000000000,, 0. 0000000000000000,, 0. 0000000000000000,, 0. 00000000000
00000, -0.0000000000000000,-0.0000000000000000, 0. 0000000000000000,0.. 0000000000000
000, -0.0000000000000000, 0. 0000000000000000, 0. 0000000000000000,, 0. 0000000000000000
.0.0000000000000000,0.0000000000000000, 0. 0000000000000000,0. UDDUBDUDDUUUUDDU 0.0
1UDUDUUUDUUUUDU 0.0000000000000000,0. UUDUUDUDUUUDUUUU 0.0000000000000000,0. 00000
10000000000, 0. UUDUUDDUUUBDUDUU 0.0000000000000000,0.0000000000000000,0. 000000000
000000, 0. 0000000000000000, 0. 0000000000000000,-0.0000000000000000,-0. 00000000000
00000, -0.0000000000000000,-0.0000000000000000,-0.0000000000000000,-0. 00000000000
0000,-0.0000000000000000,-0.0000000000000000,-0. 0000000000000000,-0. 00000000000
0000,-0.0000000000000000,-0.0000000000000000,-0.0000000000000000,-0.00000000000
00000, -0.0000000000000000,-0.0000000000000000, 0. 0000000000000000,,0. 0000000000000
b0, 0.0000000000000000,0.0000000000000000,0. DUUDUUUUUUUUUUUU 0. UDUUDUUDUUUUUDUU
0.0000000000000000,-0.0000000000000000, 0. 0000000000000000,-0.0000000000000000,
0.0000000000000000, 0. 0000000000000000, 0. 0000000000000000, 0. 0000000000000000,0.0
p00000000000000,0.0000000000000000,0. DUDUUDDDDUDDUHDU -0.0000000000000000,-0.000
000000000000, -0.0000000000000000,0.0000000000000000 U.UUUUUUDUUDDUUUUD.U.UUUUDU v

Figure 4.8: Time Analysis Terminal Result

T COMS3 - Tera Term VT = O X

File Edit Setup Contrel Window Help

0000000000000, -0.0000000000000000, -0.0000000000000000,-0.0000000000000000, -0..0000000000000000,-0.0000000000000000,-0. 00000000098
(0000000, -0..0030000000000000, -0..0060000000000000, -0, 0000000000000000 -0, 0060000000000000,-0.. 0030000000000, ~0.. 0030000000000
0, -0.0000000000000000,-0.0000000000000000,,-0..0000000000000000,-0..0000000000000000,-0..0000000000000000, 0. 0000000000000000,0..000
I]UDIJIJIJUI]UIJIJIJIJ.U.UDI]DUI]UUDIJIJUI]IJIJIJ.D.I]IJIJIJIJDUI]IJIJIJIJDUI]IJ.I].DUIJIJI]IJIJI]UIJIJIJIJI]DU.U.DIJDUI]UIJDUDIJI]IJIJIJIJ.U.IJIJIJIJI]UIJIJIJIJUI]UI]IJIJ.U.UIJIJI]IJUI]UI]IJIJIJUI]U
0, -0.0000000000000000,-0.0000000000000000, -0. 0000000000000000, -0. 0000000000000000, -0. 0000000000000000, -0. 0000000000000000,-0.0)
0000000000000, -0. 0030000000000, ~0.. 0030000000000000,, 0. 0003008000000000, 0. 0000600300000000, 0..0000060000000000, -0 0000060000
000000, -0.0000000000000000,0.0000000000000000,0. EIL'I[I[IU[IUIJL'ID[ID[IDEIL'I 0.0000000000000000, -0.0000000000000000,-0. 0000000000000000 , -0
DHDULUUUDDHUUD -0. I]DLTIJ[IEIDDDIJIJDIJDI]D 720 i .0 6
3711716

0.

0000000,,0..0000000050000000,,0..0000000000000000, 0. 000000000000000,0. unuunnnunununnnu 000001

00748004760960.,0..000091509; 00099205¢ 00000991395

02,0.0000797740310618,0..00007 767,0.0000750606056151,0.00005 000 ,0.0000285798541431,0..00
o0090000 0. 0000000D0AOG000 0. 000R0CADUAOG000D. 0. OOO0BED0OAOG00aD, . CORCaDOODA0E00DD 0. COCOD0OBRE0D0OD, -0 CooDO0OROEOD0ODD,
-0.0000000000000000, -0.. 0000000000000, -0..0000000000000000 -0 0000030000000000, -0. 0060000000000000, -0..0080000000000000, -0..000
0000000000000, -0..0030030000000000 0. 0030000000000000 -0 0060000000000000, -0..0030000000000000, -0..0030030000000000 -0 005000000
0000000 ,-0..0030000000000000. -0 0060000000000000, -0.. 0060000000000000, -0.. 0000000000000000, -0..00B0000000000000 -0 0030030000000
11,-0.0030030000000000, -0. 0060000000000000, -0.. 0080000000000000, -0.. 0030000000000, -0..0030000000000000 -0 0030030000A00D, -0.0
0000000090000, -0.0000000000000009. -0..000000000000000-0..0030000009009000 -0 0030030000000000..-0.. 0060000000000, 0. 00050000 2

Figure 4.9: Target Data Removed Form Clutter by RNMF Algorithm

52

¥ COM3 - Tera Term VT — O x

File Edit Setup Control Window Help

v

Figure 4.10: Clutter Data

The target data removed from the clutter by the RNMF algorithm, in Figure 4.9, and
the clutter-generating clutter data, in Figure 4.10, are observed from the terminal.

53

5. HARDWARE IMPLEMENTATION OF RNMF ALGORITHM

In this section, the hardware implementation of the line of code, which includes matrix
multiplication and subtraction, which was previously done in software in the RNMF
code, will be explained. Therefore, a custom IP is designed for the following line of

code.
target[target_tmp] = X][target_tmp] - W[io] * HI[i1]

Block design is created with the designed IP and Zyng-7000 processor. After the
created block design is synthesized, implemented, and the bitstream file is produced,
the hardware is exported and the data is sent to the appropriate registers in the line
where the operation is performed in the Vitis part.

5.1 Implementation of Floating-Point Numbers on Vivado

Since Verilog or VHDL digital hardware languages operate on bits, it is not easy to do
arithmetic with floating-point numbers. Actually, in Vivado, arithmetic operations can
be done by defining floating point numbers in real data type. But the real data type
cannot be synthesized. This method cannot be used for this project, as synthesis and
implementation processes are required after the design is created. Therefore, a special
code is required for the arithmetic operations of floating-point numbers. Vivado
defines floating point numbers in IEEE-754 format. In this case, there are two methods
for dealing with floating points. The first is to write the Verilog code that will multiply
and subtract in accordance with the IEEE-754 format by including the float_pkg.all
and float_generic_pkg.all libraries, and the other is to create a design using the Float
IP Generator (7.1) custom IP already available in the Vivado IP Catalog [24].

5.1.1 IEEE 754 Format floating point numbers arithmetic calculations

Numerous applications, including signal processing, scientific computations, etc.,
make extensive use of floating-point math and calculations using it. Because there is
no requirement for large dynamic number ranges or to scale the values, floating point
arithmetic techniques are simpler than others. However, due to the restricted number
of circuits, implementing floating points on hardware is rather difficult. Researchers
are instructed on how to implement the IEEE-754 floating point standard since it is

essential to processor performance [21].

54

Calculations using binary integers are done by supposing a certain location for the
comma. The accuracy of the number is really altered by moving the comma. As a
result, binary number format is offered for values with various sensitivities. These
sensitivities are guaranteed to be within a specific standard by the IEEE-754 standard
[26,29].

\ 4

< 32 Bits
31 30 24 23

Sign Exponent Mantissa

A
v

23 Bits

«<— 1 Bit—> <«— 8 Bits >

Single Precision
IEEE 754 Floating-Point Standard

Figure 5.1: Single Precision IEEE-754 Floating-Point Standard

According to this standard, floating point numbers consist of three parts. The most
important bit, the Sign part, indicates whether the number is negative or positive, the
exponent part indicates the biased part of the decimal part of the number, and the
mantissa part indicates the decimal part of the number. Single precision is equal to the
float type in the programming language, has a maximum precision of 6 digits, and
holds a 32-bit number. Double precision is equal to the double type in the software
language, it has a maximum precision of 15 digits and holds a 64-bit number. Sign bit
is one bit in both double precision and single precision. The exponent part is 8 bits in
single precision, 11 bits in double precision, and the mantissa part is 23 bits in single

precision and 52 bits in double precision [23].
Floating — point number = (-1)° *m* 2°

With this formula, the multiplication of two numbers in floating-point numbers is
performed with the following steps. Sign bits XOR, mantissa parts are multiplied and
the exponent exponents are added to get the result. In floating-point numbers, the sum
of two numbers is performed by shifting the exponent of the smaller number until it
equals the exponent of the larger number, and then adding the two values [27,28].
VHDL or Verilog code can be written according to the algorithm described to perform
these operations in Vivado. Another method suitable for this format is to include the

float_pkg.all and float_generic_pkg.all libraries and perform operations by generating

55

var float x. But since the libraries written in this method are compatible with Vivado

2008 version, it is necessary to update the libraries [24,25].

5.1.2 Floating-Point IP Generator (7.1) custom IP design

Floating Point IP, available in Vivado IP Catalog - Math Functions, is used for

floating point arithmetic operations. The floating point AXI IP has data ports named

|
’

{
| Floating-point (7.1) /¢
|
|
@ Documentation IP Location C' Switch to Defaults

IP Symbol Component Name floating_point_2

Show disabled ports Operation Selection

Operation Selection Add/Subtract and Multiply-Add Operator options ~

Absolute Value @) Both
Accumulator Add

®) Add/Subtract Subtract
Compare
Divide

Exponential

Fixed-to-float
H+ S AXIS_A
= Float-to-fixed
3 S AXIS B

+ a8l M_AXIS_RESULT 4 £
=4 S_AXIS_OPERATION

adk

Float-to-float

Fused Multiply-Add

Logarithm

Multiply

Reciprocal

Reciprocal Square Root

Square-root

Add-subtract combination enabled. OPERATION input specifies which operation is performed.
RESULT = A+/-B

oK Cancel

Figure 5.2: Floating Point (7.1) IP

S _AXIS_A and S_AXIS B to be used in arithmetic operations, a port named
S_AXIS_OPERATION where the operation to be performed is selected, an operation
result port named M_AXIS_RESULT, asynchronous clock signal called aclk and
asynchronous reset signal called aresetn. This IP performs arithmetic operations using
DSP blocks. Input type can be changed from Precision of Inputs tab to half precision,
single precision, double precision or custom precision. In addition, how much delay
the process will have, the reset pin and the ready pin can also be configured. Because
the floating point IPsi uses DSP blocks, it performs transactions quickly. Therefore, in

this project, floating point transactions were made using this IP [22].

56

5.2 Custom IP Design of Floating-Point Arithmetic in Vivado

In this section, the custom ip designed to perform the arithmetic operation performed
in the software will be explained. The line that performs the T = X - (W*H) arithmetic
operation by taking a float value from the X, W and H arrays in each loop within the

for loopin the software will be made in the hardware part.

First of all, the project is opened in Vivado. Click on Tools = Create and Package
New IP button.

’

Create Peripheral, Package IP or Package a Block Design

Please select one of the following tasks. '

Packaging Options

Package your current project
Use the project as the source for creating a new IP Definition,

Package a block design from the current project
Choose a block design as the source for creating a new IP Definition.

Select a block design:

Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create AXI14 Peripheral

®) Create a new AXI4 peripheral
Create an AXI4 IP, driver, software test application, IP Integrator AXI4 VIP simulation and debug demonstration design.

@
Figure 5.3: IP Package Type Selection

Since the Floating-Point has an IP AXI4-Stream interface, IP Package type is selected
as AXI4 Peripheral.

¢ Create and Package New IP X

Peripheral Details

Specify name, version and description for the new peripheral ‘
Name: |ip7| |
Version: 1.0

Display name: ip7_v1.0
Description: My new AXI IP
IP location: C:/Users/cisem/Bitirme/ip7_zynq/../ip_repo E]

Overwrite existing

57

Figure 5.4: Naming the IP Packet

The IP packet is named ip7 and the place where it will be saved is chosen as the folder
where the final block design will be created.

¢ Create and Package New IP X

Add Interfaces

Add AXI4 interfaces supported by your peripheral ‘
Enable Interrupt Support + - Name 500 AXI
Interfaces Interface Type Lite v
I SO0_AXI
Interface Mode Slave v
Data Width (Bits) 32 v
< < Memory Size (Bytes)
i Number of Registers [4.512]
| — S00_AXI] . oeld
ip_7_v1.0

N

Figure 5.5: Configuring Interface Settings

Since the data will come from the Zynq processor, the mode has been selected as the
slave for this interface and the number of registers has been updated as 6 due to the
variables X, W, H, T, valid and ready.

¢ Create and Package New IP X

Create Peripheral
VIVADO'

HLx Editions Peripheral Generation Summary
1. IP (diline.com:userip_7:1.0) with 1 interface(s)
2. Driver(v1_00_a) and testapp more info
3. AX14 VIP Simulation demonstration design more info

4. AXI4 Debug Hardware Simulation demonstration design more info

Peripheral created will be available in the catalog :

C:/Users/cisem/Bitirme/ip7_zyna/../ip_repa

Next Steps:
Add IP to the repository
® Edit P
Verify Peripheral IP using AXI4 VIP

Verify peripheral IP using JTAG interface

i: XlLINX Click Finish to continue

P

Figure 5.6: Edit IP

58

Since the registers will be edited and other operations will be coded in the created IP,
the Edit IP option is selected. In the project that opens, we first add the floating-point
IPs.

/ Customize IP X
Floating-point (7.1) [

® Documentation IP Location C' Switch to Defaults

IPSymbol Implement: = Component Name floating_point_0

Show disabled ports Operation Selection Precision of Inputs Optimizations Interface Options

FISESE SEITLL 1D WIS IUHUWINY TUHCUUIS,

Operation Selection

Absolute Value
Accumulator
Add/Subtract
Compare

Divide

Exponential
Fixed-to-float
Float-to-fixed
Float-to-float
Fused Multiply-Add

Logarithm

Multiply
Reciprocal
Reciprocal Square Root

Square-root

Multiply selected. RESULT= A*B

Figure 5.7: Operation Selection

First we add the IP that do the multiplication for the (W * H) operation.

Customize IP X
Floating-point (7.1) [

© Documentation IP Location C Switch to Defaults

IPSymbol Implement: = Component Name floating_paint_0

Show disabled ports Operation Selection | Precision of Inputs ~ Optimizations | Interface Options

A Predision Type

Please select floating-point precision

Half (®) Single Double Custom

Total width

Exponent width

Sign | Exponent

h
i
1 bt 1 Fraction

Fraction width

Exponent Width &

Fraction Width 24 [0 - 64]
Total Width : 32

59

Figure 5.8: Selection of Precision of Input

Precision type is selected as single because float values will be multiplied.

4 Customize [P X
Floating-point (7.1) [
© Documentation IP Location C' Switch to Defaults
1P Symbol Component Name floating_point_ 0

Show disabled ports

Interface Options
~

Flow Control Options
Flow Control = Blocking v Optimize Goal Resources v

] RESULT channel has TREADY

Latency and Rate Configuration
Use Maximum Latency

Latency 1

Cyclesfoperation 1

Control Signals

ACLKEN ARESETn (active low)

ARESETn must be asserted for a minimum of two clock cycles
Optional Output Fields

UNDERFLOW OVERFLOW INVALID OP

Channel Has TLAST Has TUSER TUSER Width (Range: 1..256))
< >

OK Cancel

Figure 5.9: Interface Options Settings

A ready input is added to be able to observe the signs in the simulation. In order to

minimize the delay, Latency is updated as 1 and reset pin is added. The same steps are

repeated to add the subtract block by selecting subtract in the operator selection

section.

Then the added IP needs to be implemented into the code. For this, the Verilog code

is copied from the floating_point_0.veo file from IP Sources - floating_point_ 0 >

Instantiation Template.

60

Project Summary * myip7v* % IP Catalog X

C;/Users/cisem/Bitirme/ip_repo/ip7_1.0/src/myip7.v

Q W « x B B X /A W

“timescale 1ns / 1lps

lnodule myip7(
input aclk,
input aresetn,
input [31:0] X,
input X_wvalid,
output X_ready,
input [31:0] W,

[A R o R

w0

input W_valid,

<

floating_point_1.v

10 3 output W_ready,

11 input [31:0] H,

12 ‘ input H_valid,

13 output H_ready,

143 output [31:0]1 T,

15 i output T valid,

16 ‘ input T_ready

17 .)i

133 wire [31:0] res;

19 wire res valid, res_ready;
20 ‘ floating_point_0 multiplier (
21 1 -aclk(aclk),

22 _aresetn(aresetn),

23 } -5_axis_a_tvalid(w_valid),
24 ‘ -5_axis_a_ tready(W_ready),
25 3 -5_axis_a tdata(W),

26 | .5 _axis b tvalid(#_valid),
27 -5_axis_b_tready (H_ready),

x | floating_point_0.v X

ip7 vl Ov X

Q

Figure 5.10: IP7 Main Verilog Code (1-27)

X, W, H are defined as input, T as output, and valid and ready variables are defined

for these variables.

Q

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Project Summary X

46 C

myip7.v* x IP Catalog X

C:/Users/cisem/Bitirme/ip_repo/ip7_1.0/src/myip7.v

W o« X B B X /N B
floating point 0 multiplier (

.aclk(aclk),

.aresetn (aresetn),

.5_axis_a tvalid(W_valid),

-5_axis_a_tready(W_ready),

.5 _axis a tdata(w),

-s_axis_b_tvalid(H_valid),

-5 _axis b tready(H ready),

.5_axis b_tdata(H),

.m_axis_result_tdata (res)
);
floating point_ 1 substractor (
.aclk(aclk),
.aresetn(aresetn),
-s_axis_a_tvalid(x_valid),
-5 _axis a tready(X ready),
.s_axis a tdata(X),
-5_axis_b_tvalid(res_valid),
.5_axis b tready(res ready),
-s_axis_b_tdata(res),
-m_axis result tvalid(T wvalid),
.m_axis result tready(T ready),
.m_axis_result_tdata(T)

endmodule
<

floating_point_1.v x

.m_axis_result_tvalid(res_valid),
.m_axis result tready(res ready),

// output wire

// output wire

floating_point 0.v X

ip7_v1 O.v x

Q

// input wi
// output
// input wire
// input
// output

// input wire

// output wire m

// input w
[

/r
// input wi

// output wi

// input wire [31
// input wi

// output wire

// input wire
/Y
// input wi

e e
output wi

[31

Figure 5.11: IP7 Main Verilog Code (27-46)

61

Since floating_point_0 makes multiplication block, W variable is directed to A data,
H variable to B data and res variable to result data. Then, the variable X is directed to
the A data of the floating_point_1 function, the res variable to the B data, and the T
variable to the result data for subtraction. In order to test that the written code works,

the testbench code is written and observed in the simulation.

Project Summary * ip_thw b
C:/Users/cisem/Bitirme/my_ip/my_ip.srcs/sim_1/new/ip_tb.v

Q - ¥ B B X [/ W ©

1 E “timescale 1ns / 1lps
2: module ip th(
3) ;
4, reg aclk,aresetn,X valid,W valid,H valid,T ready;
; reg [31:0]wW,H;
! reg [31:0]1X%;
7 wire [31:0] T;
3 . wire X ready,W ready,H ready,T valid;
my ip tbl(.aclk(aclk),

20 E .W_ready (W_ready),
21 E .H ready(H ready),

10 E .aresetn(aresetn),

11 -X(X),

12 LW(W),

13 . .H(H),

14 | .T(T),

15 ! .X_valid(X_valid),

16 W _valid (W valid),

17 .H valid(H valid),

18 .T valid(T_valid),

19 .¥X_ready (X _ready),
)
)
)

22 E .T_ready(T_ready
23 |);
24 C initial
25 : begin
26 aclk=0;
27 aresetn=0;
<

Figure 5.12: IP7 TestBench Verilog Code (1-27)

For the module defined in the main Verilog code, the inputs are reg and the outputs
are defined as wire. The module in the main code is initialized.

62

Project Summary % ip_th.w X
C:/Users/cisem/Bitirme/my_ip/my_ip.srcs/sim_1/new/ip_tb.v

Q - ¥ B B X // W 9

22 .T_ready (T_ready)
23) ;
24 initial
25 begin
26 aclk=0;
27 aresetn=0;
28 X=0.0;
29 ¥ _valid=0;
30 W=0.0;
31 W_valid=0;
32 H=0.0;

E H valid=0;
34 T_ready=0;

end
always #5 aclk=-~aclk;
initial

begin
30 #100 aresetn=1;
40 $#10 X=32'h3ee09%71a;
41 #10 W=32'h3edabide;
42 $#10 H=32'h3edabgde;
43 #10 ¥ valid=1; W valid=1l; H valid=l; hireadyzl;
44 wailt (T_valid==1'bl);
45 end
46 endmodule

Figure 5.13: IP7 Main Verilog Code (27-46)

First, the clock signal, input signals, valid signals and reset signal are pulled to low. A
clock pulse is created by changing the clock signal at 5ns intervals. When the
simulation starts, the reset signal is pulled to high. Inputs are assigned float values.
These values are oriented by converting from IEEE-754 floating point format to
hexadecimal format. The variables X _valid, W_valid, H_valid and T_ready are set
high so that the results of the operations are observed.

ip_th behav.wefg
Q W @ @& 3 4 KM e x o

04386520134 14601

0.19797003735466

0.19797083735466

Figure 5.14: Simulation Results

63

W is multiplied by H and written to the variable m_axis_result_data. This value is then
subtracted from X. Simulation results with the sent values give correct results. Thus,

it has been proven that the designed system works.

Zus s/ Slave Leyisiel o
slv_reg3[(byte index*8) +: 8] <= T[(byte index*8) +: 8];
SE end
266C 3'h4:

267 for (byte index = 0; byte index <= (C_S AXI DATA WIDTH/8)-1; byte index = byte :
26¢ if (S_AXI WSTRB[byte index] == 1) begin

nables are asserted as per write strobes

slv_reg4d [(byte index*8) +: 8] <= SJ’%XIJMDATA[(byteiindex*B) +: 8]1;

end
3'h5:
for (byte index = 0; byte index <= (C_S AXI DATA WIDTH/8)-1; byte index = byte :

if (S_AXI_WSTRB[byte_index] == 1) begin

enables are asserted as per write strobes

slv_reg5[(byte_index*8) +: 8] <= ready tmp[(byte index*8) +: 81;
279¢ end

Figure 5.15: Register Assignments

The variable T, which holds the process result, is assigned to register 3, and the

variable ready_tmp, which holds the process result is ready, is assigned to register 5.

23 0 myip7 ul(

24 .aclk(S_AXI_ACLK} ’

25 .aresetn (5 AXI ARESETN),
26 X (s1lv_reg0),

.X valid(slv reg4([0]),
X ready(ready tmp[0]),

.W(slv _regl),
W _valid(slv_reg4[1l]),
W _ready(ready tmp[l]),

Hslv_regz),
.H valid(slv reg4([2]),

|:. I} ,-r\. (]

.H ready(ready tmpl[2]),
-T(T),
6 .T valid(ready tmp[31),

.T ready(slv_regd[3])
) ;

endmodule

T e L T T T T T =Y

Figure 5.16: Register Assignments Module

64

register 0 is directed to variable X, register 1 to variable W, register 2 to variable H,
register 4 to valid variables. These register assignments are important when sending
and receiving data in the Vitis interface.

All changes made are saved in the edit project and the IP is packaged. Currently

designed IP is in use and operational.

65

5.3 Block Design of Project

A block design is created using the IP, designed in Section 5.2, and the Zynq-7000
processor. Since the designed IP is an AXI Peripheral, AXI Interconnect provides the
connection between it and the Zyng-7000 processor. It comes automatically with the
addition of Processor Reset System and AXI Interconnect Zyng-7000 processor. The
frequency of the FCLK_CLKO signal was changed to 10 MHz from the Clock
Configuration > PL Fabric Clocks tab by double-clicking on the Zyng-7000
processor.

Diagram x Address Editor x | Address Map x 200
@ a X W O Q s + E + C o Default View v o
a
ps7_0_axi_periph
rst_ps7_0_10M
\ prms - S00_AXI
slowest_sync_clk mb_reset ACLK ip7_0
ext_reset_in bus_struct_reset[0:0] ARESETN .7.
@ aux_reset_in peripheral_reset{D:0] so0AClk ES—H Moo_aX + i +i| 4 S00_AX)
= mb_debug_sys_rst interconnect_aresetn[0:0] SOO_ARESETN g s00_axi_aclk
= dcm_locked peripheral_aresetn[0:0] MOO_ACLK s00_axi_aresetn
J' MOO_ARESETN |)
Processor System Reset ip7_v1.0 (Pre-Production)
processing_system7_0 AXI Interconnect
o0 + || T [DDR
FIXeD_10 + ||| [fixeD_io
™ UseiNDO +]||
M_AXI_GPO_ACLK]
-7 ZYNQ M_AXI_GPO + iz
FCLK_CLKO
FCLK_RESETO_N %
ZYNQT Processing System

Figure 5.17: Block Design of Project

Output Products are produced after block design is evaluated. After the output products
are successfully created for all blocks in the block design, HDL Wrapper is produced
from the design. The steps of synthesis, implementation and bitstream file generation
are done respectively. The designed hardware is exported with the Export Hardware
option and a .xsa file is produced.

66

DDR_cas_n

— > DDR_addi{140]
"> DDR_ba[2:0]

O DDR_dm[3:0]

I_o DDR_dq[31:01
> DDR_dgs_n[3:0]

> DDR_dgs_p[3:0]

FIXED_IO_ddr_vrp

- FIXED_IO_mio[53:0]

design_1_i
DDR_cas_n B DDR_addr[14:0]
DOR_ck_n DDR_ba[2 0]
DDR_ck_p DDR_dm[31]
DDR_cke DDR_dq[31:0]
DDR_cs_n DDR_dqs_n[3:0] |
DDR _odt DDR_dgs_p[3:0]
DDR_ras_n FIXED_|O_dd r_vrp
DDR_reset_n FIXED_IO_mio[53:0]
DDR_wen FIXED_1O_ps_clk
FIXED_1O_ddr_wrn FIXED_|O_ps_porb
FIXED_IO_ps_srstb

design_1

| FIXED_IO_ps_dk
\—O FIXED_IO_ps_porb

L FIXED_IO_ps_srsth
DDR_ck_n

DDR_ck_p

DDR_cke

DDR_cs_n
DDR_odt

DDR_ras_n

DDR_reset_n

DDR_we_n

FIXED_IO_ddr_vrn

Figure 5.18: Schematic of Project

The schematic representation of the whole system is shown in Figure 5.18.

67

5.4 Vitis C Code of Project

By following the Vitis project creation steps described in Chapter 2, the hardware

file is imported and a new project is created.

»

& ip7_code_system X 1p7_code lel helloworld.c ¥ | g platform.c ipi.h xparameters.h L xil_io.h ip7.h

#include <stdio.h>
#include "platform.h”
#include "xil_printf.h"
#include “"xparameters.h”
#include "ip7.h"
#include "xil_types.h"
#include "xstatus.h”
#include "xil_io.h"

=N TN I« BV, B S VW)

=int main()

{

init_platform();
IP7_mWriteReg(XPAR_IP7_0_S0@_AXI_BASEADDR, IP7_S0@_AXI_SLV_REGO_OFFSET, @x3ee@d71a); //x
IP7_mhiriteReg(XPAR_IP7_0_S@0_AXI BASEADDR, IP7_S@@_AXI SLV_REGL OFFSET, @Ox3edab8de); //U
IP7_mhiriteReg(XPAR_IP7 0_S00_AXI BASEADDR, IP7 S0@ AXI SLV REG2_OFFSET, Ox3edab8de);//H
IP7_mWriteReg(XPAR_IP7_©_S0@_AXI_BASEADDR, IP7_S0@_AXI_SLV_REGA OFFSET, @xf); //valid
int T_ready = 8;
float T;
while(T_ready == 8){
T ready = (IP7 mReadReg(XPAR IP7 @ S0@ AXI BASEADDR, IP7 S0@ AXI SLV REGS OFFSET)>»3)&1;
printf("%d\n",T_ready);

}
T = IP7_mReadReg(XPAR_IP7 O _S00_AXI BASEADDR, IP7_S80_AXI SLV_REG3_OFFSET);

printf("%f\n",T);
cleanup platform();
return T;

Figure 5.19: Vitis C Code of Project

The "platform.h™ header is included to initialize the platform, the "xparameters.h”
header to use the XPAR_IP7_0_S00_AXI_BASEADDR variable of the ip file, the
"ip7.h" header to access the ports of the designed IP, and the "xil_io.h" header for the
WriteReg and ReadReg functions. In the main function, since the variables X, W, H
are inputs in the equation, they are sent into the mWriteReg function according to the
registers where the IP is directed in the hardware using the BaseAddr and Reg_Offset
variables. The third variable in the function is the hexadecimal form of the data. When
the valid variable was high when observed in the simulation, the data was processed
and the result was produced. Therefore, the valid variable is sent as Oxf high with the
appropriate register to the mWriteReg function. The correct result was observed when

68

the T_ready variable was high in the simulation. For this, the state of T_ready is
observed in the while loop until T_ready is high in the code. When T_ready is high,
the result of T is retrieved from the mReadReg function with the appropriate register

value.

69

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

6.1 Practical Application of This Project

Ground penetrating radar, which can be the application area of the study, is used to
find objects buried in the ground in many different sectors. Especially in the detection
of anti-personnel mines, radars used in the military field need to process the image and
clear the confusion for target detection. Matrix decompositions to be implemented in
the project are relatively simple algorithms for FPGA implementation, which are
widely used in the processing of ground penetrating radar images. By implementing a
successful image processing algorithm such as robust negative matrix decomposition
on FPGA, a portable, inexpensive and fast solution will be developed directly on the

radar.

6.2 Realistic Constarints

Many realistic constraints were encountered during the design. The fact that the data
used is of floating-point type has been the most difficult part of the project. It both
made it difficult to receive data on the Vitis interface and caused some situations such
as the insufficient number of DSPs on the card in the Vivado interface, requiring the
use of a special IP. Therefore, the operation of the project has slowed down. In
addition, the fact that the project is within the scope of TUBITAK 1001 projects

caused time to be lost due to the preparation of extra reports and presentations.
6.2.1 Social, environmental and economic impact

Ground penetrating radar is an extremely safe measurement method that does not
require digging, used to find buried objects. It emerges as a very useful and safe

technigue in mine exploration for military purposes.

With the addition of suitable (low transaction cost and robust clutter) clutter removal
and detection methods to be developed for the mobile system, the whole system will
find a wide market opportunity as a compact, mobile and low-cost product, and will

appeal to civilian or military users from all walks of life.

70

The ability of these application to implement on FPGA and SoC will provide great
advantages in terms of speed.

6.2.2 Cost analysis

In this project, all the steps implemented on the computer and hardware devices are
planned to be used. The programs that will be used are provided by ITU and Xilinx.
A junior engineer’s salary is assumed to be 5$/hour. The project will take 28 weeks
with respect to EHB4901E and EHB4902E lectures AKTSs.

Salary = 5% * 5.5 hour * 28 weeks = 770 $ for per student

ZedBoard Zyng-7000 ARM/FPGA SoC Development Board = 500$

Sum =1270 $

6.2.3 Standards

Throughout the project, hardware designs were based on IEEE's Verilog and VHDL
standards and IEEE-754 Floating-Point standard. Likewise, the C model was
completed with reference to the C99 standard. In addition, TUBITAK Standards were
complied with.

6.2.4 Health and safety concerns

OnSite Effective with a Low Cost, Portable Ground Penetrating Radar System Clutter
Clearing and Targeting is an extremely safe measurement method for locating buried

objects. It is a very useful and safe technique in military mining exploration.

6.3 Future Work and Recommendations

In order to improve this project, the steps applied with float value can also be applied
with double values. In addition, in order to speed up the RNMF algorithm at the

moment, the hardware part can be designed for operations in other lines, such as

71

matrix multiplication, division, shifting, etc., which are performed in hardware. Thus,

the system will be accelerated even more.

6.4 Conclusion

With this project, it is aimed to accelerate the system by realizing the matrix
multiplication, which is a frequently performed operation in software, of RNMF,
which is a clutter removal algorithm. For this, first of all, it was necessary to transfer
the data from the radar to the computer. In the Vitis environment, the data was read
from the text file and transferred to the computer and made ready for processing. In
the Vitis environment, the RNMF algorithm was run with the data from the text file.
It has been seen that the longest-running operation is matrix multiplication. Therefore,
this line of operation is intended to be implemented in hardware. Implementation of
floating-point numbers in hardware is quite difficult compared to other data types.
Therefore, a special design is required. Methods to do this have been investigated. It
was decided that the most suitable method for this project is the existing Floatimg-
Point IP Generator. A new private IP was designed using this custom IP located in
Xilinx's own environment. Afterwards, a block design was created using the designed
IP and Zyng-7000 processor. After the block design was synthesized, implanted and
the bit file was produced, the system designed in the software part was used. Thus, the

execution of the main code is accelerated and the number of clock cycles is reduced.

72

REFERENCES

[1] Kuon, I., Tessier, R. and Rose, J., 2008. FPGA Architecture: Survey and
Challenges.

[2] Ashenden, P.J., 2007. Digital Design (VHDL): An Embedded Systems Approach
Using VHDL, Morgan Kaufmann.

[3] XILINX, 2020, "Vivado Design Suite User Guide".

[4] MathWorks, Design digital FPGA, SoC FPGA, or ASIC hardware, https://
www.mathworks.com/discovery/hardware-design.html. (accessed Jan.
02, 2023).

[5] Thomas, D.E. and Moorby, P.R., (2002). The Verilog® Hardware Description

Language, Kluwer Academic Publishers.

[6]“ZedBoard - Digilent Reference,” digilent.com.,
https://digilent.com/reference/programmable-logic/zedboard/start
(accessed Dec. 27, 2023).

[7] Ishtiaq, A., Khan, M. U., Ali, S. Z., Habib, K., Samer, S., & Hafeez, E. (2021, January).
A Review of System on Chip (SOC) Applications in Internet of Things (10T)
and Medical. In ICAME21, International Conference on Advances in

Mechanical Engineering, Pakistan (pp. 1-10).

[8] Zyng-7000 ARM/FPGA SoC https://www.digikey.com/en/products/detail/amd-
xilinx/XC77020-2CL.G4841/3925763 (accessed Dec. 27, 2023).

[9] Design, M. B. D. (2012). Vivado Design Suite Reference Guide
[10] L. Zhang, Z. Chen, M. Zheng, and X. He, “Robust non-
negative matrix factorization,” Frontiers of Electrical and Electronic
Engineering in China, vol. 6, no. 2, pp. 192-200, Feb. 2011, doi:
10.1007/s11460-011-0128-0.

[11] Xilinx, (2021). Vivado Design Suite Properties Reference Guide.

[12] Kumlu, D. ve Erer, 1., (2018) “Clutter removal in GPR images using non-

negative matrix factorization”, Journal of Electromagnetic Waves and

73

http://www.mathworks.com/discovery/hardware-design.html
https://www.digikey.com/en/products/detail/amd-xilinx/XC7Z020-2CLG484I/3925763
https://www.digikey.com/en/products/detail/amd-xilinx/XC7Z020-2CLG484I/3925763

Applications, vol 32, no. 16, pp. 2055-2066, doi:
https://doi.org/10.1080/09205071.2018.1489740

[13] “Zynq-7000 SoC,” Xilinx. https://www.xilinx.com/products/silicon-

devices/soc/zyng-7000.html

[14] Y.-X. Wang and Y.-J. Zhang, “Nonnegative Matrix Factorization: A
Comprehensive Review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 6, pp. 1336-1353, Jun. 2013, doi:
10.1109/tkde.2012.51.

[15] H. Zhou, Y. Wang, Q. Liu and Y. Wang, "RNMF-Guided Deep Network for
Signal Separation of GPR Without Labeled Data," in IEEE
Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art
no. 3507705, doi: 10.1109/LGRS.2021.3099161.

[16] D. Kumlu and I. Erer, (2020) "Improved Clutter Removal in GPR by Robust
Nonnegative Matrix Factorization,” in IEEE Geoscience and Remote
Sensing Letters, vol. 17, no. 6, pp. 958-962, doi:
10.1109/LGRS.2019.2937749.

[17] N. B. Erichson, A. Mendible, S. Wihlborn, and J. N. Kutz, “Randomized

nonnegative matrix factorization,” Pattern Recognition Letters, vol. 104, pp. 1-7,

Mar. 2018, doi: 10.1016/j.patrec.2018.01.007.

[18] L. Du, X. Li and Y. -D. Shen, "Robust Nonnegative Matrix Factorization via
Half-Quadratic Minimization,” 2012 IEEE 12th International
Conference on Data Mining, 2012, pp. 201-210, doi:
10.1109/ICDM.2012.39.

[19] APU, A. P. U. (2012). XA Zyng-7000 All Programmable SoC First Generation
Architecture.

[20] “UART Protocol”, 2021,https://techdestek.net/2021/07/15/uart-protokolu/

[21] Fasi, M., & Mikaitis, M. (2021). Algorithms for stochastically rounded
elementary arithmetic operations in IEEE 754 floating-point
arithmetic. IEEE Transactions on Emerging Topics in
Computing, 9(3), 1451-1466.

74

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://techdestek.net/2021/07/15/uart-protokolu/

[22] PGO060, X. (2017). Floating-Point Operator V7. 1 LogicCore IP Product Guide.

[23] Campos, N., Edirisinghe, E., Fatima, S., Chesnokov, S., & Lluis, A. (2023).
Fpga implementation of a custom floating-point library.
In Proceedings of SAI Intelligent Systems Conference (pp. 527-542).
Springer, Cham.

[24] Even, G., Mueller, S. M., & Seidel, P. M. (2000). A dual precision IEEE
floating-point multiplier. Integration, 29(2), 167-180.

[25] Louca, Cook and Johnson, "Implementation of IEEE single precision floating
point addition and multiplication on FPGAs," 1996 Proceedings IEEE
Symposium on FPGAs for Custom Computing Machines, 1996, pp.
107-116, doi: 10.1109/FPGA.1996.564761.

[26] R. K. Kodali, S. K. Gundabathula and L. Boppana, "FPGA implementation
of IEEE-754 floating point Karatsuba multiplier,” 2014 International
Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), 2014, pp. 300-304, doi:
10.1109/ICCICCT.2014.6992974.

[27] K. Manolopoulos, D. Reisis and V. A. Chouliaras, "An efficient multiple
precision floating-point multiplier,” 2011 18th IEEE International
Conference on Electronics, Circuits, and Systems, 2011, pp. 153-156,
doi: 10.1109/ICECS.2011.6122237.

[28] A. Akkas and M. J. Schulte, "A quadruple precision and dual double precision
floating-point multiplier," Euromicro Symposium on Digital System
Design, 2003. Proceedings., 2003, pp. 76-81, doi:
10.1109/DSD.2003.1231903.

[29] H. Yamada, T. Hotta, T. Nishiyama, F. Murabayashi, T. Yamauchi and H.
Sawamoto, "A 13.3ns double-precision floating-point ALU and
multiplier,” Proceedings of ICCD '95 International Conference on
Computer Design. VLSI in Computers and Processors, 1995, pp. 466-
470, doi: 10.1109/ICCD.1995.5289009.

75

CURRICULUMVITAE

Name Surname : Cisem KURT

Place and Date of Birth : Gonen -Turkey, 1999

E-Mail : cisemkurt99@agmail.com

Education: * B.Sc. : Istanbul Technical University- Electronics and
Communication Engineering (2020-2023)

Professional Experience : 07.2021 — 08.2021 ITU Embedded System Design
Lab. Internship

08.2021 — 09.2021 Tekhnelogos Software — Hardware
Design Engineer Intern

10.2021 — 03.2022 Tekhnelogos Software — Hardware
Part Time Design Engineer

03.2022 — Present Turkish Aerospace (TUSAS) — Part
Time Design Engineer

76

mailto:cisemkurt99@gmail.com

CURRICULUMVITAE

Name Surname : M. Furkan ERTURAL
Place and Date of Birth : Istanbul -Turkey, 1997

E-Mail : fertural@gmail.com

Education: B.Sc. : Istanbul Technical University- Electronics and
Communication Engineering (2018-2023)

Professional Experience :07.2021 — 08.2021 ITU Embedded System Design
Lab. Internship

2021 - 2022: Embedded Sofware Systems Developer
at TUBITAK RUTE, Part-Time Research Engineer

2022 - 2022: Sofware Developer at SIEMENS-
ADVANTA, Part-Time Software Developer

77

mailto:fertural@gmail.com

